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INTRODUCTION

THEORY OF ERROR ANALYSIS
AND THE NATURE OF EXPERIMENTATION

Students often complain that physics experiments simply don't work, at least as far as they are
concerned. They consider textbook results as sacred because they have supposedly been determined by
scientists. Such misconception can be aveided by careful understanding of the nature of experimental
physics with sufficient insight into the theory of errors.

But first, few rulés:'

e Theresult of an experiment must be written as the example shows for a recent determination of
‘ the velocity of light:

"o , C =(2.997923 + 0.000008) x 10" cm s

The first number, 2.997923 x 10" gives' the best estimate of the true value of the velocity of
light. 0.000008 x 10" refiects the reliability with which that value has been determined. This is
an example of a computed experimental value, a type that we shall come to later.

> When the problem is as simple as doing a single measurement with a certain device, like
measuring a length with a regular rule, one must be careful with the last significant figure that he
writes. This may be a fraction of the smallest division on the ruler, or scale depending on the

A N
physteal-sthuahion.

« When doing many experiments, one often discards unreliable data (there exists rules for doing
that) and takes the average of the rest. And since resulis of experiments of different types have
different uncertainties, they must be given different weights. Above all there are the errors of
human judgment. The results of experiments are, in the final analysis, matters of opinion
although rules exist. The word emror used here does not mean mistake. Some people prefer
uncertainty or discrepancy, but we shall stick to the general trend in the literature of using error,
keeping in mind that it does not mean that the result is wrong. -

o (Care should be taken here not to consider textbook values as true or exact. There does not exist
such a thing as a true or exact value in experimental science.

» One way of classifying errors is to sort them into systematic and random errors."When repeated
measurements of a given value don't agree exactly, deviations from the "best estimate of the true
value" are as a result different. This is the case of random errors. When, on the other hand,
individual values differ by the same constant, they are systematic.

» Examples of systematic errors are :

jamedk
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2. Errors like the ones caused by the habit of always looking from a slanted perspective onto
a galvanometer needle.

3. Experimental conditions might be set up to introduce a systematic error.

4. TImperfect techniques, like allowing fluid to leak out of a vessel in a fluid flow experiment
at a constant rate. :

« Examples of random errors are :

1. Errors of judgment like the case when one has to estimate a smallest division in a given
instrument.

2. Small disturbances like mechaniczal fluctuations in an electrical instrument.

3. Definition of the measured quantity is often difficult. A simple example 1s a measurement
of the length of a table.

¢ Another tvpe of error is totallv illegitimate and i called bv that name. Examnvles of this are the
blunders. These are outright mistakes i in reading, adjusting or calculatmg Errors of computation

Folem wamd ..(.. P ._nw-wme.AM& P $
Adiser Amlidlih breld Rsistes dReddiedss cfabad kewded abiphileasbewtlawehe RA3GEL LERAALWAWRAL S AL e

i e v H 5 vrzlieid
R e AL ' iiowdd

effect of dlsturbances becomes far beyond random d1screpanc>1es it 1s calied chaotic If it gives a
totally illogical resuit it is called a wild error. Errors of this type which are surely illegitimate
can't be incorporated in the results and are to be corrected for right from the start.

¢ FErrors can also be classified according to whether they are deferminate or indeterminate.
Determinate errors are those which can be evaluated by some logical procedure. They inchude
random errors that can be calculated using the techniques mentioned below, and specific types of
systematic errors that can be evaluated.

Precision, Accuracy and Significant Figures:

An experiment having small random errors is said to have high precision. Two devices may also
differ in their precision. A micrometer, for example, is more precise than a millimeter ruler.

" Devices also differ in accuracy Two' mlcrometers have the'same precision but if one of them is broken
it will introduce a certain systematic error, and is less accurate than the other.

The number of significant digits that one displays measurement in a certain or result must reflect its
precision. It is, therefore, irr order here to present the rules for treating significant figures: |

» The leftmost non-zero digit is the most significant digit.
® If there i1s no decimal point, then the right most non-zero digit is the least significant

digit.

STUDENTS-HUB.com ‘ Uploaded By: Malak Obaid



https://students-hub.com

s Ifthere is a decimal point, then the rightmost digit is the least significant digit, even if if is
ZETO.

s  All digits between the least and most significant digits are counted as significant digits.

Example: ‘
1,234; 123,400, 1,001; 1,000; 10..10; 0.0001010; 100.0 are numbers that have four significant figures.
But 1010 has three significant figures. If it is to have four significant figures it rust be written as 1,010.

or 1.010x 10°.

When performing a calculation, the result has the significance of that number involved which has the
least significance.

Single Measurement Experiments

Suppose that one can repeat a certain experiment and he gets different values for a certain
physical measurement. Which one of those values must be tzken as the true value?

As mentioned before, one can never arrive at the true or exact value. To do so he must repeat the
experiment an infinite number of times. For a finite number of measurements N, one can say that he
obtains a best estimate of the true value, This is taken to be the arithmetic average of the set of

measuremenis;

X

1

D=

=l

N

T =

This is taken as the best value because the sum of the squares of the deviation of individual
measurements about this average is 2 minimum:

il ' i=1

To find the value of ¥ that makes x a minimum we take the deviation and equate to zero:

Z *

This gives X = v as claimed.

The average value of these square deviations is also of importance:
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It is called the standard deviation or the root mean-square {rms) deviation.

When N =1, s"= 0 and, thus, is of no help. We, therefore, define:

For large values of N, s is only slightly different from ¢'. Using s, nevertheless, does not allow
g 2

one to do statistics with one measurement. s is called the sample standard deviation and its physical

firnifinonra ie that it sivee thae umﬁcar{“'m-rﬂ'\r in the individnal maseurements ahont thear averase The
adiaF o il Lot

uncertainty inthe average itself shrinks wzt‘l increasing number of measurements:-it-is:call edthe
standard deviation of the mean oy and is defined as:

(‘i ) ! T, Oy = = R | i

A single measurement experiment is best analyzed by drawing a frequency histogram. (seelllmanual).

Propagation of errors

Not all physical quantities are directly measured. Some of them, like the above example of the
speed of light, are computed. Errors are propagated in the sense that any discrepancy in the measured
values will appear-as a discrepancy in the computed one..

The general relation is as follows:

let f be computed from the measured values xy, Xa,..., ¥n 0F, £= T (%1, X2,-.., X}, From calculus one has:

¥ o

o, sz ax,,

Af =

~-Since-errors are vectorial in nature, i.¢. a discrepancy ifi ofie-quantity might cause an effect which
-i$ opposite to the one caused by another, one takes an average direction and Af'is defined as:

Af = Z( )* (Ax;)”

=l ;’

Example:
The volume of a'paralle piped is measured by measurmg X, y, and z 1ts three dzmenszons X, ¥, and z:
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= AV = J(y2)* (8x)" + (x2)* (49)" + (x2)’ (42)]

or,

AV

N \/(m) e )+()

Equation (2) is a general relationship that holds for all functions, some of the more 1mportant special
cases are summarized below:

e JIf fe= axyz, or f=axy/z, “a” being a constant, then:

& m\/o@‘f)z (2y e Ry
f x y z

emn

e If f=ax’y"z" then:

%{: \;/ ¢ )+m?(;) +n f’)f-‘

o If feaxe by % ¢z, then:

}_\/; (Ax) + b (AYY + P (Az)

References:
Physics 111 Laboratory Manual.

Beers, ¥. Introduction to thé Theory of Frror. Addison Wesely, 1957.

Bevington, P.Data Rﬁducum and Brror Analysis for the ths1cal Sciences. McGrawHill, 1969.

Roberts, D. "Errors Discrepancies and the Nature of Physics", Physics Teacher, March1983
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DIRECT CURRENT CIRCUITS

Introductory Concepts

Current (1):

The motion of electric charges constitutes ,‘
an electric current. Specifically, the current is the
time rate at which a charge (Q) passes.through a
given cross-sectional area of a conductor, so that:

=

Lt

= ET:Q_ é B

1 7 el g
( ) df T«a;,..__....ﬁ...._._.h.____.. ,\.E. o

T R EEL

Electric current is measured in Coulombs {C) per second; this unit is termed the Ampere (A).

Voltage (V):
The work required to move a unit charge from one point to another is called the electric potential
difference (technically referred to as the voltage difference "V") between the two points. Symbolically,

@) v,

where W stands for work and-Q for charge. The unit of voltage is the volt defined by:

J
Ivolr(1F) = ~
vo‘( ) C

Resistance(R) .

The resistance that each fres electron encounters as a result of multiple collisions when moving
through a conductor depends upon 2 material property called resistivity (p) in addition to the shape of the
conductor, so that the resistance(R) of a wire L meters long and A squared meters In cross-sectional area
( see fig (1)) is given by:

R=p=
£

The unit of resistance 1s the Ohm (£2).
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Question: Find the units of p.
Ohm’s Law: :

In order to maintain & large current in a conductor, more energy, hence a greaier potential
difference is required than in the case of a small current in the same conductor, hence, the potential
difference is directly proportional to the current. The constant of proportionality is just the resistance (R)
of the conductor, or ‘

(3) V=RI
This equation is known as Ohm’s law.

Joules Law:

The kineti¢ energy of the electrons in a conductor, which resuits from acceleration by the electric
field, is dissipated in inelastic collisions within the conductor. As a result, the conductor heats up In
other words, the temperature of a conductor carrying a current must increase, at least slightly, and it is
apparent that electric power is expended in sustaining a current through the conductor. The power (P)
that must be supplied to the conductor to sustein the current is given by:

a-ris
dt

Using equation (2) we get,

5‘.2;;’/’[

P=V
dr

Now, substituting for V using Ohin’s law, we get,
(4) P=FR

This equation is known as Joule's Law. The unit of power is the Wait { J/s).

Circuit Elements:

I} Sources 1:

According to Joule's law, eclectric energy is !]} 1 |
dissipated in any conductor when it carries a current. iﬁ i i
Therefore, in order to maintain the current in any circuit, a I 7 oa AHH‘T i
source of electrical energy is required. Common sources ﬁ = l# L ,j
of electrical power are ordinary batteries, voltage power j i ,,,,, S

supplies, and current sources.

An ideal voltage source (a battery or a power supply) can maintain a constant voltage difference
Setween it terminals regardless of the vahie of the losd resivienee fn fhe virouit, Thaefue & wifers no
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resistance 1o the CUrrent passing Mrougn 1l and 15 COATAGIEriLol UY @ 4010 MiLSlilal 150 10ialue. Wil Wi Uit
hand, an ideal current source can supply a constant current regardless of the value of the load resistance
in its circuit. An ideal current source is characterized by an infinité internal resistance. However, ideal
sources do not exist in reality; therefore, there are limits on the voltage and the current that both voltage
and current sources can provide to circuits.

2) Circuit components .

Electrical c¢ircuit’s components are the consumers i
of the power generated by the power supplies. Resistors are |
circuit elements that respond linearly to applied voltage
differences across them. Therefore, resistors are called
linear circuit elements. Linear circuit elements obey Chm's
law {V = RI) and are said to have linear I-V characteristics.
Diodes and light bulbs are examples of non-linear circuit
elements. Non-linear circuit elements do not obey Ohms
law and are said to have non-linear [-V characteristics.

R

o

s
b “[‘-'" E
o

i

PR ST S S S RTITE T

3) Cébﬂebtingwif@“‘ ¢ W B RN PO - e A" . P T \

 In order to connect power supplies and circuit components in a closed -electrical circuit, wire

" made of copper is used. Ideal connectors offer zero resistance to the current passing through them. In
reality, however, wires possess a small resistance to the current passing through them.

wEE fieeend
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LINEAR AND NON-LINEAR CIRCUIT COMPONENTS

Theory

: The relation between the current passing through a

circuit component and the voltage difference between its

terminals is called the IV characteristic of that - AT

component. Components that have straight line I-V - o

characteristics are called linear components. The slope of i PR PN
e

the line that represents the I-V characteristics of a
component is thelvalue (l/resistance) of that component ey _ ‘ '
(see Fig(D)). Most resistors used in the laboratory are <
carbon resistors, which are essentially linear.

Components that do not possess straight line IV
characteristics are called non-lincar components. An r nE
example is a diode. A semiconducting . diode, - for Foprerare
instance, consists of two pieces, a p-type piece of a | Darsed
semicoducting® material and an n-type piece of the same
material joined together. Diodes are two terminal .
components that allow current to pass through in one " t Rewsproe
direction only; almost no cwrent passes through in the |y IRSHEEIN
other direction (parts of micro-amperes). Therefore, the A
way the diode is connected to a battery is crucial. When Fig(2)
the p-type terminal of the diode is comnected to the

. positive terminal of the battery, it allows current to pass

ﬂm@%ﬁ%ifm%é@thmxmhmMmm&mnﬁﬂi@e diode

is connected to the positive terminal of the battery, it blocks the cuiTent so that a very small current flow
through the circuit and the diode is said to be reverse-biased.

The relation between the current (I) passing through a :
semiconducting diode and the potential difference (V) ! | Standard diads s mil

. . . . / P ol Mopwres ol
between its terminals usually has the following form T joo Pt REE
(see Fig(3)) ; v/

‘ ! e
. Vi : . T il ooF + P
(1) : IO (B 1)’ ) Foewand Dy

. oo . . Rewerse hins  Purward bres
where Ip is called the saturation current and k 1s z el
function of temperature only. Therefore, a Red Dode Rsarss biwe

serniconducting diode has a variable resistance that

. ) A Fig(5
depends on the value of the current passing through it. %

casion of semiconduciors.

#Consult Serway's " Physics: with moedern

STUDENTS-HUB.com
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A light bulb is another example of a conducting material that possesses non-linear characteristics.
The tungsten wire iz a bulb converts elecirical power to heat energy. Consequently, the wire glows and
emits light. The resistivity, and thus the resistance of conducting material, depends on the temperature of
that material according to :

2) | R=Ro [1+a(T-Tg)],
where Ry is the resistance at temperature Tg and a is the temperature coefficient of resistivity. Therefore,
since the temperature of the tungsten increases by increasing the current passing through it, one expects

the light bulb to have a non-linear I-V characteristic and a resistance that depends on the value of the
current.

Apparatus

A DC. voltage source (6 volts), one carbon resistor (200€), two digital multimeters, connecting wire, a
decade resiztor hox. a silicon diode and a light bulb.

Procedure

ay Connect the circuit shown in Fig(4). . ‘ , 1

f _‘"
b)) Use the resistor as your™eireunit elernent. Change the | Gt R /L‘l
value of R (decade box resistance) and record about ______,J\M/\ »1»111»;1%
sight different vzlies for the cwrent and the
corresponding voltage values. E ____:_“'f

¢) Repeat part (b) using a forward-biased diode as your

circuit component. ~—-“——ﬂ

2

?t& 3]

Warning: current passing through the diode should not exceed 30 mA, in all measurements,

d) Reverse bias your diode and check if it conducts or not. Register the current flowing in this case; this
is Iy in equation (1).

e) Repeat part (b} using the light butb as your circuit componerit.

- Note: a high current (~100. mA) s aeeded to light the bulb. Wateh the brightness. of.the bulb to decide
on the upper current limit (~300mA). Do not exceed this value during the experiment.

Analysis 6f resulls

a) Use your data to draw the I-V characteristic curves for the carbon resistor, the dlode and the tight bulb
on a linear graph paper. Decide which component is linear.

b) Using the 1-V characteristic of the carbon resistor, find the value of the remstamce and compare 1t with
the value obtained from the color code (see appendix A).
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¢) Draw tangent lines at two different points on the curve representing the IV characteristics of the
sorward-biased diode, and find the value of the resistance at those poinis.

d) Repeat part (¢} for the tight bulb.
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PRRINMIEIND A

- SOURCE INTERNAL RESISTANCE, LOADING PROBLEMS
AND CIRCUIT IMPEDANCE MATCHING

Theory

A voltage source is characterized by its electromotive
force (emf), which is the open circuit voltage difference between
its terminals, see Fig(1a), and the maximum value of the current
it can deliver to a short circuit. An .ideal voltage source
connected to a short circuit (R~0) should, according to Ohm's
law (I=V/R), be able to provide an almost infinite current. In

- r . ., . k] . * 0 A -
LGn) CHLUILD o YULLARE DULILT LANLICLLAAL LW 6 DEMJEL Wlhwliil al

neither maintain ‘its {emf) as a-voltage difference across its Teleal P e
terminals nor can it provide the circuit with unlimited current. hatterv batfery
Therefore, each real voltage source is assigned an internal (2) ) ®
resistance (rin). Fig(1b) gives a more realistic representation of a Fig(1y

voilage source. it shouid pe covious that voliage svurces wiili
small internal resistances camy maintain most of their emf as voltage differences between their terminals=
and provide circuits with higher current values than would the ones with high mternai resistances.

Voltage sources are used to provide useful electrical power to certain circuit components, such as
electric motors and light bulbs. Any component which consumes electrical power to produce useful
work is called a load and the resistance of such a component is called the load resistance (Ry).

Loading Problem
The current passing through the simple series circuit of Fig(2) is

&
R, +r,

M | I=

So, the voltage difference between the source terminals is

Sy SV = m

If R, ))2e ., then VR;_ =~ & and the source delivers most of its emf as a voltage difference across its

terminals. On the other hand, if Ry is comparable to 1, then Vg, is smaller than g, and hence, a
considerable amount of power is consumed inside the source and converted to unuseful heat energy. In
this case the source is said to be loaded. In practical circuits we want to avmd loading the source,
therefore, choosing Ry = 10R;;, is recommended
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Impedance Matching (Maximum Fower Transfer)
In real circuits, power consumed in the load produces useful work. Therefore, we seek to
consurne the maximum available power there. In Fig(2) the power consumed In the load resistor is:

O N _ P =Ry

Therefore,

(4) S (R 2
‘ _ . ( L + Fi}?)

. Equation (4)Vrepi"'ésents the pdwer consumed in the load
as a function of the load resistance itself. The function
P(Ry) has a maximum value which can be obtained by

i = (see Fig( 3 ) ).

setting ) l \
[}
L i \
i
This gives ! AN
i .
RL = Tin R
. Ry = fin By
as the condition for transferring maximum power to the ‘ Fig(®)

load resistance. This choice of load resistance is called
impedance matching.

3. mpnefion] mreasite
ot Tioth iy

A5 the interhal Tesistarce of vottage sources s usualty smat-Ca few-Ohrms);-in-practical
an additional resistor is connected. in series with the source as shown in Fig{4) in order to produce the
maximum power transfer condition for large values of Ry. While this additional resistance appears to Ry,
as an additional internal resistance, it is seen by the source as an additional load resistance.
Consequently, this resistance helps in avoiding loading problems and fulfilling -the condition of
impedance matching for large load values. The only disadvantage is that this additional resistance
consumes part of the power delivered to the circuit by the source. '

If we apply conservation of energy to the circuit in Fig(4),
we get | W K
AN
(5) g=Trp+ IR+ IRy | ] X
Rearrangi . pet 3 '
Rearranging, we get | O ? : ?Rload
. . : m
© e | |
- 4 & & ' Figl4)
13
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P"m R LN

1 ) : : A R s
A plotof 7 versus Ry gives a straight line with ~ as its slope and a3 its y-intercept..
‘ . &

If we apply the condition of maximum power transfer to the load resistance of the same circuit we get:

- Ru=R+m,
Efficiency |
A useful concept to use with power is that of efficiency (n). The efficiency of a component with
impedance (resistance) Ry, operated from a source with internal resistance 1y, is the power dissipated in
Ry divided by the power dissipated in the circuit. Therefore, '

I*R,
W(RL ): Ig R
R
— L
= (R, } ==
- i\.L e rz'n
Apparatus
Volings sourcs {10vele), 1 KO resistor, digital multimeter recistor decade oy

rrocequre

2) Connect the circuit shown in Fig(5).

b) Change the value of the Load resistance (0-1 M)

and record the value of the current each time.
. 10 Y = 24
Note: take more data points around the value of Ry - L

which satisfies the maximum power transfer condition.

Analysis of results

Fig(5)

a) Plot selected values of —} and Ry, on a linear graph.

papér. Find the value of £ and 13,

Hint: select a range that can be plotted on a single linear graph paper.

) Gompute (RS and n(RC5 B ali Vafies of L (Use Lotus 123 6r equivalent compter aid)

¢) On a Semi-log graph paper, plot both P(Ry) and n(RL). From the graph; find the value of Ry that
satisfies the condition of maximum power transfer.

Y
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NETWORK ANALYSISI
THE SUPERPOSITION PRINCIPLE AND KIRCHHOFE S
LAW S

Theory

Flectric networks are circuits that include many elements such as resistors, voltage sources and
current sources that are connected together in a rather complicated way. Tn such cases, applying Ohm's
law and the simple paraliel and series connection rules is of no practical help. Many circuit analysis
techniques wheresdeveloped in order to facilitate analyzing complicated networks. Kirchhoff’s laws and
the superposition principle are such powerful techniques deduced from nature's most fundamental laws.

Kirchhoff’s Laws

I. Loop theorem: This theorem of energy is just the -principle of conservation as applied to electric
circuits. It states that. The algebraic sum of the voltage drops and electromotive forces (emf’s) in
a closed electric circuit is always zero. In other words, the power generated by sources in a closed
cireuit is totally consumed by the circuit components. Symbolically,

01

(13 Ny

where we have accounted for the opposite signs of voltage drops and emf''s. |

1L Junction theorem: This theorerm is just the principle of conservation of charge applied to electric
circuite. It states that, The algebraic sum of the currents passing through any circuit junction Is
always zero. Symbolically, ‘

(2) > 1=0

where the currents entering a junction have opposite signs to those leaving it.

One way of finding the values of the currents péssing through the different resistors in a circuit similar o
the one shown in Fig(l) proceeds as follows:

o Assign a current of arbitrary direction to each of the resistors in the circuit.

s Apply Kirchhoff’s junction theorem to 2l independent junctions in the circuit.

o  Apply Kirchhoffs loop theorem to all independent circuit 100ps. A

s Youshould be able to produce as many independent equations as there arc unknown currents.
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Example:
Appiying the rules above o the circuit of Fig (1) gives the following:

I- Two junctions exist, but both give the same eguation.

Ry Iy In Ry |
1[ + 12 - 13 = O W—W/'\/("\j" “'.,r”\\;**'
: .. . . 1
2- Three circuit loops exist, but only two independent 3
could be equations formed (Note that the third large &, — R R .
loop will result in an equation that is the sum of the two T - -+
small loop equations). 15 7
g1 = ] Ry+ls R 1 I.g
 82 =L Ry+ I Rs - Fig(h)

Solving these three linear equations with three unknowns is straight forward and yields the values of the
currents passing through the three resistors. :

Note: If any current is found to be negative, its assigned direction must be reversed.

The Superposition Principle (SPP)

If circuit equations are linear, then the mathematical superposition principle which states that: The
response " a desired current or voltage " at any point in a linear circuit having mare than one source
can be obtained as the sum of the responses caused by each of the mdependent sources acting alone,

is N apphcable

Therefore, a circuit that contains independent and/or linear sources and linear circuit components such as
resistors, capacitors and inductors can be analyzed.as in the following example.

Example:

In the eircuit of Fig(l) find 1f,hf-: current passing through Rs.

't Keep gy, andireplace, with-a-short circuit (see
Fig(2)) ( a voltage sources is replaced by a short

Ry
cireuit but a current source is replaced by an open NN,V S LYY —
01rcu1t) ‘
. ¥ lzy
2- Find the current passing through Rj as a result - g 4
of the presence of &, alone, as follows:  — S Rz

Y

. £

1€

T ™

.._n_v_,___UpIoaded By.M Iq_: ak
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and
1 Rs = (I~ Is)Re
Thus, ‘

]' — glR?.
* T RR, +RR,+R,R,

3- Keep € » and replace & ) by a short as
shown in Fig(3). Ry In Ry

- ‘I,h'-"!"»\"," "'—"\f"‘v -'"'.‘(,.""..
4- Find the current passing through Rz as a I
: 32

. result-of the presence of & » alone, as
follows. = R M Fo

£,
G T
R, + (R I R,)

and

LaRs = (h—=Ts)Ry Fig(3)

Those give:
J.. = SZRI
¥ RR, +R,R,+R R,

5+ Add both currents to find the total curtent passing through Ra.

(3) I3=135+1n
Apparatus

Two power supplies, three carbon resistors, a circuit board and a digital multimeter.

kO 1, I, 3%Q

Procedure ‘ | | MY,y - Y SS—
a) Connect the circuit shown in Fig(4). I3

ot : T 12V~ Eon Y - BV
b) Measure the voltage differences across the three - LD —
carbon resistors and the current passing through each
of them. . arls
c) Replace ¢; by & short and repeat part (b). - b5

d) Connect &, back, replace &) by a short and repeat
part (b).

V7
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Analysis of results

I Superposition principle ( SPP):
Using SPP, analyze the circuit to find the value of the current passing through Rs when each

source is acting alone. Compare the values obtained with the practical measurements. Use your
data to prove equation (3).

II. Kirchhoff's Laws:

Analyze the circuit using Kirchhoff’s rules. Find the values of the currents passing through the
‘three carbon resistors. Compare with the values obtained from the experiment.

Question: To what extent do the two methods give the same value for the current passing through Ra,

STUDENTSHUBcom . Uploaded By: Malak Obaid
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“complicated ~ networks,

NETWORK ANALYSIS I
THE THEVENIN AND NORTON TECHNIQUES

Theory

Kirchoff’s laws and the Superposition principle are
useful  techniques for  analyzing networks  that
contain a few circuit elements. Dealing with faily
however, requires  more
adequate methods such as the equivalent circuit techniques of
Thevenin and Norton. :

Thevenin's theorem states that: amy network of resistors and
supplies having 1wo outpul terminals (see Fig(l)) can be
replaced by a series combination of a voltage source (e
and a resistor (Re), see Fig(2). Thevenin's technique is
especially  important  in obtaining  the *current
passing through hand/or the voltage.across any one resistor
(R;) in a complicated network. Thevenin suggested the
following method to find geq and Reg!

]- Remove Ry and caleulate the voltage difference at the
network out put terminal. Call this value &
7. Remove Ry, kill all the sources in the network through
replacing voltage sources by short circuits and current sOUIces
by open circuits (see Fig(3)). Calculate the network equivalent

Fig(l)

Reg

AV <

- Ry

&

Fg(2y

resistance at the output terminals (between a and D). Call this
value Req,

3- Construct Thevenin's equivalent circuit as in Fig(2).
Calculate the current passing through, and the voltage drop
across, Ry, Those should be the same values obtained in the
original network.

~ Norton suggests a sumnilar technique that goes along the

STUD

following lines:

I- Use exactly the same procedure used by Thevenin to find
Regq- :

2- Replace Ry, by a short circuit (a wire), see Fig(4), and
calculate the current passing through the wire, call it Ieq-

3- Construct Norton's equivalent circuit using a current source
and a pavallel resistance, a5 in Fig(5). Calculate the current
passing through and the voltage difference across, Ry. Those

ENTS-HUB.com 7

el

b'T

Fig(®

i

e

Rz
L S—

¥y Y

7 Leg

" Figld)

Uplo

aded By:

- &

Malak Obaid



https://students-hub.com

SHOUIL DT LIC IZLUT  YAIUGS U‘L)LCLLMDL;.‘:U.A i Uf.;glual
network.

Example:

For the circuit in Fig(l), use Thevenin's and Norton's
equivalent circuit techniques to find the value of the
current passing through Rp.

A
‘i
7
4e
<~
A
SRR
A
4

1) Thevenin’'s:

& <k
1- Remove Ry, kill both sources as in Fig(4), and you - Fig(5)
will get :
(D R, =R /R, RA,
R + R Rl I 28 9

RV 27T AN
2- Remove Ry return-both sources back to the circuit
as in Fig(6), and calculate geq as follows: &1 = T )

Using Kirchoff’s loop-theorem we get :

g1 — &= I(Ry Ry), i | | e e

Eliminating I between the two equations, yields:

(2) eq & (8‘ w )Ri
R, +R,

m

3- Construct Thevenin's equivalent circuit as in Fig(2) using the calculated values of Egq and Req Now,
you can find the current passmg through Ry, as follows:

éi‘eq

lpo = ——
3 \ L
) . “ R,+R,

1) Norton's:

"L Replace Ry, svith & Short circuit (a wiré) as‘in Fig(4), and caleulste I as follows:

(4) | | Tg=1 +
. ..
) “ TR R,

' 2- Ceonstruct Norton's equivalent circuit, Fig(5), and calculate the current passing through Ry as follows:

(6) | (I%g ._].R_,_ ERéq:JRﬁR ;
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l“r
¥ eq
K
™ R

- : eq

€q

R,

R
4+

Problem: Prove the equivalence of equations (3) and (7).

Apparatus

 Two voltage supplies, circuit board, digital multimeter, three carbon resistors.

Procedure
a KS I Ip 33K
a) Connect the cifcuit shown in Fig(7). e i T2 A A A
b) Remove Ry, kill both sources and i g ‘ -
measure the value of Req. 12V - 2 0w T
c) Connect the sources-back and measure
gcq.
d) Replace Ry by a short circuit (a wire) and Y Fig(?)
measure leg.

¢) Construct Thevenin's equivalent circuit, and measure L.

£ Construct Norton's equivalent circuit.

Analysis of results

Calculate the values of L, £eq, Reg, I, a1d compare them with your experimental results.
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FEXPERINMIENT 5
MAPPING EQUIPOTENTIAL LINES

Theory

What are equipotential lines? If an electrical charge moves perpendicuiaf to an electric field, the
work (eq.1) done on it by electric field is zero (why?). Thus zero work is done on a charge moving along
lines perpendicular to the electric field. These lines are called equipotential lines.

(1) ; W = Fdcosh

2) AV = -Waz /g

.l'.i}.c t;it',b.{il‘v l.JULt“JJ.ilei U.LJ.i.C.lClle LiUl.H. da J_JUJ.LI!. ﬂ [RU < pUlLlL .!J lh ucuncu & LLAG WUU.’\. uuuc LLl
meving a charge q between these two points and is measured in volis (eq.2). Therefore, equipotential

lines are lines for which the potential difference is zero.

1 oworl i done
on a ol ge

w [mh B arened
£, .«==\‘\; 1 ﬂ" \ }-

LE LI

1“:111? 1' !

2 M0 owork @
done on pcharge
mesved from
Pnuli‘ ) IH:L{){‘
B

E!w. bao Freled R
s ,/
i @
o L ]

R‘ Equiprotential
Lmes

In this lab you will map the equipotential line around electrode of different. geometric, and use
this information to map the electric field patterns around the electrodes.

Apparatus

"»_Eiectri'c;ﬁeId--:mapping‘ setup, D.C. voltage supply-and digital multimeter. - omomee o

-}D‘mcedure

A

1. An electric field mappmg setup with a voltmeter is shown in Fig(1). The apparatus consists of a
flat board on which is placed a sheet of carbonized conducting paper imprinted with a grid. The
sheet has an electrode configuration of conducting silver paint which provides an electric field
when the electrodes are connected to a DiC.-voltage source. The electrode configuration consists
of dots representing two point charges. It is called an electric dipole configuration.

G T
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E\)

Draw the eleciric dipole ‘configuration on a sheet of graph paper to the same scale and

coordinates as those of the dipole on the imprinted grid on the conducting sheet.

(W8]

Conmect the voltage source to the board terminals. The voltmeter probes are used to tocate points
in the field that are at equipotential as follows:

Place the common volimeter probe at ground (negative voltage terminals). The potentialat this
point will serve as a reference potential. Keep this probe fixed. The second probe is moving
around in order to trace a line having the same potential (are reasonably possible), e.g., 3 volts.

Trace the line on your recording paper. This curv

e is an equipotential line.

4. Choose a new location for the movable voltage probe and locate another equipotential line.
Continue this procedure until you have mapped the field region into a series of 4 or more

equipotential lines.

Dy Suppdy

[T onn

® %4

.

I 5k

-

/ q%""“""/’

Fig(1)

Y olfnieter

moveble otmeter probe

Analysis

A. for the electric dipole configuration draw

a series of 4 or more smooth curves
which emanate from one charge and
terminate on the other charge. These
curves are to be drawn so that at each
intersection with an equipotential line
the curve and the equipotential line are
mutually perpendicular. The curves so
drawn are the electric field lines. See
Fig(2) for the expected resulis of the
electric dipole configuration.

B. Repeat part A for the parallel plate
electrode  configuration. Compare your
results with.the expected values.

& :
Jti_..;.f _' H 1y
\‘w;.z’:;—/ J ."; ‘\ X,
VoL 3
N '?N"?"")j:‘ [ \\‘
"—\""“ N ,':: | *
\\“ . r .

4 Electuy Freld

Eepugsotenbal
Lmes '
gl
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Questions:

1. What is the direction of the electric field? (Indicaté the direction on the graph paper map with
arrow heads). :

2. For the dipole configuration, in what region(s) does the electric field have greatest intensity?

3. Cominent on the uniformity of the électric field of the parallel plates between the plates and near
the edges of the plates? :

4. Sketch the electric field for a configuration of two positive charges?

' STUDENTS-HUB.com Uploaded By: Malak Obaid
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GENERAL REVIEW 2

ALTERNATING CURRENT CIRCUITS

Capacitor and inductor behavior in DC circuit

Capacitors ‘
The simplest form of a Metal Plates iy
‘capacitor is two metal plates separated :
by an insulating material (see Fig(l)).
When connected to a DC power Tnsulator ===
supply,  positive  charge  will .
accumnulate on one of the capacitor Capaciton
plates and an equal negative charge
will accumulate on the other. This
charge configuration resulis in the
build up of an electric field between
the capacitor plates (see Fig(l)). This

process is described as charging the Inctuctor
capacitor. If the two plates of a ,
charged capacitor are connected Fig (1)

together, the capacitor will discharge
so that each of its plates becomes
neutral. Each capacitor is characterized by its capacitance(C) which is the amount of charge accumulated
on one of is plates divided by the voltage difference across it. Symbolically, '

Y
1) : C=

The wnit of capacilance is the Farad ( F ).

Inductors: |
The simplest form of an inductor is a wound wire (see Fig(t)). When connecled to a DC power supply, a
magnetic field build sup in the vicinity of the inductor (see Fig(l)). Each inductor is characterized by its
Inductance ( L ). The relation between L and the voltage difference across the inductor terminals and the
current passing through it is given by:

4
&k
(2) 1 {L ‘ {L V¥ 3,‘;,
r - 4 NSy
ra Sy %,
. 1 ~
The unit of inductance is the Henry (H) R el
DC driven RT circuif: ,
A DC driven RC circuit is a circuit that contains a
resistor and a capacitor connected i serise and powered Fig(
. E:?I i)
23 '
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theorem we obtain the following equation:

e=IR+V,
_pd. 0
d C
Rearranging we get:
0 = dt
f_=
R RC

integrating both sides as follows

v £ 2 4
_ R RC
and solving for Q, we get.
(3) O(t) = Ce(l—e *)

This equation describes how the capacitor is charged with tume.

If after the capacitor is charged, switch Sy is opened and S; closed the circuit equation becomes:

Lk ha gy

0-r% 2

i + _
a C’
and its solution, using simple integration methods as in
the charging case 1s :

I

(4 | Q = Cee %€

Fastolim fong

_...This equation describes how the capacitor discharges
" with time, Fig(3) represents relation bétween ( Q yand( -

t ) in both charging and discharging processes. "RC"
has units of time and is called the time constant of the circuit; it _

is the time required for the charge on the capacitor to reach -
about 63% of its final charge during charging. I e

Faemt Xa

- - DC driven RL circauit: , —

H

A DC driven RL circuit is.a cizcuit that contains an inductor l
connected in series with a resistance and powered by a DO

| Fig()

e
s I
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power supply (see Fig(4)). The ciréuit equation is given by:
g=IR+L a
- . adt

The solution is found using methods similar to those used in the RC circuit case.

) il
() - | I =§;(1me"f>

This equation describes how the current rises in the ¢ircuit.
If the power supply is shorted (replaced by & wire), then the circuit equation becomes:

0=L% 4RI N -
i

the sohution of which 1s:

R : . Treed o

Fie 3t

This equation describes how the current decays in the circuit. Fig(5) represents the relation between (1)
and ( t) for both rising and decaying currents. "TAR" has units of time and is called the time constant of

this circuit.

DC driven LC circuit:
THE cireuit i Figls) is o serfes EC cirouit powered-by2
DC power supply. The circuit equation is: L

g 0
:L e~ ot 1l
fEE TG B % S

If the circuit is connected to the supply (S1 is closed) ' S—
until the capacitor is charged then the supply is replaced
by a short, the circuit equation becomes:

Fig(6}

d*Q 1
Lw——' o e e
ar’ LC g

This is an equation of a simple harmomnic oscillator-with an angular frequency oy defined as:

STUDENTS-HUB.com “Uploaded By: Malak Obaid


https://students-hub.com

Such a circuit is called an LC tank or an LC oscillator, with @ as its natural angular frequency of
oscillation. The solution of the simple harmonic oscillator is a sinuscidal function. In mathematical
form: '

(7 Q(t):Aéés(coo £,

where A is & constant.

In reality it is never possible to construct a pure LC circuit. Various sources of resistance cause a
continuous loss of power as heat; consequently, the simple harmonic oscillations will sooner or later
decay.

DC driven RLC circuit:
The_ circuit in fig(7hs_ a smple seres KLC cicult ==

powered by a DC supply. Using Kirchhoff’s loop . l R L
theorem, the circuit equation takes the following form: . Y YED
al ¢ e - . ——
&= IR+L~—— ;b , | e | | s
|

which, using the definition of the current, could be I
written as follows:

Fig(h

£ =

2
LA
dt dt C

The solution. of this second order linear differential equation is mathematically involved®, therefore we
only introduce the result:

@ o) = Ae™ + A,e™ ,

..where Ajand Az are copstantsand .

R
A, m B
v 21; ( ) LC

A= o7 1}(““”“) “‘ZE

This solution is an exponentially decaying one. As this solution decays«io zero within a limited period of
time, it is called a transient solution. The significance of this solutzon will be discussed in detaﬁ through
experiment ( 6). |

. o 8 - S
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* See appendix B for 2 comprehensive summary of solving second order linear differential equations.

The response of resisters, capacitors and inductors to AC signals

1f a resistor is connected to an AC supply then the current flowing in the resistor is related to the voltage
through Ohm's law as '

-£(f)
HOERE S
B=—
where,
g(t) = gy cos(wt},
= therefore, =
©) I = %"—cos(wr) = 7, cos(at)

The current is also a sinusoidal function of time.

The root mean square (rms) value:

A resistance, with an alternating sinusoidal current passing through, dissipates power by means of joule
heating by an amount equal to that dissipated if it were a direct current L.” passing through it. The rms
current (Iums) is given by :

rms \/5

Therefore, if we take the (rms) value of both the driving voltage and the current, Ohin's law takes the
following form: '

g."niS

10 R
( ) rms R

Which is Ohm's law generalized for an AC current; R here is best describedas the resistive impedance.

If a capacitor is connected to an AC source then the current is given by:
.
HH=C—elt
()=C—e(,
Hence,

I(ty=-Ce,wsin(ox),

2¢
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or,
7
£5cos{at +—)

-1

aC

I{t)y=

Taking root mean square value of both the current and the voltage we get:
(il1) I = wj”i

Which is again the generalized Ohm’s law with (-1/0C) termed the capacitive reactance.

-7 o T TR R N . PRI SPGRR- i 1
L‘IUW L ClL AU 43 S ad iU tons L it 4 2% D o h ] 5 ik SoLrins tha :“31? :"A“'"‘m" et < e "’"“'Pﬂ 1'“1
g, =~L~—,
dt

Then the current passing through the induotor is:

() = | AP

vy oot

Solving the integral and taking the root mean square value we get,

&
12 I =
( ) rms CUL

0
Once again this is the generalized Ohm's law with (oL) the inductive reactance.

AC Driven RLC Circuits:
Shown in Fig(8) is a series RLC circuif powered by a

sinusoidal AC source. The circuit equation in this case P I
PE Sity | pememeg iy
sty - 122+ R4 2 e @ B
ar dz‘ C _
where, ‘ | ity = Sg oo vt
e(t) = &, cos(ar)
The solution of this second order Linear differential Fig(g)

equation is as the sum of two parts, one is called the
homogenous solution and the other is called the particular solution. The homogenous solution is the
trunsient solution given by equation(8). This solution has.an effect oniy when the circuit is switched on

" 30 .
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or off and dies exponen’ualiy and rapidly with time. The particular solution for the current passma
through the circuit is presented here without mathematical treatment as:

(13) Ity =1, cos{wrt + ),
where,
(4 I, = %o .
\[RZ 1 2
wC
and
(1.5} @xtan_](me-%l/wC]
: : S . R

Note that the c_uﬁt'ént in the circuit is also sinusoidal with an introduced phase shift (@) and an amplitude
that is dependent on frequency.

Generalized Ohm's Law: Impedance and Reactance

A resistor as a circuit element is characterized by its resistance. Can we assign similar characteristics to
capacitors and inductors in AC circuits?
[et us define a resistive impedance Zg, a capacitive impedance Zc¢ and an inductive impedance Zy, as

follows:
ZkﬂR
J
16 F o=
(16) €T TaC
@Lw_ij

The unit of impedance is the Chm (Q) and j =+/—1 ; hence, the 11npedance 18 deﬁned as a complex
number.,

For the simple series RLC circuit of Fig(8), the current passing through the circuit i given by:

a7 | 1) = ‘; Y ( Generalized Ohm's ng}
where, ;

(18) o X oy =7Tn+ Zc+70.

Therefore,

(19 | () = e £(t)

T
R+ j(al =
_ J(@ a)C>

Lad
ot
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And the physical (non-complex) value of the current is obtained as (see appendix C):

&, cos(at + @)

I{t) = —
\/EZ 3 (aJL——a;E)z

where @ is defined as in equation (15). This is the same.value obtained from the solution of the second
order linear differential equation.

This technique in circuit analysis; i.e. using the definitions of equation (16), which can be summarized
by the following steps, is useful for all AC circuits: ‘

o Assignan impedance to each circuit element in the circuit. .

o Tind the equivalent impedance through applying the rules of series and parallel connection or by

it e m Aiiin e d At i mmrsae carab an Thovrenin’e

LFLRAINAL  BALA ¥ GALU S e e AL Ty S e e e
"« Find the current equation by dividing the supply’s electro motive force by the equivalent
impedance of the circuit. .
e .Use the mathematical rules and techniques of complex numbers* to find the physical value of the
curreid. -

oo vy j | i hd
vy el . e

# See appendix C.
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THE CATHODE RAY OSCILLOSCOPE

Introduction Through the

course of your work in this lab TEQY  1re sget novos
'e ZGYO55 BCIaIT
you should have used volt meters 1 @l d. \/\“&; A "
and ammeters to measure voltage .
. ) . 4 é oot Flanked out
differences and ecuwrrents in during Nyt
different circuits. In AC circuits, tigger ey oo base
in particular, a digital multimeter T T g N
can be.used to measure a certain e Vavg F “\J
average value, for ‘both current 20./d5. T QL I
o N sigol © cathods  2nodes {-plateo
and voltage differences. This oA e 1
value is called ‘the root mean b Yoo pseds
squared value (rims), which is | 20 ] f ' : '

. o AU AN o .
rather useful in  providing GE, v N e o SRt
" - : VARVIRY
information ~concerming power / bl e .
transfer through the circuit and :

. . . Figlt)y Black dogram of an oscdiogeope
power consumption in particular

elements.

With the continued advancements in electrical circuit techniques, a need was established for a
device that can do more than measuring an average value for altemating voitage differences. The
Cathode Ray Oscilloscope (CRO) was the adequate response to those growing needs. It can trace and
redraw waves and signals as being processed through different stages in electronic circuits, 1t can
provide adequate measurements of amplitudes, frequencies, phase differences and functional
Presgntaﬁgn of each and every voliage wave and Qigﬁf’}}

Structure of the Cathode Ray Oscilloscope (CRO)

Fig(l) shows a block diagram of the CRO. Of all the included parts the cathode ray tube (CRT) is the
"hack-bone" of the CRO; it is described next.

The Cathode Ray Tube (CRT).

Fig(2) shows a schematic diagram of a CRT. The filament heats the cathode to emit electrons
into the vacancy inside the evacuated glass tube. Due-to the effect of the high positive potential at the
accelerating anode, those electrons are aceelerated towards the florescent screen. at the other end of the
tube. When the florescent material covering the screen is siruck by an electron with sufficient kinetic
energy it emits photons in the visible range; i.e. light. While the accelerating anode can provide the
electrons with the kinetic energy necessary to produce light at the screen, the glectrons have a random
range of initial velocities and will end up hitting the screen as well as the internal surfaces of the glass

. tube at different sites. In order to create a focused and directed eletiron beam, the foliowing parts are
added to form what is known as the electron gun: -
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T R - Prcre

It is a metallic mesh, with a negative electric potenuial, iocated in front of the cathode. By varying
the value of its negative potential, one can control the number of electrons which can pass through; thus,
controlling the intensity of the emitted light.

The focusing anode:

It is a metallic configuration which produces an electric field to act as-a focusing lens through
varying the field's intensity. This configuration allows the beam to be focused at the screen.

The part of the tube that contains the filament, the. cathode, the accelerating the anode, gnd and
the focusing anode is known as the electron gun.

The electron gun is followed by two pairs of deflecting plates connected either to the input
.terminals of the oscilloscope._or to the sweep generator (described later). They are called the horizontal
and vertical deflection plates describing the direction the beat ¢ deflected when passing between the
respective pair. The path of the electron beam passing between the pairs will-be changed by applying
different voltage differences between any or each of the two pairs of plates. This effect results in
_changing the location at which the electron beam will hit the florescent screen. Therefore, the result of
applying voltage differences across the deflecting plates will appear as a change in the coordinates of the
light spot on the screen. ' :

The CRO can function in two modes.

1. The external mode.

Ancde
Controt Grid ;
. ’ II
5, !
N i
o
E \ !
i_._i&_m_W\ ¥ =
: ) ' Y e - i
.': i -/ I N ‘l i
] { -1y Y Fluorescent scrigen |
; { 1 i S | |
; ’ !fw : ]JE ;!
: i !
Heater ¥ o
i J
; ] H
Calhiuue ::C;i;‘;;ﬁ .
i Beam i, P
Focusing coil
Frel 2y
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If the CRO ig set to function in the exiernal or x-y mode, its screen will act as an x-y plot for
external voltases applied on both the x-channel and the y-channel. Any voltage difference
applied to one of the oscilloscope input channels will appear as & shift in the position of the light
spot on the sereen. If this distance shift is calibrated for applied voltages, one can use the
oscilloscope as a voltage measuring device, If an alternating voltage is applied to any of the
inputs, the light spot on the screen will oscillate in accordance with the applied voltage.

2. The internal mode: .

If the CRO is set to function in the internal mode, the screen's x-axis will be connected to an
internal sweep generator that periodically scans the x-axis with a constant velocity. As a
consequence the x-axis becomes a time axis while the y-axis can receive inputs from any external
source.

Sweeping

I, for example, a sinusoidal signal is
applied to the y-channel, while the x-channel is
grounded, the light spot will be oscillating along |
the y-axis in a simple harmonic motion. In order
to be able to redraw the sinusoidal signal on the
CRO screen we need to scan the x-axis with a
periodic wave that has a constant rate. Therefore
we need a periodic linear function. The saw
tooth wave, shown in Fig(3), is our function. If
we apply a saw tooth function that has the same
frequency as that of the sinusoidal wave applied
at the y-chanmel, the superposition of both will
result in redrawing the sinusoidal wave on the

Havtoath Wave

PE T

e WanY aaly PR e
RO ST eITas- SnoVWAT T PA%{4>

Inside the CRQ there is a sawtooth
function generator that is called the sweep
generator. When the CRO is set to ifs
internal mode, the  x-channel s
automatically connected to the sweep
generator, therefore, the x-axis becomes a
time axis and all input signals at the y-
channe! will be redrawm on the screen.
The time base condroller (see the front
panel of the oscilloscope) provides us
with the opportunity te produce sawtooth
waves with' different frequencies, thus
allowing us to assign different time scales
ta the x-axis

sl

|

e B -
e L - L

Fip(eh Sawtooth vs. s v of the sume Fegquency
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Triggering and Synchronization

In order to be able to produce a stable "non-traveling" wave, the frequency of the sweeping wave,
f;, should either be equal to the frequency of the input wave, fi,, or to one of its integer multiples:

: fn nfi!b

where n = 1,2,3... . If this condition is not satisfied or if the input wave is not totally periodic, one would
see either a drifting wave or superimposed waves. In order to overcome this difficulty, a smart electronic
circuit linked to a control switch (the trigger switch) is included in the CRO. Tuming the trigger knob
clockwise or anti-clockwise will solve the problem.

[ D O I . R = I NS i ¢ N

N AL LALL G AP RS A ML Mk s

Look carefully 4t the frofit panel of your CRO. -
Swiiching your CRO on

2" Presg the pavwer button on

+ Turn the time base button to the x-y (external) mode.
s Use both the x and y deflecting knobs té bring the light spot to the center of your screen.
e  Using the intensity and focus knobs, convert the light spot into a focused sharp point.

e Your CRO is now ready to be used.

External mode measurements

o  Use a DC supply to supply a 5 volts input to channel
x. Record the (x,y) coordinates of the light spot. . r-R», )
\T v"'-"”

o Apply 5 volts to channel y.’ Reoord the: (x,y)

. coordinates of the light spot.”. 1
o Apply a sinusoidal wave with a low ﬁequency {few Gt @

hertz S) to the ymchannel

|
1

along the y—_axis.

o Apply two sinusoidal waves from two different
sources to the x- and y-inputs of the CRO. Match their
frequencies. You should be able to obtain a rotating =

ellipse at the screen. Try the same with different Frequency ratios between both mputs and notice
the different shapes of what is known-as Lissajous figures.

- Figls)

e “Connect the simple series RC circuit shown in Fig(5). Connect the input voltage to the x~axis-and
* . the voltage across the capacitor to the y-axis. Find the phase shift between both mputs through
measurements made on the ellzpse as explained in Fig(6).

36
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Internal mode measurenients

» Scanning the screen: Switch to the internal
mode by rotating the time base knob to the 1 {

sec scale. ‘You should be able to see the light
spot moving along the x-axis with a constant
need. Change the time base contimuously until

Si.)u\/\.ﬁlv Nt AR v W ER-E Ly LALLLA

the spot is replaced by a line (explain!). ;i

o Comnect a sinusoidal wave to the y-channel _,r'"f Virg
and see the wave being redrawn on the screen. B i
Change the time base and notice what happens
to the wave (explain). Measure the amplitude ‘ Fig(6)
and the period for the displayed signal.
Calculate its frequency. Repeat the above steps
for different waves obtained from your signal
generatof. A

o Comnect the circuit of Fig(5). Connect the voltage across the capacitor to the y-channel and the
mput voliage o the x-channel. Display the signals of both channels simultaneously on the screen.
Calculate the phase shift by measuring the time shift (At) between the signals and multiplying by
the angular frequency (®). ‘

o Synchronization and triggering: Display a sinusoidal signal on channel one. Move the triggering

knob to the external trigger mode. You should be able to notice the wave drifting across the
screen. Rehurn fo channel one trigger. Rotate the trigger knob until the wave starts drifting then

back until 1t stops.

Training

s Display five sigmats—with—ifferent fanctions;—and
frequencies, amplitudes one at a time. Measure the )
characteristics of each wave (amplitude, frequency). S8 e

o Connect the circuit of Fig(7). Display the voltage drop
across the 1 kO resistor on the y-channel of your CRO 1} &3 @
and measure it simultaneously om your digital o
multimeter (DMM). Change the value of the variable

resistance and record the amplitude .of your signal as l

measured by your CRO and its roof mean square value
as measured by your DMM. Plot the DMM versus the
CRO readings on a linear graph paper. Find the
functional relation between the amplitude and the root

mean square vatue. ‘
o Use the component test function of your CRO to display the 1V ¢haracteristics resistor and a
diode. Froin your CRO screen find the value of the resistor and the static resistance of the diode

Fig(7)
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FXAPORIVIEINL 7

CAPACITORS AND INDUCTORS
Theory

i. RC Circuits

Charging a capacitor:

During the positive half period of the square wave,
the charge in the simple RC circuit shown in Fig(1}
builds up on the capacitor plates according. to the '

following formula: {er UL T

I'e
Ot)=Ce(l—e %),
The valtage acraes the canacitor plates ig defined

by V.

hence,

!

(1) : V,=e(l-e %),

RC is usually called the time constant (t):of o
the RC circuit. T has the unit of time (sec) -
and is measure of how fast the voltage across:
the capacitor rises. When't =,

VC:’-“ 0.63 g,
or; the-voltage -across the-capacitor mises-to—off. ... ..
0.63 of its-maximum value: S =3
The current passing through the circuit is | Ay

given by:

£ 377

' I3
=L -5k
d R

Therefore, the voltage across the resistor is

Hagi 2t

g%  oa Sl A
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i

2) V, = IR = ge .

Discharging a capacifor:

" During the negative half period of the square wave, the capacitor, in the RC circuit of Fig{l),

discharge according to the following, formula:

o) = CgeME%.

Hence, the voltage across the capacitor plates is given by:

t

3y Vo= ge €,

RC is again called the time constant (1) of the circuit; it is a measure of how the fast the
voltage across the capacitor plates decreases. Whent =1,

VC=O.37S, :

or, the voltage across the capacitor plates decays to 0.37 of the maximum value within a time
T.

The current passing through the circuit is

il

STUDENTS-HUB.co'm' - > jUpIoaa'éd;E@é)g:;Makl“ak Ob

1) =2 2T,
dt R
TR, The VOItage acruss the resistor ts-prvenby:
‘ A
(4) ‘ V,=I({)R =~ge *.

The graphs in Fig(2) show the functional relation between both the voltage across the
capacitor and the resistor and the time for both charging and discharging.

RE Circuits

In Fig(3), the current passing through the circuit o ST
rises with the according to the following equation: ' A

Rt

) = %(1%7);

i

]
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lne voitage across ine resisior 180

Ri

(5) Ve=IR=g(l~e¢ L),

and the voltage across the inductor 1s:

Rt
(6) v, = Ny
dt

The quantity L/R is called the time constant (1)
of the circuit; it is measure of how fast the
current rises in the circuit. When t= 1,

oy

Ve =0.63¢, -1
and i 3%
VL = ().37¢.
r
g R e e E ey T b T an AN 1 ==
Ao ddle addeddider WA A w‘ Y omhate Aflgrnan ¥ I, RHl Vo s
function of time.
Freid)
iii. LC Circuits
- L
In the circuit of Fig(5), the voltage across the T
capacitor plates is described. through the foHowmg
equation: i &y ) : 4
(7) Ve=Veocos(ot+d); ‘
where, Vo is the amplitude (constant) and ;
F;_«.g:{;*l [
O S

Jie:

Fig(6) shows the voltage across the capacitor as a
function of time.

Apparatus.

Resistor {5 k), Inductor (10 mH), Capacittor (0.01 pF),
Signal Generator, and-an Osilloscope.

i)

‘STUDENTS-HUB.Cdm

Figti)
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Procedure
i- RO Circuits
&) Connect the circuit of Fig(7).

b) Use a square wave from the si gnal generator to :
power your circuit. - JE. G ..

Note: a square wave operation on half cycle only

acts as a DC supply. it —
i i'l

¢) Display Ve on the Oscilloscope screen.
Measure T for both charging and discharging.

. _ Figl™)
d) Display Vg on the Oscilloscope screen.
Measure t for both charging and discharging.
| - 1o .
s Y : -
Note: you have to exchange the places of R and C e
in the circuit (why?). ' ' .
&t <10
-  RL Circuits 1
a) Connect the circuit of Fig(8).
b) Display Vg and V1 on the oscilloscope screen.
Measure T in both cases. Figi &)
ii- LC Circuits . Ll
| | e
a) Connect the circuit of Fig(9).
b) Display V¢ on the oscilloscope screen. Measure 21ty N
the amplitude A and the angular frequency @. o : ah i“’"ﬂ P
Analys'is of results
a) In both RC and RL circuits compare the vatues of T obtained - -
practically with the theoretically predicted ones. Figto

b) For the LC circuit compare the measured value of co with the theoretically predicted one and discuss
the discrepancy. ' '

Quéstions
1} For the RC circuit, explain what happens when 1—0 and when 1 —w©7

© 2) Is it possible to operate the RL cirouit or the RC circuit by a standard DC supply and to do time
rmeasurements using a stop watch? What values of R, L, and C make this option possible?
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EXPERIMENT &

DAMPED OSCILLATIONS

- Theory

The charge on the capacitor plates and hence, the ;
voltage across the capacitor in the DC powered RLC circuit K L
shown in Fig(l) are described using the following solution SN

for Q(t) (see general review):
Gt} | e
(1) Q) = Ay ¥+ Ay e,

WIIELC A AL Ag are vuuaiauia, au

R (R T 1
A, =t | e | e,
20 W2} LC

(2)‘ TN

- ;“"53'"\}@)

Fgll) -

.......

For this solution three inferesting cases emerge.
case i: Overdamping

If ' ‘ oo
WA
(——) y—,
2L " LC
then, both terms in equation(l) decay exponentially Overnging
with time and the voltage across the capacitor is .
sald to be overdamped, see Fig( 2 )
t
. ‘s . Fizi
case i: Critical damping N :
R 1 . -
() ===, Ve
2L LC
then, the term.under the square in equations(2) root
vanishes and Ciheal dampins
R
,;L_!_ = /1_ = ——_":—.—'
L
Therstore, the charge we the capacitor plates, and ' Figi3)
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consequently the voltage across the capacitor plates take the followng form:
R, LR

{3) O(t) = Ae T P

where A and B are constants.

FXp | 9

Again the charge on the capacitor plates, and consequently the voitage across them, decay exponenuaiy
with time, see Fig(3) This damping case is called critical damping and it serves as a boundary between
overdamping and underdamping (discussed below).

case iii: Underdarnping
If

R, 1 ey o\ v
(—ﬂ:)z(fE’ ,\ - Tida danypnng

e,

0 / / A Wl
N __—
then, the term under the square root becomes ‘__
negative. . - 1
. et

The mathematical treatment of this case is beyond Figi4)

the scope of this course™, therefore, we only |i_
introduce the solution:

;ST"UDENTS-HUB.com' o 4

(4) 0= Qge"& cos(w't +6,),
where
(5) 5=
2l

and

- 1 R
6 i N Y N L
(6) e (2L)

This equation represents a sinusoidal function with an amplitude that is’ éecayii;’g. exponentially, see
Fig(4). This case is called underdamping. '

An interesting quantity is the time ;2 after which the amplitude (envelope) Qﬂe"‘s’ falls to half its initial

value Qq. Or,

QO =& 12 )

2

Substituting for § from equation(5) and solving for ty gives:

v h».f h!
(7) 1‘”2 o \ZL)élezj )

* In fact, using the. properties of complex numbers introduced in appendix C with some tri gonometric
and algebraic raneuvers, a student .at this levet should readily get the’ desired “resul. T
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Experimentally, we measure the voltage across the capacitor. As usual the voltage is related to the
charge through :

y 20
C
hence, Ve behaves exactly the same as Q(t) in all three cases.

Apparatus

Resistance decade box, 10mH inductor, 1uF capacitor, a signal generator and an oscilloscope.

Procedure _
o Ifg 1omHE
. o . - .. A ENE - |-
a).Connect the circuit in Fig(s). iVl Rl L W
b) Display the voltage across the capacitor on the —_
oscilloscope screen. DLET
= oY (Fange the value of R to obtain e thiree darining = =

cases; record R in each case.

d) Draw each response on a linear graph paper.

Analysis of results

a) For underdamping find t); and compare it with the vah;tle calculated from component values.
_b) Define the value or the range of values of R in each case.

¢) Find the decay constant.for the critical and overdamping cases and find which decays faster.

44
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IXPERIMENT

IMPEDANCE AND REACTANCE

Theory

In the AC-powered RLC circuit shown in Fig(l),

the current in the circuit is given by* , E L
,?f‘\.?, "!J.‘ .:'-.ﬁr\— ‘Er“———-—
()
I(t)y == ' o —t -
) Z. AN A p———
where, ”

Zeg=1Zg+Zct Ly, |
Figl 1)

with

Zr =R, Zc=-jlwc, Zy = joLl,

Za, Zc, and Z; being the resistive impedance, the capacitive impedance and the inductive
impedance respectively. While the quantities (VoC) and (L) are the capacitive reactance and the
inductive reactance respectively.

In general, impedance is a complex numbers that needs special mathematical treatment™**.

Proceeding with such treatment we get the following value for the current in the circuit:

STUDENTS-;HUB.Com .

(1) 1(t) = Iy cos{wt+ @), 'if_‘;f;?f
. WwWhere ) i 2 -
h T ) 1.[;/,-\\ 1‘_1)- ..
Iy = £ i }“:’ ) ¢
0 1 H f K LY 8 L 1 : "_‘
R? + (oL ——)* A
aJC 'J( “4 U / "l
. ,,f} '.!" ; '-‘ ,| ‘4{1'4“"""4", B
and / ' o bt fme
/ ‘\ b ‘-‘" f
A =l +1/oC
@ = tan ™| ——— | C NS
R -
Fizs 21

Fig(2) shows a plot of both the voltage and the :
current in the circuit on a common time. scale. It is obvious from equation{l) that the current heads or
lags the voltage by a time interval that is dependent on the frequency of the cosine function. In other
words, there exists a phase shift @ = wAt between then. ‘ :

See general review’
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¥ Consult appendix C for a review of complex numbers.
The voltage across the inductor Vi can be obtained-as follows:

V, =L d(r) *L«;};(Iocos(wwfb)),
(2) V, =~—aLl, sin{wt +D)*.

Note that Vi is just the current multiplied by the inductive reactance with a phase shift of w/2
introduced**. (Generalized Ohm's law)

The voltage across the resistor is

PN T7 o DTN . DT Nm.’ns;ﬁ’\\
) "R -y gy T P

Note that Vg i8 just the current multiplied by the resistance.(Oh's law)
And finally, the voltage across the capacitor is

oo e . . VC::::-;-Mg. f(z‘)d;‘: ,.:é'., [JO COS(COf“{* @;)dfj SEEER . iaeen T . R e

E

4) | V, =

Note that Ve is just the current inultipiied by the capacitive reactance with a phase shift of w/2
introduced.

The phase shifts between the current and the voltages across the different circuit elements in
Fig(1) are also related to @ which is a. fzmctlon of w.

In order to find the value of the phése: shift between two harmonic functions using the oscilloscope

do the following: = -
e Set the oscilloscope on the x-y mode. ‘
e Connect one function to the X-channel and the other to Vg e
w-the Yachannel, oo LI TS | R -%};.-Y________a -
¢ On the screen you will see an ellipse (see Fie(3)). ::!
o Let | 7
05.‘ . . <'~-‘ J:}{:D
WV = Vo €08 (CDt) ;
and L o
Vy = Vyg cos(ot + ) T P.' (3) )
where @ is the phase shift between the two functions. T R

s At point a, defined in Fig(3), Vx Has ifs maximum
value, therefore, ot= 0, and
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+  All phase shifts are related to the voltage of the source in the circuit.
% Note that: sin (8) = cos(6 + /2 ).
V‘{ = Vyo COS(CI?).

Therefore,

O =cos™ (E—’w).
V.'r’()

" Both Vy and Vyg are measured as shown in Fig(3).
Apparatus
I kQ resistor, 0.1jiF capacitor, 10 mH inductor, signal generator, osciiloscope, circuit board.
Procedure

a) Connect the circuit of Fig(4).

b) For five different frequencies find the phase shift %“11%5“[ | HLEF
between the driving voitage and the current. m I l

_lr-u

L 1ELCY

"

‘A

¢) Display Vg, Ve, and Vi on the oscilloscope screen
and measure their characteristics. Measure the phase
shift between each of them and the driving voltage.

Analysis of results: , Figl4)

a) Draw Ve, Ve, and Vi on the same graph paper
showing similarities and differences.

b) Draw the phase shift between the driving voltage and the current as a funcﬁbn of the frequency.
Define the frequency at which the phase shift is zero. '
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X PERIMENT 10

RESONANCE

Theory

Censider the AC-powered RLC circuit shown in

Fig(1). The amplitude of the current passing through the L ‘ I 0
circuit is given by, — l l
1 r Vo gtf} \f\ -:i’“) 1
g ~u . 1 ’ i
.{/R%.@L KT ~—r
ol
It ig ahwine that T acqumes o mayimum as a fanation nf gl 1)
=0 When e | bl § A| —— ”
' i
ol = .
&l

It is interesting to note that under such a condition @ is the natural angular frequency of the circuit:

(2) @, = —-—1_—.

JLC

In other words, the current in the
circuit -assumes its maximum value when ||.
the driving voltage frequency equals the ({1, _ ‘
natural frequency of the RLC cireuit. This. || 4 Y
phenomenon is called resonance. [
: oo ; :,. 'y Wy Wy ey
Fig(2) shows a plot of the value of i |
10 as a function of @. At resonance S ! Y
3)
|14 ;
I(} S ‘"‘Q', 3
R ;
and the value of the current is only limited T
bv the resistance of the circuit. T = -
fiiﬁ
Fug l

The Quality Factor: o
A measure of the sharpness of the resonance suiss - ¢ i zalled the anslwy factor (Q),

47

STUDENTS-HUB.com - Uploaded By: Malak Obaid


https://students-hub.com

which is defined as

' wl
4 =2
(4} o) 7
Af resonancs
: 1 1L
5 O = .
(5) ==\C

Fig(3) shows a plot of the resonance curve for different combinations of R, L and C.

By

Py
P
Py
4 %,
",iib. I 5“&" "
[}
e 2 -

2 1 i R Lo 3 | 1 . i

Fri 3l

STUDENTS-HUB.com

A practical value that measures the sharpness of the resonance curve is the bandwidth. The
bandwidth (Am) is the frequency range between the maximum value of I and the value of—j:’f-, see

Fig(2).
The quality factor is related to the bandwidth as follows:

.a)o

(6) Qde.

Q-uestion:'éhow that 0= —IR— %«

Apparaius

k€Y and 2kC) resistors, D148 o
a digital multimete.

ot 0 Tudsieror, sl generator, oscilloscope, cirruit board and

@  Uploaded By: Malak Obaid
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Procedure

a) Connect the circuit of Fig(4).
1 mxﬁ it Jg:g F
b} For R = 1kQ) measure the current as a functlon of the
input voltage frequency.

ﬁ,iILEZ

¢} Measure the phase shift between the current and the
voltage in both cases. Fre(gl

d) Repeat parts (b) and (c) for R = 2 kQ. Fig) =

Analysis of results

b) Measure the bandwidth for both rescnance curves.
¢) Determine the resonance frequency and the quality factor in each case.

d) Plot the phase shift as a function of frequency.
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FILTER

Theory

A filter is an electrical circuit that allows signals with a
defined frequency range to pass while blocking others with different T
frequency ranges. Filters are useful units in many electrical and Oy o
electronic devicgs such as radio, TV, ete. t

There are three types of filters: high pass, low pass and band <in Vo
pass filters, see. Fig(}). In filters unwanted signals are highly
attenuated® through the circuit while required signals are passed 0- 0
with, almost, no attenuation. , &) Low-pass fier

O tfl 3
l .

Low-pass RC filter | T

Consider the circuit of Fig(la). Using the generalized Ohm's law we
can obtain the output voltage, Vou, as a function of the input voltage, - —
Vin, as follows. b} High-pass filter.

T %"

~

o F A
LAY
SRYAY

Figh

s Find the circuit equivalent impedance:

Z, =R-—
aC

s THER, THe CUFeir s

ORAU

eq

s The output voltage then becomes

_ AT
Vou,(f)ch<r)_-_—-mR_J;(wc),

@l
AN

= V {i)= .
o (/) I+ joRC
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* Attenuation is the decrease in amplitude,

® Treatmcr the complex numbers as described in appendix C will yield the following value for the
ampht‘ud@ of the output voltage:

V o ]75)1{)
S ek

where Vipo is the amplitude of the input signal.

A
s The attenuation facior, A, is defined as follows: o

O T it s
E £ Lonw pass

A — I/C'Q - Vx‘n(} i

Vo 1+ w’C*R? :

-e- Porreasons to-be explained later. letus define : U I
I
i ——

O 345 = B _ U‘.‘_“_ uuuuuuuuuuuuuu X
s : 4 1t I:_l...:u JEROE

. . , iy | / :

" then, the attenuation factor takes the following form: = l
i TR w
Fig(2) \
1
A=
@
1+( )?
D _348

A careful Examination of this.equation will yield the three following cases:

1. If @>>w_3qs then A is.extremely small and the output signal.is highly attenuated.

2. ®<< m.3gp then A=~1 and the amplitude of the outpﬁt -.sigﬂal 1is.equal to that of the input signal, in
other words, the signal is passed without attenuation.

AU @ = wags then A =172 =A707 and the amplitide of the output signal is 0:707 of the
amplitude of the input amplitude. This value sets a practical boundary between passed signals
and highly attenuated ones.

It is obvious from the above discussion that ‘che circuit in consideration is acting as-a low-pass filter, see
© Fig(2a). g

Hztﬂppass RC filter

The circuit of Fig(Ib) acts as a hlgh«pass filter. The attenmnon ﬂlctnr A can be deduced using
exactly the same procedure. usad in the case of the low pass filter; th+
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A= !
- 1+ (w—sa’B )z
[42]

\

A careful examination of this equation will also yield three case:
1. If @<<c.3qp then A is extremely small and the output signal is highly attenuated.

2. If @>>m.34p then A= and the signal is passed without attenuation.

3. If @ = o3¢ then A = 1/4/2 = 707 which again sets the boundary between passed signals and
highly attenuated ones.

It is obvious from the above.discussion that the circuit in consideration is acting as a high-pass filter, see

Fig(2b).

Differentiators and Integrators

If a low pass filter is functioning in the h1gh1y attenuated region, where o3>>a) 4am, then, Voult) 18
extremely small and

VR(‘-) = Vin(t) = Vout(t) = Vin(t)-

On the other hand,
,T(;‘} - dQ(f) - (, dVC (f) — C au{ (f)
dt df at
50, ,
)
V. (6y=Vg (#) = RI(;‘) RC de‘;( )

or equivalently,

Vel = = J’ W ().

The output voltage is justthe integral of the input voltage. Under such conditions this circuit acts as an
integrator.

1f an RC high-pass filter is f\mctlomng in the highty attenuated region, where @<<w.3qs, then, Voult) 18
extremely small and .

Vel(t) = Vindt) — Voul) = Vit

g

_ntheotherhand,
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7 @ _ El) e dve(s) _ c 4V (0
50, |
V()= RI() = Rcﬁ%ﬂ,

The output voltage is just the derivative of the input voltage. Under such conditions this circuit acts as a
differentiator. ‘ : -

Apparatus

k<) resistor, 1pF capacitor, a circuit board, a signal generator and an oscilloscope.

Procedure
| | i Ao |
a) Connect the cirouit of Fig(3a). A e
I8y 5y
b) Measure the amplitude of the output voltage as a function of o °
Mrwrequegcy. : o ; o
e = - wz gy Low-pass flter.- - o e
‘Note: Scan a wide range of frequency. Be sure to inctude ©.a4p in H
the range. Regularly check the input voltage to make sure it [
maintains the same value while changing the input OLET <
frequency. : , : Vig <IEQ T
c) Check t.he phase Sh:lft bet\ﬁ{een the input a:ndthe output VoiFages n ¢ b) High-pass filter, N
both the high attenuation region and the region of no attenuation.
‘ Fig(3)

d) Use a sinusoidal, a square and a triangular signal with a-frequency.
in the high attenuation region and plot-the input and the output.voltages on a common time scale.

e) Connect the circuit of Fig(3b)and repeat parts (&) through(d).
___Analysisof results
2) Draw the attenuation factor A as a function of frequiency for both the high and low pass fitters. From

the graphs find the value of w.qp for both filters and compare it with the expected value.

.b) Prove that the wave functions obtained in. part () are the derivatives (in the case of the high pass
filter) and integrals (in the case of the low pass filter) of the respective input functions.’ '

c) What is the phase relation between the input and the output voltages in both the unattenuated and the
highly attenuated regions in both filters? '
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APPENDIX A

COMPONENTS OF ELECTRICAL CIRCUITS |

The foilowing is a list of the symbols most frequently used in schematic diagrams of electrical circuits:

Cell or Battery _l o '4 | 1 =
Switches o ‘ -—fi o
+ Fuge :
Kesistor (fixed) LT
Resistor (variable) T ¥a ! |
: Wy&m — A ,;.;_______
. ¥ WYY i
3 I
Capacitor (variable) % _I€-
Diode M
Inductor (coil} —YTE
Inductor (iro-n. core} A .%,H
Ammeter |
"~ Voltmeter
@
AC supply ,
56

STUDENTS-HUB.com ‘ | Uploaded By: Malak Obaid



https://students-hub.com

Resistors are the most widely used of all electrical components. They are of many types and are
very easy to use. The most common of these are carbon resistors. They differ in value and power rating;
1, watts and ¥ watts being the most popular types. Carbon resistors, however, are not very precise. They
have, at best, tolerances of 50%. Hence, wire wound resistors are used in applications that require
precision down to 1%. ' :

Fig(2) shows a carbon resistor with the shaded regions representing the colox bands used to read
the value of the resistor. Given in the table in Fig(2) is the color code for the bands. To read the value of
a resistor, start from the bands marked 1% digit and 2 digit in Fig(2), decode their respective colors then
multiply by the value corresponding to the color of the multiplier. The last band, marked tolerance, gives
the error as a percentage of the marked value.

st el Hqvl 3
Eond B Biand Brtael

¢ i )

lslBend | ondmand | ord Band 2tk Band
) {1s! figure} end figurs] {rruafipiiers {tolsranss)

siiver o AL

Hint: Here is'an easy way to remember the code. Take the first letters from the words in the following
sentence:

"Be Brave, Run Onto Your Goals, Because Victary Grants Wisdom”
Then assign them values 0 through 9 making them correspdnd tor

"Hiack Brown, Red, Orange, Yellow, Green, Blue, Violet, Gray, White"
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SECOND ORDER LINEAR DIFFERNTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

In the theory of circuit analysis, as in many other areas of physics, one often encounters equations of the
form: ‘

2y

(1>ad :

+b%+cx:f(x)

Where 2, b and ¢ are real constants and £x) isa function of x only. This equatzon is called a second order

- linear differential inhomogeneous equation. When #x) = v, ine equduon I5 Calicd LULIUESLOUUD, Uul as
it stands it is called inhomogeneous. The general solution of this equation isthe sum’of the solution” yh(x)
of the homogeneous equation and a particular solution yp(x) of the full equatlon

(2) YE = ynl2) T yyl)

S nam— . pl —a
R e ) it

Let us start by looking at the homogeneous solution. The theory of differential equations requires that a
second order differential equation must have two linearly independent solutions. The generai soluiion
yh(x) is a linear combination of these two solutions. yn(x) will contain two arbitrary constants that can
be fixed after specifying boundary conditions.

As we are searching for a function that is proportional to its first and second derivatives, let us try

yk(x) = elx’

~ where X is a constant. Evalvating the derivatives: _ -

%:ﬂek dzyhmz?elx
dx g ax?

and substituting back into equation(1) with f(x) = 0 we obtam

alle™ 1 pre™ + ce™ =0,

After eliminating the exponential term we.are left with the following second order algebraic equation:

-~

3) | | ald’ +hA+c=0.
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The solution of this equation is: .
. ~b 1 —
(4) lﬁz—wwi»——'\sz——iiac,

and hence,
(5) | Vs (x)= Ae™* + Be&",'

where A and B are constants io be evaluated from boundary condifions.

The final functional dependence of yn(x) is specified by whether the quantity under the square root in
equation(4) is positive, negative or zero:

o Tfb*-4ac > 0, then both A+ and L. are negative real numbers and y,(x) is a linear combination of
two exponentially decaying functions.

o If b*4ac=0, then

And the two solutions are identical. In order to get a linearly independent solution we resort to

another result of the theory of differential equations which states thatxeé  could be combined
with the original solution to get

./’LJC ! Dn
v e

Ax
yitey="rAe— .

o Ifb*-4ac <0, then the term under the square root in equation(4) turns out to.be imaginary. If we

define
t C b 2M
a)zﬁf———m -7,
. a (ZQ)

then,

and

The solution yy(x) takes the following form,
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v, (x) = Ae™ + Be*,

And after rearrangement it becomes

where C and © are constants.

b |
v, (x)=Ce ?* cos{w't + D),

The general solution to eqﬁation(l) has to incorporate also the particular solution corresponding to f{(x).
This is generally taken to have the same functional dependence as f(x). For example if fix) = E, a

constant, then we have to.set

yex)=F,

wheyre F 1s.constant.. If we. substitute.inwe‘quation(_l.)...we_ get

“Fhe general solutton to equation{1), in-this case; will be: o

c

o,

y,(x) = Ae™ + Be™” + £
C

Now, for f(x) = Acos(wx), where A and o are constants and using

Acos(ax) = Re(A4e’™),

we can work the solution using the complex representation as follows:

Let

hence,

and

Substituting in equation(l)

dy . oo
; "'d;: = joy,e’"",
d? .
dx};p =~ y,e’”.

'@'('—wz,yoejm) + b(j;@yoejéu) + C(J’oejm )= Ae’™,

and after shee By we get
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yo = A
° (——am2+c}+jwb'

This is the complex amplitude. When transformed into the polar representation, yo appears as:

Jo = Ae’®
o (e~ o*a) +o’b’
where,
L, b
@ = tan 1(-~-~—~;~w~~—).
: aw” —b
We need the real part of the solution, i.e.
..... - Joax
¥, (%) =Re(ye’™).

Evaluating the real part gives:
y,(x)= Y cos(@x + @),
where, ‘
V. = %
__ J.O - \/(c ~w’a*)+a’b’ -

Finally, the general solution is the sum of the homogeneous and the particular sclutions:

Y(x)=Ce™ ¥ Be™ ¥y, cos(ax + OJ.

where C and B are constants fo be determined from the boundary or initial conditions.
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APPENDIX C
COMPLEX NUMBERS

A complex number is defined as appoiﬁt in the complex plane, see

Fig(1). A complex number can be represented in two general K.
forms:
|
Z 2 Y
The Component Form: LT
Any complex number could be represented by: D f -
E

Z=R+iX,
 where 7Zis'a complex number, R is-its real-part-(R-= RefZ));y X-is-its imaginary-part - -

(X = Im(2)) and j =-/— 1 _

The Poi'ar Form

A — ._.!—L o wg s b ey .—.nm-,-.ia.-u 1 o o
R N ] H-;AJ P S rL s S Sy P, o b B e e FACE IR S PR

i

I
2 = ze .

wher is the modulus of Z and @ is its argument.

It should be obvious from Fig(1) that
z=+R*+X*,

and
X
@ = tan” (—).
(R)

Euler’s Formula |
The following is termed Buler’s formula’ aﬂer *“Leonbard Euler” who developed 1t

e = cos(@) + ]Siﬂ(@)

Identzfymg the left hand s1de as a complex number written in the polar fonn and the r1ght hand 51de s
the same number written in the component from, one could write:

cos(®) = Re(ej@ );
and '

sin(‘cft)) =Im(e’®). |
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Therefore, instead of dealing with trigonometric functions, one can perform the work with complex
nurnbers in the polar form and then take either its real or imaginary part as the physical solution.

Important Properties of Complex Numbers
If Z1=R;+iX,and Z2 =Ry + jX, are complex numbers then,

o Equalifjf of two complex numbers
Zy=17, ifand only if Ry =Ry and Xy = X5,
s Ad;!ition_and subtraction of complex numbers
ZyEZp =Ry £ Ry + j{X) +X3).
o M ulrzp}.’yiﬁg and division of QOﬁprgx numbers
Multiplication and division of corhpiex numbers are better ﬁerformed using the polar form:

s J{®+®y)

and

Z}. » f}w ef(q’ﬁq):z)

L, 2,

e Rationalizing a complex number

A complex number Z is rationalized through multiplying it by its conjugate ZF. Z* 15 found by
multiplying the imaginary part of Z by -1. This operation is useful when a complex number
appears in the denominator. s

Example:

To rationalize the complex number Z = /(R -+ jX) we multiply both the nominator and the denominator
by the conjugate of the complex number appearing in the denominator:

o R—jx, R-jX -
TR+ X R-jX - R*+X°
-Therefore, the complex number Z takes the following simple component form: |
- R X
R+x? R x?

o=
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Analyzing an RLC Circuit “Usir;g c'omw'pﬁi'éx impedance

The current passing through sn AC driven series RLC c1rcu1ts is found through the generalized Ohm’s

law to be:

(1 | I(t)= EZ(I)

eq

where the source emf, £(f) = ¢, cos(ar), can be represented in its complex form as

g(f) = g,/
and

Z =R+ jol, —~L
L oat! i
or

‘- 1 N
Zeq 2R+](GJL“-;-5)

Substituting for £(f) and Zeq in equation(l) we get: » B

Jort

a
E

() = 0 .
iR g )
J@ a)C)

To rationalize, we multiply both nominator and denominator or by the conjugate

i 1
ja R— j(oL— g—)
1 ( 1 )
fﬂﬂ@m-R]@k*ﬂ
mC

&€

I(t) =

On rearrangement we get:

— I(l‘) -

. 1.
Transforming the complex number R j{al w.wwwg) into 1ts oplar form we get:
A @
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