ARM Assembly Programming

Based on ARM Assembly Language and Architecture

By
Mohammad Maizidi and others

Chapter 2

STUDENTS-HUB.com Uploaded By: anonymous

ARM Architecture and Assembly Language Programming

* 15 registers: RO—R15
RO — R12: General Purpose Registers, R13 (SP), R14 (LR), R15 (PC)
» Register width is 32-bit (default size)

Word: 32 bits, Half-word: 16 bits, Byte: 8 bits

32 bits [1 woed |
-

RISC machine is a load-store machine
Note: Memory is byte addressable
= ARM is little Indian

R1 two instructions can access memory: load + store
R2

DO

vword

R3 o

R4
RS
RE
R7
RB8
RBE
R10
R11
R12
Stack Pointer (R13)

STUDENTFS-HUBE8H> Uploaded By: anonymous

T B o CauRtet (R15)

\

s

Half-Word Half-Word
o

o
- Ty g Ty

Byte Byte Byte Byte

EEEEEEEEEEEEEEEEEEEEEE R]

sieysiBey esoding |elauss)

LENOVO
Typewriter
Note: Memory is byte addressable
ARM is little Indian

LENOVO
Typewriter
RISC machine is a load-store machine

LENOVO
Typewriter
two instructions can access memory: load + store

ARM Instruction Format

° 3_address InStrUCtionS: instruction destination,source1,Source2 dest + sourcel can on|y be registers
source? can be a register, immediate (constant) value, or memory. source2 can be constant >> 8bits (signed/unsigned)

MOV instruction: MOV Rn,0p2 ;load Rn register with Op2 (Operand?2).

;0p2 can be immediate (constant) number #K which is an 8-bit value that can be
0-255 in decimal, (00—FF in hex)

Op2 can also be a register Rm. Rn or Rm are any of the registers RO to R15

Examples:

MOV R2,#0x25 ;load R2 with 0x25 (R2 = 0x25)
MOV R1,#0x87 ;copy 0x87 into R1 (R1 = 0x87)
MOV R5,R7 ;copy contents of R7 into R5 (R5 = R7)

To write a comment in Assembly language we use ;.

STUDENTS-HUB.com Uploaded By: anonymous

LENOVO
Typewriter
dest + source1 can only be registers

LENOVO
Typewriter
source2 can be constant >> 8bits (signed/unsigned)

Immediate constant notes:

1. We put # in front of every immediate value.

2. If we want to present a number in hex, we put a Ox in front of it. If we put nothing

in front of a number, it is in decimal. For example, in “MOV R1,#50”, R1 is loaded

with 50 in decimal, whereas in “MOV R1,#0x50”, R1 is loaded with 50 in hex (80

in decimal).

3. If values O to FF are moved into a 32-bit register, the rest of the bits are assumed to RV s notcase sensitive
be all zeros. For example, in “MOV R1,#0x5” the result will be R1=0x00000005; R 1110
that is, R1=00000000000000000000000000000101 in binary. o

4. Moving an immediate value larger than 255 (FF in hex) into the register will cause

an errot.

Note!

We cannot load values larger than OxFF (255) into registers RO to R12 using the MOV
instruction. For example, the following instruction is not valid:

MOV R5,#0x999999 ;invalid instruction

The reason is the fact that although the ARM instruction is 32-bit wide, only 8 bits of
MOV instruction can be used as an immediate value which can take values not larger

than OXFF (255).
STUDENTS-HURB com Uploaded By: anonymous

LENOVO
Typewriter
mov R5,#2_1110

LENOVO
Typewriter
ARM is not case sensitive

ADD instruction:
ADD Rd,Rn,0Op2 ;ADD Rn to Op2 and store the result in Rd
;0p2 can be Immediate value #K (K is between 0 and 255) ;or Register Rm

MOV R1,#0x25 ;copy 0x25 into R1 (R1 = 0x25)

MOV R7,#0x34 ;copy 0x34 into R1 (R7 = 0x34)

ADD R5,R1,R7 ;add value R7 to R1 and put it in R5

;(R5=R1+R7)
or
MOV R1,#0x25 ;load (copy) 0x25 into R1 (R1 = 0x25)
ADD R5,R1,#0x34 ;add 0x34 to R1 and put it in R5
;(R5=R1 + 0x34)

R5 = 0x59 (0x25 + 0x34 = 0x59)

STUDENTS-HUB.com Uploaded By: anonymous

SUB instruction
SUB Rd,Rn,Op2 ;Rd=Rn — Op2

MOV R1,#0x34 ;load (copy) 0x34 into R1 (R1=0x34)
SUB R5R1,#0x25 ;R5=RI1-0x25 (R1 = 0x34 — 0x25)

The old format

SUB R1,R1,#0x25 ;R1=R1-0x25 Notice that in most of instructions like ADD and SUB, Rn can be omitted if Rd and Rn are the same.
This format is no longer recommended by Unified Assembler Language.

SUB R1,#0x25 ;R1=R1-0x25

SUB R1,R1,R2 ;R1=R1-R2

SUB R1,R2 ;R1=R1-R2

STUDENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com

32-bit Data

2
=

Status Flags

2|2|(3|3|2|2|2|2

R10

RIT

R12

Stack Pointer (R13)

Link Register (R14}

E Praogram Counter (R15)

32-bit Data

Status Flags

32-bit Data

CPSR: Current Program Status Register

Uploaded By: anonymous

ADC: more than 32bit,we can use it. R1:R0 + R3:R2

ADD R4,R2,R0 CMP/CMN:
ADC R5,R3,R1 It updates the condition flags (N, Z, C, V) in the CPSR based on the result but does not store
MOV RO, #OxFF ; Load RO with OXFF (binary: 11111111) the result. _ _
MOV R1, #0xOF ; Load R1 with OXOF (binary: 00001111) MOV RO, #5 Load RO with 5
BIC R2, RO, R1 ; Clear bits in RO where R1 is 1, store result in R2 MOV R1, #10 ; Load R1 with 10
- After execution: CMP RO, R1 ; Compare RO with R1

: R2 = OXFO (binary: 11110000) BGT label_gt ; Branch to label gt if RO > R1 (greater than)

« .
ADD Rd, Rn,0p2 ADD Rn to Op2 and place the result in Rd ORR Rd, Rn,Op2 OR Rn with Op2 and place the result in Rd
ADC Rd, . . .
Rn,0p2 ADD Rn to Op2 with Carry and place the result in Rd RSB Rd, Rn,Op2 Subtract Rn from Op2 and place the result in Rd
AND Rd RSC Rd, Rn,Op2 Subtract Rn from Op2 with carry and place the result in Rd
Rn.Op2 ’ AND Rn with Op2 and place the result in Rd
nUp SBC Rd, Rn,Op2 Subtract Op2 from Rn with carry and place the result in Rd
glco) Rd, AND Rn with NOT of Op2 and place the result in Rd SUB Rd, Rn,Op2 Subtract Op2 from Rn and place the result in Rd
n,Op
]] TEQ Rn,0Op2 Exclusive-OR Rn with Op2 and set the status bits of CPSR
CMP Rn,Op2 Compare Rn with Op2 and set the status bits of CPSR**
]] ' TST Rn,Op2 AND Rn with Op2 and set the status bits of CPSR
CMN Rn,0Op2 Compare Rn with negative of Op2 and set the status bits
* Op2 can be an immediate 8-bit value #K which can be 0-255 in decimal, (00—FF in hex). Op2 can also be a register Rm.
Rd, Rnand R th I ist
EOR Rd, Exclusive OR Rn with Op2 and place the result in Rd fancm _are_any o egﬂfem _pmpose regwters
Rn,OpZ ok CPSR is discussed later in this chapter
ok The instructions are discussed in detail in the next chapters
MVN Rd,Op2 Place NOT of Op2 in Rd
g o n) Table 2- 1: ALU Instructions Using GPRs
MOV RO, #5 - Load RO with 5 MOV RO, #0xFF ; Load RO with OxFF (binary: 11111111) . .)
MOV RL #10 - Load R1 with 10 MOV R1, #0xOF : Load R1 with OXOF (binary: 00001111) MOV RO, #0xFO ; Load RO with OxFO (binary: 11110000)
' ') Lo : MOV R1, #0x80 ; Load R1 with 0x80 (binary: 10000000)
CLC ; Clear the carry flag (C = 0) TEQRO, R1 ; Perform bitwise XOR: RO XOR R1 TST RO, R1 : Test if the most significant bit (MSB) in RO is set
: = - -(1- BEQ equal_label ; Branch if result is zero (Z = 1) - ' ; 19 :
RSC RZ_’ RO,RL P_erform R2=R1-RO-(1-C) BNE not_equal_label; Branch if result is not zero (2=0) BEQ bit_not_set ; Branch if resultis zero (Z = 1, bit not sef)
3 ggriyR‘lo E’OBO{VOW =1 —equal_ ’ - BNE bit_set : Branch if result is non-zero (Z = 0, bit is set)

yR2=10-5-1=4

STUDENTS-HUB.com Uploaded By: anonymous

LENOVO
Typewriter
ADC: more than 32bit,we can use it. R1:R0 + R3:R2
ADD R4,R2,R0
ADC R5,R3,R1

LENOVO
Typewriter
 MOV R0, #0xFF ; Load R0 with 0xFF (binary: 11111111)
 MOV R1, #0x0F ; Load R1 with 0x0F (binary: 00001111)
 BIC R2, R0, R1 ; Clear bits in R0 where R1 is 1, store result in R2
 ; After execution:
 ; R2 = 0xF0 (binary: 11110000)

LENOVO
Typewriter
CMP/CMN:
It updates the condition flags (N, Z, C, V) in the CPSR based on the result but does not store the result.
MOV R0, #5 ; Load R0 with 5
MOV R1, #10 ; Load R1 with 10
CMP R0, R1 ; Compare R0 with R1
BGT label_gt ; Branch to label_gt if R0 > R1 (greater than)

LENOVO
Typewriter
 MOV R0, #5 ; Load R0 with 5
 MOV R1, #10 ; Load R1 with 10
 CLC ; Clear the carry flag (C = 0)
 RSC R2, R0, R1 ; Perform R2 = R1 - R0 - (1 - C)
 ; Borrow = 1
 ; R2 = R1 - R0 - 1
 ; R2 = 10 - 5 - 1 = 4

LENOVO
Typewriter
MOV R0, #0xFF ; Load R0 with 0xFF (binary: 11111111)
MOV R1, #0x0F ; Load R1 with 0x0F (binary: 00001111)
TEQ R0, R1 ; Perform bitwise XOR: R0 XOR R1
BEQ equal_label ; Branch if result is zero (Z = 1)
BNE not_equal_label; Branch if result is not zero (Z = 0)

LENOVO
Typewriter
MOV R0, #0xF0 ; Load R0 with 0xF0 (binary: 11110000)
MOV R1, #0x80 ; Load R1 with 0x80 (binary: 10000000)
TST R0, R1 ; Test if the most significant bit (MSB) in R0 is set
BEQ bit_not_set ; Branch if result is zero (Z = 1, bit not set)
BNE bit_set ; Branch if result is non-zero (Z = 0, bit is set)

The ARM Memory Map

The Special Function Registers in ARM

The R13 is set aside for stack pointer.
The R14 is designated as link register which holds the return address when the CPU calls a subroutine

the R15 is the program counter (PC).

The CPSR (current program status register) is used for keeping condition tlags among other things,

(the Thumb) have only RO-7 but every variation of ARM chip has R13-R15 SFRs. special function register (SFR)

The Thumb instruction format is designed to compete with the 8- and 16-bit
microcontrollers and increase code density.

a 32-bit f)rog_ram counter can access a maximum of 4G (232 = 4G) bytes of program memory locations.

In ARM microcontrollers each memory location is a byte wide. 0x00000000-0xFFFFFFFF address range.

Memory: 4GB (Byte addressable) for both on-chip and off-chip (RAM, Flash, etc)

STUDENTS-HUB.com Uploaded By: anonymous

LENOVO
Typewriter
special function register (SFR)

The 4G bytes of memory space can be divided into five sections.
They are as follows

1- On-chip peripheral and 1/0 registers:
This area is dedicated to general purpose 1/0 (GPIO) and special function registers (SFRs) of peripherals such
as timers, serial communication, ADC, and so on. ARM uses memory-mapped I/O.

2- On-chip data SRAM: A RAM space ranging from a few kilobytes to several hundred kilobytes is set aside

mainly for data storage (e‘g' variables, StaCk) Electrically Erasable and Programmable ROM

(EEPROM)

3-On-chip EEPROM: A block of memory from 1K bytes to several thousand bytes is set aside for EEPROM
memory (program code storage, saving critical data). Not all ARM chips have on-chip EEPROM non-volatile

4-0On-chip Flash ROM: A block of memory from a few kilobytes to several hundred kilobytes is set aside for
program space. The program space is used for the program code.

5-Off-chip DRAM space: A DRAM memory ranging from few megabytes to several hundred mega bytes can
be implemented for external memory connection

STUDENTS-HUB.com Uploaded By: anonymous

LENOVO
Typewriter
Electrically Erasable and Programmable ROM (EEPROM)

LENOVO
Typewriter
non-volatile

Find the address space range of each of the following memory of an ARM chip:
(a) 2 KB of EEPROM starting at address 0x80000000

(b) 16 KB of SRAM starting at address 0x90000000

(c) 64 KB of Flash ROM starting at address OxFO0O00000

8 bits
AGT

SFR
3G
2G

SRAM
1G

EEPROM
Flash

OxFFFF FFFF
0xFFFC 0000

OxC000 0000

0x8000 DODO

0x4000 7FFF
0x4000 DODO

0x0010 1000
0x0010 DODO

0x0007 FFFF
Dx0000 DODD

STUDENTS-HUB.com

Uploaded By: anonymous

Load and Store Instructions in ARM

LDR Rd, [Rx] instruction

LDR Rd,[Rx] ;load Rd with the contents of location pointed

;to by Rx register. Rx is an address between

;0x00000000 to OXFFFFFFFF

Example:
;assume R5 = 0x40000200

LDR R7,[R5] ;load R7 with the contents of locations
;0x40000200-0x40000203

Assume that R5=0x40000200, and locations 0x40000200
through 0x40000203 contain 0x15, 0x28, 0xA2 and 0xC5,
respectively.

After running the following instruction:

LDR R7, [R5]

R7 will be loaded with 0xC5A22815

R7 0xC5 OxAZ 0x28 0x15

2.3

The LDR instruction tells the CPU to load (bring in) one word (32-bit or
4 bytes)

from a base address pointed to by Rx into the GPR.

After this instruction is executed, the

Rd will have the same value as four consecutive locations

in the memory.

0xC5

O0xA2

0x28
0x15

STUDENTS-HUB.com

0x4000 0203

0x4000 0202
0x4000 0201

0x4000 0200

Uploaded By: anonymous

The	LDR	instruction	tells	the	CPU	to load (bring in)	one	word	(32-bit or 4 bytes)
 from	a	base	address	pointed	to	by	Rx	into	the	GPR.	After	this	instruction	is	executed,	the
 Rd	will	have	the	same	value	as	four	consecutive	locations	in	the	memory.

2.3

LDRB Rd, [Rx] instruction LDRSB
LDRB Rd, [Rx] :load Rd with the contents of the location

; pointed to by Rx register.

Load instruction
used

Data Size Decimal Hexadecimal

Assume that R5=0x40000200, and location 0x40000200
cantains Ox74.
After running the following instruction:

LDRB R7, [R5] Half-word 16 0 —-65535 0 - OxFFFF LDRH
R7 will be loaded with 0x00000074

Byte 8 0-255 0 - OxFF LDRB

2 0x4000 0203 Word 32 0-2%-1 0 - OxFFFFFFFF LDR
= 0x4000 0202
- 0x4000 0201
0x00 O0x00 0x00 0X?4 0x4000 0200 EX.
| | | / X DCB 3
R7 | 0x00 0x00 0x00 0x74 LDR RO, [X]
LDR R1, =X
LDR RO, [R1]
Assume that R5=0x40000200, and locations 0x40000200
through 0x40000203 contain 0x74, 0x63, 0x52 .and 0x41,
; ; respectively.
L D R H Rd ! [RX] Instruction After running the following instruction:
. i - i LDRH R7, [R5]
LDRH Rd, [Rx] ;load Rd with the hali-word pointed DT B s — S=— N——
; to by Rx register 0x52 | oxao00 0202
0x63 0x4000 0201
0x00 0x00 ‘/‘/ Ox74 0x4000 0200
R7 0x00 0x00 0x63 O0x74

STUDENTS-HUB.com Uploaded By: anonymous

LENOVO
Typewriter
EX.
X DCB 3

LDR R0, [X]
LDR R1, =X
LDR R0, [R1]

LENOVO
Typewriter
LDRSB

STR Rx,[Rd] instruction
STR Rx,[Rd] ;store register Rx into locations pointed to by Rd

Assume that R6=0x40000200, and R3 = 0x41526374. After
running the following instruction;
STR R3, [R6]
locations 0x40000200 through 0x40000203 will be loaded
with Ox74, 0x63, 0x52, and 0x41, respectively.
0x41 0x4000 0203
0x52 0x4000 0202
0x63 Dx4000 0201
R3| o0x41 | ox52 | ox63 | ox74 |
STRB Rx,[Rd] instruction
STRB Rx, [Rd] ;store the byte in register Rx into

;location pointed to by Rd

STRH Rx,[Rd] instruction

STRH Rx, [Rd] ;store half-word (2-byte) in register Rx
;into locations pointed to by Rd

STUDENTS-HUB.com

Example 2-3, p.52

Assume that R5=0x40000200, and R1 = 0x41526374.
After running the following instruction:

STRE R1, [R5]

locations 0x40000200 will be loaded with 0x74.

- 0x4000 0203
- 0x4000 0202
B 0x4000 0201
/ Ox74 0x4000 0200
R1 | X | X X | 0x74 I
Assume that R6=0x2000, and R3 = 0x41526374. After
running the following instruction:
STRH R3, [R6]
locations 0x2000 through 0x2001 will be loaded with 0x74 and
0x63, respectively,
- 0x2003
- 0x2002
0x63 0x2001
R3] x | x | ox63 | ox74

Uploaded By: anonymous

LENOVO
Typewriter
Example 2-3, p.52

ARM CPSR (Current Program Status Register)

D31 D30 D29 D28 D7 D6 D5 D4 D3 D2 D1 DO
N Z C v Reserved | F T M4 | M3 | M2 | M1 | MO

C, the carry flag

This flag is set whenever there is a carry out from the D31 bit. This flag bit is

affected after a 32-bit addition or subtraction.

Z, the zero flag

The zero flag reflects the result of an arithmetic or logic operation. If the result is

zero, then Z = 1. Therefore, Z = 0 if the result is not zero.

N, the negative flag

Binary representation of signed numbers uses D31 as the sign bit. The negative flag
reflects the result of an arithmetic operation. If the D31 bit of the result is zero, then N =0
and the result is positive. If the D31 bit is one, then N = 1 and the result is negative. The
negative and V flag bits are used for the signed number arithmetic operations and are
discussed in Chapter 5.

V, the overflow flag

This flag is set whenever the result of a signed number operation is too large,

causing the high-order bit to overflow into the sign bit. In general, the carry flag is used to
detect errors in unsigned arithmetic operations while the overflow flag is used to detect
errors in signed arithmetic operations. The V and N flag bits are used for signed number
arithmetic operations

The T flag bit is used to indicate the ARM is in Thumb state. The |
and F flags are
used to enable or disable the interrupt. See the ARM manual

STUDENTS-HUB.com Uploaded By: anonymous

S suffix and the status register

ADDS and SUBS instruction affects flag C, Z, V, and N.

Instruction Flags Affected

Example 1: ANDS | C. 7 N

Find C and Z flags after executing the following instruction: -

;assume R1 = 0x0000009C and R2 = OxFFFFFF64 ORRS | C, Z,N

ADDS R2,R1,R2 ;add R1 to R2 and place the result in R2 MOVS | C. Z. N
Example2: ADDS | G 7 NV
Show the status of the Z flag during the execution of the o
following program: SUBS |C,Z, N,V
MOV R2,#4 ;R2 =4 B | No flags

MOV R3,#2 ;R3 =2

MOV R4,#4 ,R4 — 4 Note that we cannot put S after B instruction.

SUBS R5,R2,R3;:R5=R2-R3 (R5=4-2=2)
SUBS R5,R2,R4 :R5 = R2 - R4 (R5 = 4 - 4 = 0)

STUDENTS-HUB.com Uploaded By: anonymous

Flag bits and decision making

conditional jump (branch) based on the status of the flag bits.

Instruction Flags Affected

BCS Branchif C=1
BCC Branch if C=0
BEQ BranchifZ =1
BNE Branch if Z =0
BMI Branch if N =1
BPL Branch if N=0
BVS Branch if V=1
BVC Branch if V=10

STUDENTS-HUB.com Uploaded By: anonymous

ARM Data Format and Directives

ARM has four data types. They are bit, byte (8-bit), half-word (16-bit) and word (32bit).

Hex numbers

To represent Hex numbers in an ARM assembler we put Ox (or 0X) in front of the
number like this:

MOV R1,#0x99

Decimal numbers

To indicate decimal numbers in some ARM assemblers such as Keil we simply use

the decimal (e.g., 12) and nothing before or after it. Here are some examples of how to use
it:

MOV R7,#12 ;R7 = 00001100 or OC in hex

MOV R1,#32 ;R1 =32 = 0x20

Binary numbers

To represent binary numbers in an ARM assembler we put 2_ in front of the

number. It is as follows:

MOV R6,#2 10011001 ;R6 = 10011001 in binary or 99 in hex

ASCII characters

To represent ASCII data in an ARM assembler we use single quotes as follows:
LDR R3,#2" ;R3 = 00110010 or 32 in hex (See Appendix F)

STUDENTS-HUB.com Uploaded By: anonymous

Assembler directives

NOTE:
. . . MOV and ADD
Directive Description instructions are commands to the CPU, but EQU,
END, and ENTRY are directives to the
AREA Instructs the assembler to assemble a new code or data section assembler.
END Informs the assembler that it has reached the end of a source file.
Pl EQU 3.14
ENTRY Declares an entry point to a program. MOV R2,#PI
EQU Gives a symbolic name to a numeric constant, a register-relative value or a PC-
relative value.
INCLUDE It adds the contents of a file to our program.

AREA sectionname, attribute, attribute, ...

AREA MY_ASM_PROG1, CODE, READONLY
Among widely used attributes are CODE, DATA, READONLY, READWRITE, COMMON, and ALIGN

AREA OUR_VARIABLES, DATA, READWRITE

AREA OUR_CONSTS, DATA, READONLY

STUDENTS-HUB.com Uploaded By: anonymous

LENOVO
Typewriter
NOTE:
MOV and ADD
instructions are commands to the CPU, but EQU, END, and ENTRY are directives to the
assembler.

LENOVO
Typewriter
PI EQU 3.14

MOV R2,#PI

Program 2-1

;ARM Assembly Language Program To Add Some Data and Store the SUM in R3.

AREA PROG_2_1, CODE, READONLY
ENTRY
MOV RI, #0x25 ;R1 = 0x25
MOV R2, #0x34 ;R2 = 0x34
ADD R3, R2,R1 ;R3=R2 +R1
HE

=
&
vs)
=

;stay here forever

LDR

The ARM assembler provide us a pseudo-instruction of “LDR Rd,=32-bit_immidiate_vlaue”
to load value greater than OxFF

the = sign used in the syntax

LDR R7,=0x112233 DATA2 EQU 2 00110101 :the way to define binary value (35 in hex)
DATA3 EQU 39 ;decimal numbers (27 in hex)
COUNT EQU 0x25 DATAL EQU 2

MOV R2, #COUNT ;R2 = 0x25
STUDENTS-HUB.com Uploaded By: anonymous

RN (equate)

Program 2-2: An ARM Assembly Language Program Using RN Directive
;ARM Assembly Language Program To Add Some Data

;:and store the SUM in R3. RN: rename reg.

This is used to define a name for a register.
The RN directive does not set aside a
seperate storage for the name, but associates

RN R1 ;define VAL1 as a name for R1 a register with that name.
RN R2 ;define VAL?2 as a name for R2
UM RN R3 ;define SUM as a name for R3

>
=
[

AREA PROG_2_2, CODE, READONLY
ENTRY
MOV VALI, #0x25 ;R1T = 0x25
MOV VALZ2, #0x34 ;R2 = 0x34
ADD SUM, VAL1,VAL2 ;R3=R2 +R1
HERE B HERE
END

VAL2

STUDENTS-HUB.com Uploaded By: anonymous

LENOVO
Typewriter
RN: rename reg.
This is used to define a name for a register. The RN directive does not set aside a
seperate storage for the name, but associates a register with that name.

Assembler data allocation directives

DCB directive (define constant byte)
The DCB directive allocates a byte size memory and initializes the values.

MYVALUE DCB 5 ;MYVALUE =5
MYMSAGE DCB “HELLO WORLD” ;string

DCW directive (define constant half-word)
The DCW directive allocates a half-word size memory and initializes the values.

MYDATA DCW 0x20, 0xF230, 5000, 0x9CD7
DCD directive (define constant word)

The DCD directive allocates a word size memory and initializes the values.
MYDATA DCD 0x200000, 0xF30F5, 5000000, OxFFFFOCD7

STUDENTS-HUB.com Uploaded By: anonymous

Directive Description

DCB Allocates one or more bytes of memory, and defines the initial runtime contents of
the memory
DCW Allocates one or more halfwords of memory, aligned on two-byte boundaries, and
defines the initial runtime contents of the memory.
Allocates one or more halfwords of memory, and defines the initial runtime contents
DCWU : :
of the memory. The data is not aligned.
in Strings which is the LSB
DCD Allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory.
Allocates one or more words of memory and defines the initial runtime contents of
DCDU : :
the memory. The data is not aligned.

Data Size Hexadecimal Directive Instruction
Byte 8 0—255 0 - OxFF DCB STRB/LDRB
Half-word 16 0 — 65535 0 - OxFFFF DCW STRH/LDRH
Word 32 0-2%1 0 - OXFFFFFEFF DCD STR/LDR

STUDENTS-HUB.com Uploaded By: anonymous

in Strings which is the LSB

ADR directive

To load registers with the addresses of memory locations we can also use the ADR
pseudo-instruction which has a better performance

ADR Rn,label
ADR R2, OUR_FIXED DATA ;point to OUR_FIXED_DATA

ALIGN

This is used to make sure data is aligned in 32-bit word or 16-bit half word memory
address. The following uses ALIGN to make the data 32-bit word aligned: Page 74 Book
ALIGN 4 ;the next instruction is word (4 bytes) aligned

ALIGN 2 ;the next instruction is half-word (2 bytes) aligned

No Align : Align 4
8 Align 2 8
Memory 1 @
Memory 1 @ Memory 1 @
P ~
n| 7= H oA Address: ID :! 2
Address: [0 Pl Address: [0 [— ——1| 8
) —————————=uu ! — =18 0x00000000: 08 20 8F E2 00 00 D2 E5
0}(00000002: 08 20 EF E2 00 00 D2 E? 0x00000000: 08 20 BF E2 00 00 D2 E5 0x00000008: 00 10 81 EO FE FF FF EA
O0x00000008: 00 10 81 EO FE FF FF EA 0x00000008: 00 10 81 EO FE FF FF EA 0x00000010: 00 00 00 00 00 00 =
0x00000010: 00 00 00 00 00 00 = 0x00000010: 00 00 00 00 00 00 =

1 ~ c
¢ Call Stack = Locals | [

s 3
g Call Stack = Locals | [

‘l ~ <
¢ Call Stack = Locals | G

STUDENTS-HUB.com

Uploaded By: anonymous

Instruction structure:

[label] mnemonic [operands] [;comment]

Note!

The first column of each line is always considered as label. Thus, be careful to press a
Tab at the beginning of each line that does not have label; otherwise, your instruction is
considered as a label and an error message will appear when compiling.

Editor Program
myfile.a ¢ . . .
Keil IDE, which has a text editor, assembler,
simulator, and much more all in one software package.
Assembler Program
[scriptFile.scr] [otherFiles.o] myfile.o myfile.Ist
Linker

Downloaded to the

myfile.map myfilehex —® 5 oram Memory

STUDENTS-HUB.com Uploaded By: anonymous

ADD instruction formation

3N 28 2726 25 24 21 20 19 16 15 12 11 0
Cond |00 I 0100 [S| Rn Rd Operand 2

SUB instruction formation

31 28 2726 25 24 2120 19 16 15 12 1 0
Cond 00 I 0010 (S| Rn Rd Operand 2

General formation of data processing instructions

3 28 2726 25 24 212019 16 15 12 11 0
Cond 00 I OpCode IS Rn Rd Operand 2

Branch instruction formation

31 28 27 2524 23 0
Cond 101 |L Offset

STUDENTS-HUB.com Uploaded By: anonymous

Harvard and von Neumann architectures in the ARM
Little endian vs. big endian war

Value Memory Address Value Memory Address
RS ([Eo | 0000 000B 01 | 0000 000B
ARM? Core p Memory 08230014 |82_| 0000000A 0823001 4 |30 0000 000A
R—— 08230019 13571 0000 0009 82 | 00000009
[[o1] 00000008 || E0 | 0000 0008
(["E3 | 0000 0007 34 | 00000007
(a) Von Neumann E3 AD 20 34 4 A0 0000 0006 E3 AQ 20 34 4 20 0000 0006
20 | 0000 0005 A0 | 0000 0005
[34| 00000004 || E3] 0000 0004
Instruction Bus \ Data Bus [| E3 0000 0003 ?g gggg gggz
= A0 0000 0002
Instruction ress bus to sccess instructions / ARMS AGdress bus 10 access data Data E3 A0 10 25 < = s E3 A0 10 25 < = iy
. : F Memo
ey = Qota bus o access dutag i 25 | 0000 0000 E3 | 00000000
(b) Harvard

STUDENTS-HUB.com Uploaded By: anonymous

ARM Addressing Modes

1. reqister
2. immediate
3. register indirect (indexed addressing mode)

Registers

RO 0

[Op—Code |
] Rd d
R15 15
8 bits

[Op. Code | | K |

Memory Space
31 0 0
[Rn REGISTER —

STUDENTS-HUB.com

Uploaded By: anonymous

Viewing Registers and Memory with ARM Keil IDE

Mmmmmmm Tools Mswmn-m — ———= AT
Nad@| caala | poan|®EEp sl @ oosoaccosaH[Fe @) o

o alE

pegster s mes @
Fegater - H MOV Ri, #0x25 7Rl = Oy = Migaic. F
= x00000000 E3A01025 MOV R, $0x00000025% J
6: oV R2, #0x34 tR2 = 0y | Neme A | Type
40000004 EIRD2034 MOV /2, #0x00000034 * S |
T ADD R3, R2,RI radd R2 N
0x00000008 EOB23001 ADD R3,R2,R1 -3 Hophc
« 53 , d»:] |
E [ﬂ a2.a9m viﬂﬂi
1 SARM Assesbly Language Progra= To Ada Scme Data and S:z‘j'
2
3 ARER PROG_2_1, CODE, READONLY
4 ENTRY
MoV R1l, #0x25 2Ry = Ox28
6 | MOV R2, §oxis sR2 = 0x34
7 ADD R3, R2,R1 sadd R2 to R1
8 HERE B HERE
] ENT
4+
.
+
‘*
s
-
B rraject .wmul sl | _’J—,;
Command @ Memont 8
e« Restricted Version with 32768 Byte Code Size Limic a ; Y ia
seses Currently used: 16 Bytes (0%) J mlm 7 J
-« |0x40000000: 00 00 QO 0O 00 00 OD 00 GO 00
G — 5 0%4000000A: ©0 00 00 00 00 00 00 00 00 00
10%x40000014: 00 00 Q0 00 00 00 00 QO 00 00
0x4000001E: 60 90 00 00 00 00 60 00 00 00 ~

>
IMSIG‘ BreakDisable BreakEnable BreakEill BreakList Break3at

I @atal stack | gdtocs | Tl Memoey1 l

Real-Time Agent: Target Stopped

STUDENTS-HUB.com

Simulation 11: 000000002 se¢ L6

A E\SarmadSynctiy % G
ﬂtl“mmmm-wnﬂmmm
| nnm
el

NEde| « a9 o]

[}] a2.asm

* i ty| @

R1, #0x25
R2, #0x34
R3, R2,R1

W00~ U R

JARM Assembly lLanguage Program To Add Some Date and Score tae S5UN in

R3.

PROG_2_1, CODE, READONLY

Build target 'Targetz 1°

assexbling a2.as=...

P:oqz Size: Code=lé RO-data=? RW-data=0 ZI-data=Q
"alpri.axt® - 0 Exzor(s), O Warning(s).

Uploaded By: anonymous

