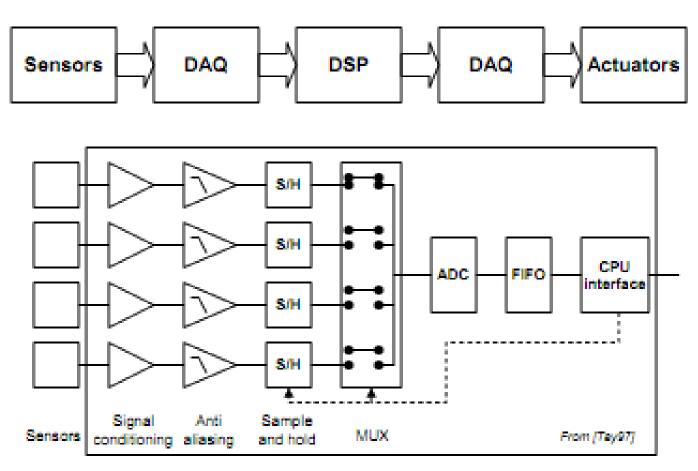
Data Acquisition I

- Architecture of DAQ systems
- Signal conditioning
- Aliasing

Architecture of data acquisition systems

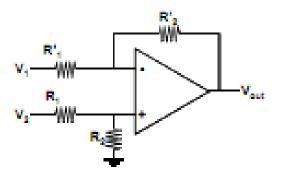


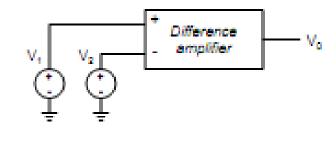
Signal conditioning

- Instrumentation amplifiers
- Filters
- Integrators/differentiators

Instrumentation amplifiers

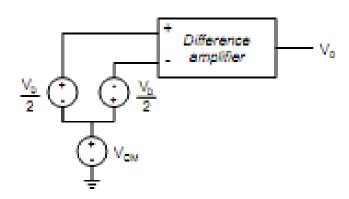
Consider the difference amplifier we saw in the previous lecture





■ We define COMMON-MODE and DIFFERENCE-MODE voltage as

$$V_{CM} = \frac{V_2 + V_1}{2}$$
 $V_D = V_2 - V_1$



Instrumentation amplifiers

As a result of a mismatch in the resistors (R'_k≠ R_k), the differential inputs may not have the same gain

$$\begin{split} V_0 &= G(V_2 - V_1)^{R_k^1 \neq R_k} G_2 V_2 - G_1 V_1 = G_2 \bigg(-\frac{V_D}{2} + V_{CM} \bigg) - G_1 \bigg(\frac{V_D}{2} + V_{CM} \bigg) = \\ &= -V_D \bigg(\frac{G_2 + G_1}{2} \bigg) + V_{CM} (G_2 - G_1) = -V_D G_D + V_{CM} G_{CM} \end{split}$$

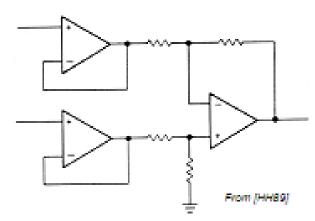
We define COMMON-MODE REJECTION RATIO as

CMRR =
$$20\log_{10}\left(\frac{G_D}{G_{CM}}\right) = 20\log_{10}\left(\frac{G_2 + G_1}{2(G_2 - G_1)}\right)$$

- CMRR is, in practice, a function of frequency, and its magnitude decreases with increasing frequency
- An additional shortcoming of the difference amplifier is its LOW INPUT IMPEDANCE

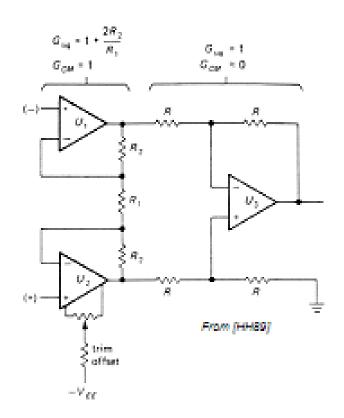
Instrumentation amplifiers

- The term INSTRUMENTATION AMPLIFIER is used to denote a difference amplifier with
 - High gain (INA2126)
 - Single-ended output
 - High input impedance
 - High CMRR
- High input impedance may be achieved by buffering the differential inputs
 - This solution, however, requires high CMR both in the followers and in the final opamp
 - Otherwise, since the input buffers have unity gain, all the CM rejection must come in the output op-amp, requiring precise resistor matching

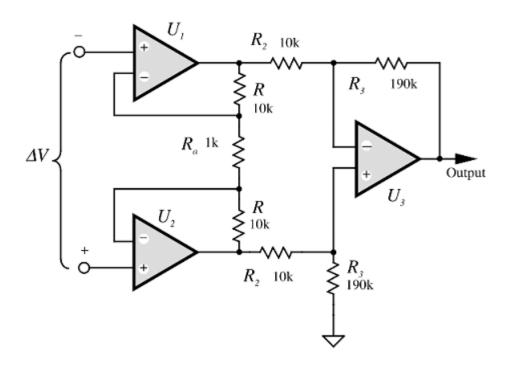


Common mode rejection ratio

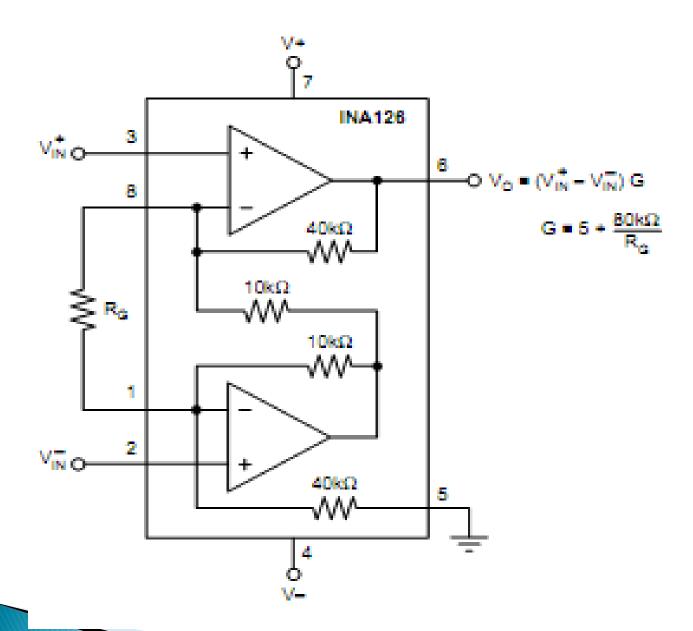
- A better solutions is the "standard" instrumentation amplifier shown below
 - Input stage provides high GD and unity GCM
 - Close resistor (R2) matching is NOT critical
 - As a result, the output opamp (U3) does not require exceptional CMRR and resistor matching in U3is not critical
 - Offset trimming can be done at one of the input op-amps



INA...



$$A = \left(1 + \frac{2R}{R_a}\right) \frac{R_3}{R_2}$$



INA126.....

DESIRED GAIN (V/V)	R _G (Ω)	NEAREST 1% Rg VALUE		
5	NC	NC		
10	16k	15.8k		
20	5333	5360		
50	1779	1780		
100	842	845		
200	410	412		
500	162	162		
1000	80.4	80.6		
2000	40.1	40.2		
5000	16.0	15.8		
10000	8.0	7.87		

NC: No Connection.

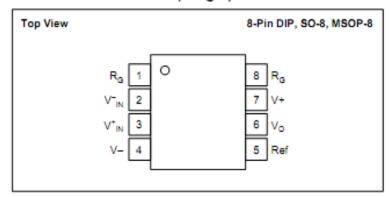
O
$$V_0 = (V_{iN}^+ - V_{iN}^-) G$$

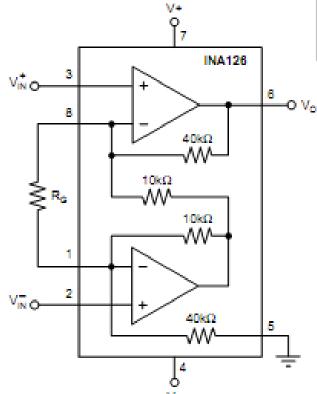
 $G = 5 + \frac{80k\Omega}{R_o}$

APPLICATIONS

- INDUSTRIAL SENSOR AMPLIFIER: Bridge, RTD, Thermocouple
- PHYSIOLOGICAL AMPLIFIER: ECG, EEG, EMG
- MULTI-CHANNEL DATA ACQUISITION
- PORTABLE, BATTERY OPERATED SYSTEMS

PIN CONFIGURATION (Single)



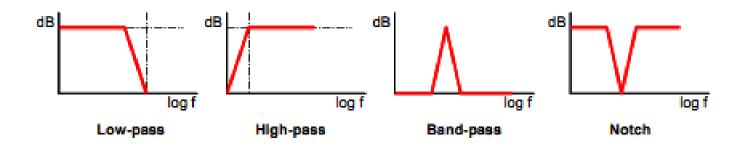


Filters

- Filters are used to remove unwanted bandwidths from a signal
- Filter classification according to implementation
 - Active filters include RC networks and op-amps
 - Suitable for low frequency, small signal
 - Active filters are preferred since avoid the bulk and nonlinearity of inductors and can have gains greater than 0dB
 - However, active filters require a power supply
 - Passive filters consist of RCL networks
 - Simple, more suitable for frequencies above audio range, where active filters are limited by the op-map bandwidth
- Digital filters
 - DSP is beyond the scope of this course

Filters

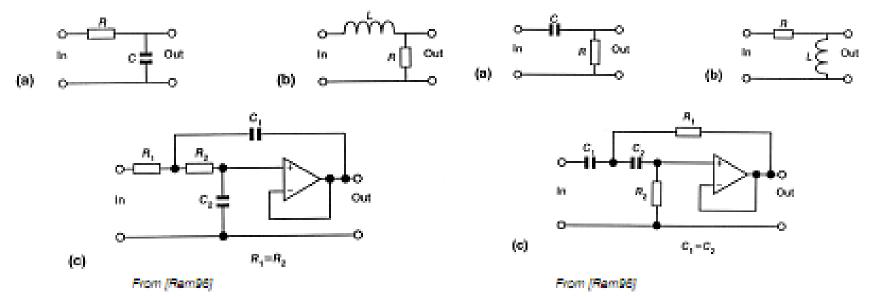
- Filter classification according to frequency response
 - Low-pass filter
 - n High-pass filter
 - Band-pass filter
 - Band-stop (Notch)



Low- and high-pass filters

Low pass filters

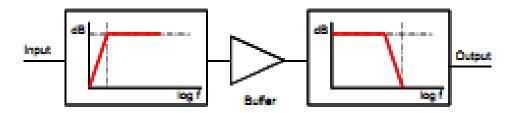
High pass filters



Band-pass and band-stop filters

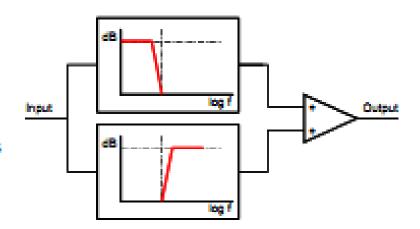
Band-pass

- High-pass and low pass in series
 - High-pass should usually precede
 - Corner frequency of low-pass must then be higher
 - If these are passive filters they should be buffered in between



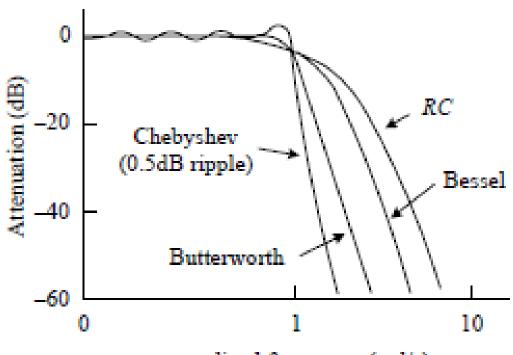
Band-stop

- High-pass and low-pass in parallel followed by a summer
 - Corner frequency of high-pass must be higher

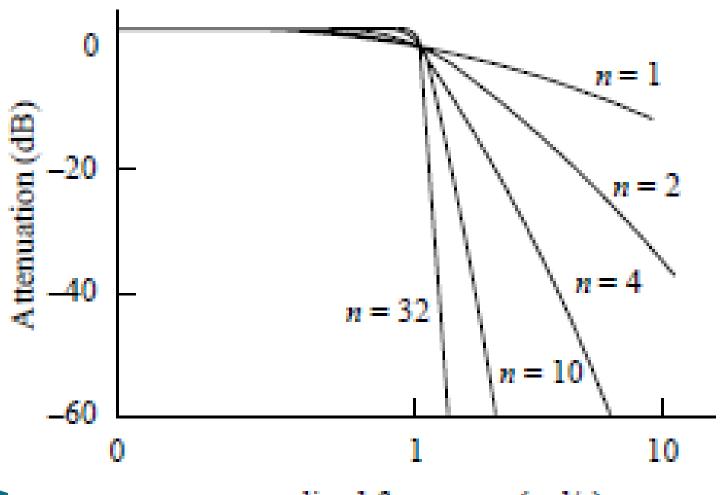


Types of Filters

$$T(S) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{N_m S^m + N_{m-1} S^{m-1} + \dots + N_1 S + N_0}{D_n S^n + D_{n-1} S^{n-1} + \dots + D_1 S + D_0}$$

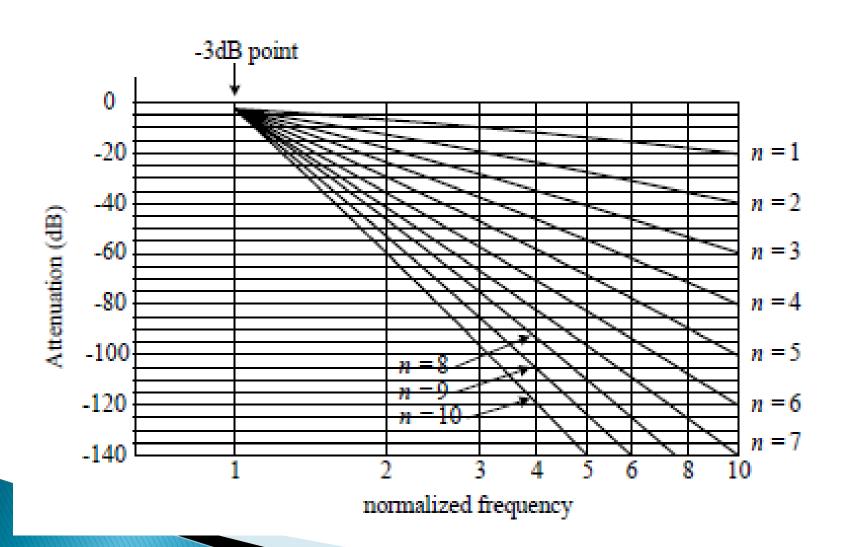


Normalized low-pass Butterworth filter reponse curves

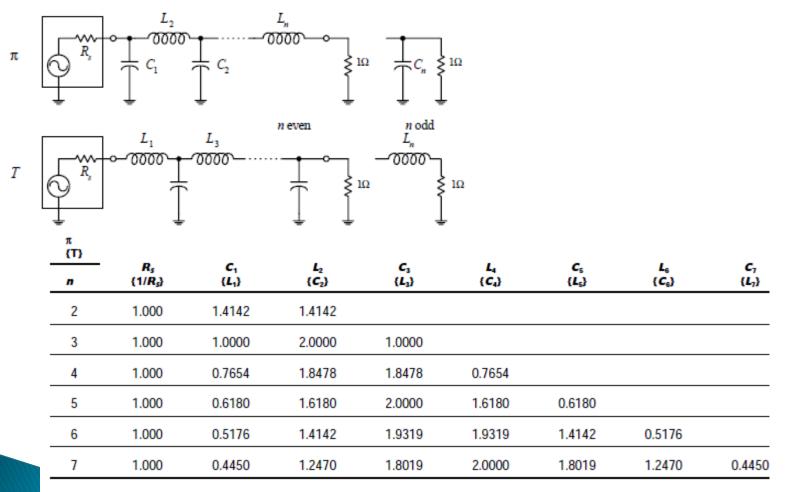


normalized frequency (rad/s)

Attenuation curves for Butterworth LPF



LC Low Pass Filter network

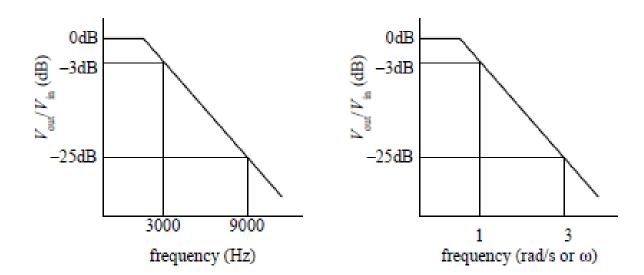


Note: Values of L_n and C_n are for a 1- Ω load and -3-dB frequency of 1 rad/s and have units of H and F. These values must be scaled down. See text.

Example

Suppose that you want to design a low-pass filter that has a f_{3dB} = 3000 Hz (attenuation is -3 dB at 3000 Hz) and an attenuation of -25 dB at a frequency of 9000 Hz—which will be called the *stop frequency* f_s . Also, let's assume that both the signal-source impedance R_s and the load impedance R_L are equal to 50 Ω . How do you design the filter?

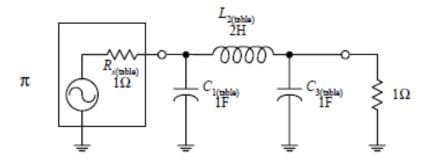
Step 1: Normalization



Step 2&3: Pick Response Curve and determine number of Poles

n=3 from the curve for Butterworth

Step 4: Create Normalized Filter

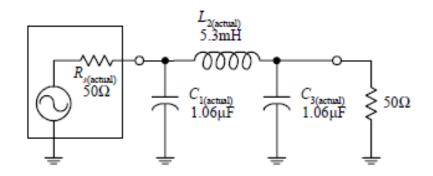


Step 5: Frequency and Impedance Scaling

$$L_{2(\text{actual})} = \frac{R_L L_{2(\text{table})}}{2\pi f_{3\text{dB}}} = \frac{(50\Omega)(2 \text{ H})}{2\pi (3000 \text{ Hz})} = 5.3 \text{ mH}$$

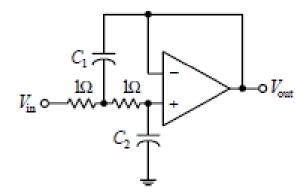
$$C_{1(\text{actual})} = \frac{C_{1(\text{table})}}{2\pi f_{3\text{dB}}R_L} = \frac{1 \text{ F}}{2\pi (3000 \text{ Hz})(50 \Omega)} = 1.06 \text{ }\mu\text{F}$$

$$C_{3(actual)} = \frac{C_{3(table)}}{2\pi f_{3dB}R_L} = \frac{1 \text{ F}}{2\pi (3000 \text{ Hz})(50 \Omega)} = 1.06 \mu\text{F}$$

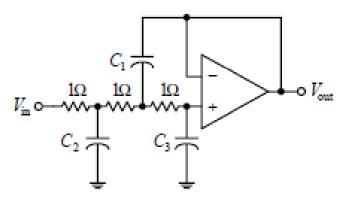


Active Filter Design

Basic two-pole section



Basic three-pole section



Normalized Curves

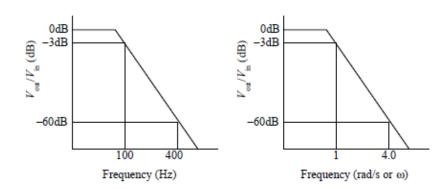
TABLE 8.2 Butterworth Normalized Active Low-Pass Filter Values

ORDER	NUMBER OF SECTIONS	SECTIONS	c ,	C ₂	C ₃
2	1	2-pole	1.414	0.7071	
3	1	3-pole	3.546	1.392	0.2024
4	2	2-pole 2-pole	1.082 2.613	0.9241 0.3825	
5	2	3-pole 2-pole	1.753 3.235	1.354 0.3090	0.4214
6	3	2-pole 2-pole 2-pole	1.035 1.414 3.863	0.9660 0.7071 0.2588	
7	3	3-pole 2-pole 2-pole	1.531 1.604 4.493	1.336 0.6235 0.2225	0.4885
8	4	2-pole 2-pole 2-pole 2-pole	1.020 1.202 2.000 5.758	0.9809 0.8313 0.5557 0.1950	

Exqample

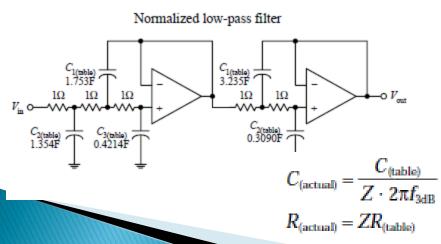
Suppose that you wish to design an active lowpass filter that has a 3-dB point at 100 Hz and at least 60 dB worth of attenuation at 400 Hz which we'll call the *stop frequency* f_s.

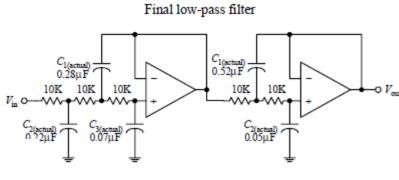
Solution



$$A_s = \frac{f_s}{f_{3dB}} = \frac{400 \text{ Hz}}{100 \text{ Hz}} = 4$$

n=5 from the curves





High Pass Filter -Passive-

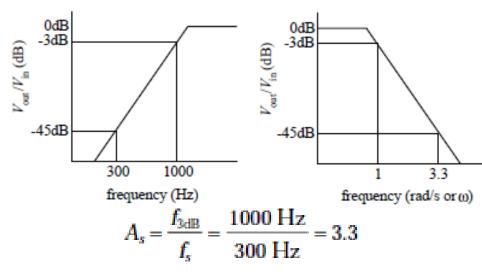
Suppose that you want to design a high-pass filter that has an f3dB = 1000 Hz and an attenuation of at least -45 dB at 300 Hz—which we call the stop frequency fs. Assume that the filter is hooked up to a source and load that both have impedances of 50Ω and that a Butterworth response is desired

How do you design the filter?

Solution

Frequency Response Curve

Normalized translation to low-pass filter



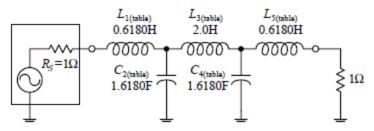
To convert the low-pass into a high-pass filter, replace the inductors with capacitors that have value of 1/L, and replace the capacitors with inductors that have values of 1/C. In other words, do the following:

$$L_{2(\text{transf})} = 1/C_{2(\text{table})} = 1/1.6180 = 0.6180 \text{ H}$$

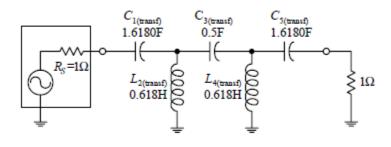
 $L_{4(\text{transf})} = 1/C_{4(\text{table})} = 1/1.6180 = 0.6180 \text{ H}$

n=5 from the curves

Start with a "T" low-pass filter ...



Transform low-pass filter into a high-pass filter...



$$C_{1(\text{transf})} = 1/L_{1(\text{table})} = 1/0.6180 = 1.6180 \text{ F}$$

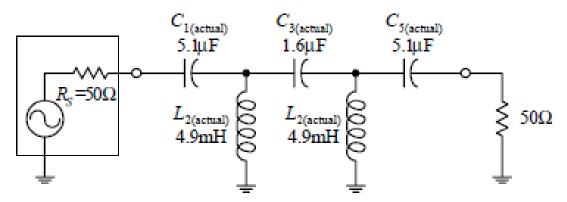
 $C_{3(\text{transf})} = 1/L_{3(\text{table})} = 1/2.0 = 0.5 \text{ F}$
 $C_{5(\text{transf})} = 1/L_{5(\text{table})} = 1/0.6180 = 1.6180 \text{ F}$

Now Scaling

Next, frequency and impedance scale to get the actual component values:

$$\begin{split} C_{1(\text{actual})} &= \frac{C_{1(\text{trans})}}{2\pi f_{3\text{dB}} R_L} = \frac{1.618 \text{ H}}{2\pi (1000 \text{ Hz}) (50 \ \Omega)} = 5.1 \ \mu\text{F} \qquad L_{2(\text{actual})} = \frac{L_{2(\text{trans})} R_L}{2\pi f_{3\text{dB}}} = \frac{(0.6180 \text{ F}) (50 \ \Omega)}{2\pi (1000 \text{ Hz})} = 4.9 \text{ mH} \\ C_{3(\text{actual})} &= \frac{C_{3(\text{trans})}}{2\pi f_{3\text{dB}} R_L} = \frac{0.5 \text{ H}}{2\pi (1000 \text{ Hz}) (50 \ \Omega)} = 1.6 \ \mu\text{F} \qquad L_{4(\text{actual})} = \frac{L_{4(\text{trans})} R_L}{2\pi f_{3\text{dB}}} = \frac{(0.6180 \text{ F}) (50 \ \Omega)}{2\pi (1000 \text{ Hz})} = 4.9 \text{ mH} \\ C_{5(\text{actual})} &= \frac{C_{5(\text{trans})}}{2\pi f_{3\text{dB}} R_L} = \frac{1.618 \text{ H}}{2\pi (1000 \text{ Hz}) (50 \ \Omega)} = 5.1 \ \mu\text{F} \end{split}$$

Impedance and frequency scale high-pass filter to get final circuit

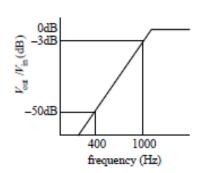


High Pass Filter-Active-

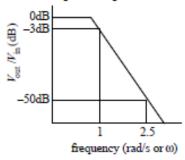
suppose

that you want to design a high-pass filter with a –3-dB frequency of 1000 Hz and 50 dB worth of attenuation at 300 Hz. What do you do?

High-pass frequency response



Translation to normalized low-pass response



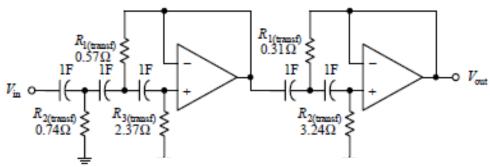
n=5 from the curves

Normalized low-pass filter $V_{\rm in} \circ V_{\rm in} \circ V_{\rm out} \circ V_{$

Next, the normalized low-pass filter must be converted into a normalized high-pass filter. To make the conversion, exchange resistors for capacitors that have values of 1/R F, and exchange capacitors with resistors that have values of 1/C Ω .

Follow.....

Normalized high-pass filter (transformed low-pass filter)

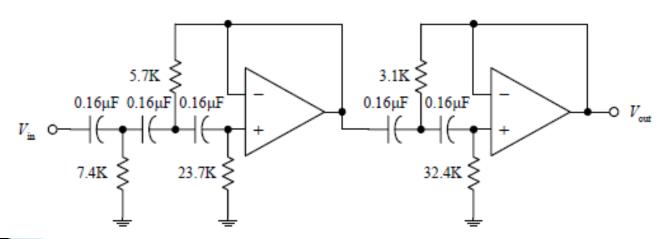


$$C_{ ext{(actual)}} \, rac{C_{ ext{(transf)}}}{Z \cdot 2 \pi f_{3 ext{dB}}}$$

$$R_{\text{(actual)}} = ZR_{\text{(transf)}}$$

let $Z = 10,000 \Omega$.

Final high-pass filter



Bandpass Filter Design-Wide Band-Passive-

When is the filter wide band??

If f_2/f_1 is greater than 1.5,

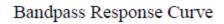
Suppose that you want to design a bandpass filter that has -3-dB points at $f_1 = 1000$ Hz and $f_2 = 3000$ Hz and at least -45 dB at 300 Hz and more than -25 dB at 9000 Hz. Also, again assume that the source and load impedances are both 50 Ω and a Butterworth design is desired. -3 dB at 3000 Hz

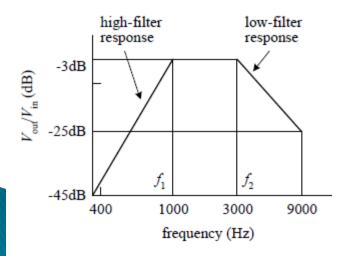
Low-pass

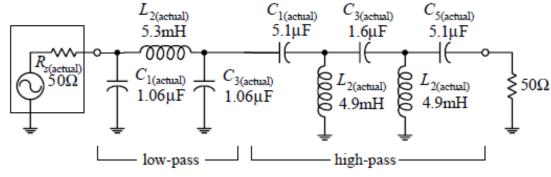
-25 dB at 9000 Hz

-3 dB at 1000 Hz High-pass

-45 dB at 300 Hz







Just Cascade

Bandpass Filter Design-Wide Band-Active-

Suppose that you want to design a bandpass filter that has -3-dB points at $f_1 = 1000$ Hz and $f_2 = 3000$ Hz and at least -30 dB at 300 and 10,000 Hz. What do you do?

$$\frac{f_2}{f} = \frac{3000 \text{ Hz}}{1000 \text{ Hz}} = 3$$

Low-pass: -3 dB at 3000 Hz

-30 dB at 10,000 Hz

High-pass: -3 dB at 1000 Hz

-30 dB at 300 Hz

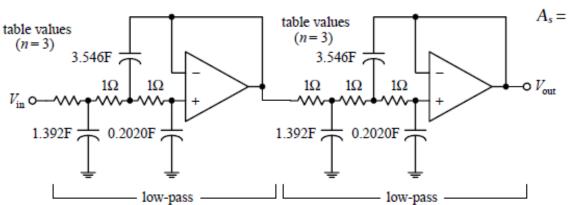
The steepness factor for the low-pass filter is

$$A_s = \frac{f_s}{f_{3dB}} = \frac{10,000 \text{ Hz}}{3000 \text{ Hz}} = 3.3$$

while the steepness factor for the high-pass filter is

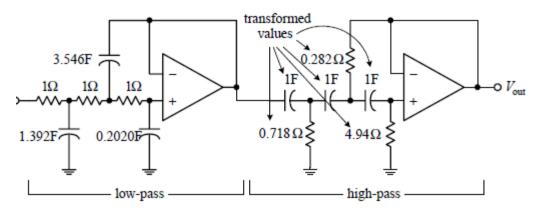
$$A_s = \frac{f_{3dB}}{f_s} = \frac{1000 \text{ Hz}}{300 \text{ Hz}} = 3.3$$

Normalized low-pass/low-pass inital setup

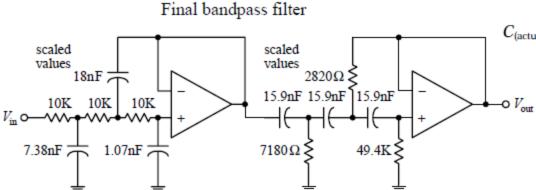


Follow...

Normalized and transformed bandbass filter



Low-pass section:



$$C_{\text{(actual)}} = \frac{C_{\text{table}}}{Z \cdot 2\pi f_{\text{3dB}}} = \frac{C_{\text{table}}}{Z \cdot 2\pi (3000 \text{ Hz})}$$

High-pass section:

$$C_{\text{(actual)}} = \frac{C_{\text{table}}}{Z \cdot 2\pi f_{\text{2dB}}} = \frac{C_{\text{table}}}{Z \cdot 2\pi (1000 \text{ Hz})}$$

Narrow Bandwidth BPF-Passive (optional)

Suppose that you want to design a bandpass filter with -3-dB points at $f_1 = 900$ Hz and $f_2 = 1100 \text{ Hz}$ and at least -20 dB worth of attenuation at 800 and 1200 Hz. Assume that both the source and load impedances are 50Ω and that a Butterworth design is desired.

Since $f_2/f_1 = 1.2$, which is less than 1.5, a narrow-band filter is needed.

geometric center frequency
$$f_0 = \sqrt{f_1 f_2} = \sqrt{(900 \text{ Hz})(1100)} = 995 \text{ Hz}$$

Next, compute the two pair of geometrically related stop-band frequencies by using

$$f_a f_b = f_0^2$$

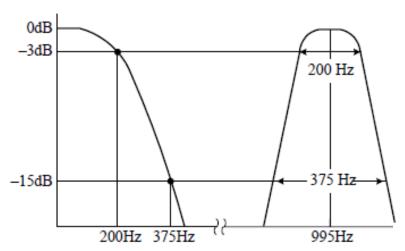
$$f_a = 800 \text{ Hz} \qquad f_b = \frac{f_0^2}{f_a} = \frac{(995 \text{ Hz})^2}{800 \text{ Hz}} = 1237 \text{ Hz} \qquad f_b - f_a = 437 \text{ Hz}$$

$$f_b = 1200 \text{ Hz} \qquad f_a = \frac{f_0^2}{f_b} = \frac{(995 \text{ Hz})^2}{1200 \text{ Hz}} = 825 \text{ Hz} \qquad f_b - f_a = 375 \text{ Hz}$$

Choose the pair having the least separation, which represents more severe requirements-375 Hz

Follow.....

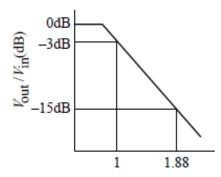
Low-pass bandpass relationship



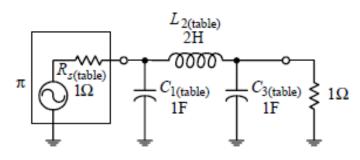
$$A_s = \frac{\text{stop-band bandwidth}}{3\text{-dB bandwidth}} = \frac{375 \text{ Hz}}{200 \text{ Hz}} = 1.88$$

From the curve n=3

Normalized low-pass response



Normalized low-pass filter

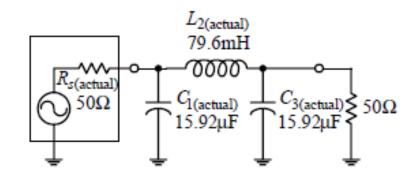


STUDENTS-HUB.com frequency (rad/s or ω)

Follow.....

Impedance and frequency scaled low-pass filter

$$\begin{split} C_{1(\text{actual})} &= \frac{C_{1(\text{table})}}{2\pi(\Delta f_{BW})R_L} = \frac{1 \text{ F}}{2\pi(200 \text{ Hz})(50 \Omega)} = 15.92 \text{ }\mu\text{F} \\ C_{3(\text{actual})} &= \frac{C_{3(\text{table})}}{2\pi(\Delta f_{BW})R_L} = \frac{1 \text{ F}}{2\pi(200 \text{ Hz})(50 \Omega)} = 15.92 \text{ }\mu\text{F} \\ L_{2(\text{actual})} &= \frac{L_{2(\text{table})}R_L}{2\pi(\Delta f_{BW})} = \frac{(2 \text{ H})(50 \Omega)}{2\pi(200 \text{ Hz})} = 79.6 \text{ mH} \end{split}$$



The important part comes now. Each circuit branch of the lowpass filter must be resonated to f_0 by adding a series capacitor to each inductor and a parallel inductor to each capacitor. The LCresonant equation is used to determine the additional component values:

$$L_{\text{(parallel with }C1)} = \frac{1}{(2\pi f_0)^2 C_{1(\text{actual})}} = \frac{1}{(2\pi \cdot 995 \text{ Hz})^2 (15.92 \text{ }\mu\text{F})} = 1.61 \text{ mH}$$

$$L_{\text{(parallel with }C3)} = \frac{1}{(2\pi f_0)^2 C_{3(\text{actual})}} = \frac{1}{(2\pi \cdot 995 \text{ Hz})^2 (15.92 \text{ }\mu\text{F})} = 1.61 \text{ mH}$$

$$C_{\text{(series with }L2)} = \frac{1}{(2\pi f_0)^2 L_{3(\text{actual})}} = \frac{1}{(2\pi f_0)^2 L_{3(\text{actual})}} = \frac{1}{(2\pi f_0)^2 L_{3(\text{actual})}} = 0.32 \text{ }\mu\text{F}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Final bandpass filter

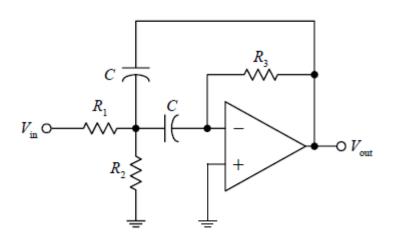
BPF-Narrow Band-Active Design

Suppose that you want to design a bandpass filter that has a center frequency f_0 = 2000 Hz and a –3-dB bandwidth $\Delta f_{BW} = f_2 - f_1 = 40$ Hz. How do you design the filter?

Since $f_2/f_1 = 2040 \text{ Hz}/1960 \text{ Hz} = 1.04$,

No Cascading

Narrow-band filter circuit



$$Q = \frac{f_0}{f_2 - f_1} = \frac{2000 \text{ Hz}}{40 \text{ Hz}} = 50$$

$$R_1 = \frac{Q}{2\pi f_0 C}$$

$$R_1 = \frac{Q}{2\pi f_0 C}$$
 $R_2 = \frac{R_1}{2Q^2 - 1}$ $R_3 = 2R_1$

$$R_1 = \frac{50}{2\pi (2000 \text{ Hz})(0.01 \text{ }\mu\text{F})} = 79.6 \text{ }k\Omega$$

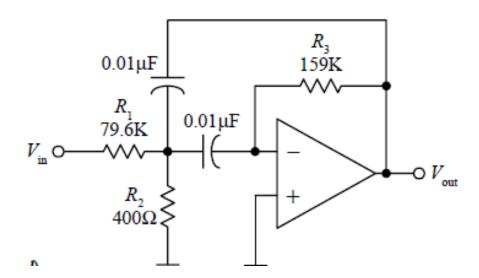
$$R_2 = \frac{79.6 \text{ k}\Omega}{2(50)^2 - 1} = 400 \Omega$$

$$R_3 = 2(79.6 \text{ k}\Omega) = 159 \text{ k}\Omega$$

Choose convenient value of C, let it

Final Design ...

Final filter circuit



Passive Notch Filter (optional)

EXAMPLE

Suppose that you want to design a notch filter with -3-dB points at f_1 = 800 Hz and f_2 = 1200 Hz and at least -20 dB at 900 and 1100 Hz. Let's assume that both the source and load impedances are 600 Ω and that a Butterworth design is desired.

First, you find the geometric center frequency:

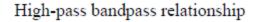
$$f_0 = \sqrt{f_1 f_2} = \sqrt{(800 \text{ Hz})(1200 \text{ Hz})} = 980 \text{ Hz}$$

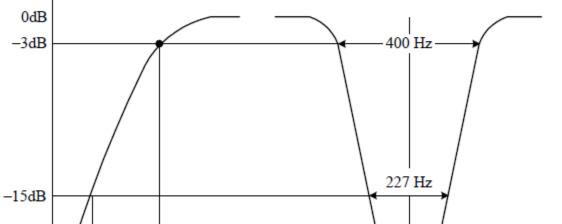
Next, compute the two pairs of geometrically related stop-band frequencies:

$$f_a = 900 \text{ Hz}$$
 $f_b = \frac{f_0^2}{f_a} = \frac{(980 \text{ Hz})^2}{900 \text{ Hz}} = 1067 \text{ Hz}$
 $f_b - f_a = 1067 \text{ Hz} - 900 \text{ Hz} = 167 \text{ Hz}$
 $f_b = 1100 \text{ Hz}$ $f_a = \frac{f_0^2}{f_b} = \frac{(980 \text{ Hz})^2}{1100 \text{ Hz}} = 873 \text{ Hz}$
 $f_b - f_a = 1100 \text{ Hz} - 873 \text{ Hz} = 227 \text{ Hz}$

Choose the pair of frequencies that gives the more severe requirement—227 Hz.

Follow....





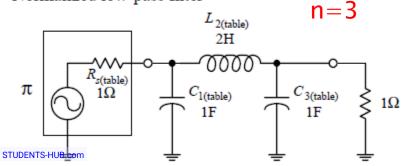
$$A_s = \frac{3 \text{-dB bandwidth}}{\text{stop-band bandwidth}} = \frac{400 \text{ Hz}}{227 \text{ Hz}} = 1.7$$

$$L_{1(transf)} = 1/C_{1(table)} = 1/1 = 1 \text{ H}$$

 $L_{3(transf)} = 1/C_{3(table)} = 1/1 = 1 \text{ H}$
 $C_{2(transf)} = 1/L_{2(table)} = 1/2 = 0.5 \text{ F}$

Normalized low-pass filter

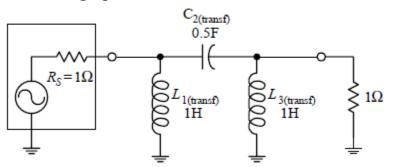
227Hz



400Hz

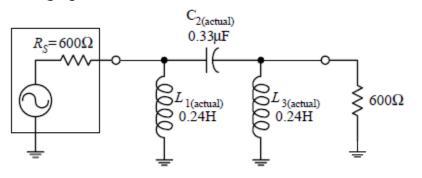
Normalized high-pass filter

980Hz



Follow...

Actual high-pass filter

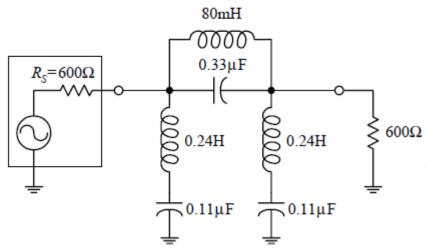


$$L_{1(\text{actual})} = \frac{R_L L_{1(\text{transf})}}{2\pi (\Delta f_{BW})} = \frac{(600 \ \Omega)(1 \ \text{H})}{2\pi (400 \ \text{Hz})} = 0.24 \ \text{H}$$

$$L_{3(\text{actual})} = \frac{R_L L_{3(\text{transf})}}{2\pi(\Delta f_{BW})} = \frac{(600 \ \Omega)(1 \ \text{H})}{2\pi(400 \ \text{Hz})} = 0.24 \ \text{H}$$

$$C_{2(\text{actual})} = \frac{C_{1(\text{transf})}}{2\pi(\Delta f_{BW})R_L} = \frac{(0.5 \text{ F})}{2\pi(400 \text{ Hz})(600 \Omega)} = 0.33 \mu\text{F}$$

Final bandpass filter



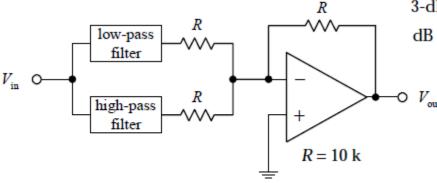
$$C_{(\text{series with }L1)} = \frac{1}{(2\pi f_0)^2 L_{1(\text{actual})}} = \frac{1}{(2\pi \cdot 400 \text{ Hz})^2 (0.24 \text{ H})} = 0.11 \text{ }\mu\text{F}$$

$$C_{\text{(series with }L3)} = \frac{1}{(2\pi f_0)^2 L_{3\text{(actual)}}} = \frac{1}{(2\pi \cdot 400 \text{ Hz})^2 (0.24 \text{ H})} = 0.11 \text{ }\mu\text{F}$$

$$L_{\text{(parallel with }L\text{I)}} = \frac{1}{(2\pi f_0)^2 C_{2\text{(actual)}}} = \frac{1}{(2\pi \cdot 400 \text{ Hz})^2 (0.33 \text{ }\mu\text{F})} = 80 \text{ mH}$$

Active Notch Filter -Wide-Band

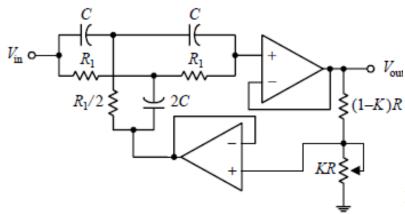
Basic wide-band notch filter



For example, if you need a notch filter to have – 3-dB points at 500 and 5000 Hz and at least –15 dB at 1000 and 2500 Hz.

Narrow-Band Notch Filter

Improved notch filter



Suppose that you want to make a "notch" at $f_0 = 2000$ Hz and desire a -3-dB bandwidth of $\Delta f_{BW} = 100$ Hz. To get this desired response, do the following: First determine the Q:

$$Q = \frac{\text{"notch" frequency}}{-3\text{-dB bandwidth}} = \frac{f_0}{\Delta f_{BW}} = \frac{2000 \text{ Hz}}{100 \text{ Hz}} = 20$$

$$R_1 = \frac{1}{2\pi f_0 C}$$
 and $K = \frac{4Q - 1}{4Q}$

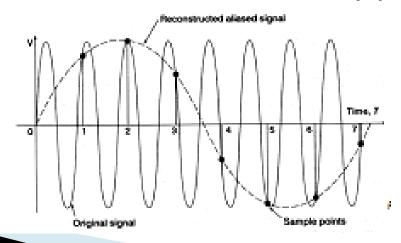
Now arbitrarily choose R and C; say, let R = 10 k and $C = 0.01 \mu F$. Next, solve for R_1 and K:

$$R_1 = \frac{1}{2\pi f_0 C} = \frac{1}{2\pi (2000 \text{ Hz})(0.01 \text{ µF})} = 7961 \Omega$$

$$K = \frac{4Q - 1}{4Q} = \frac{4(20) - 1}{4(20)} = 0.9875$$

Anti-aliasing

- The sampling theorem
 - A continuous signal can be represented completely by, and reconstructed from, a set of instantaneous measurements or samples of its voltage which are made at equally-spaced times. The interval T(=1/fs) between such samples must be less than one-half the period of the highest-frequency component fmax in the signal
 - In other words: you must sample at least twice the rate of the maximum frequency in your signal to prevent aliasing (Fs≥2FMAX)
 - The sampling rate Fs=2FMAX is called the Nyquist rate



Anti-aliasing

- The effects of aliasing can also be observed on the frequency spectrum of the signal
- In the figures below
 - F₁ appears correctly since F₁≤ F₂/2
 - F₂, F₃ and F₄ have aliases at 30, 40 and 10Hz, respectively
 - You can compute these aliased frequencies by <u>folding</u> the spectrum around F_s/2 or with the expression

Alias frequency
$$\hat{F} = \min |kF_s - F|_{\forall k \text{ integer}}$$

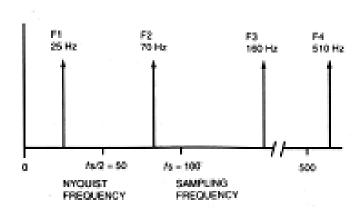


FIGURE 117.5 Spectral of signal with multiple frequencies.

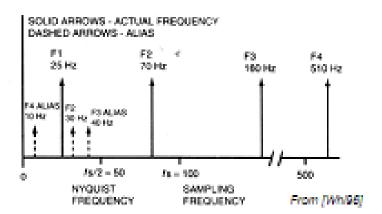


FIGURE 117.6 Spectral of signal with multiple frequencies after sampled at f s = 100 Hz.

Anti-aliasing filters

- An anti-aliasing filter is a low-pass filter designed to filter out frequencies higher than the sampling frequency
 - An anti-aliasing filter should have
 - Steep cut-off and
 - Flat response in the frequency band
- Typical filters are:
 - Butterworth: flattest response in the frequency band but phase shifts well below the break frequency
 - Bessel: phase shift proportional to frequency, so the signal is not distorted by the filter
 - Recommended for anti-aliasing if it is important to preserve the waveform
 - Chebyshev: steepest cut-off but it has ripples in the band-pass

