
ARM Assembly Programming
Based on ARM Assembly Language and Architecture

By

Mohammad Maizidi and others

Chapter 2

Uploaded By: anonymousSTUDENTS-HUB.com

ARM Architecture and Assembly Language Programming

• 15 registers: R0 – R15
• R0 – R12: General Purpose Registers, R13 (SP), R14 (LR), R15 (PC)
• Register width is 32-bit (default size)
• Word: 32 bits, Half-word: 16 bits, Byte: 8 bits

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
Note: Memory is byte addressable
ARM is little Indian

LENOVO
Typewriter
RISC machine is a load-store machine

LENOVO
Typewriter
two instructions can access memory: load + store

ARM Instruction Format

• 3-address Instructions:
source2 can be a register, immediate (constant) value, or memory.

MOV instruction: MOV Rn,Op2 ;load Rn register with Op2 (Operand2).
;Op2 can be immediate (constant) number #K which is an 8-bit value that can be
0–255 in decimal, (00–FF in hex)

Op2 can also be a register Rm. Rn or Rm are any of the registers R0 to R15

Examples:
MOV R2,#0x25 ;load R2 with 0x25 (R2 = 0x25)
MOV R1,#0x87 ;copy 0x87 into R1 (R1 = 0x87)
MOV R5,R7 ;copy contents of R7 into R5 (R5 = R7)

To write a comment in Assembly language we use ‘;’.

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
dest + source1 can only be registers

LENOVO
Typewriter
source2 can be constant >> 8bits (signed/unsigned)

Immediate constant notes:

1. We put # in front of every immediate value.

2. If we want to present a number in hex, we put a 0x in front of it. If we put nothing
in front of a number, it is in decimal. For example, in “MOV R1,#50”, R1 is loaded
with 50 in decimal, whereas in “MOV R1,#0x50”, R1 is loaded with 50 in hex (80
in decimal).

3. If values 0 to FF are moved into a 32-bit register, the rest of the bits are assumed to
be all zeros. For example, in “MOV R1,#0x5” the result will be R1=0x00000005;
that is, R1=00000000000000000000000000000101 in binary.

4. Moving an immediate value larger than 255 (FF in hex) into the register will cause
an error.

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
mov R5,#2_1110

LENOVO
Typewriter
ARM is not case sensitive

ADD instruction:
ADD Rd,Rn,Op2 ;ADD Rn to Op2 and store the result in Rd
;Op2 can be Immediate value #K (K is between 0 and 255) ;or Register Rm

Uploaded By: anonymousSTUDENTS-HUB.com

Notice that in most of instructions like ADD and SUB, Rn can be omitted if Rd and Rn are the same.
This format is no longer recommended by Unified Assembler Language.

Uploaded By: anonymousSTUDENTS-HUB.com

CPSR: Current Program Status Register

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
ADC: more than 32bit,we can use it. R1:R0 + R3:R2
ADD R4,R2,R0
ADC R5,R3,R1

LENOVO
Typewriter
 MOV R0, #0xFF ; Load R0 with 0xFF (binary: 11111111)
 MOV R1, #0x0F ; Load R1 with 0x0F (binary: 00001111)
 BIC R2, R0, R1 ; Clear bits in R0 where R1 is 1, store result in R2
 ; After execution:
 ; R2 = 0xF0 (binary: 11110000)

LENOVO
Typewriter
CMP/CMN:
It updates the condition flags (N, Z, C, V) in the CPSR based on the result but does not store the result.
MOV R0, #5 ; Load R0 with 5
MOV R1, #10 ; Load R1 with 10
CMP R0, R1 ; Compare R0 with R1
BGT label_gt ; Branch to label_gt if R0 > R1 (greater than)

LENOVO
Typewriter
 MOV R0, #5 ; Load R0 with 5
 MOV R1, #10 ; Load R1 with 10
 CLC ; Clear the carry flag (C = 0)
 RSC R2, R0, R1 ; Perform R2 = R1 - R0 - (1 - C)
 ; Borrow = 1
 ; R2 = R1 - R0 - 1
 ; R2 = 10 - 5 - 1 = 4

LENOVO
Typewriter
MOV R0, #0xFF ; Load R0 with 0xFF (binary: 11111111)
MOV R1, #0x0F ; Load R1 with 0x0F (binary: 00001111)
TEQ R0, R1 ; Perform bitwise XOR: R0 XOR R1
BEQ equal_label ; Branch if result is zero (Z = 1)
BNE not_equal_label; Branch if result is not zero (Z = 0)

LENOVO
Typewriter
MOV R0, #0xF0 ; Load R0 with 0xF0 (binary: 11110000)
MOV R1, #0x80 ; Load R1 with 0x80 (binary: 10000000)
TST R0, R1 ; Test if the most significant bit (MSB) in R0 is set
BEQ bit_not_set ; Branch if result is zero (Z = 1, bit not set)
BNE bit_set ; Branch if result is non-zero (Z = 0, bit is set)

Memory: 4GB (Byte addressable) for both on-chip and off-chip (RAM, Flash, etc)

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
special function register (SFR)

The 4G bytes of memory space can be divided into five sections.
They are as follows

1- On-chip peripheral and I/O registers:
This area is dedicated to general purpose I/O (GPIO) and special function registers (SFRs) of peripherals such
as timers, serial communication, ADC, and so on. ARM uses memory-mapped I/O.

2- On-chip data SRAM: A RAM space ranging from a few kilobytes to several hundred kilobytes is set aside
mainly for data storage (e.g. variables, stack)

3-On-chip EEPROM: A block of memory from 1K bytes to several thousand bytes is set aside for EEPROM
memory (program code storage, saving critical data). Not all ARM chips have on-chip EEPROM

4-On-chip Flash ROM: A block of memory from a few kilobytes to several hundred kilobytes is set aside for
program space. The program space is used for the program code.

5-Off-chip DRAM space: A DRAM memory ranging from few megabytes to several hundred mega bytes can
be implemented for external memory connection

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
Electrically Erasable and Programmable ROM (EEPROM)

LENOVO
Typewriter
non-volatile

Find the address space range of each of the following memory of an ARM chip:
(a) 2 KB of EEPROM starting at address 0x80000000
(b) 16 KB of SRAM starting at address 0x90000000
(c) 64 KB of Flash ROM starting at address 0xF0000000

Uploaded By: anonymousSTUDENTS-HUB.com

Load and Store Instructions in ARM

Example:

Uploaded By: anonymousSTUDENTS-HUB.com

The	LDR	instruction	tells	the	CPU	to load (bring in)	one	word	(32-bit or 4 bytes)
 from	a	base	address	pointed	to	by	Rx	into	the	GPR.	After	this	instruction	is	executed,	the
 Rd	will	have	the	same	value	as	four	consecutive	locations	in	the	memory.

2.3

LDRH Rd, [Rx] instruction

LDRH Rd, [Rx] ;load Rd with the half-word pointed

; to by Rx register

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
EX.
X DCB 3

LDR R0, [X]
LDR R1, =X
LDR R0, [R1]

LENOVO
Typewriter
LDRSB

STRH Rx,[Rd] instruction

STRH Rx, [Rd] ;store half-word (2-byte) in register Rx

;into locations pointed to by Rd

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
Example 2-3, p.52

ARM CPSR (Current Program Status Register)

C, the carry flag

This flag is set whenever there is a carry out from the D31 bit. This flag bit is

affected after a 32-bit addition or subtraction.

Z, the zero flag

The zero flag reflects the result of an arithmetic or logic operation. If the result is

zero, then Z = 1. Therefore, Z = 0 if the result is not zero.

N, the negative flag

Binary representation of signed numbers uses D31 as the sign bit. The negative flag

reflects the result of an arithmetic operation. If the D31 bit of the result is zero, then N = 0

and the result is positive. If the D31 bit is one, then N = 1 and the result is negative. The

negative and V flag bits are used for the signed number arithmetic operations and are

discussed in Chapter 5.

V, the overflow flag

This flag is set whenever the result of a signed number operation is too large,

causing the high-order bit to overflow into the sign bit. In general, the carry flag is used to

detect errors in unsigned arithmetic operations while the overflow flag is used to detect

errors in signed arithmetic operations. The V and N flag bits are used for signed number
arithmetic operations

The T flag bit is used to indicate the ARM is in Thumb state. The I

and F flags are

used to enable or disable the interrupt. See the ARM manual

Uploaded By: anonymousSTUDENTS-HUB.com

S suffix and the status register

ADDS and SUBS instruction affects flag C, Z, V, and N.

Example 1:

Find C and Z flags after executing the following instruction:

;assume R1 = 0x0000009C and R2 = 0xFFFFFF64

ADDS R2,R1,R2 ;add R1 to R2 and place the result in R2

Example2:

Show the status of the Z flag during the execution of the

following program:

MOV R2,#4 ;R2 = 4

MOV R3,#2 ;R3 = 2

MOV R4,#4 ;R4 = 4

SUBS R5,R2,R3 ;R5 = R2 - R3 (R5 = 4 - 2 = 2)

SUBS R5,R2,R4 ;R5 = R2 - R4 (R5 = 4 - 4 = 0)

Uploaded By: anonymousSTUDENTS-HUB.com

Flag bits and decision making

conditional jump (branch) based on the status of the flag bits.

Uploaded By: anonymousSTUDENTS-HUB.com

ARM Data Format and Directives

ARM has four data types. They are bit, byte (8-bit), half-word (16-bit) and word (32bit).

Hex numbers

To represent Hex numbers in an ARM assembler we put 0x (or 0X) in front of the

number like this:

MOV R1,#0x99

Decimal numbers

To indicate decimal numbers in some ARM assemblers such as Keil we simply use

the decimal (e.g., 12) and nothing before or after it. Here are some examples of how to use

it:

MOV R7,#12 ;R7 = 00001100 or 0C in hex

MOV R1,#32 ;R1 = 32 = 0x20

Binary numbers

To represent binary numbers in an ARM assembler we put 2_ in front of the

number. It is as follows:

MOV R6,#2_10011001 ;R6 = 10011001 in binary or 99 in hex

ASCII characters

To represent ASCII data in an ARM assembler we use single quotes as follows:

LDR R3,#‘2’ ;R3 = 00110010 or 32 in hex (See Appendix F)

Uploaded By: anonymousSTUDENTS-HUB.com

Assembler directives

AREA sectionname, attribute, attribute, …

AREA MY_ASM_PROG1, CODE, READONLY

Among widely used attributes are CODE, DATA, READONLY, READWRITE, COMMON, and ALIGN

AREA OUR_VARIABLES, DATA, READWRITE

AREA OUR_CONSTS, DATA, READONLY

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
NOTE:
MOV and ADD
instructions are commands to the CPU, but EQU, END, and ENTRY are directives to the
assembler.

LENOVO
Typewriter
PI EQU 3.14

MOV R2,#PI

LDR

The ARM assembler provide us a pseudo-instruction of “LDR Rd,=32-bit_immidiate_vlaue”

to load value greater than 0xFF
the = sign used in the syntax

LDR R7,=0x112233

COUNT EQU 0x25

… … ….

MOV R2, #COUNT ;R2 = 0x25

DATA2 EQU 2_00110101 ;the way to define binary value (35 in hex)

DATA3 EQU 39 ;decimal numbers (27 in hex)

DATA4 EQU ‘2’

Uploaded By: anonymousSTUDENTS-HUB.com

RN (equate)

Uploaded By: anonymousSTUDENTS-HUB.com

LENOVO
Typewriter
RN: rename reg.
This is used to define a name for a register. The RN directive does not set aside a
seperate storage for the name, but associates a register with that name.

Assembler data allocation directives

DCB directive (define constant byte)

The DCB directive allocates a byte size memory and initializes the values.

MYVALUE DCB 5 ;MYVALUE = 5

MYMSAGE DCB “HELLO WORLD” ;string

DCW directive (define constant half-word)

The DCW directive allocates a half-word size memory and initializes the values.

MYDATA DCW 0x20, 0xF230, 5000, 0x9CD7

DCD directive (define constant word)

The DCD directive allocates a word size memory and initializes the values.

MYDATA DCD 0x200000, 0xF30F5, 5000000, 0xFFFF9CD7

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

in Strings which is the LSB

ADR directive

ADR Rn,label

To load registers with the addresses of memory locations we can also use the ADR

pseudo-instruction which has a better performance

ADR R2, OUR_FIXED_DATA ;point to OUR_FIXED_DATA

ALIGN

This is used to make sure data is aligned in 32-bit word or 16-bit half word memory

address. The following uses ALIGN to make the data 32-bit word aligned:

ALIGN 4 ;the next instruction is word (4 bytes) aligned

…

ALIGN 2 ;the next instruction is half-word (2 bytes) aligned

No Align Align 2 Align 4

Page 74 Book

Uploaded By: anonymousSTUDENTS-HUB.com

[label] mnemonic [operands] [;comment]

Instruction structure:

Keil IDE, which has a text editor, assembler,
simulator, and much more all in one software package.

Uploaded By: anonymousSTUDENTS-HUB.com

ADD instruction formation

SUB instruction formation

General formation of data processing instructions

Branch instruction formation

Uploaded By: anonymousSTUDENTS-HUB.com

Harvard and von Neumann architectures in the ARM

Little endian vs. big endian war

Uploaded By: anonymousSTUDENTS-HUB.com

ARM Addressing Modes

1. register

2. immediate

3. register indirect (indexed addressing mode)

Uploaded By: anonymousSTUDENTS-HUB.com

Viewing Registers and Memory with ARM Keil IDE

Uploaded By: anonymousSTUDENTS-HUB.com

