BASIC PRINCIPLES OF CLINICAL CHEMISTRY

Course: Clinical Chemistry (PHAR 431)

Textbook: Bishop ML, Fody EP, Schoeff LE (2013). Clinical Chemistry: principles, techniques and correlations, 7th ed. Chapter 1

Uploaded By: Noura Natel

Aim of clinical chemistry lab

- To facilitate the correct performance of analytical procedures that yield accurate and precise information, aiding patient diagnosis and treatment
- How to achieve this aim?

Units of measure

- Any meaningful quantitative lab results consists of:
 Test value (number) + units
- Units of measure: define the physical quantity or dimension such as mass, length, time or volume
- Not all lab tests have well-defined units, but whenever possible, it should be reported

"SI" system or SI units

- Adopted internationally in 1960
- Based on metric system
- There are several sub-classifications:
- □ 7 "basic units"
- Derived units: derivative or mathematical function describing one of the basic units. Example: m/s (meter per seconds) is used to express velocity
- Non-SI units: some are widely used and are therefore accepted to use in clinical labs

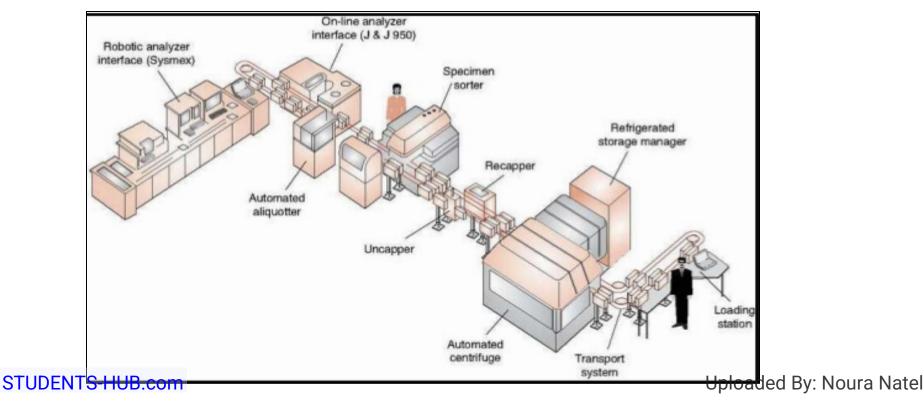
TABLE 1-1 SI UNITS

BASE QUANTITY	NAME	SYMBOL
Length	Meter	m
Mass	Kilogram	kg
Time	Second	s
Electric current	Ampere	A
Thermodynamic temperature	Kelvin	К
Amount of substance	Mole	mol
Luminous intensity	Candela	cd
SELECTED DERIVED		
Frequency	Hertz	Hz
Force	Newton	Ν
Celsius temperature	Degree Celsius	°C
Catalytic activity	Katal	kat
SELECTED ACCEPTED NON-SI		
Minute (time)	(60 s)	min
Hour	(3,600 s)	h
Day	(86,400 s)	d
Liter (volume)	$(1 \text{ dm}^3 = 10^{-3} \text{ m}^3)$	L
Angstrom	(0.1 nm = 10 ⁻¹⁰ m)	Å

STUDENTS-HUB.com

Uploaded By: Noura Natel

TABLE 1-2 PREFIXES USED WITH SI UNITS


10^{-18} atto a 10^{-15} femto f 10^{-12} pico p 10^{-9} nano n 10^{-6} micro µ 0.000001 10^{-3} milli m 0.001 10^{-2} centi c 0.01 10^{-1} deci d 0.1 10^{0} Liter, meter, gram Basic unit 1.0 10^{1} deka Ida 10.0 10^{2} hecto h 100.0 10^{4} mega M - 10^{9} giga G -	FACTOR	PREFIX	SYMBOL	SELECT DECIMALS
10^{-12} pico p — 10^{-9} nano n — 10^{-6} micro µ 0.000001 10^{-3} milli m 0.001 10^{-2} centi c 0.01 10^{-2} centi c 0.01 10^{-1} deci d 0.1 10^{-1} deci d 0.1 10^{0} Liter, meter, gram Basic unit 1.0 10^{1} deka Ida 10.0 10^{2} hecto h 100.0 10^{3} kilo k 1,000.0 10^{4} mega M — 10^{9} giga G — 10^{12} tera T — 10^{15} peta P —	10 ⁻¹⁸	atto	а	—
10 ⁻⁹ nano n — 10 ⁻⁶ micro μ 0.000001 10 ⁻³ milli m 0.001 10 ⁻² centi c 0.01 10 ⁻² centi c 0.01 10 ⁻¹ deci d 0.1 10 ⁻¹ deci d 0.1 10 ⁰ Liter, meter, gram Basic unit 1.0 10 ¹ deka Ida 10.0 10 ² hecto h 100.0 10 ³ kilo k 1,000.0 10 ⁴ mega M — 10 ⁹ giga G — 10 ¹² tera T — 10 ¹⁵ peta P —	10 ⁻¹⁵	femto	f	_
10^{-6} micro μ 0.00001 10^{-3} millim 0.001 10^{-2} centic 0.01 10^{-1} decid 0.1 10^{-1} decid 0.1 10^{0} Liter, meter, gramBasic unit 1.0 10^{1} dekaIda 10.0 10^{1} hectoh 10.0 10^{2} hectoh 10.0 10^{3} kilok $1,000.0$ 10^{4} megaM $$ 10^{9} gigaG $$ 10^{12} teraT $$ 10^{15} petaP $$	10 ⁻¹²	pico	р	_
10 ⁻³ milli m 0.001 10 ⁻² centi c 0.01 10 ⁻¹ deci d 0.1 10 ⁻¹ deci d 0.1 10 ⁰ Liter, meter, gram Basic unit 1.0 10 ¹ deka Ida 10.0 10 ² hecto h 100.0 10 ³ kilo k 1,000.0 10 ⁴ mega M — 10 ⁹ giga G — 10 ¹² tera T — 10 ¹⁵ peta P —	10 ⁻⁹	nano	n	—
10^{-2} centi c 0.01 10^{-1} deci d 0.1 10^{0} Liter, meter, gram Basic unit 1.0 10^{1} deka Ida 10.0 10^{2} hecto h 100.0 10^{3} kilo k $1,000.0$ 10^{4} mega M $ 10^{9}$ giga G $ 10^{12}$ tera T $ 10^{15}$ peta P $-$	10 ⁻⁶	micro	μ	0.000001
10^{-1} deci d 0.1 10^0 Liter, meter, gram Basic unit 1.0 10^1 deka Ida 10.0 10^2 hecto h 100.0 10^3 kilo k 1,000.0 10^4 mega M — 10^9 giga G — 10^{12} tera T — 10^{15} peta P —	10 ⁻³	milli	m	0.001
10^0 Liter, meter, gram Basic unit 1.0 10^1 deka Ida 10.0 10^2 hecto h 100.0 10^3 kilo k $1,000.0$ 10^4 mega M $$ 10^9 giga G $$ 10^{12} tera T $$ 10^{15} peta P $$	10-2	centi	с	0.01
101 deka Ida 10.0 102 hecto h 100.0 103 kilo k 1,000.0 104 mega M — 109 giga G — 1012 tera T — 1015 peta P —	10 ⁻¹	deci	d	0.1
10 ² hecto h 100.0 10 ³ kilo k 1,000.0 10 ⁴ mega M — 10 ⁹ giga G — 10 ¹² tera T — 10 ¹⁵ peta P —	10 ⁰	Liter, meter, gram	Basic unit	1.0
10 ³ kilo k 1,000.0 10 ⁴ mega M — 10 ⁹ giga G — 10 ¹² tera T — 10 ¹⁵ peta P —	10 ¹	deka	<u>I</u> da	10.0
10 ⁴ mega M — 10 ⁹ giga G — 10 ¹² tera T — 10 ¹⁵ peta P —	10 ²	hecto	h	100.0
10 ⁹ giga G — 10 ¹² tera T — 10 ¹⁵ peta P —	10 ³	kilo	k	1,000.0
10 ¹² tera T — 10 ¹⁵ peta P —	10 ⁴	mega	М	—
10 ¹⁵ peta P —	10 ⁹	giga	G	_
10	10 ¹²	tera	Т	—
10 ¹⁸ exa E —		peta	Р	—
	10 ¹⁸	exa	E	—

Prefixes are used to indicate a subunit or multiple of a basic SI unit.

STUDENTS-HUB.com

- □ Clin chem labs are highly automated today
- Ready-to-use reagents or in a "kit" format
- Home-made reagents are still necessary in some cases

Reagents: chemicals

- Commercial grade (should never be used in clinical labs)
- Analytical grade reagent (AR)
- Ultrapure, chemically pure (CP)
- US Pharmacopia (USP), National Formulary (NF) are used to manufacture drugs therefore must not be injurious to humans... may or may not be used in clinical labs
- Chemicals suitable for use in most labs include: AR or ACS or labeled as "For Lab use" or "ACS standard-grade Reference Materials"
- CP: used for specific procedures such as chromatography and atomic absorption
- MSDS (material safety data sheets)

ACS: the chemical meets the specifications of the American Chemical Society. STUDENTS-ENTITIONATE of analysis is available. Uploaded By: Noura Natel

Reagents: Reference materials

- Primary standard: highly purified chemical that can be measured directly to produce a substance of exact known concentration and purity. ACS purity tolerances is 100± 0.02%.
- Analytical reagent of exceptional purity that is especially manufactured for standardizing volumetric solutions and preparing reference standards

Reagents: Reference materials ///cont'd

- Most biologic constituents are unavailable within these limits
- Standard reference materials (SRMs): used in clin chem instead of primary standard materials (approved by NIST)
- SRMs have assigned values after careful analysis, using state-of-the-art methods & equipment

Reagents: Reference materials ///cont'd

- Many manufacturers use NIST SRMs for producing calibrator and standard materials and these materials are considered traceable to NIST
- Examples of SRMs: hormones, drugs, blood gases, ...

Secondary standard: a substance of lower purity, with its concentration determined by comparison with a primary standard. Its assigned value depends on its composition and on the analytic reference method

- □ There is no TRUE secondary standard
- Manufacturers should list the SRM or primary standard used for comparison. This info is needed for accreditation of the clinical lab

Reagents: Water specifications

- Distilled water: distillation
- DDW: double distitued
- Deionized water: ion exchange
- Reverse osmosis (RO) water
- Ultrafiltration
- Reagent grade water: six categories according to CLSI (clin & lab standard institute): deionized, 0.2 mm filter or more restrictive filter

- □ How to measure water purity?
- measurement of resistance, pH, colony counts, particulate matter, organics
- □ Three types of purity
- Type I, II, III
- Type I water has the most stringent requirements and is suitable for routine lab work (also used for test methods requiring minimum interference such as trace metal analysis)
- Type II water is also accepted for most analytic requirements

Solution properties

Concentration

- Percent solution (%): parts per 100; w/w, w/v and v/v
- Molarity (M): mole/liter (influenced by temp or pressure)
- Molality (m): amount of solute per 1 kg of solvent (not influenced by temp or pressure)
- Normality (N): # of gram equivalent per 1 liter of solution. Equivalent weight = gmw divided by its valence

Colligative properties

- 4 repeatable properties based only on the relative number of each kind of molecule present
- Osmotic pressure: pressure that opposes osmosis when a solvent flows through a semipermeable membrane to establish equilibrium b/w compartments of differing conc
- Vapor pressure: pressure at which the liquid solvent is in equilibrium with water vapor
- Boiling point: temperature at which solvent vapor pressure reaches 1 atm
- Freezing point: temperature at which vapor pressure of solid and liquid phases are the same

Redox potential

- Oxidation-reduction potential
- Solution's ability to lose or gain electrons
- Oxidizing agents accept electrons
- Reducing agents donate electrons
- □ LEO (loss of electrons oxidation)
- □ GER (gain of electrons reduction)

Conductivity and resistivity

- Conductivity: how well electricity passes through a solution (ohm⁻¹)
- Depends on the number and charges of the solute (ions)
- Resistivity: the opposite of conductivity (ohm)
- Used to check purity of water

pH and buffers

Henderson-Hasselbalch equation

 $\blacksquare pH = pKa + \log [A-]/[HA]$

- When the ratio of [A⁻] to [HA] is 1, pH = pKa and the buffer has its greatest buffering capacity
- Ionic strength is the concentration or activity of ions in a solution or buffer

 $\square \mu = \frac{1}{2} \Sigma \{ (Ci)(Zi)^2 \}$

Lab mathematics and calculations

Read this section carefully and solve all problems. P19-28

Homework

How are 50 ml of 20 mM NaOH prepared? gmw for NaOH is 40

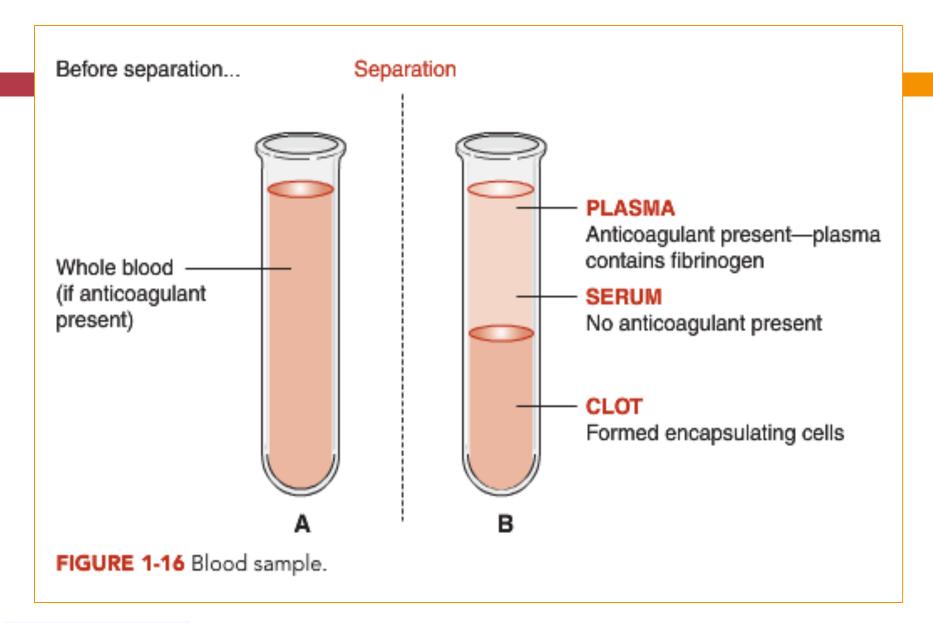
- How you can prepare 1M HCl from a concentrated 37% HCl? HCl density is ~1.9 g/ml.
- You wish to prepare 2 Liters of 1M Sodium phosphate buffer, pH 8.0. You have 1M monobasic NaH₂PO₄ and 1M dibasic Na₂HPO₄. How much of each stock solution should be combined to make the desired buffer?

Specimen considerations

STUDENTS-HUB.com

Uploaded By: Noura Natel

Specimen considerations


Specimen collection, handling and processing remains the primary source of pre-analytical errors

- Phlebotomy or venipuncture: most frequent site is the antecubital vein of the arm
- Skin puncture: bottom of the foot (a heel stick) or finger prick (third or fourth finger) or earlobe

Types of specimens

Whole blood, mostly venous blood

- Anticoagulated: plasma & cells
- No anticoagulant: serum
- Most testing in clin chem is done on serum or plasma
- Major difference between serum and plasma is that serum does not contain fibrinogen (total protein is less than in plasma)
- Arterial blood, mostly for analysis of blood gases and pH
- Urine: second most common fluid after serum. Either 24-hr or complete sample (in a specified time period) for quantitative analysis.
- Other fluids: Cerebrospinal fluid (CSF), paracentesis fluid (pleural, peritoneal or pericardial) & amniotic fluids
- CSF is an ultrafiltrate of plasma and therefore should reflect plasma levels of analytes

STUDENTS-HUB.com

Uploaded By: Noura Natel

Sample Processing

- □ Unless whole blood analysis is required, centrifugation must be performed.
- \Box Allow blood samples to clot for ~20 minutes
- Centrifuge blood samples at 1000-2000xg for ~10 min, to separate serum from cells
- Separate serum from cells and store in new tube
- Patient identification & labeling correctly matching blood collection tube with the appropriate analyte request & patient ID labels. Bar codes are useful!
- Examine if sample is acceptable: volume, timing of samples, if sample is intact or deteriorated during transport (cooled, capped,)
- Note serum characteristics (hemolysis (①Hb), icterus (①bilirubin), turbidity (①lipids))
- Analyze within 4 hours or store appropriately (4 °C for 8 hours or -20 °C for longer storage)

Sample variables

- Physiologic considerations
 - Changes within the body
 - Cyclic changes- diurnal or circadian variation
 - Exercise, stress, age, gender, diseases, drugs or posture
- Proper patient preparation
- Problems in sample collection, processing and storage
- Drugs can affect different analytes
- Opiates cause increase in liver and pancreatic enzymes
- Oral contraceptives may affect many tests as well
- Smoking can increase glucose

TABLE 1-5 VARI	ABLES AFFECTING SELECT CHEMISTRY ANALYTES
FACTOR	EXAMPLES OF ANALYTES AFFECTED
Age	Albumin, ALP (↑ older), phosphorus (P), cholesterol
Gender	(↑ Males): Albumin, ALP, creatine, Ca ²⁺ , uric acid, CK, AST, phosphate (PO ₄), blood urea nitrogen, Mg ²⁺ , bilirubin, cholesterol
	(\uparrow Females): Fe, cholesterol, γ -globulins, α -lipoproteins
Diurnal variation	↑ in AM: ACTH, cortisol, Fe, aldosterone
	↑ in PM: ACP, growth hormone, PTH, TSH
Day-to-day variation	≥20% for ALT, bilirubin, Fe, TSH, triglycerides
Recent food ingestion	↑ Glucose, insulin, triglycerides, gastrin, ionižed Ca ²⁺
	\downarrow chloride, phosphorus, potassium, amylase, ALP
Posture	↑ When standing: albumin, cholesterol, aldosterone, Ca ²⁺
Activity	↑ In ambulatory patients: CK
	\uparrow With exercise: lactic acid, creatine, protein, CK, AST, LD
	\downarrow With exercise: cholesterol, triglycerides
Stress	↑ ACTH, cortisol, catecholamines
Race	TP ↑ (black), albumin ↓ (black); IgG 40% ↑, and IgA 20%↑ (black male vs. white male); → CK/ LD ↑ black males; ↑ cholesterol and triglycerides > white >40 years old (glucose incidence diabetes in Asian, black, Native American, Hispanic)
Require fasting	Fasting blood sugar, glucose tolerance test, triglycerides, lipid panel, gastrin, insulin, aldosterone/renin
Anaerobic and require ICE slurry (immedi- ate cooling)	Lactic acid, ammonia, blood gas (if not analyzed within 30 min = \downarrow pH, and po ₂), iCa ⁺² (heparinized whole blood if not analyzed within 30 min)
Hemolysis	[↑] K ⁺ , ammonia, PO ₄ , Fe, Mg ²⁺ , ALT, AST, LD, ALP, ACP, catecholamines, CK (marked hemolysis)

ALP, alkaline phosphatase; CK, creatine kinase; AST, aspartate aminotransferase; ACTH, adrenocorticotropic hormone; ACP, acid phosphatase; PTH, parathyroid hormone; TSH, thyroid-stimulating hormone; ALT, alanine aminotransferase; LD, lactate dehydrogenase; TP, total protein.

Chain of custody

- Lab tests linked to a crime or accident, become forensic in nature
- Documented specimen identification and signature is needed at each step