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CHAPTER 1 

Probability and 
Distributions 

1.1 Introduction 

Many kinds of investigations may be characterized in part by 
the fact that repeated experimentation, under essentially the same 
conditions, is more or less standard procedure. For instance, in medical 
research, interest may center on the effect of a drug that is to be 
administered; or an economist may be concerned with the prices of 
three specified commodities at various time intervals; or the 
agronomist may wish to study the effect that a chemical fertilizer has 
on the yield of a cereal grain. The only way in which an investigator 
can elicit information about any such pheJ].omenon is to perform his 
experiment. Each experiment terminates with an outcome. But it 
is characteristic of these experiments that the outcome cannot be 
predicted with certainty prior to the performance of the experiment. 

Suppose that we have such an experiment, the outcome of which 
cannot be predicted with certainty, but the experiment is of such a 
nature that a collection of every possible outcome can be described 
prior to its performance. If this kind of experiment can be repeated 
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under the same conditions, it is called a random experiment, and the 
collection of every possible outcome is called the experimental space 
or the sample space. 

Example 1. In the toss of a coin, let the outcome tails be denoted by T and 
let the outcome heads be denoted by H. If we assume that the coin may be 
repeatedly tossed under the same conditions, then the toss of this coin is an 
example of a random experiment in which the outcome is one of the two 
symbols T and H; that is, the sample space is the collection of these two 
symbols. 

Example 2. In the cast of one red die and one white die, Jet the outcome 
be the ordered pair (number of spots up on the red die, number of spots up 
on the white die). If we assume that these two dice may be repeatedly cast 
under the same conditions, then the cast of this pair of dice is a random 
experiment and the sample space consists of the foUowing 36 ordered pairs: 
(1, 1), ... , (1, 6). (2, 1) •...• (2. 6), ... , (6, 6). 

Let ~ denote a sample space, and let C represent a part of~. If, 
upon the performance of the experiment. the outcome is in C, we shall 
say that the event C has occurred. Now conceive of our having made 
N repeated performances of the random experiment. Then we can 
count the number f of times (the frequency) that the event C actually 
occurred throughout the N performances. The ratio II N is called the 
relative frequency of the event C in these N experiments. A relative 
frequency is usually quite erratic for small values of N, as you can 
discover by tossing a coin. But as N increases, experience indicates that 
we associate with the event C a number, say p, that is equal or 
approximately equal to that number about which the relative 
frequency seems to stabilize. If we do this, then the number p can be 
interpreted as that number which, in future performances of the 
experiment, the relative frequency of the event C will either equal or 
approximate. Thus, although we cannot predict the outcome of a 
random experiment, we can, for a large value of N, predict 
approximately the relative frequency with which the outcome will be 
in C. The number p associated with the event C is given various names. 
Sometimes it is called the probability that the outcome of the random 
experiment is in C; sometimes it is called the probability of the event 
C; and sometimes it is called the probability measure of C. The context 
usually suggests an appropriate choice of terminology. 

Example 3. Let <€ denote the sample space of Example 2 and let C be the 
collection of every ordered pair of <€ for which the sum of the pair is 
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equal to seven. Thus C is the collection (1, 6), (2, 5), (3,4), (4, 3), (5, 2), and 
(6, 1). Suppose that the dice are cast N = 400 times and let/, the frequency 
of a sum of seven, be f = 60. Then the relative frequency with which the 
outcome was in C is fiN =:' = 0.15. Thus we might associate with C a 
number p that is close to 0.15, and p would be called the probability of the 
event C. 

Remark. The preceding interpretation of probability is sometimes 
referred to as the relative fr.equency approach, and it obviously depends upon 
the fact that an experiment can be repeated under essentially identical 
conditions. However, many persons extend probability to other situations by 
treating it as a rational measure of belief. For example, the statement p = j 
would mean to them that their personal o~ subjective probability of the event 
Cis equal to j. Hence, if they are not opposed to gambling, this could be 
interpreted as a willingness on their part to bet on the outcome of C so that 
the two possible payoffs are in the ratio plO - p) = ~/~ = j. Moreover, if they 
truly believe that p = j is correct, they would be willing to accept either side 
of the bet: (a) win 3 units if C occurs and lose 2 if it does not occur. or (b) 
win 2 units if C does not occur and lose 3 if it does. However, since the 
mathematical properties of probability given in Section 1.3 are consistent with 
either of these interpretations, the subsequent mathematical development 
does not depend upon which approach is used. 

The primary purpose of having a mathematical theory of statistics 
is to provide mathematical models for random experiments. Once a 
model for such an experiment has been provided and the theory worked 
out in detail, the statistician may, within this framework, make 
inferences (that is, draw conclusions) about the random experiment. 
The construction of such a model requires a theory of probability. 
One of the more logically satisfying theories of probability is that 
based on the concepts of sets and functions of sets. These concepts 
are introduced in Section 1.2. 

1.2 Set Theory 

The concept of a set or a collection of objects is usually left 
undefined. However, a particular set can be described so that there is 
no misunderstanding as to what collection of objects is under 
consideration. For example, the set of the first 10 positive integers is 
sufficiently well described to make clear that the numbers ~ and 14 are 
not in the set, while the number 3 is in the set. If an object belongs to 
a set, it is said to be an element of the set. For example, if A denotes 
the set of real numbers x for which 0 < x < 1, then ~ is an element of 
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the set A. The fact that ~ is an element of the set A is indicated by 
writing ~ EA. More generally, a E A means that a is an element of the 
set A. 

The sets that concern us will frequently be sets of numbers. 
However, the language of sets of points proves somewhat more 
convenient than that of sets of numbers. Accordingly, we briefly in­
dicate how we use this terminology. In analytic geometry consider­
able emphasis is placed on the fact that to each point on a line (on which 
an origin and a unit point have been selected) there corresponds one 
and only one number, say x; and that to each number x there 
corresponds one and only one point on the line. This one-to-one 
correspondence between the numbers and points on a line enables us 
to speak, without misunderstanding, of the "point x" instead of the 
"number x." Furthermore, with a plane rectangular coordinate system 
and with x and y numbers, to each symbol (x, y) there corresponds one 
and only one point in the plane; and to each point in the plane there 
corresponds but one such symbol. Here again, we may speak of the 
"point (x, y)," meaning the "ordered number pair x and y." This 
convenient language can be used when we have a rectangular· 
coordinate system in a space of three or more dimensions. Thus the 
"point (x" X2, ••• , xn)" means the numbers XI' Xh ••• , Xn in the order 
stated. Accordingly, in describing our sets, we frequently speak of a set 
of points (a set whose elements are points), being careful, of course, to 
describe the set so as to avoid any ambiguity. The notation 
A = {x : 0 < x < I} is read "A is the one-dimensional set of points x 
for which 0 < x ::s;; I." Similarly, A = {(x, y) : 0 <X< 1,0 :s: 
y < I} can be read H A is the two-dimensional set of points (x, y) that 
are interior to, or on the boundary of, a square with opposite vertice,s 
at (0,0) and (I, I)." We now give some definitions (together with 
illustrative examples) that lead to an elementary algebra of sets 
adequate for our purposes. 

Definition 1. If each element ofa set AI is also an element of set A2, 

the set A I is called a subset of the set A2• This is indicated by writing 
AI c A2. If AI C A2 and also A2 c AI' the two sets have the same 
elements, and this is indicated by writing AI = A2• 

Example 1. Let AI = {x: 0 < x ~ I} and A2 = {x: -I ~ x ~ 2}. Here 
the one-dimensional set A I is seen to be a subset of the one-dimensional set 
A2; that is, AI C A2• Subsequently, when the dimensionality of the set is clear, 
we shall not make specific reference to it. 
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Example 2. Let AI={(x,y):O~x=yS;I} and A2={(x,y): 
o < x < 1, 0 < Y < I}. Since the elements of A I are the points on one diagonal 
of the square, then A I C A2 • 

Definition 2. If a set A has no elements, A is called the null set. This 
is indicated by writing A = 0. 

Definition 3. The· set of all elements that belong to at least one of 
the sets AI and A2 is called the union of AI and A2. The union of AI and 
A2 is indicated by writing AI U A 2• The union of several sets 
A" A;', A3, ... is the set of all elements that belong to at least one of 
the several sets. This union is denoted by AI U A2 U A3 U· .. or by 
AI U A2 U ... U Ak if a finite number k of sets is involved. 

Example 3. Let AI = {x: x = 0, 1, ... , 1O} and A2 = {x: x = 8,9, 10, 11, 
or 11 < x <I2}. Then Al U A2 = {x: x = 0, 1, ... , 8,9, 10, 11, or 11 < 
x < 12} = {x: x = 0, 1, ... , 8,9, 10, or 11 < x < 12}. 

Example 4. Let AI and A2 be defined as in Example 1. Then AI U A2 = A2. 

Example 5. Let A2 = 0. Then AI U A2 = AI for every set AI' 

Example 6. For every set A, A U A = A. 

Example 7. Let 

A. = {x : k : I ,;; x ,;; I }, k = I, 2, 3, .... 

Then AI U A2 U A3 U· .• = {x: 0 < x < I}. Note that the number zero is not 
in this set, since it is not in one of the sets A., A 2, A 3, •••• 

Definition 4. The set of all elements that belong to each of the sets 
AI and A2 is called the intersection of AI anq A2. The intersection of 
AI and A2 is indicated by writing AI ()A2' The intersection of several 
sets A" A2 , A3 , ••• is the set of all elements that belong to each of the 
sets AI, A2, A3, .... This intersection is denoted by AI () A2 () A3 () ... 
or by A I () A2 () ... () Ak if a finite number k of sets is involved. 

Example 8. Let AI = {(O, 0), (0, 1), (1, In and A2 = {(1, 1), (1, 2), (2, I)}. 
Then AI n A2 = {(1, I)}. 

Example 9. Let AI = {(x,y): 0 <x + y < I} and A2 = {(x,y): 1 < 
x + y}. Then AI and A2 have no points in common and AI n A2 = 0. 

Example 10. For every set A, A n A = A and An 0 = 0. 
Example 11. Let 

A. = {x : 0 < x < H, k = 1,2, 3, .... 
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FIGURE 1.1 

Then AI n A2 n A3 .•. is the null set, since there is no point that belongs to 
each of the sets A" Az• A 3 , •••• 

Example 12. Let AI and A2 represent the sets of points enclosed. respect­
ively, by two intersecting circles. Then the sets AI U A2 and AI n A2 are 
represented, respectively, by the shaded regions in the Venn diagrams in 
Figure] .1. 

Example 13. Let AI, A 2, and A3 represent the sets of points enclosed, 
respectively, by three intersecting circles. Then the sets (AI U A2) n A3 and 
(AI n A2) U A3 are depicted in Figure 1.2. 

Definition S. In certain discussions or considerations, the totality 
of all elements that pertain to the discussion can be described. This set 
of all elements under consideration is given a special name. It is called 
the space. We shall often denote spaces by capital script letters such as 
d, !:fl, and <fl. 

Example' 14. Let the number of heads, in tossing a coin four times, be 
denoted by x. Of necessity, the number of heads will be one of the numbers 
0, I, 2, 3, 4. Here, then, the space is the set d = {O, 1,2.3, 4}. 

FIGURE 1.2 
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Example 15. Consider all nondegenerate rectangles of base x and height 
y. To be meaningful, both x and y must be positive. Thus the space is the set 
d = {(x, y) = x > 0, y > O} . 

. Definition 6. Let .91 denote a space and let A be a subset of the set 
d. The set that consists of all elements of .91 that are not elements of 
A is called the complement of A (actually, with respect to d). The 
complement of A is denoted by A*. In particular, .91* = 0. 

Example 16. Let d be defined as in Example 14, and let the set A = {O, I}. 
The complement of A (with respect to d) is A* = {2, 3, 4}. 

Example 17. Given A c d. Then Au A* = .rd, A 1'\ A* = 0. 
Au .. r4 -: d, A 1'\ d = A. and (A*)* = A~ 

In the calculus, functions such as 

f(x) = 2x, -oo-<x < 00, 

or 

g(x, y) e-"~Y, 0 < x < oo~ 0 < y < 00, 

= 0 elsewhere, 

or possibly 

h(x" X2, ••• ,Xn) = 3X,X2 ••• xn, o < Xi ~ I, i = I, 2, ... , n, 

= 0 elsewhere, 

were of common occurrence. The value of f(x) at the ·'point x = I" is 
f( I) = 2; the value of g(x, y) at the "point ( - I, 3)" is g( - I, 3) = 0; the 
value of h(xj, X2, ••• , XI!} at the "point (l, I, ... , I)" is 3. Functions 
such as these are called functions of a point or, more simply, point 
functions because they are evaluated (if they have a value) at a point 
in a space of indicated dimension. 

There is no reason why, if they prove useful, we should not have 
functions that can be evaluated, not necessarily at a point, but for an 
entire set of points. Such functions are naturally caned functions of a 
set or, more simply, set functions. We shall give some examples of set 
functions and evaluate them for certain simple sets. 

Example 18. Let A be a set in one-dimensional space and let Q(A) be equal 
to the number of points in A which correspond to positive integers. Then Q(A) 
is a function of the set A. Thus, if A = {x: 0 < x < 5}, then Q(A) = 4: if 
A = { - 2, - I}, then Q( A) = 0; if A = {x : - 00 < x < 6}, then Q( A) = 5. 

Example 19. Let A be a set in two-dimensional space and let Q(A) be the 
area of A, if A has a finite area; otherwise, let Q(A) be undefined. Thus, if 
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A = {(x,y):.x2 + y2;S; I}, then'Q(A) = n; if A = {(O, 0). (I, I), (0, I)}, then 
Q(A) = 0; if A = {(x, y) : 0 < x,O :S:: y, x + Y ;S; I}, then Q(A) = !. 

Example 20. Let A be a set in three-dimensional space and let Q(A) be 
the volume of A, if A has a finite volume; otherwise, let Q(A) be undefined. 
Thus, if A = {(x, y, z) : 0 < x :s: 2,0 :s: y < 1,0 < z S; 3}, then Q(A) = 6; if 
A = {(x, y, z):.x2 + y + Z2 > 1}, then Q(A) is undefined. 

At this point we introduce the following notations. The symbol 

f fix) dx 
• A 

will mean the ordinary (Riemann) integral of /(x) over a prescribed 
one-dimensional set A; the symbol 

f. f g(x, y) dx dy 

will mean the Riemann integral of g(x, y) over a prescribed 
two-dimensional set A; and so on. To be sure, unless these sets A and 
these functions /(x) and g(x, y) are chosen with care, the integrals 
will frequently fail to exist. Similarly, the symbol 

I f(x) 
A 

will mean the sum extended over all x E A; the symbol 

I Ig(x,y) 
A 

will mean the sum extended over all (x, y) E A; and so on. 

Example 21. Let A be a set in one-dimensional space and let 
Q(A) = L fix), where 

A 

f(x) = (4)X, X = I, 2, 3, ... , 

= 0 elsewhere ... 

If A = {x : 0 ;S; x < 3}, then 

Q(A) = ! + (!)2 + (D3 = ~. 

Example 22. Let Q(A). = L f(x), where 
A 

f(x) = JT(1 - p)1 x, x = 0, 1, 

= 0 "elsewhere. 

If A == {O}, then 
o 

Q(A) = L r(l - p)1 - x = 1 - p; 
x=o 
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if A = {x: I < x < 2}, then Q(A) = f(l) = p. 

Example 23. Let A be a one·dimensional set and let 

Q(A) = 1 rX dx. 

Thus, if A = {x: 0 < x < oo}, then 

.Q(A) = [ e-X dx = I; 

if A = {x : 1 < x < 2}, then 

Q(A) = f rx dx = r' - r'; 

if A I = {x : 0 S;; x < I} and A2 = {x : 1 < x S;; 3}, then 

Q(A, u A,) = f e-x dx 

. f.-x ~ + f e-X dx 

= Q(A 1) + Q(A2); 

if A = AI U A2, where AI = {x: 0 < x <2} and A2 = {x: 1 < x :S 3}, then 

Q(A) = Q(A, u A,) - f rX dx 
> I) 

= r e-x dx + fe-x dx - r e-X dx 

= Q(A.) + Q(A2) - Q(A. (l A2). 

Example 24. Let A be a set in n.dimensional space and let 

Q(A) = r·· I dx, dx,··· dx, . 
.4 

where n! = n(n - 1) ... 3 . 2 . 1. 
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EXERCISES 

1.1. Find the union Al U A2 and the intersecti~n Al n A2 of the two sets A, 
and A 2• where: 
(a) AI = {O, I, 2}, A2 = {2, 3, 4}. 
(b) AI = {x: 0 < x < 2}, A2 = {x: I <x < 3}. 
(c) AI ={(x,y):O<x<2,O<y<2}, 

Az = {(x, y) : ) < x < 3, 1 < y < 3}. 

1.2. Find the complement A* of the set A with respect to the space d if: 
(a) d = {x: 0 < x < I}, A = {x: i < x < I}. 
(b) d = {(x,y, z): xl + 1+ z2 :s: 1}, A = {(x,y, z): x2 + y2 + Z2 = I}. 
(c) d = {(x, y) : Ixl + Iyl < 2}, A = {(x, y) : xl + I < 2}. 

1.3. List all possible arrangements of the four letters m, a, r, and y. Let AI 
be the collection of the arrartgements in which y is in the last position. Let 
A2 be the collection of the arrangements in which m is in the first position. 
Find the union and intersection of A I and A2• 

1.4. By use of Venn diagrams, in which the space ,t:I is the set of points 
enclosed by a rectangle containing the circles, compare the following sets: 
(a) AI n (A2 U A3) and (AI n A2) u (AI n A3)' 
(b) AI U (A2 n A3 ) and (AI U A2) n (AI U A3)' 
(c) (AI U A 2)* and AT n AT. 
(d) (AI n A2)* and AT U AT. 

1.5. If a sequence of sets A .. A2, AJ, . .. is such that Ak c Ale + .. 

k = 1,2,3, ... , the sequence is said to be a nondecreasing sequence. Give 
an example of this kind of sequence of sets. 

1.6. If a sequence of sets A" A2, A:h . .. is such that Ale;:) Ale +" 
k = 1,2,3, ... , the sequence is said to be a non increasing sequence. Give 
an example of this kind of sequence of sets. 

1.7. If A" Ah Ah ... are sets such that Ale c Ale + I, k = 1,2,3, ... ,lim Ale 
is defined as the union A I U A2 U A) U ..•. Find lim Ale if: Ie-+oo 

Ie -+00 

(a) Ale = {x: Ilk < x :s: 3 - Ilk}, k = 1,2,3, .... 
(b) Ale = {(x, y): 11k < xl + I <4 - Ilk}, k = 1,2,3, .... 

1.8. If A" A2, A3, ••• are sets such that Ak ;:) Ak + (, k = l, 2, 3, ... , lim Ale 
is defined as the intersection Al,n Az n A3 n' ... find lim Ale if: Ie-+oo 

Ie-oo 

(a) Ale = {x: 2 - Ilk < x < 2}, k = 1,2:3, ... . 
(b) Ale = {x: 2 < x < 2 + 11k}. k = l. 2, 3, ... . 
(c) Ale = {(x, y): 0 <xl + I < 11k}, k = 1,2,3, .... 
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1.9. For every one-dimensionahet A, let Q(A) = L j(x), wherej(x) = (i)(iY, 
A 

x = 0, 1,2, ... , zero elsewhere. If AI = {x: x = 0, 1,2, 3} and 
A2 = {x: x = 0, 1,2, ... }, find Q(A,) and Q(A2). 

Hint: Recall that S" = a + ar + ... + arn - I = a(1 - r")/(1 - r) and 
lim S" = al( 1 - r) provided that Irl < I. 
".-.cJ) 

1.10. For everyone-dimensional set A for which the integral exists, let 
Q(A) = Lj(x) dx, where j(x) . 6x(1 - x), 0 < x < 1, Zero elsewhere; 
otherwise, let Q(A) be undefined. If AI = {x: * < x < n, A2 = H}, and 
A3 = {x: 0 < x < IO}, find Q(AI), Q(A2), and Q(A3).' 

1.11. Let Q(A) = L I (X2 + y) dx dy for every two-dimensional set A for 
which the integral exists; otherwise, let Q(A) be undefined. If 
AI = {(x,y): -1 < x:s;; 1, -1 :s;;y:s;; I}. A2 = {(x,y): -I < x = y:s;; l}, 
and A3 = {(x. y) : x2 + y < I}, find Q(A 1), Q(A 2), and Q(A3)' . 

Hint: In evaluating Q(A 2), recall the definition of the double integral (or 
consider the volume u.nder the surface z = .xl + y2 above the line segment 
-I < x = y < 1 in the xy-plane). Use polar coordinates in the calculation 
of Q(A3). 

1.12. Let d denote the set of points that are interior to, or on the boundary 
of, a square with opposite vertices at the points (0,0) and (I, 1). Let 
Q(A) = L I dy dx. 
(a) If A c .91 is the set {(x, y) : 0 < x < y < I}, compute Q(A). 
(b) If A c .91 is the set {(x, y) : 0 < x = y < I}, compute Q(A) . 

. (c) If A c .91 is the set {(x, y) : 0 < xl2 :s;; y < 3xl2 < I}, compute Q(A). 

1.13. Let.91 be the set of points interior to or on the boundary of a cube with 
edge of length I. Moreover, say that the cube is in the first octant with one 
vertex at the point (0, 0, 0) and an opposite vertex at the point (1. I, I). Let 
Q(A) = HI dx dy dz. 

if 

(a) If A c .91 is the set {(x. y, z) : 0 < x < y < z < I}, compute Q(A). 
(b) If A is the subset {(x, y, z) : 0 < x = y = z < I}, compute Q(A). 

1.14. Let A denote the set {(x, y, z): .xl + y + Z2 < I}. Evaluate 

Q(A) = HI Jx2 + l + z2 dxdydz. 
A 

Hint: Use spherical coordinates. 

1.15. To join a certain club, a person must be either a statistician or a 
mathematician or both: Of the 25 members in this club, 19 are statisticians 
and 16 aretnathematicians. How many persons in the club are both a 
statistician and a mathematician? 
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1.16. After a hard-fought footbalJ game, it was reported that, of the 11 
starting players, 8 hurt a hip, 6 hurt an ann,S hurt a knee, 3 hurt both a 

.' hip and an ann, 2 hurt both a hip and a .knee, 1 hurt both an arm and a 
knee, and no one hurt all three. Comment on the accuracy of the report. 

1.3. The Probability Set F •• DroOD 

Let ~ denote the set of every possible outcome of a random 
experiment; that is, ~ is the sample space. It is our purpose to define 
a set function P(C) such that if C is a subset of~, then P(C) is the 
probability that the outcome of the random experiment is an element 
of C. Henceforth it will be tacitly assumed that the structure of each 
set C is sufficiently simple to allow the computation. We have already 
seen that advantages accrue if we take P( C) to be that number about 
which the relative frequency liN of the event C tends to stabilize after 
a long series of experiments. This important fact suggests some of the 
properties that we would surely want the set function P( C) to possess. 
For example, no relative frequency is ever negative; accordingly, we . 
would wallt P( C) to be a nonnegative set function. Again, the relative 
frequency of the whole sample space ~ is always 1. Thus we would want 
P(~) = 1. Finally, if C., C2 , C), ... are subsets of~ such that no two 
of these subsets have a point in common, the relative frequency of the 
union of these sets is the sum of the relative frequencies of the sets, and 
we would want the set function P(C) to reflect this additive property. 
We now formally define a probability set function. 

Definition 7. If P(C) is defined for a type of subset of the space <t, 
andjf 

(a) P(C) > 0, 
(b) P(C1 \J C2 U C3 u' .. ) = P(C) + P(C2) + P(C3) + .. " where 

the sets C;, i = I, 2, 3 •... , are such that no two have a point 
in common (that is, where C; n Cj = 0. i #: J), 

(c) P(~) = I, 

then P is called the probability set function of the outcome of the 
random experiment. For each subset C ofCl, the number P(C) is called 
the probability that the outcome of the random experiment is an 
element of the set C, or the probability of the event C, or the probability 
measure of the set C. 
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A probability set function tells us how the probability is dis­
tributed over various subsets C of a sample space ~. In this sense we 
speak of a distribution of probability. 

Remark. In the definition, the phrase "a type of subset of the space 'I" 
refers to the fact that P is a probability measure on a sigma field of subsets 
of 'I and would be explained more fully in a more advanced course. 
Nevertheless, a few observations can be made about the collection of subsets 
that are of the type. From condition (c) of the definition, we see that the space 
'I must be in the collection. Condition (b) implies that ifthe sets eJ, e2 , el , ..• 

are in the collection, their union is also one of that type. Finally, we observe 
from the following theorems and their proofs that if the set e is in the 
collection, its complement must be one of those subsets. In particular, the null 
set, which is the complement of 'I, must be in the collection. 

The following theorems give us some other properties of a 
probability set function. In the statement of each of these theorems, 
P(C) is taken, tacitly, to be a probability set function defined for a 
certain type of subset of the sample space ~. 

Theorem 1. For each Cere, P(C) = 1 - P(C*). 

Proof. We have re = C u C* and C n C* = 0. Thus, from (c) and 
(b) of Definition 7, it follows that 

1 = P(C) + P(C*), 

which is the desired result. 

Theorem 2. The probability of the null set is zero; that is, P(0) = O. 

Proof. In Theorem 1, take C = 0 so that C* = re. Accordingly, we 
have 

P(0) = 1 - P(~) = 1 - 1 = 0, 

and the theorem is proved. 

Theorem 3. If C1 and C2 are subsets of~ such that C, c C2, then 
P(C1) :s: P(C2). ' 

Proof. Now C2 = C1 U (C1 n C2) and C1 n (CT n C2) = 0. Hence, 
from (b) of Definition 7, 

P(C2) = P(C1) + P(CT n C2). 

Uploaded By: anonymousSTUDENTS-HUB.com



14 ProWility IInti DhtrilJlltions leh. 1 

However~ifrom (a) of Definition: 7, P(CT () C2) > 0; accordingly, 
P(C2) > p(el)' 

Theorem 4. For each C c ~, 0 S; P(C) < I. 

,Proof Since 0 c C c ~,we have by Theorem 3 that 

l(0) < P( C) < P(~) 

the desired result. 

or ' 0 < P( C) :s;; 1, 

Theorem S. If CI and C2 are subsets of~, then 

Proof Each of the sets C1 U C2 and C2 can be represented, 
respectively, as a union of nonintersecting sets as follows: 

, ~ 

and' 

Thus, from (b) of Definition 7, 

P(C, U C2) = P(CI ) + P(CT () C2) 

and 

P(C2 ) = P(CI () C2 ) + P(Cf () C2 ). 

If the second of these equations is solved for P(CT () C2 ) and this result 
substituted in the first equation, we obtain 

P«(:I u C2 ) = P(CI) + p(e2) - P(CI n C2). 

This completes, the proof. 

Example 1. Let (j denote the sample space of Example 2 of Section 1.1. 
Let the probability set function assign a probability of 3~ to each of the 36 
points in~. If CI = {(l, 1), (2, 1), (3, I), (4, 1). (~. J)} and C2 = {O, 2), (2, 2). 
(3, 2)}, then P(CI) = ;6' P(Cl ) =~. P(CI U C2 ) = 3~' and P(C, n C2 ) ~ O. 

Example 2. Two coins are to be tossed and the outcome is the ordered 
pair (face on the firSt coin, face on the second coin). Thus the sample 
space may be represented as rfj = {(H, H), (H, T), (T, H), (T, T)}, Let the 
probability set function ~ssign a probability of ~ to each el~ment of~. Let 
CI = {(H, H), (H. T)} and C2 = {(H. H), (T. H)}. Then P(CI) = P(C2 ) =!, 
P( C r n C2) =~. and. in accordance with Theorem 5, P( C. u C2) = 
1+1 1-1 2 2 4 .... 4' 
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Let fI denote a sample space and let C1, Ch C), ... denote subsets 
of ft. If these subsets are such that no two have an element in 
common, they are called mutually disjoint sets and the corresponding 
events C, ~ C2, C], ... are said to be mutually exclusive events. Then, 
for example, P(C. u C2 u C3 u' .. ) = P(C 1 ) + P(C2 ) + P(CJ) + ... , 
in accordance. with (b) of Definition 7. Moreover, if Cf/ = 
C1 U C2 U C) u' . " the mutually exclusive events are further 
characterized as being exhaustive and the probability of their union is 
obviously equal to 1. 

Let Cf/ be partitioned into k mutually disjoint subsets C" C2, ••• , Ck 

in such a way that the union of these k mutually disjoint subsets is 
the sample space fl. Thus the events C" C2 , ••• ,Ck are mutually 
exclusive and exhaustive. Suppose that the random experiment is 
of such a character that it is reasonable to assume that each of 
the mutually exclusive and exhaustive events Cj , i = I, 2, ... , k, 
has the same probability. It is necessary, then, that P(Cj ) = 11k, 
i = 1,2, ... ,k; and we often say that the events C" C2, • •• , Ck are 
equally likely. Let the event E be the union of r of these mutually 
exclusive events, say 

E = C, U C2 U ... u C" r< k. 

Then 

Frequently, the integer k is called the total number of ways (for this 
particular partition of fI) in which the random experiment can 
terminate and the integer r is called the number of ways that are 
favorable to the event E. So., in this terminology, P(E) is equal to the 
number of ways favorable to the event E divided by the total number 
of ways in which the experiment can terminate. I t should be 
emphasized that in order to assign, in this manner, the probability rlk 
to the event E, we must assume that each of the mutually exclusive and 
exhaustive events C" C2 • ••• , C" has the same probability 11k. This 
assumption of equally likely events then becomes a part of our 
probability model. Obviously, if this assumption is not realistic in an 
application, the probability of the event E cannot be computed in this 
way. 

We next present ail example that is illustrative of this model. 

Example 3. Let a card be drawn at random from an ordinary deck of 
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52 playing cards. The sample space ct is the union of k = 52 outcomes, and it is 
reasonable to assume that each of these outcomes has the same probability 
~2' Accordingly, if E, is the,set of outcomes that are spades, P(Ed == ~~ = ~ 
because there are " = 13 spades in the deck; that is, ~ is the probability of 
drawing a card that is a spade. If E2 is the set of outcomes that are kings, 
P(E2) = fz == "3 because there are '2 = 4 kings in the deck; that is, "3 is the 
probability of drawing a card that is a king. These computations are very easy 
because there are no difficulties in the determination of the appropriate values 
of' and k. However, instead of drawing OIily one card, suppose that five cards 
are taken, at random and without replacement, from this deck. We can think 
of each five-card hand as being an outcome in a sample space. It is reasonable 
to assume that each· of these outcomes has the same probability. Now 
if E, is the set of outcomes in which each card of the hand is a spade, 
P(E,) is equal to the number " of all spade hands divided by the total number, 
say k, of five-card hands. It is shown in many books on algebra that 

(13) 13! 
'1 = 5 = 5181 and (

52) 52! 
k = 5 = 51 47! . 

In general, if n is a positive integer and if x is a nonnegative integer with x :s; n, 
then the binomial coefficient 

(n) n! , 
x = x! (n - x)! 

is equal to the number of combinations of n things taken x at a time. If x = 0, 

01 = I, so that (~) = I. Thus, in the special case involving E" . 

c:) (13)(12)(11)(10)(9) . 
P(E,) = (5;) = (52)(51)(50)(49)(48) = 0.0005, 

approximately. Next, let E2 be the set of outcomes in which at least one card 
is a spade. Then E! is the set of outcomes in which no card is a spade. There 

are r! = e:) such outcomes. Hence 

and 
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Now suppose that E3 is the set of outcomes in which exactly three cards are 
kings and exactly two cards are queens. We can select the three kings in 

anyone of (~) ways and the two queens in any one Of(~) ways. By a well-

known counting principle, the number of outcomes in E, is " = (~)(~). 
Thus p(E,) = (~)( i) I e52

) . Finally, let E. be the set of outcomes in which 

there are exactly two kings, two queens, and one jack. Then 

. (i)(i)(~) 
P(E .. )=----

en 
because the numerator of this fraction is the number of outcomes in E ... 

Example 3 and the .previous discussion allow us to see one way in 
which we can define a probability set function, that is, a set function 
that satisfies the requirements of Definition 1. Suppose that our space 
CC consists of k distinct points, which, for this discussion, we take to 
be in a one-dimensional space. If the random experiment that ends in 
one of those k points is such that it is reasonable to assume that these 
points are equally likely, we could assign 11k to each point and let, for 
C c CC, 

P(C) = number of points in C 
k 

1 = L j{x), where j{x) = k' X E CC. 
xeC 

F or illustration, in the cast of a die, we could take 
CC = {I, 2, 3,4,5, 6} and j{x) = t, x E CC, if we believe the die to be 
unbiased. Clearly, such a set function satisfies Definition 7. 

The word unbiased in this illustration suggests the possibility that 
all six points might not, in all such cases, be equally likely. As a matter 
of fact, loaded dice do exist. In the case of a loaded die, some numbers 
occur more frequently than others in a sequence of casts of that die. 
For'example, suppose that a die has been loaded so that the relative 
frequencies of the numbers in CC seem to stabilize proportional to the 
number of spots that are on the up side. Thus we might assign 
j{x) = x121, x E'CC, and the corresponding 

P(C) = L j{x) 
xeC 
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would satisfy Definition 7. For illustration, this means that if C = 
{ 1, 2, 3}, then 

3 1 2 3 6 2 
P(C)= L /{x)=-+-+-=-=-. 

X= I . 21 21 21 21 7 

Whether this probability set function is realistic can only be checked 
by performing the random experiment a large number of times. 

EXERCISES 

1.17. A positive integer from one to six is to be chosen by casting a die. Thus 
the elements C of the sample space <{/ are 1";-2,3.4,5.6. Let C1 = {I, 2.3, 4}, 
C2 = p.4, 5, 6}. If the probability set function P assigns a probability of 
~ to each of the elements of C(J, compute P(C1). P(C2) , P(C1 (') C2),·and 
P(C1 uC2)· 

1.18~ -A random experiment consists of drawing a card from an ordinary deck 
of 52 playing cards. Let the probability set function P assign a probability 
of 5'2 to each of the 52 possible outcemes. Let C1 denote the collectil1n of 
the 13 hearts and let C2 denote the collection of the 4 kings. Compute P( C1), 

P(C2), P(C1 (') C2). and P(C1 u C2 ). 

1.19. A coin is to be tossed as many times as necessary to turn up one head. 
Thus the elements c of the sample space <(/ are H, TH. TTH, TTTH, and 
so forth. Let the probabiJity set function· P assign to these elements the 
respective probabilities ~, ~, k, ~, and so forth. Show that P(<{/) = ). Let 
C, = {c: c is H, TH, TTH, TTTH, or TTTTH}. Compute P(C1). Let 
C2 = {c: c is TTTTH or TTTTTH}. Compute P(C2), P(C, (') C2 ), and 
P(C, u C2). 

1.20. If the sample space is <(/ = C, U C2 and if P( C1) = 0.8 anq P( C2) = 0.5, 
find P( C1 (') C2). 

1.21. Let the sample space be <{/ = {c : 0 < c < oo}. Let C c: <{/ be defined by 
C = {c ; 4 < C < oo} and take P( C) = Ie e- X dx. Evaluate P( C), P( C*). and 
P(Cu C*). 

1.22. If the sample space is <{/ = {c: - 00 < l' < oo} and if C c: <{/ is a set for 
which the integral Ie e- 1xl dx exists, show that this set function is not a 
probability set function. What constant do we multiply the integral by to 
make it a probability set function? 

1.23. If C1 and C2 are subsets of the sample space <(/, show that 

P(C1 (') C2) < P(C1) < P(C1 u Cl ) < P(CI) + P(C2). 
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1.24 .. Let C., C2• and C3 be three mutually disjoint subsets of the sample space 
CC. Find PE(CI U G2) 11 C3l and P(CT u cn. 

1.25. If C" C2• and C3 are subsets of fif, show that 

P(C. u C2 u Cl ) = P(C.) + P(C2) + P(Cl) ~ P(C11l C2) 

- P( C. 0 C3 ) -: P( C2 11 Cl) + P( CI 11 C2 11 C3 ). 

What is the generalization dfihis result to four or more subsets of rt? 
Hint: Write P(C, u C2 u C3 ) = PECI u (C2 U C3)] and use Theorem 5. 

Remark. In order to solve a number of exercises. like 1.26-'1.31. certain 
reasonable assumptions must be made. 

1.26. A bowl contajns 16 chips, Qfwhich,6are red. 7 are white, and 3 are blue. 
If four chips are taken at r~ndpm and without replacement. find the 
probability that: (a) each of the 4 chips is red; (b) none of the 4 chips is red; 
(c) there is at least 1 chip of each color. 

1.27. A person has purchased 10 of 1000 ti~kets sold in a certain raffle. To 
determine the five prize winners, 5 tickets are to be drawn at random and 
without replacement. Compute the probability that this person will win at 
least one prize. 

Hint: First compute the probability that the person does not win a prize. 

1.28. Compute the probability of being, dealt at random and without 
replacement a 13-card bridge hand consisting of: (a) 6 spades, 4 hearts. 2 
diamonds, and I club; (b) 13 carets of the same suit. 

1.29. Three distinct integers are chosen at random from the first 20,positive 
integers. Compute the probability that: (a) their sum is even; (b) their 
product is even. 

1.30. There are 5 red chips and 3 blue chips in a bowl. The red chips are 
numbered I, 2, 3, 4, 5, respectively, and the blue chips are numbered 1. 2, 
3, respectively. If 2 chips are to be drawn at random and without 
replacement. find the probability that these chips have either the same 
number or the same color. 

1.31. In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector examines 
5 bulbs, which are selected at random and without replacement. 
(a) Find the probabi,lity of at least 1 defective bulb among the 5. 
(b) How many bulbS'should he examine so that the probability of finding 

at least 1 bad bulb exceeds i ? 

1.4 Condi~onal Probability and Independence 

In some random experiments, we are interested only in those 
outcomes that are elements of a subset C. of the sample space rI. This 
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means, for our purposes, that the sample space is effectively the subset 
C •. We are now confronted with the problem of defining a probability 
set function with C. as the "new" sample space. 

Let the probability set function P( C) be defined on the sample space 
<c and let C. be a subset of<C such that P(C.) > O. We agree to consider 
only those outcomes of the random experiment that are elements of C.; 
in essence, then, we take C. to be a sample space. Let C2 be another 
subset of <C. How, relative to the new sample space C I, do we want to 
define the probability of the event C2? Once defined, this probability 
is called the conditional probability of the event C2, relative to the 
hypothesis of the event C1 ; or, more briefly, the conditional probability 
of C2, given C •. Such a conditional probability is denoted by the symbol 
P(C2ICt ). We now return to the question that was raised about the 
definition of this symbol. Since <71 is now the sample space, the only 
elements of C2 that concern us are those, if any, that are also elements 
ofC" that is, theelementsofC. n C2• It seems desirable, then, to define 
the symbol P(C2IC.) in such a way that 

and 

Moreover, from a relative frequency point of view, it would seem 
logically inconsistent if we did not require that the ratio of the 
probabilities of the events C1 n C2 and C1, relative to the space C., be 
the same as the ratio of the probabilities of these events relative to the 
space <c; that is, we should have 

P(C. (') C2ICI) P(C1 n C2) 
-

p(CtlC1) P(C,) 

These three desirable conditions imply that the relation 

is a,suitable definition of the conditional probability of the event C2, 

given the event C., provided that P(C1) > O. Moreover, we have 

I. P(C2ICI) ~ O. 
2. p(C2 V C) v' . 'ICI ) = P(C2IC1) + P(C)IC1) + ... , provided that 

C2, C), ... are mutually disjoint sets. 
3. P(CdC,) = 1. 
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Properties (I) and (3) are evident; proof of property (2) is left as an 
exercise (1.32). But these are precisely the conditions that a probability 
set function must satisfy. Accordingly, P(C2IC1) is"a probability set 
function, defined for subsets of' C1• It may be called the conditional 
probability set function, relative to the hypothesis C1; or the 
conditional probability set function, given C1• It should be noted that 
this conditional probability set function, given C1 , is defined at this time 
only when P(C1) > O. 

ExtullJlle 1. A hand of 5 cards is to be, dealt at random without 
replacement from an ordinary deck of 52 playing cards. The conditional 
probability of an all-spade hand (eti, relative to the hypothesis that there,~ 
at least 4 spades in the hand (el ), is, since el () e2 = e2, 

-------

From the definition of the conditional probability set function, we 
observe that 

P(C, (l C2) = P(C1)P(C2IC1). 

This relation is frequently called the multiplication rule fo,r proba-
, " ',I 

bilities. Sometimes, after considering the nature of the 'random 
experiment, it IS possible to make reasonable assumptions so that both 
P(C1) and p(C2IC,rcan be assigned. Then p(CI (l C2)can be computed 
under these assumptions~ ~hiS:win be illustrated in Examples'2 and 3. 

EXIllllJlIe 2. A bowl contains eight chips. Three of'the chips are red and 
the remaining five are blue. Two chips are to be drawn successively, at random 
and without replacement. We want to compute the probability that 'the first 
draw results in a red chip (el ) and that the second draw results in a blue chip 
(e2). It is reasonable to assign the following probabilities: 

p(e,) = i and p(e2IC1) = ~. 
Thus, under these assignments, we have P(C11l C2) = (i)(~) = ~. 

ExtJ1ftpie 3. From an ordinary deck 'of playing cards, cards are to be 
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drawn successively, at random'and without replacement. The probability that 
the third spade appears on the sixth draw is computed as follows. Let C1 be 
the event of two spades in the first five draws and let C2 be the event ofa spade 
on the ~th draw. Thus the probability that we wish to compute is P( C, () C2). 

It is reasonable to take 

and 

Tlredesired probabilityP(C, " C2) is then the product of these two numbers. 

The multiplication rule can be extended to three or more events. In 
the case of three events, we have, by using the multiplication rule for 
two events, 

P( C 1 n C2 n ( 3) = P( C 1 n ( 2 ) n C3] 

= P(C1 n ( 2)P(C3IC1 n ( 2). 

But P(C, n ( 2) = P(C1)P(C2IC1). Hence 

P(CJ n C2 n ( 3) = P(C1)P(C2IC,)P(C3IC1 n ( 2). 

This procedure can be used to extend the multiplication rule to four 
or more events. The general formula for k events can be proved by 
mathematical induction.' 

ExtllllJ'le 4. Four cards are to be dealt successively, at random and with­
out replacement, from an ordinary deck of playing cards. The probability 
of receiving a spade, a heart, a diamond, and a club, in that order, is 
(a)(*)(~>'(!:). This follows from the, extension of the multiplication rule. In 
this cdmputation, the assumptions 'that are involved seem clear. 

Let the space ~ be partitioned into k mutually, exclusive and 
exh~ustiveevelltsCh C2,oi'" C:k suchthatP(C;) > 0,; = 1,2,. , "k. 
Here the event,S C" C2, ••• , Ck do not need to be, ~qually likely, Let C 
be another event s~ch that P( C') > 0, Thus C occurs with one and only 
one of tl1e events C J ~ C2; ••• ,Ck ; that is, 

C='Cn(C1 uC2 U': ',uCk ) 

= (C n ( 1) u (C n ( 2 ) u' .. u (C n Ck ). 

Since C n Ci , i = 1,2, .. '. , k, are mutually exclusive, we have 

P(C') = P(C n C,) + p(C n ( 2) + ' , . + p(C n Ck). 
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However, P(C n C/) = P(Ci)P(CIC;), i = 1,2, ... ,k; so 

P(C) = P(C,)P(CIC1) + P(C2)P(CIC2) + ... + P(Ck)P(CICk) 

k 

= L P(C{)P(CIC[). 
; = I 

This reSult is sometimes'called the law of total probability. 
From 'the definition of conditional probability, we have, using the 

law of total probability, that 

P(CAc) = P(C n Cj ) = kP(Cj)P(CICi ) , 

P(C) L P(C;)P(CIC;) 
;- I 

which is the well-known Bayes' theorem~ This permits us to calculate 
the conditional probability of Cj , given C, from the probabilities of 
C" C2, ••• ,Ck and the conditional probabilities of C, given C;, 
i = 1,2, ... , k. 

Exlllllple 5. Say it is known that bowl C1 contains 3 red and 7 blue chips 
and bowl C2 contains 8 red and 2 blue chips. All chips are identical in size and 
shape. A die is cast and bowl C1 is selected if five or six spots show on the side 
that is up; otherwise. bowl C2 is selected. In a notation that is fairly obvious. 
it seems reasonable to assign P(C1) = ~and P(C2) = g. The selected bowl is 
handed to another person and one chip is taken at random. Say that this chip 
is red, an event which we denote by C. By considering the contents of the 
bowls, it is reasonable to assign the conditional probabilities P( CI C1) = I~ and 
P( qc2) = I~' Thus the conditional probability of bowl C1, given that a red 
chip is drawn, is 

p, C Ic) _ P(C1)P(CIC,) 
(I - P(C1)P(CIC1) + P(C2)P(qC2) 

(~)(~) 3 
- =-

(~)( 130) + (~)(-to) 19 

In a similar manner, we have P(C21c) = :~. 

In Example 5, .the probabilities P( C,) = i and P( C2) = i are called 
prior probabilities of C, and C2f respectively, because they are known 
to be due to tlie random mechanism used to select the bowls. After the ' 
chip is taken and observed to be red, the conditional probabilities 
P(Cdc) = ~9 and P(C21c) = :: are called posterior probabilities. Since 
C2 has a larger proportion of red chips than does C,' it appeals to one's 
intuition that P(C21c) should be larger than P(C2) and. of course, 
P(C11c) should be smaller than P(C,). That is, intuitively the 
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chances of having bowl C2 are better once that a red chip is observed 
than before a chip is taken. Bayes' theorem provides a method of 
determining exactly what those probabilities are. < 

Exllmple 6. Three plants, C" C2, and C), produce respectively, 10,50, and 
40 percent of a company's output. Although plant C, is a small plant, its 
manager believes in high quality and only 1 ~rcent of its products are 
defective. The other two, C2 and C), are worse and produce itelDs that are 3 
and 4 percent defective, respectively. All products are sent to a central 
warehouse. One item is selected at random and observed to be defective, Say 
event C. The conditional probability that it comes from plant C, is found as 
follows. It is natural to assign ,the respective prior probabilities of getting an 
item from the plants as P(C,) '= 0.1, P(C2) = 0.5, and P(C) = 0.4, while the 
conditional probabilities of defective are P(C1C,) = 0.01, P(C1C2) = 0.03, and 
P( C1C) = 0.04. Thus the posterior probability of C1, given a defective, is 

P(C _ P(C, ('\ C) _ (0.10)(0.01) 
dc) - P(C) - (0.10)(0.01) + (0.50)(0.03) + (0.40)(0.04) , 

which equals 3~; this is much smaller than the prior probability P( C1) = I~' 
This is as it ~hould be because the fact that the item is defective decreases 
the chances that it comes from the high-quality plant Ct. 

, . 

Sometimes it'happens tliat the occurrence of event ql does not 
change the probability of event C2; that is, when P(C1) > 0, 

P(C2IC1) = P(C2). 

In this case, we say that the events C1 and C2 are independent. Moreover, 
the multiplication rule becomes 

P(C, n C2) = P(C,)P(C2IC,) = P(C,)P(C2). 

This, in turn, implies, when P( C2) > 0, that 

p(c IC ) = P(C, n e2), = P(C.)P(C2) = ( ). 
'2 P(C

2
) P(C

2
) P C. 

Remark. Events that are independent are sometimes called statistically 
independent, stochastically independent, or independent in a probability sense. 
In most instances, we uSe independerit without a modifier if there is no 
possibility of misunderstanding . 

. ' ' 

It is interesting to note that C, and C2 are independent if P( C.) = 0 
or P( C2) = 0 because then P( C. n C2) = 0 since (C, n C2) c C1 and 
(C1 n C2) c: C2• Thus the left- and right-hand members of 

P(C1 n C2) = P(C.)P(C2) 
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are both equal to zero and are, of course, equal to each other. Also, 
if C1 and C2 are independent events, so are the three pairs: C. and q, 
CT and e2, and eT and C1 (see Exercise 1041). 

ExtllllJlk 7. A red die and a white die are cast in such a way that the 
number of spots on the two sides that are up are independent events~ If C. 
represents a four on the red die and C2 represents a ·three on the white die, 
with an equally likely assumption for each side, we assign p( C.) = i and 
p(e2) = l. Thus. from independence, the probability of the ordered pair 
(red = 4, white = 3) is 

P[(4, 3)] = (~)(l) = ~. 

The probability that the sum of the up spots of the two dice equals seven is 

P[(1, 6), (2, 5). (3,4), (4. 3), (5, 2), (6, 1)] 

;:;:: (l)(~) -+- (~)(1) + (~)(i) + (i)(!) + (~)(1) + (~)<l) = J\. 
~ . 

In a similar I~anner, it is easy to show that the probabilities of the sums of 
2, 3, 4, 5, 6, 7, 8, 9, 10, II, 12 are, respectively, 

123456543,2. 
36'~'~'~'~'36'~'~'36'~'~' 

Suppose now that we have three events, C I , e2, and e). We say 
that they are mutually independent if and only if they are pairwise 
independent: ; 

and 

P(C1f) e 3) = p(CI )p(e3), 

p( e2 ,.... e 3) = p( e2)p( e 3) 

More generally, the n events C1, e 2 , ••• , en are mutually independent 
if and only if for every collection of k of these events, 2 :s:; k < n, .the 
following is true: , 

Say that d., d2, ••• , die are k distinct integers from I, 2, ... , n; then 

p(edJ ,....CtJ,."'" ... r'I C(ik) = p(edl )p(Ct17 ) ••• P(C'ilJ 

In particular, if eh e 2, ••• , en are mutually independent, then 
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Also, as with two sets, many combinations of these events and their 
complements are independent, such as 

CT and (C2 u CT u C4 ) are independent; 

are mutually independent. 

If there is no possibility of misunderstanding, independent is often used 
without the modifier mutually when considering more than two events. 

We often perform a sequence of ra~dom experiments in such away 
that the events associated with one of them are independent of the 
events associated with the others. For convenience, we refer to these 
events as independent experiments, meaning that the respective events 
are indeptndent. Thus we often refer to independent flips of a coin -or 
independent casts of a die or-more generally-independent trials of 
some given random experiment. 

pxampie 8~ A coin is flipped independently several times. Let the event Cj 

represent a head (H) on the ith toss; thus C~ represents a tail (T). Assume that 
Cj and C~ are equally likely; that is, P(C;) = P(C,) = ~. Thus the probability 
of an ordered sequence like HHTH is, from independence. ' 

P(C, n C2 n ct n C4 ) = P(C,)P(C2)P(Ct)P(C4 ) = (i)4 = ft,. 
Similarly, the probability of observing the first head on the third flip is 

P(ct n C1 n C3) = P(CT)P(C!)P(C3),,-= G)l = ~. 
Also, the probability of getting at least one head on four flips is 

P(CI v C2 v Clv C4 ):= 1 - P[(C, V C2 VCl V C4 )*] 

= 1 - p( CT n 01 n ct n c:) 
= 1 - (1)4 = 11 2 16' 

See Exercise 1.43 to justify this last probability. 

EXERCISES 

1.32. If P(CI ) > 0 and if C2• C3• c 4 • ••• are mutually disjoint sets, show that 
P(C2 v Cl V· . 'IQ) = P(C2IC1) + P(ClIC.) + ... , 

1.33. Prove that 

P(C, n C2 n C3 n C4 ) - P(C1)P(C2IC.)P(Cl ICI n C2)P(C4IC, n C2 n Cl ), 

1.34. A bowl contains 8 chips. Three of the chips are red and 5 are blue. Four 
chips are to be drawn successively at random and without replacement. 
(a) Compute the probability that the colors alternate. 
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(b) Compute the probability that the first blue chip appears on the third 
draw. 

1.35. A hand of 13 cards is to be dealt at ral)dom and without replacement 
from an ordinary ,dec~ of playing cards. Find the conditional probability 
that there are at least three kings in the hand relative to the hypothesis that 
the hand contains at least two kings. 

1.36. A drawer contains eight pairs of socks. If six socks are taken at rand~m 
and'without replacement. compute the probability that there is at least one 
matching pair among these six socks. 

Hint: Compute the probabilrty that there is not a matching pair. 

1.37. A bowl contains to chips. Four of the chips are red,S are white" and 
I is blue. If 3 chips are taken at random and without replacement, compute 
the conditional probability that there is:l chip of each color rehltive to the 
hypothesis that tnere is exactly 1 red chip among the 3. 

1.38. Bowl I contains 3 red chips and 7.bluechips. Bowl II contains 6 red chips 
and 4 blue chips. A bowl is selected at random and then I chip is drawn 
from this bow1. 
(a) Compute the probability that this chip is red. 
(b) Relative to the hypothesis that the chip is red, find the conditional 

probability that it is drawn from bowl II. 

t.39. Bowl I contains 6 red chips and 4 blue chips. Five of these 10 chips are 
selected at random and without replacement and put in bowl Il. which was 
originally empty. One chip is then drawn at random from bowl II. Relative 
to the hypothesis that this chip is blue. fi'nd the conditional probability that 
2 red chips and 3 blue chips are transferred from bowl I to bowl II. 

1.40. A professor of statistics has two boxes of ~mputer disks:, box C1 

contains seven Verbatim disks and three Control Data disks and box C2 

contains two Verbatim disks and eight Control Data disks. She selects a box 
at random with probabilities pte,) = j and P(C2) = ~ bec~use of their 
respective locations. A disk is then seleetedat random and the event C 
occurs if it is fr:om Control Data. 'Using an equa.lly likely assumption for 
each disk in the select~d box, compute P(Cdc) and P(C21c). 

, . ' 

t.41. If C, and C2 are independent events, show that the following pairs of 
events are also independent: (a) C, and C!. (b) CT and C2 • and (c) CT and 

C1· , 
Hint: In (a), write P(C1 (i (1) = P{C,)P(C!IC,) = P(C,)[1 - P(C2IC1)]· 

From independence of C1 and C2, P(C2ICI) = P(C2). 

1.42. Let C1 and C2 be independent events withP(C,) = 0.6 andP(C2) = 0.3. 
Compute (a) P(C, (i Cl ); (b) P(C, u C2)~ (c) p(CI u en. 
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1.43. Generalize Exercise J.4 to obtain 

(C1 u C2u" . u C,J* = CT fI C1 fl" . fI G. 

Say that C1, C2, ••• ,Cit ah~' independent events that have respective 
probabilities Ph P2, ... , Pit. Argue that the probability of at least one of 

'. C1 ,C2, ••• , Cit is eqmll to 

I - (l - PI)(1 - P2)" . (1 - Pk)' 

t.44. Each of four persons fires one shot at a target. Let Cit denote the event 
that the target is hit by person k, k = 1, 2, 3, 4. If C., C2, C}, C4 are 
independent and if P(C1) = P(C2 ) = 0.7, P(C3 ) = 0.9, and P(C4) = 0.4, 
compute the probability that (a) all of them hit the target; (b) exactly one 
hits the target; (c) no one hits the target; (d) at least one hits the target. 

. . . 
1~4S. A bowl contains three red (R) balls and seven,white (W) balls of exactly 

the same size and shape. Select balls successively at random and with 
replacement so that the events of white on the first trial. white on the second, 
and so on, can be assumed to be independent. In four trials, make certain 
assumptions and compute i the 'probabilities of the following ordered 
sequences: (a) WWRW; (b) RWWW; (c) WWWR; and (d) WRWW. 
(e)Compute the probability of·exactly.one red ball in the four trials. 

1.46. A coin is tossed two independent times; each resulting in a tail (T) or 
a head (H). The sample space consists of four ordered pairs: TT. TH, HT, 
H H. Making certain assumptions, compute the probability of each of these' 
ordered pairs. What is the probability of at least one head? 

1.5 Random Variables of the Discrete Type 

The reader 'will perceive that a sample space ct may be tedious to 
describe if the elements of'«j are not numbers. We shall now discuss 
how'\Ye may formulate a role, or a set of rules, by which the elements 
c of ct may be represented oynumbers. We begin the discussion with 
a very simple example. Let the nlndotn' experimenfbe:the toss of a coin 
and let the sample space assodateq. with the' experiment be 
rc = {c : where c is Tor c is H} .and T and H represent. respectively, 
tails and heads. Let X be a function such that X(c) = 0 if cis T and 
let X(t) = I if cis H. Thus X is a real-valued function defined on: the 
sample space ~ which takes us from the sample space <'G to a space of 
real numbers d = {O, I}. We call X a random variable and, in this 
example. the space associated with Xis d = {O, I}. We now formulate 
the definition of a random variable and its space. 

Definition 8. Consider a random experiment with a sample 
space ~. A function X, which assigns to each element c E ct one and 
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only one real number X(c) = x, is called a random variable. The space 
of X is the set of ~eal numbers d = {x: x = X(c), c E ee}. 

" '. 

It may be that the set ee has elements which are themselves 
real numbers. In such an instance we could write X(c) = c so that 
d = ee. 

Let X be a random variable that is defined on a sample space ee, 
and let .r;I b~ the space of X. Further, let A be a subset of d. Just as 
we used the terminology "the event C," with C c: fI, we shall now 
speak of "the event A." The probability P( C) of the eventC has been 
defined. We wish now to define the probability of the event A. This 
probability will be denoted by Pr (X E A), where Pr is an abbreviation 
for "the probability that.'· With A a subset of d, let C be that subset 
offl such that C = {c : c Efland X(c) E A}. Thus C has as its elements 
all outcomes in ~ for which the random variable X has a value that 
is in A. This prompts us to define, as we now do, Pr (X E A) to be equal 
to P(C), where C = {c: c E ~ and X(c) E A}. Thus Pr (Xe A) is an 
assignment of probability to ,a set A, which is a subset -of the space d 
associated with the random variable .X. This assignment is determined 
by the probability set function,P and the random variable X and is 
sometimes denoted by Px(A). That is, 

Pr (X E A) = Px(A) = P(C), 

where C = {c: c E ~ .. and X(c) E A}. Thus a random variable X is a 
function that carries the probability from a sample space ~ to a space 
d of real numbers. In this sense, with A cd, the probability P x(A) 
is often called .. an induced probability. 

Remark. in a more advanced course, it would be noted that the random 
variable X is a Borel measurable function. This is needed to assurt( tha[we 
can find the induced probabilities on the sigma field of the subSetfof d. We 
need this requirement throughout this book for every functioJi that is ea 
random variable. but no further mention of it is made. 

The function Px(A) satisfies the conditions (a), (b), and:. (c) oCthe 
definition of a probability set function (Section 1.3). That is, P x(A) is 
also a probability set function. Conditions (a) and (c) are easily verified 
by observing, for an appropriate C, that 

Px(A) = P(C) > 0, 

and that ee = {c : c E rt and X( c) E d} requires 

Px(d) = P(~) = 1. 
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In discussing the condition (b), let us restrict 'our attention to the two 
mutually exclusive events AI and A2 • Here Px(AI U A2 ) = P(C);where 
(: = {~: c E rt and X(c) E AI U A2 }. However, 

C = {c : c E ~ and.K( c) E A I} V {c : c E ~ and X( c) E A 2}, 

or, for brevity, C = C1 U C2• But C1 and C2 are disjoint sets. This must 
be sO,forifsome c were common, say c;, then X(c;) E AI and X(Cj) E A2• 

That is, the same number X(c;) belongs to both AI and A 2• This is a 
contradiction because AI and A2 are disjoint sets. Accordingly, 

However, by definition, P(C1) is Px(A) and P(C2) is PX(A2) and thus 

Px(A, U A2) = Px(A1) + PX(A 2). 

This'is"condition (b) for two disjoint sets. 
Thus each of P x(A) and P( C) is a probability set function. But the 

reader should fully recognize that the probability set function P is 
defined for subsets C of~, whereas Px is defined for subsets A of .91, 
and, in general, they are not the same' set function. Nevertheless, they 
are closely related and some authors even drop the index X and write 
P(A) for P x(A). They think it is quite clear that P(A) means the 
probability of A, a subset of .91, and P( C) means the probability of C, 
a subset of~. From this point on, we sh~ll adopt this convention and 
simply write P(A). 

Perhaps an additional example will be helpful. Let a coin be 
tossed two independent times and let our interest be in the number 
of heads to be observed. Thus the sample space is rt = {c : where c is 
IT or TH or HT or HH}. Let X(c) = 0 if cis TT; let X(c) = 1 if c 
is either TH or HT;and let X(c) = 2 if c is HH. Thus the space of 
the random variable X is .91 = {O, I, 2}. Consider the subset A of the 
space .91, where A = {I}. How is the probability of the event A 
defined? We take the subset C of ~ to have as its elements all 
oUtcomes in ~'for which the random variable X has a value that is an 
element of A. Because X(c) =1 if c is either TH or HT, then 
C = {c : where c is TH or HT}. Thus P(A) = Pr (X E A) = p( C). Since 
A = {I}, then P(A) = Pr (X E A) can be written more simply as 
Pr (X = I). Let C1 = {c : cis TT}, C2 = {c: cis TH}, C) = {c : cisHT}, 
and C4 = {c : c is HH} denote subsets of~. From independence and 
equally likely assumptions (see Exercise 1.46), our probability set 
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function· P( C) assigns a probability of ~ to' each of the sets C;, 
i = 1,2,3,4. Then P(C1) =~, P(C2 U C3) = ~ + * =~, and P(C4) = i. 
Let us now point out how much simpler it is to couch these statements 
in a language that involves the random variable X. Because X is the 
number of heads to be observed in tossing a coin two times, we have 

Pr (X = 0) =~, sinceP(C,) =~; 

Pr (X = I) =~, 

and 

Pr (X = 2) =~, 

This may be further condensed in the following table: 

x 

Pr(X= x) 

o 
I 
4 

I 
, 
"2 

2 

I 
;( 

This table depicts the distribution of probability over the elements 
of d, the space of the random variable X. This can be written more 
simply as 

Pr(X=x~ =(;)(4)', xed. 

Example 1. Consider a sequence of independent flips of a coin, each 
resulting in a head (H) or a tail (T). Moreover, on each flip, we assume that 
Hand T are equally likely, that is, P(H) = PeT) =!. The sample space <c 
consists of sequences like TTHTHHT .... Let the random variable X equal 
the number of flips needed to obtain the first head. For this given sequence, 
X = 3. Clearly, the space of Xisd = {l, 2,3,4, ... }. We see that X = 1 when 
the sequence begins with an H and thus Pr (X = I) = !. Likewise, X = 2 when 
the sequence begins with TH"which has probability Pr (X = 2) == (D(!) =! 
from the independence. More generally, if X = x, where x = 1,2,3,4, ... , 
there must be a string of x - I tails followed by a head, that is, TT ... TH, 
where there are x - I tails in TT· .. T. Thus, from independence, we have 

(I)X-I(I) (1))( 
Pr (X = x) =:2 :2 = :2 ' x = 1,2,3, .... 

Let us make some observations about these three illustrations of 
a random variable. In each case the number of points in the space d 
was finite, as with {O, I} and {O, I, 2}, or countable, as with 
{I, 2, 3, ... }. There was a function, say f(x) = Pr (X = x), that 
described how the probability is distributed over the space d. In each 

Uploaded By: anonymousSTUDENTS-HUB.com



32 ProlMbility IIIId m,triludiolu .ICb. 1 

of these illustrations, there is a simple formula (although ·that is not 
necessary in general) for that function, namely: 

1 
j{x) = 2' x e {O, I}, 

j{x) = (;)(~)'. XE {O, 1, 2}, 

j{x) = (~)X, 
and 

X E {I, 2, 3, . . . }. 

Moreover, the sum of j{x) over all XEd equals I: 

L - =-+-= I, I (1) 1 1 
x=o 2 2 2 

2 (2)(1)2 1 1 I L - = - + - + - = I, 
x=o x 2 4 2 4 

00 (I)X 1 (1)2 (1)3 ..!.. L - =-+ - + - + ... =_2_.=1. 
1 2 2 2 2 1--

X= 2 

Finally, if A cd, we c'.ln compute the probability of X E A by the 
summation 

Pr (X E A) = L j{x). 
. If 

For illustrations, using the randoht variable of Example I, 

3 (I)X I 1 I 7 
Pr (X = I, 2, 3) = L '2 = 2 + 4 + 8" = 8" 

x .. d 

and 

Pr (X = 1, 3, 5, .' .. ) = (n + ( ~ y + (~)' + ... 
I 
2 2 -1-.!.="3· 

4 

We have special names for this type of random variable X and for a 
function j{x) like that in each of these three illustrations, which we 
now gIve. 

Let X denote a .random variable with a one-dimensional space d. 
Suppose that .fill consists of a countable number of points; that is, d 
contains a finite number of points or the points of d can be put into 
a one-to·one correspondence with the positive integers. Such a space 
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d is called a discrete set of points. Let a function j(x) be such that 
j(x) > 0, xEd, and 

L j(x) = 1. 
d 

Whenever a proba,bility set function P(A), A cd, can be expre~sed 
in terms of suchanj(x) by 

P(A) = Pr (X E A) - L j(x), 
A 

then X is called a random variable of the discrete type andj(x) is called 
the probahilitydensity function of X. Hereafter the probability density 
function is abbreviated p.d.f. 

Our Il:otation can be simplified somewhat so that we do not need 
to spell out the space in each instance. For illustration, let the random 
variable be the number of flips necessary to obtain the first head. We 
now extend the definition of the p.d.f. from on .91 = {I, 2, 3, ... } to 
all the real numbers by writing I 

j{x) = G r x = I, 2, 3, ... , 

= 0 elsewhere. 

From .such a function, we'see that the space .91 is clearly the set of 
positive integers which is a discrete set of points. Thus the 
corresponding random variable is one of the discrete type. 

EXlllllple 2. A lot, consisting of 100 fuses, is inspected by the following 
procedure. Five of these fuses are chosen at random and tested; if aIlS "blow" 
at the correct amperage, the lot is accepted. If, in fact, there are 20 defective 
fuses in the lot, the probability of accepting the lot is, under appropriate 
assumptions, 

(~) 
--=0.32, 

C~) 
approximately. More generally, let the random variable X be the number of 
defective fuses among the 5 that are inspected. The p.d.f. of X is given by 

(~)(5 80 x) 
j{x) = Pr (X = x) = x = 0, 1.2, 3, 4, 5, 

C~) 
= 0 elsewhere. 
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Clearly, the space of X is .r;I = {O, 1,2,3,4, S}. Thus this is an example of 
a random variable of the discrete type whose distribution is an ilJustration of 
a hypergeometric distribution. 

Let the random variable X have the probability set function peA), 
where A is a one-dimensional set. Take x to be a real number 
and consider the set A which is an unbounded set from - 00 to x, 
including the point x itself. For all such sets A we have 
peA) = Pr (X E A) = Pr (X < x). This probability depends on t!Le 
point x; that is, this probability is a function of the point x. This point 
function is denoted by the symbol F(x)= Pr (X ~ x). The function 
F(x) is called the distribution Junction (sometimes, cumulative 
distribution function) of the random variaJ?leX. Since 
F(x) - Pr (X < x), then, with J(x) the p.d.f.. we have 

F(x) = L J(w), 
wsx 

for the discrete type. 

Example 3. Let the random variable X of the discrete type have the p.d.f. 
f(x) = x/6, x = I, 2, 3, zero elsewhere. The distribution function of X is 

F{x) = 0, x < l~ 

= t. I :s; x < 2, 
_3 2 <x < 3, - 6' 

= I, 3 <x. 

Here, as depicted in Figure 1.3, F{x) is a step function that is constant in every 
interval not containing I, 2, or 3, but has steps of heights t, i, and ~, whiCh 
are the probabilities at those respective points. It is also seen that F{x) is 
everywhere continuous from the right. The p.d.f. of X is displayed as a bar 

F(x) 
to 
6' , 
T 
4 
6" 

3 
6' 
2 
to 
I 

• 

------~--~----~--- x 2 3 

FIGURE 1.3 
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f(x) 
6 
6' 
s 
6 

4 
6' 
3 
6 

2 
6' 
1 

6' 

~----~----~----~- x 
1 2 3 

FIGURE 1~4 

3S 

graph in Figure 1.4. We see that /(x) represents the probability at each x 
while F(x) cumulates all the probability of points that are less than or equal 
to x. Thus we can compute a probability like 

Pr (1.5 < X <4.5) = F(4.5) - F(1.5) = 1 - ~ = i 
or as 

Pr (l.5 < X:::;; 4.5) = /(2) + /(3) .:.- ~ + ~ =~. : 

While the properties of a distributionfunction F(x) = Pr (X:5: x) are 
discussed in more detail in Section 1.7, we can make a few observations 
now since F(x) is a probability. 

1. 0 < F(x) < 1. 
2. F(x) is a nondecreasing function as it cumulates probability as x 

IDcreases. 
3. F(y) = 0 for every point y that is less than the smallest value in the 

space of X. 
4. F(z) = 1 for every point z that is ,greater than the largest value in 

the space of.X. 
5. If X is a random'variable of the discrete type. then F(x).is a step 

function and the height of the step at x in the space of X is equal 
to the probability f(x) = Pr (X = x). 

EXERCISES 

1.47. Let a card be selected from an ordinary deck of playing cards. The 
outcome c is one of these 52 cards. Let X(c) = 4 if c is an ace, let X(c) = 3 
if c is a king, let X(c) = 2 if c is a queen, let X(c) = 1 if c is a jack, and 
let X(c) = 0 otherwise. Suppose that P assigns a prObability of ;2 to 

Uploaded By: anonymousSTUDENTS-HUB.com



36 ProWility IIIUI Oil,rilRltio", leb. 1 

each outcome c. Describe the induced probability Px(A) on the space 
JlI = {O, I, 2, 3, 4} of the random variable X. 

1.48. For each of the following, find the constant c so that j(x) satisfies the 
condition of being a p.d.f. of one random variable X. 
(a) j(x) = c(jy, x = I, 2, 3, ... , zero elsewhere. 
(b) j(x) = ex, x = 1,2,3,4, 5,6, zero elsewhere. 

1.49. Let j(x) = x/IS, x = 1.2,3,4,5, zero elsewhere. be the p.d.f. of X. 
Find Pr (X = I or 2), Pr (~ < X < i), and Pr (I < X < 2). 

1.SO. Let j(x) be the p.d.f. of a random variable X. Find the distribution 
function F(x) of X and sketch its graph along with that of j(x) if: 
(a) j(x) = 1, X= 0, zero elsewhere. 
(b) j(x) = i, x = -1,0, I, zero elsewhere. 
(c) j(x) = x/IS, x = 1,2,3,4,5, zero elsewhere. 

1.51. Let us select five cards at random and without replacement from an 
ordinary deck of playing cards. 
(a) Find the p.d.f. of X, the number of hearts in the five cards. 
(b) Determine Pr (X < 1). 

1.52. Let X equal the number of heads in four independent flips of a coin. 
Using 'certain assumptions, determine the p.d.f. of X and compute the 
probability that X is equal to an odd number. 

1.53. Let X have the p.d.f. j(x) = x/5050, x = 1,2,3, ... ,100, zero 
elsewhere. 
(a) Compute Pr (X < 50). 
(b) Show. that the distribution function of Xis F(x) = [x]([x] + 1)/10100, 

for 1 <x < 100, where [xl is the greatest integer in x. 

1.54. Let a bowl contain 10 chips of the same size and ·shape. One and only 
one of these chips is red. Continue to draw chips from the bowl, one at a 
time and at random and without replacement, until the red chip is drawn. 
(a) Find the p.d.f; of X, the number of trials needed to draw the red chip. 
(b) Compute Pr (X S; 4). 

1.55. Cast a die a number of independent times until a six appears on the up 
side of the die. 
(a) Find the p.d.f. j(x) of X, the number of casts needed to obtain that 

first six. 
ro 

(b) Show that L j(x) = 1. 
x=1 

(c) Determine Pr (X = 1,3,5, 7, ... ). 
(d) Find the distribution function F\x) = Pr (X S; x). 
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1.56. Cast a die two independent times and let X equal the absolute value of 
the difference of the two resulting values (the numbers on the up sides), Find 
the p.d.f. of X. 

Hint: It is not necessary to find a formula for the p.d.f. 

1.6 Random Variables of the Continuous Type 

A random variable was defined in Section 1.5, and only those of the 
discrete type were considered there. Let us begin the discussion of 
random variables of the continuous type with an example. 

Let a random experiment be a selection of a point that is interior 
to a circle of radius I that has center at the origin of a two-dimensional 
space. We call this space <c an~ the area of this circle is 1t. The random 
selection is in such a way that the probability of being in a certain set 
C interior to ~ is proportional tq the area of C; in parti,cular, if C c ~, 

", 

P(C) = area of C. 
1t 

First we observe that P(~ = 1. In addition, if C1 is'that subset of 
<if that is in the first quadrant, P(C1) = (1t/4)/1t = ~. If C2 is the interior 
of a circle of radius 4 such that C2,1c <if,then P(C2) = 1t(ji/1t = 4. It is 
interesting to note that the probability of a point. a line segment, or 
any curve in ~ is equal to zero because those ar~as .would be zero. In 
particular, if C3 is the boundary of the set C2 (that is, C3 is the actual 
circle of radi\lsJ), then P(C3) = o. , 

We define a random variable X, associated with this random 
experiment, as the distance of the selected point from the origin. The 
space of X is d = {x: 0 <x < I}. Of course, for any xEd, 
Pr (X = x) = 0, because X = x is the event that the random point falls 
on a circle, symmetric with respect to the origin, of radius x and the 
associated area equals zero. However, ifdoes make sense to consider 
the induced probability of the event X < x, namely the distribution 
function of X. If xEd, then 

F\x) = Pr (X < x) = area of a certain circle of radius x 
. 1t 

O<x<l. 
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Clearly, if x < 0, then F(x) = 0; and if x> i, then F(x)= L Thus we 
can write 

F(x) = 0, 

=x2 
= I, 

, 

x < 0, 

o <x < I, 

1 <x. 

Recall, in the discrete case, we had a function f that was associated 
with Fthrough the equation 

F(x) = L j{w). 
w:s;x 

Either.F,or f could be used to compute probabilities like 

Pr' (a < X < b) = F(b) - F(a) = L j{w), 
weA 

where A = {w: a < W < b}:Wehaveobserved, in this continuous case, 
that Pr (X = x) = 0, so a summation of such probabilities is no longer 
appropriate. However, it is easy to find an integral that relates F to f 
through 

R:x) = i,j( w) dw, 
w:s;x 

Since d = {x : ° < x < I}, this can: be written as 

R:x) = x' = r j(w) dw, xis d, 

By one form of t.he fundamental theorem or calculus, we know that the 
derivative' of the right-hand member of this equation is j{x). Thus 
taking derivatives of each member of the equation, we obtain . 

2x' j{x), O<x<1 

Of course, at x = 0, this is only a right-hand derivative. We observe 
thatj{x)> 0, XE d, and . 

. , . 

J.' 2xdx = L 

Probabilities can now be computed through 

Pr (Xe A) = i j(w) dw, 
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For illustration, 

Pr (~< X:s: 4> = JI
/
2 2w dw = [w]:~~ 

1/4 

= F(!) - F(1.) = ! - 1.. = 1-
\2 \4 4 16 16' 

With the background of this example, we give the definition of a 
random variable of the continuous type. 

Let X denote a random variable with a one-dimensional space d, 
which consists of an interval or a union of intervals. Let a function fix) 
be nonnegative such that 

L f(x)dx I. 

Whenever a probability set function P(A), A c d, can be expressed 
in terms of such anf(x) by 

P(A) = Pr (X E A) = If{X) dx. 

then X is said to be a random variable of the continuous type andf(x) 
is called the probability density function (p.d.f.) of X. 

Example 1. Let the random variable of the continuous type X equal the 
distance in feet between:bad records of a used computer "tape. Say that the 
space of X is .91 = {x: 0 < x < 00 y. Suppose that a reasonable probability 
model for X is given by the p.d.f. 

[(x) = ~e-xl40. XEd. 

Here [(x) ;;:: 0 for xEd, and r io ,-xl" dx = [ _,-xl4O J: = l. 

If we are interested in the probability that the distance between bad records 
is greater than 40 feet, then A = {x: 40 < x < oo} and 

Pr (Ke A) = Lm

.:. e'-- ax = .-'. 

The p.d.f. and the probability of interest are depicted in Figure 1.5. 

If we restrict ourselves to random variables of either the discrete 
type or the continuous type, we may work exclusively with the p.d.f. 
f(x). This affords an enormous simplification; but it should be 
recognized that this simplification is obtained at considerable cost from 
a mathematical point of view. Not only shall we exclude from 
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f(x) 

0.02 

0.01 

40 80 120 

FIGURE 1.5 

, , 

consideration many random variables that do not have these types of 
distributions, but we shall also exclude many interesting subsets of the 
space. In this book, however, we shall in general restrict ourselves to 
these simple types of random variables. 

Remarks. Let X denote the number of spots that show when a die is cast. 
We can assume that X is a random variable with d = { I, 2, ... , 6} and with 
a p.d.f.f(x)=!, xed. Other assumptions can be made to provide different 
mathematical models for this experiment. Experimental evidence can be used 
to help one decide which model is the more realistic. Next, let X denote the 
point at which a balanced pointer comes to rest. If the circumference is 
graduated O<x< 1, a reasonable mathematical model for this experiment is 
to take X to be a random variable with d = {x: 0 s:x < I} and with a p.d.f. 
f(x) = I, xEd. 

Both types of probability density functions can be used as distri­
butional models for many random variables found in real situations. For 
illustrations consider the following. If X is the number of automobile acci­
dents during a given day, then f(O),I(1 ),f(2), ... represent the probabilities 
of 0, I, 2, ... accidents. On the other hand, if X is length of life of a female 
born in a certain community, the integral [area under the graph of f(x) that 
lies above the x-axis and between the vertical lines x = 40 and x = 50] 

fftX)dx 

represents the probability that' she dies between 40 and 50' (or the percentage 
of those females dying between 40 and SO). A particular f(x) wiIJ be suggested 
later for each ofthese situations, but again experimental evidence must be used 
to decide whether we have realistic modets. 

Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 1.61 R..", YlI1'iIIIMa oft. COllI_tills Type 41 

Our notation can be considerably simplified when we restrict 
ourselves to random variables of the continuous or discrete types. 
Suppose that the space of a continuous type of random variable X is 
d = {x: 0 < x < oo} and that the p.d.f. of X is e-X, xed. We shall 
in no manner alter the distribution of X [that is, alter any P(A), A c d] 
if we extend the definition ~f the p.d.f. of X by writing 

fix) =e-x, 0 < x < 00, . 

= 0 elsewhere, 

and then refer toj{x) as the p.d.f. of X. We have . . 

Joo j{x) dx = JO 0 dx + 100 

e-X dx . 1. 
-00 -00 0 

." ! 

Thus we may treat the entire axis of reals as though it we~e the space 
of X. Accordingly, we now replace 

L f{x)dx by r f{x)dx. 
-00 

Ifj{x) is the p:d.f. of a continuous type of random variable X and 
if A is the set {x: a < x < b}, then P(A) = Pr (X E A) can be written 
as 

Pr(a < X< b) = f fix) dx. 
a 

Moreover,if A = {a}, then 

P(A) = Pr(XeA) = Pr(X = a) = ff{X)dx = 0, 
a 

since the integral J: j{x) dx is defined in calculus to be zero. That is, if 
X is a random variable of the continuous type, the probability of every 
set consisting of a single point is zero. This fact enables us to write, say, 

Pr (a < X < b) = Pr (a::;;; X <b). 

More important, this fact allows us to change the value of the p.d.f. 
of a continuous type of random variable X at a single point without 
altering the distribution of X. For instance, the p.d.f. 

j{x) = e-X, 0 < x < 00, 

= 0 elsewhere, 
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can be written as 

f{x) . e-X
, 0 :s: x < 00, 

= 0, elsewhere, 

without changing anyP(A). We observe that these two functions differ 
only at x = 0 and Pr (X = 0) = O. More generally, if two probability 
density functions of random variables of the continuous type differ 
only on a set having probability zero, the two corresponding 
probability set functions are exactly the same. Unlike the continuous 
type, the p.d.f. of a discrete type of random variable may not be 
changed at any point, since a change in such a p.d.f. alters the 
distribution of probability. 

EXIllllpIe. 2. Let the random variable X of the continuous type have 
the p.d.f.f{x) = 2/XJ, 1 < x < 00, zero elsewhere. The distribution function 
of Xis 

F(x) = r~ 0 dw = 0, x < 1, 

= r~dW= \- ~, 1 S x. 

The graph of this distribution function is depicted in Figure 1.6. Here F{x) is a 
continuous function for all real numbers x;,in p~rticular. F{x) is everywhere 
continuous from the right. Moreover, the derivative of F{x) with respect to 
x exists at all points except at x = 1. Thus the p.d.f. of X is defined by this 
derivative except at x = 1. Since the set A = {I} is a set of probability measure 
zero [that is, P(A) = 0]. we are free to define the p.d.f. at x = 1 in any manner 
we .please. One way to do this is to write f{x) = 2/x3

, 1 < x < 00, zero 
elsewhere. 

F(x) 

1 - - - - - - - - - - -:.;:-:.;::.-::::;.:;;-=---.. ___ .-_ 

--~----~~----------------------------.x 
1 

. FIGURE 1.6 
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EXERCISES 

1.57. Let a point be selected from the sample space rt = {c: 0 < c < to}. Let 
C c: rt and let the probabiiity set function be P( C) = Ie ~ dz. Define the 
random variable X to be X(e) = c2• Find the distribution function and the 
p.d.f. of X. 

1.58. Let the probability set function peA) of the random variable X be 
peA) = IA/(x) dx, where I(x) = 2x19. XEd = {x: 0 <! < ~}. Let 
A, = {x : 0 < x < 1}. A L {x: 2 < x < 3}. Compute p( Ad = Pr [X E Ad. 
P(A 2 ) = Pr (X E A2 ), and P(AI U A2) = Pr (X E AI U A2)' 

1.59. Let the space of the random variable X be .91 = {x: 0 < x < I}. If 
AI = {x: 0 < x <!} and A2 = {x: ~ < x < 1}. find P(A 2 ) if P(A I ) =!. 

1.60. Let the space of the random variable X bed = {x: 0 < x < JO} and 
let P(AI) -:- i. where AI = {x: I < x < 5}. Show that P(A 2) :s; j. where 
A2 ={x : .5 ::;; x < ,JO}. 

1.61. Let the subsets AI = {x:~<x<!} and A2 = {x:~<x< I} of the 
space .91 = {x: 0 < x < I} of the random variable Xbe such thatP(A I) = i 
and P(A 2 )== f: Find P(AI U A2). peAr). and peAr n Ar). 

1.62. GivenL [1/71:(1 + r)] dx. where A c .91= {x: - 00 < ~ < oo}. Show 
that the integral could serve as a probability set function of a random 
variable X whose space is 91. .'. . 

1.63. Let the probability set function o( the random variable X be 

I'(A) \= i e~X dx. where JJI ={x : 0 < x < oo}. 

Let Ak = {x: 2 - Ilk < x <3}. k = 1.2.3. . . .. Find lim Ak and 

( ) 

, 1c .... 00 

P lim' Ak .' ,. 
k-+oo 

Find I'(A.) and t~~ I'(A.). Note thatl~~ I'(Ak ) = p (!~~ A.) . 

1.64. For each of the following probability density functions of X. compute 
Pr <lXI < 1) and Pr (X2 < 9). 
(a) !(x) = x2/18. -3 < x <3. zero el~whel'e~ 
(b) lex) = (x + 2)/18. - 2 < x < 4. zero elsewhere. 

1.65. Let I(x) = Ilr, I < x < 00. zero elsewhere. be the p.d.f. of X. 
If Ai = {x': I < x < 2} and A2 =,tx : 4 <x < 5}. find P(AI U A2) and 
peA, n A2 ). 

1.66. A mode of a distribution of one random variable X is a value of x that 
maximizes the p.d.f. lex). For X of the continuous type. lex) must be 
continuous. If there is 'only one such x. it is called the mode 01 the 
distribution. Find the mode of each of the following distributions: 
(a) I(x) = <!Y. x = 1,2.3, ...• zero elsewhere. 
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(b) f{x) = 12r(1 - x), 0 < x < 1, zero elsewhere. 
(c) f{x) = (!)x2e-X

, 0 < x < 00, zero elsewhere. 

1.67. A median of a distribution of one random variable X of the 
discrete or continuous· type is a value of x such that Pr (X < x) < ! 
and Pr (X < x) ~~. tf there is only one such x, it is called the 
median of the distribution. Find the median of each of the following 
distributions: 

4! (I)X (3)4 x (a) f{x) = x! (4 _ x)! 4" 4" ' x == 0, 1, 2, 3. 4, zero elsewhere. 

(b) f{x) = 3r, 0 < x < 1, zero elsewher~: 
1 

(c) f{x) = 1[(1 + xl)' -00 < x < 00. 

Hint: In parts (b) and (c), Pr (X < x) = Pr (X < x) and thus that 
common value must equal! if x is to be the median' of the distribution. 

1.68. Let 0 < p < 1. A (100p)th percentile (quantile of order p) of the 
distribution of a random variable X is a value ~p such that Pr (X < ~p) S; p 
and Pr (X ::; ~p) > p. Find the twentieth percentile of the di~tribution that 
has p.d.f. f{x) = 4x3, 0 < X < 1, zero elsewhere. . 

Hint: With a continuous-type random variable %, Pr (X < ~p) = 
Pr (X < ~p) and hence that common value must equal p. 

1.69. Find the distribution function F(x) associated with each of the follow­
ing probability density functioQs. Sketch the grapbsof f(x) and F{x). 
(a) f(x) = 3(1 - X)2, 0 < X < I, zero elsewh~re. 
(b) f(x) = 1/x2

, 1 .< x < 00, zero elsewhere. 
(c) f(x) = i, O' < x < 1 or 2 < x < 4, zero elsewhere . 

. Also find the median and 25th percentile of each of these distributions. 

1.70. Consider the distribution function F(x) = 1 - e-X 
- xe-X, 0< x.< 00, 

zero elsewhere. Find the p.d.f., the mode, and the median (by numerical 
methods) of this distribution. 

1.7 Properties of the Distribution Function 

In SectiQn 1.5 we defined the distribution function of a 
random variable X as F{x) = Pr (X < x). This concept was used 
in Section 1.6 to find the probability distribution of a random 
variable of the continuous type. So, in terms of the p.d.f./{x), we know 
that 

F(x) = I /(w), 
w:Sx 
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for the discrete type of random variable, and 

, F(x) = L f(w) dw, 

for the continuous type of random variable. We speak of a distribution 
function F(x) as being of the continuous or discrete type, depending 
on whether the random variable is of the continuous or discrete type. 

Remark. If X is a random variable of the continuous type, the p.d.f. f(x) 
has at most a fil1ite number of discontinuities in every finite intervaL This 
means (I) that the distribution function l'lx) is everywhere continuous and (2) 
that the derivative of l'lx) with respect to x exists and is equal to f(x) at each 
point of continuity of f(x). That is, F'(X) = fix) at each point of continuity 
off(x). If the random variable Xis of the discrete type, most surely the p.d.f. 
f(x) is not the derivative of F(x) with.respect to x (that is, with res~t to 
Lebesgue measure); butf(x) is the (Rado~-Nikodym) derivative of f{x) with 
respect to a counting measure., A dt?rivative is often called a density. 
Accordingly, we call these derivatives probability density functions. 

There are several properties of a distribution function F(x) that can 
be listed as a consequence of the properties of the probability set 
function. Some of these are the following. In listing these properties, 
we shall not restrict X to be a random variable of the discrete or 
continuous type. We shall use the symbols F( (0) and F( - (0) to mean 
lim F(x) and lim F(x), respectively. In like manner, the symbols 
~oo .~-oo . 

{x : x < oo} and {x : x < - 00 } represent, respectively, the limits of the 
sets {x: x < b} and {x: x < -b} as b-+oo. 

1. 0 < F(x) < I because 0 < Pr (X < x) < 1. 
2. F(x) is a nondecreasing function of x. For. if x' < x", then 

{x: x < x"} = {x: x S; x'} u {x: x' < x < x"} 

and 

Pr (X < x") = Pr (X < Xi) + Pr (x' < X < x"). 

That is, 

F(x") - F(x' ) = Pr (x' < X S; x") > O. 

3. F( (0) = 1 and F( - (0) = 0 because the set {x: x < oo} is the 
entire one-dimensional space and the set {x : x < - 00 } is' the null set. 
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From the proof of property 2, it is observed that, if a < b, then 

Pr(a < X <b) = F(b) - F(a). 

Suppose that we want .to use F(x) to compute the probability 
Pr (X = b). To do this, consider, with h > 0, 

lim Pr (b - h< X < b) = lim [F(b) - F(b - h)]. 
h ... O " . h .... O 

Intuitively, it 'seemsthat'litn Pr (b h < X < b) should exist and be 
h ... O 

equal to Pr (X = b) because, as h tends to zero, the limit of the set 
{x _: b - h < x ~ b} is the set that contains the single point x = b. The 
fact.,that this limit is Pr (X = b) is a theorem that we accept without 
proof~ Accordingly, we have 

Pr (X = b) = F(b) - F(b-), 

where F(b-) is the left-hand limit of F(x) atx - b. That is, the 
probability that X = b is the height of the step diat F(x) has at x - . b. 
Hence, if the distribution function F(x)is c()ntinuolJs at x = b, then 
Pr (X = b) = O. " 

There is a faurth property of F(x) that is now listed. 
4. F(x) is continuous from the right, that is, right-continuous. 
To prove this property, consider, withh > 0, 

, 

. lim Pr(a < X S; a + h) = lim[F(a + h) - F(a)]. 
h ... O h ... O 

We accept without proof a the.orem which states, wi~h h> 0, that 

lim Pr (a < X <a + h) = P(0) = o. 
h ... O 

Here also, the theorem is intuitively appealing-because, as h tends to 
zero, the limit of the set {x : a < x < a + h} is the null set. Accordingly, 
we write 

0= F(a+) - F(a), 

where F(a +) is the right-hand limit of F(x) at x = a. Hence F(x) is 
continuous from the right at every point x = a. 

Remark. In the arguments concerning several of these properties. we 
appeal to the reader's intuition. However, most of these properties can be 
proved in formal ways using the definition of lim A"" given in Exercises 1.7 

k-+CIJ 
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and I .8, and the fact that the probability set function Pis countably additive; 
that is, P enjoys (b) of Definition 7. 

The preceding discussion may be summarized in the following 
manner: A distribution function F(x) is a nondecreasing function of x, 
which is everywhere continuous from the right and has F( - 00) = 0, 
F( 00) = I. The probability Pr (a < X < b) is equal to the difference 
F(b) - F(a). If x is a discontinuity point of F(x), then the probability 
Pr (X = x) is equal to the jump which the distribution function has at 
the point x. If x is a continuity point of F(x), then Pr (X = x) = O. 

Remark. The definition of the distribution function makes it clear that the 
probability set function P determines the distribution function F. It is true, 
although not so obvious, that a proQ~bility set function P can be found from 
a distribution function F. That is, P and F give the same information about 
the distribution of probability, and which- function is used is a matter of 
convenience. 

Often, probability models can be constructed that make reason­
able assumptions about the probability set function ~nd thus the 
distribution function. For a simple illustration, consider an experiment 
in which one ch09ses at random a point from the closed interval [a, b], 
a < b, that is on the real line. Thus the sampl~>space f(J is [a, b]. Let the 
random variable X be the identity function defined on f(J. Thus the 
space.r;l of X is.r;l = f(J. Suppose that it is reasonable to assume, from 
the nature of the experiment, that if an interval A is a subset of .r;I, the 
probability of the event A is proportional to the length of A. Hence, 
if A is the interval [a, x), x < b. then 

P(A) = Pr (X E A) = Pr (a < X < x) = c(x - a), 

where c is the constant of proportionality. 
In the expression above, if we take x = b, we have 

I = Pr (a < X < b) = c(b - a), 

so c = l/(b - a). Thus we will h~ve an appropriate probability model 
if we take the distribution function of X, F(x) = Pr (X < x), to be 

F(x) = 0, x < a, 

x-a 
- b - a' a <x< b, 

= 1, b < x. 
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F(x) 

1 

--~------~------~-------------.x 
1 

FIGURE 1.7 

Accordingly, the p.d.f. of X, f(x) = F(x), may be written 

I 
f(x) = b _ a' a < x < b, 

= 0 elsewhere. 

The derivative of F(x) does not exist at x = a nor at,x = b; but the set 
{x : x = a, b} is a set of probability measure zero, and we elect to define 
f(x) to be equal to Ij(b - a) at those two points, just as a matter of 
convenience. We observe that this p.d.f. is a constant on d. If the p.d.f. 
of one or more variables of the continuous type or of the discrete type 
is a constant on the space d, we say that the probability is distributed' 
uniformly over d. Thus, in the example above, we say that X has a 
uniform distribution over'the interval [a, b]. 

We now give an illustrative example of a distribution that is neither 
of the discrete nor continuous type. 

Example 1.' Leta distribution -function be given by 

F(x) = 0, x < 0, 

x+l 
=-2- O<x.<l, 

Then, for instance, 

Pr ( - 3 < X < ! ) = F(t) - F( - 3) = ~ - 0 = ~ 

and 

Pr (X = 0) = F(O)o - F(O - ) = ! - 0 = ! . 
The graph of F(x) is shown in Figure 1.7. We see that F{x) is not always 

continuous, nor is it a step function. Accordingly, the corresponding 
distribution is neither of the continuous type nor of the discrete type. It may 
be described as a mixture of those types. 

Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 1.7) Properties of tile DUtrllHltioll FlIIICtioll 

Distributions .that are mixtures of the continuous and discrete 
types do~ in fact, occur frequently in praetice. For illustration, in life 
testing, suppose we know that the length of life" say X, exceeds the 
number b, but the exact value is unknown. This is called censoring. For 
instance, this can happen when a subject in a cancer study simply 
disappears; the inveStigator"knows that the subject has lived a certain 
number of months, but the exact length oflife is unknown. Or it might 
happen when an investigator does not have enough time in an 
investigation to observe the mome,:tts of deaths of all the animals, say 
rats, in some study. Censoring can al~o occur in the insurance industry; 
in particular, consider a loss with a limited-pay policy in which the top 
amount is exceeded but it is not known by how much. 

Example 2. Reinsurance companies are concerned with large losses 
because they might agree, for illustration, to cover losses due to wind damages 
that are between $2,000,000 and $10,000,000. Say that X equals the size of a 
wind loss in millions of dollars, and suppose that it has the distribution 
function 

F(x) = 0, - 00 < x < 0, 

( 
10 )3 

=1- lO+x ' o:s; x < 00. 

If losses beyond $10,000,000 are reported only as 10, then the distribution 
function of this censored distribution is 

F(x) = 0, - 00 < x < 0, 

( 
10 )3 

=1- lO+x ' ° :s; x < 10, 

= 1, 10 < x < 00, 

which has a jump of [10/(10 + lOW = i at x = 10. 

We shall now point out an important fact about a function of a 
random variable. Let X denote a tuiJdom variable with space d. 
Consider the function Y = u(X) of the random variable X. Since X is 
a function defined on a sample space (j, thenY= u(X) is a composite 
function defined on (j. That is, Y = u(X) is'itself a random variable 
which has its own space rJI = {y : y = u(x), xed} and its own 
probability set fU:ijction.lfy E a, the event Y = u(X) :s; y occurs when, 
and only when, the event X E A, c d occurs, where A = {x: u(x) ~ y}.­
That is, the distribution function of Y is 

G(y) = Pr (Y S y) = Pr [u(X) < y] = P(A). 
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The following example illustrates a method of finding the distribution 
function and the p.d.f. 'Of a function of a random variable. This method 
is called the distribution-function technique. 

E~.",ple 3. Let I(x) =!, -1 < x < l,zero elsewhere, be the p.d.f. of 
the random variable X. Define the random variable Y by Y = X2. We 
wish to find the p.d.f. of Y. If y > 0, the probability Pr (Y.~ y) is equivalent 
to 

Pr (Xl < y) = Pr (-:-Jy ~ X ~ Jy). 

Accordingly, the distribution function of Y, G(y) = Pr (Y < y), is given 
by 

G(y) = 0, y < 0, 

. r tdx=Jy. LJ, o ~ y < I. 

=1, l<y. 

Since Y is a random variable of the continuous type, the p.d.f. of Y is 
g(y) = G'(y) at all points of continuity of g(y). Thus we may write 

I 
g(y) = -, 0 < y < 1, 

2Jy 
= 0 elsewhere. 

Remarks. Many authors use Ix and Iy to denote the respective probability 
density functions of the random variables X and Y. Here we use I and g 
because we can avoid the use of subscripts. However, at other times, we will 
use subscripts as in Ix and Iy or even J. and h" depending upon the 
circumstances. In a given example, we do not use the same symbol, without 
subscripts, to represent different functions. That is, in Example 2, we do not 
use I(x) andf(y) to'represe.nt different probability density functions. 

In addition, while we ordinax\ly use the letter x in the description of 
the p.d.f. of X, this is nO,t necessary at all because it is unimportant which 
letter we use in describing a function. For illustration, in Example 3, we 
could say thatthe random variable Y has the p.d.f. g( w) = I !2Jw, 0 < w < I, 
zero elsewhere, and it 'would have exactly the same meaning as Y has the 
p.d.f. g(y) = 1/2Jy, 0 < y < I, zero elsewhere. 

These remarks apply to other functions too, such as-distribution functions. 
In Example 3, we could have written the distribution function of Y, where 
o <w < I, as 

Fy(w) = Pr(Y < w) = Jw. 
Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 1.7) Propnt;e, 0/ tile D;strilHniOll F."ctio" 

EXERCISES 

1.71. Given the distribution function 

F(x) =0, x< -I, 

x+2 
=-4-' -1<x<l, 

= I, 1 <x. 

51 

Sketch the graph of F(x) and then compute: (a) Pr (-!<X <4); (b) 
Pr(X=O); (c) Pr(X=I); (d) Pr(2<X<3). 

1.72. Let fix) = I, O<x< I, zero elsewhere', be the p.d.f. of X. Find the 
distribution function and the p.dJ. of Y = ft. 

Hint: Pr (Y<y)=Pr (ft<y)=Pr (X<y), O<y< l. 

1.73. Letfix}=x/6, x= I, 2,3, zero elsewhere, be the p.d.f. of X. Find the 
distribution function and the p.d.f. of Y =.f2. 

Hint: Note that X is a random variable of the discrete type. 

1.74. Letfix)=(4-x)/16, -2<x<2, zero elsewhere, be the p.dJ. of X. 
(a) Sketch the distribution function and the p.d.f. of X on the same set bf 

axes. 
(l?) ,If Y =:= lXi, compute Pr ( Y < 1 ). 
(c) If Z = X-l, compute Pr (Z <*). 

1.7S. Let X have the p.d.f. fix)=2x, O<x<l, zero elsewhere. Find the 
distribution function and p.d.f. of Y = X2. 

1.76. Let X have the p.d.f. j{x)=4x3, O<x< J, zero elsewhere. Find the 
distribution function and p.d.f. of Y = - 2 In ~. 

1.77. Explain why, with h>O, the two limits, lim Pr(b-h<X<b) and 
lim F(b - h), exist. h .... O 
h-O 

Hint: Note that Pr (b - h < X <b) is bounded below by zero and F(b - h) 
is bounded above by both F(b) and 1. 

1.7S. Let F(x) be the distribution function of the random variable X. If m is 
a number such that F(m)=!, show that m is a median of the distribution. 

1.79. Letj{x)=L -1<x<2, Zero elsewhere, be the p.d.f. of X. Find the 
distribution function and the p.d.f. of Y=.f2. 

Hint: Consider Pr (.f2<y) for two cases: O<y< I and I :S;;y<4. 
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1.8 Expectation of a Random Variable 

Let X be a random variable having a p.d.f. f(x) such that we have 
certain absolute convergence; namely, in the discrete case, 

L Ixlf(x) converges to a finite limit, 
x 

or, in the continuous case, r IxlJtx) dx 
-00 

converges to a finite limit. 

The expectation of a random variable is 

E(X) = L xf(x), in the discrete case, 
x 

or 

E(X) = r x Jtx) t/x, 
-00 

in the continuous case. 

Sometimes the expectation E(X) is called the mathematical expectation 
of X or the expected value of X. 

Remark. The terminology of expectation or expected value has its 
origin in games of chance. This can be illuStrated as follows: Four small similar 
chips, numbered 1, 1, 1, and 2, respectively, are placed in a bowl and are mixed. 
A player is blindfolded and is to draw a chip from the bowl. If she draws one 
of the three chips numbered I, she will receive one dollar. If she draws the chip 
numbered 2. she will receive two doHars. It seems reasonable to assume that 
the player has a "~ claim" on the $1 and a "* claim" on the $2. Her "'total 
claim"is(l)(~) + 2(D = ~,thatis,$L25. Thus the expectation of Xis precisely 
the player's claim in this game. 

" 

Ex""'ple 1. Let the random variable X of the discrete type have the p.d.f. 
given by the table 

x I 2 3 4 

4 1 3 2 
TO 10 TO iii f<x) 

Here f(x) = 0 if x is not equal to one of the first four positive integers. 'This 
illustrates the fact that there is no need to have a formula to describe a p.d.f. 
We have 

E(X) = (l)(~) + 2(1~) + 3(1~) + 4(fo) :;;: ~:;;: 2.3. 

Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 1.8) UJ,lectllliolt 0/11 RIIIUIom J' 1IriIIb/e S3 

Exlllftple Z. Let X have the p~d.f. 

fix) = 4x3
, 0 < X < I, 

= 0 elsewhere. 

Then 

E(x) = x(4xl) dx = 4x4 dx = ~ =="5' 11 11 [4 51 4 
Let us consider a function of a ranqom variable X with space 

d. Call -this function Y = u(X). For convenience, let X be of 
the continuous type and y = u(x) be a continuous increasing function 
of X with an inverse function x = w(y), which, of course, is 
also increasing. So Y is a random variable and its distribution function 
is 

G(y) = Pr (Y < y) = Pr [u(X) < y] = Pr [X :S;. w(y)] 

f
w<Y> 

= -a) f{x) dx, 

where f{x) is the p.d.f. of X. By o,ne form of the fundamental theorem 
of calculus, 

g(y) = G'(y) = f[w(y)]w'(y), Y E f!i, 

= 0 elsewhere, 

where 

f!i = {y : y = u(x), xed}. 

By definition, given absolute convergence, the expected vallie of Y is 

" 

£(y) .. [, yg(y)dy. 

Since y = u(x), we might ask howE(Y) compares to the integral 

1=[ u(x)j{x) dx.· .. 

To answer this, change the variable of integratit)n through y = u(x) or, 
equivalently, x w(y). 'Since' . " .' 

dx "() 0 .dy = w y > , 
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we have 

1= [ y.flW(Y)]W'(y) dy = [ yg(y) dy. 
-00 -00 

That is, in this special case, 

E( 1') · f yg(y) dy = f u(x}f(x) <ix. 
-00 -00 

However, this is ttue more generally and it also makes no difference 
whether X is of the discrete or continuous 'type and Y = u(X) need not 
be an increasing function of X {Exercise 1.87 illustrates this}. 

So if Y = u(X)· has an expectation, we can find it from 

E[u(X)] = f u(x)f(x) <ix, (1) 
-00 

in the continuous case, and 

E[u(X)] = L u(x)f(x), (2) 
x 

in the discrete case. Accordingly, we say that E[u(X)] is the expectation 
(mathematical expectation or expected value) ofu(X). 

Remark. If the mathematica] expectation of Y exists, recali that the 
integral (or sum) r 1Y1g(y)4y 

-00 

exists. Hence the existence of E[u(X)] implies that the corresponding integral 
(or sum) converges abso]utely. 

Next, we shall point out some fairly obvious but useful facts about 
expectations when they exist. 

1. If k is a constant, then E(k) = k. This follows from expression (1) 
[or (2)] upon setting u = k and recalling that an integral (or sum) 
ora constant times a· function is the constant times the integral (or 
sum) of the function. Of course, the integral (or sum) of the function 
fis I. 

2. Ifk is a constant and visa function, thenE(kv) = kE(v). This follows 
from expression (1), [or (~)] upon setting u = kv and rewriting 
expression (1) [or (2)] as k times the integral (or sum) of the product 
vI. 

3., If kl and k2 are constants and viand V2 are functions, then 
E(kIVI + k2V2) = kIE(vl) + k2E(V2)' This, too, follows from ex-
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pression (1)[or(2)] uponseuingu = kivi + k2v2becausetheintegral 
(or sum) of (kivi + k2V2)!is equal to the integral (or sum) of klvl! 
plus the integral (or sum) of k2V2f Repeated application 
of this property shows that if k I , k2' ... ,km are constants and 
VI, V2, ... , Vm are functions, then 

E(kivi + k2V2 + ... + k",vm) = kIE(vl) + k2E(V2) + ... + k",E(v",). 

This property of eXpe<:tation leads us to characterize the symbol E 
as a linear operator. 

Example 3. Let X have the p.d.f. 

f(x)=2(l- x), 0 < x < 1; 

= 0 elsewhere. 

Then 

. . E(X) = l: xJtx) <Ix = l' (x)2(1 - x) <Ix = \. 

E(X2) = 100 

rf(x) dx ;-11 

(x2)2(1 - x) dx = L 
-00 0 

and, of course, 

E(6X + 3X2) = 6(D + 3(D = ~ . 

Extullple 4. Let X have the p.d.f. 

x 
f(x) = 6' x = 1,2,-3, 

= 0 elsewhere. 
Then 

3 x 
E(..f3) = L rf(x) = L r 6 

x x-I 

=! + ~ + 81 = 98 
6 6 6 6 • 

Example 5. Let us divide, at random, a horizontal line segment of length 
5 into two parts. If ~ is the length of the left-hand part, it is reasonable to 
assume that X has the p.d.f. 

f(x) = L· 0 < x < 5, 

= 0 elsewhere. 

The expected value of the length X is E(X) = ~ and the expected value of the 
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length 5 - X is £(5 - X) = ~. But the expected value of the product of the 
two lengths iii equal to . 

E[X(5 '-- X)] = f x(5 - x)(!> dx = 'i '" (l)'. 

That is, in general, the expected value of a product is not equal to the product 
of the expected values. ' 

E-xampJe 6. A bowl contains five chips, which cannot be distinguished by 
a sense' of touch alone. Three of the chips are marked $1 each and the 
remaining two are marked $4 each. A player is blindfolded and draws, at 
random and without replacement, two chips from the bowl. The player is paid 
an amount equal to the sum of the values of the two chips that he draws and 
the game is over. If it costs $4.75 to play this game, would we care to participate 
for any protracted period of time? Because we are unable to distinguish the 
chips by sense of touch, we assume that each of the 10 pairs that can be drawn 
has the same probability of being drawn. Let the random variable X be the 
number of chips, of the two to be chosen, that are marked $1. Then, under 
our assumption, X has the hypergeometric p.d.f. 

x = 0, ),2, 

= 0 elsewhere. 

If X = x, the player receives u(x) = x + 4(2 - x) = 8 - 3x dollars. Hence his 
mathematical expectation is equal to 

2 

£[8 - 3X] = L (8 - 3x)/(x) = ~ , 
x-o 

or $4.40. 

EXERCISES 

1.80. Let X have the p.d.f. /(x) = (x + 2)/18, -2 < x < 4, zero elsewhere. 
Find £(X), £[(X + 2)3}, and E{6X - 2(X + 2)3]. 

1.81. Suppose that fix) = ~ , x~· '. I, 2, 3,4, 5, 'zero elsewhere, is the p.d.f. of 
the discrete type of random variable X. Compote E(X) and £(Xl). Use 
these two results to find E[(X +- 2)2] by writing (X + 2)2 = Xl + 4X + 4. 

1.82. Let X be a number selected at random from a set of numbers 
{51, 52, 53, ... , tOO}. Approximate E(l/X). 
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Hint: Find reasonable upper and lower bounds by ,finding integrals 
bounding E(l/X). 

1.83. Let the p.d.f . ./{x) be positive at' x= -1,0, I and zero elsewhere. 
(a) 1£/(0) = *, find E(.K2)., . 
(b) If/(O) = ~and if E(X) = ~, deterrpinej{"':'l) and Jtl). 

t.84. Let X have' the p.d.f . ./{x) :i:::3r,0 < x < I, zero elsewhere. Consider a 
random rectangle whose sides are X and (I - X). Determine the expected 
value of the area of the rectangle. 

1.85. A bowl contains 10 chips: ofwhjch 8 are marked $2 each and 2 are 
marked $5 each. Let a' person choose, at random and wit~Qut replacement, 
3 chips from this bowl. If the person is to receive the sum of the resulting 
amounts, find his expectation. f' , , 

1.86. Let X be a random variable of the continuous type that has p.d.f. /(x). 
If m is the unique median of the distribution of X and b is a real constant, 
show that ' 

E(IX - bl) = E(IX - ml) + 2 [ (b - x)f(x) tlx, 
m 

provided that; the expectations exist. For what value of bis E(IX - bl) a 
minimum? 

1.87. Letf(x) = 2x, 0 < x < 1, zero elsewhere, be the p.d.f. of X. 
(a) Compute E(l/X). l 

(b) Find the distribution function and the p.d.f. of Y = I/X. 
(c) Compute E(1') and compare this result with the answer obtained in 

part (a). 
Hint: Here J;I = {x: 0 < x < I}, find ~. 

1.88. Two distinct integersl are chosen at random and without replacement 
from the first six positive integers. Compute the expected value Qf the 
absolute value of the difference of these two numbers. 

, 
'" ~ .. 

1.9 Some Special ExpectatioDS 

Certain expectations, if they exist, 'have special names and symbols 
to represent them. First, let Xbe a ran~omvariable of the discrete type 
having a p.d.f. f(x). Then 

E(X) = L xf(x). 
x 
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If the discrete points of the space of positive probability density are 
a" a2, a3, ... , then 

. E(X) = a,/(a.) + a2f(a2l+ aJ/(aJ) + .... 
This sum of products is seen to be a,Uweighted average" of the values 
ai, a2, a3, ... , the "weight" associated with each aj being /(a;). This 
suggests that we callE(X) the arithmetic mean of the values of X, 
or, more, simply, the mean value of X (or the mean value of the 
distribution). 

The mean value J.L of a random variable X is defined, when it exists, 
to be J.L = E(X),' where X is a random variable of the discreteor' of the 
continuous type. 

Another special expectation is obtaine4 by taking u(X) = (X - J.L)2. 
If, initially, X is a random variable of the discrete type having a p.d.f. 
/(x), then 

E[(X - J.L)2] = I (x - J.L)2/(X) 
x 

= (a, - J.L)2/(al) + (a2 - J.L)2/(a2) + ... , 
, 

if ai' a2, •.. are the discrete points of the space of positive probability 
density. This sum of products may be interpreted as a "weighted 
average" of the squares of the deviations of the numbers a" a2, ... 
from the mean value J.L of those numbets where the "weight" associated 
with each (aj - J.L)2 is /(a;). This mean value of the square of the 
deviation of X from its mean' value J.L is called the variance of X (or the 
variance of the distribution), ' 

The variance of X will be denoted by (12, and we define rr, if i t exists, 
by (12 = E[(X - J.L)2], whether X is a discrete or a continuous type of 
random variable. Sometimes the variance of X is written va·r (X). 

It is worthwhile to observe' that var (X) equals 
'. , 

(12 = E[(X - J.L)2] = E(X2 - 2J.LX + J.L2); 

and since E is a linear operator, 

q2 = E(~) - 2J.LE(X) + J.L2 

== E(Xlf!- 2J.L2 -+ J.L2 

= E(X2) - J.L2, 

This frequency affords an easier way of computing the variance of X. 
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It is customary to calla (the positive square root of the variance) 
the· standard deviation of X (or the standard deviation .of the 
distribution). The number a is sometimes interpreted as a measure of 
the dispersion of the points of the space relative to the mean value 
p. We note that if the space contains only one point x for which 
f(x) > 0, then (J = O. 

Remark. Let the. random variable X of the continuous type. have the 
p.d.f. f(x) = 1/2a, -a < x < a, zero elsewhere, so that (J = a/fi is the 
standard deviation of the distribution of X. Next, let the random variable Y 
of the continuous type have the p.d.f. g(y) = 1/40, - 2a < Y < 2a, zero 
elsewhere, so that (7 = 2al fi is the standard deviation of the distribution of 
Y. Here the standard deviation of Y is. greater than that of X; this refiects the 
fact that the probability for Y is more widely distributed (relative to the mean 
zero) than is the probability for X. 

We next define a third special mathematical expectation, called the 
moment-generatingfunction (abbreviated m.g.f.) of a random variable 
X. Suppose that there is a positive number hsuch that for - h < t < h 
the mathematical expectation E(etX

} exists. Thus 

E(e'X) = f~ e"f(x) dx, 
-00 

if X is a continuous type of random variable, or 

E(e'X) = L e'xf(x), 
x 

if X is a discrete type of random variable. This expectation is called the 
moment-generating function (m.gJ.) of X (or of the distribution) and.. 
is denoted by M( t). That is, 

M(t) = E(et~. 
It is evident that if we set t =·0, we -have M(O) = I. As will be seen by 
example, not every distribution has an m.g.f., but it is difficult to 
overemphasize the importance of an m.g.f., when it do~s exi~t. This 
importance stems from the fact that the m.g.f. is unique and completely 
determines the distribution of the random variable; thus, if two random 
variables have the same m.g.f., they have the same distribution. This 
property of an m.g.f. will be very useful in subsequent chapters. Proof 
of the uniqueness of the m.g.f. is based on the theory of transforms in 
analysis, and therefore we merely assert this uniqueness. 
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Although the fact that an" .m.g.f. (when it exists) completely 
determines the distribution of one random variable will notbe proved, 
it does seem desirable to try to make the assertion plausible; This can 
be done if the random variable is of the discrete type. For example, let 
it be given that 

M(t) = J... et + 1.. t?t + 1. elt + .! e4t 
10 10 10 10 

is, for all real values of t, the m.g.f. of a random 'variable X of the 
discrete type. If we let f(x) be the p.d.f. of X and leta, b, c, d, ... be 
the discrete points in the space of X at which f(x) > 0, then 

M(t) = L: etx f(x), 
x 

or 

..!. et + 1. t?t + 1. elt + .! e4t = 1'1 a)e"" + 1'1 b)e"t + . .. 10 ,. 10 ,10 10 . J \ J\ • 
',i" • 

Because this is an identity for all real values of t, it seems that the 
right-hand member should consist of but four terms and that each of 
the four should equal, respectively, one of those in the left-hand 
member; hence we may take a " I,f(a) = I~; b = 2,f(b) = I~; C = 3; 
f(c) = 1

1
0; d = 4,f(d) = ~ . Or, more simply, the p.d.f. of X is 

x 
f(x) = 10' x = 1,2, 3,4, 

= 0 elsewhere. 

On the other hand, let X be a random variable of the continuous 
type and let it be given that 

'. I 
M(t) = I - t' t <: 1, 

is the m.gJ. of X. That is, we are give~ 

II t = ['" e"f(x) dX, , t < 1. 

It is not at aJI obvious how f(x) is found. However, it is easy to s~that 
a distribution with p.d.f. ~ 

f(x) = e-x , 0 < x < 00, 

= 0 elsewhere 

has the m.g.f. M(t) = (l - t)-', t < 1. Thus the random variable X 
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has a distribution with this p.d.f. in accordance with the assertion of 
the uniqueness of the m.g.f. 

Since a distribution that has an'm.g.f. M(t) is completely deter­
mined by M(t), it would not be surprising if we could obtain some 
properties of the distribution directly from M(t). For example, the 
existence of M(t) for - h < I < h implies that derivatives of all order 
exist at I = O. Thus, using a theorem in analysis that allows us to 
change the order of differentiation and integration, we have 

d~') = M'(I) = [ xelXf(x) dx, 
-00 

if X is of the continuous type,or 

dM(/) = M'(/) = L xe'xf(x), 
dl x 

if X is of the discrete type. Upon setting t = 0, we have in either case 

M'(O) = E(X) = p,. 

The second derivative of M(/) is 

M"(I) = [ re'xf(x) dx or 

so that M"(O) = E(X2). Accordingly, the var (X) equals 

a2 = E(%2) - p,2 = M"(O) - [M'(O)]2. 

For example, if M(/) = (1 - I)-I, 1<: 1, as'in the illustration above, 
then 

M'(t) = (1 - 1)-2 and M"(/) = 2(1 - 1)-3. 

Hence 

p, = M~(O) = I 

and 

a2 = M"(O) - p,2 = 2 - I = 1. 

Of course, we could have computed p, and a2 fiom the p.d.r. by 

/l = [oo xf(x) dx and a' = [oo rf(x) dx -,r, 
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respectively. -Sometimes one way is easier than the other. 
In general, if m is a positive integer and if Mm)(t) means the mth 

derivative of M(t), we have, by repeated differentiation with respect to 
t, 

Now 

E(X"') = [, X"f{x)dx or L X"j{x), 
.Ie 

and integrals (or sums) of this sort are, in mechanics, called moments. 
Since M(t) generates the values of E(r), m = 1,2,3, ... , it is called 
the moment-generating function (m.g.f.). In fact, we shall sometimes 
call E(r) the mth moment of the distribution, or the mth moment 
of X. 

ExlUllp/e J •. Let X have the p.d.f. 

j{x) = !(x + I), -1 < x < 1, 

= 0 elsewher:e. 

Then the mean value of X is 

f
<XI fl)) 

P, = -<XI xj{x) dx = _I X X ; dx = 3. 

while the variance of X is 

foo II I 2 
(12 = x2j{x) dx - p,2 = xl x; dx - (~)2 = 9 . 

-00 -I 

EXIIIIIJlIe 2. If X has the p.d.f. 

1 
j{x) = xl' I < x < 00, 

= 0 elsewhere. 

then the mean value of X does not exist, since 

foo 1 f I Ixl . .2 dx = lim - dx 
x- b-<XI X 

I I 

= lim (In b In) ) 
b_oo 

does not exist. 
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Ex.",p1e 3. It is known that the series 

cohverges to x2/6. Then 

1 1 1 -+-+-+ ... 12 22 32 

, ,6 
f(x) = 1t2x2' x'~ 1,2,3,: .. , 

=' 0 elsewhere, 

63 

is the p.d.f. of a discrete type of random variable X. The m.g.f. of this 
distribution, if it exists, is given by 

M(I) = E(e'X) = l: e''l(x) 
x 

00 6e'X 
= l:-. x,""rx2 

The ratio test may be used to show that this series diverges if 1 > O. Thus there 
does not exist a positive numberh such 'that M(I) exists' for -h < 1 < h. 
Accordingly, the distribution having the p.d.f.f(x) ofthis'example does not 
have an m.g.f. 

Extunp1e 4. Let X h~ve the m.g.(. M(I) = e,2/2~ - 00 < t. < 00. We can 
differentiate M(I) any'number of time,s to find the mOments of ¥. However, 
it is instructive to consider this' alternative method. The fun(!tion M(I) is 
represented by' the fonowing Ma~Laurin's series. , " 

, ' , 

e' =1+- - +- - + ... +- - + ... , 2/2' 1 (r2) 1 ('2)2 1 (r2)1c 
I! '2 2! 2 kt 2 

1 2 (3)(1) (2k - 1) ... (3)(1) . 
=1+-1 +--r+ .. ·+ f1c+ .... 

21 4! (2k)! 

In general, the MacLaurin's series for M(I) is 

. M'(O) M"(O) Mm)(o) , 
M(I) = M(O) + 1+ r2+ ... + r+ .. · 

l! 21 m!' 

, . E(X) E(X2) 2 E(X"') 
=1+--1+--1+ .. ·+ r+· ... 

I! 2! m! . , 

Thus the coefficient of (rIm!) in the MacLaurin's series representation of M(I) 
is E(X"'). So, for our particular M(t), we have 

(2k)! 
E(,X2Ic) = (2k - 1)(2k - 3) ... (3)(1) = 21ck! ' 

k = 1, 2, 3, ... , and E(X,'lk - ') = 0, k = 1, 2, 3, .... 
.. 
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Remarks. In a more advanced course, we would not work with the m.g.f. 
because so many distributions do not have moment·generating functions. 
Instead, we would let i denote the imaginary unit, t an arbitrary real, and we 
would define cp(t) = E(eit~. This expectation exists for every distribution and 
it is called the characteristic function of the distribution. To see why cp( t) exists 
for all real t, we note, in the continuous case, that .its absolute value 

1'1'(/)1 = r~ e'''j(x) dx < [ 1e'''j(x)1 dx. 

However, If(x)1 = f(x) sin~ {(x) is ~onnegative and 

lei/xI = Icos tx, + i sin txl = Jcos2 tx + sin2 Ix = 1. 

Thus 

1",(1)1 < [ j(x) dx = I. 
-00 

AcCordingly, the integral for cp(tfexists for (ill real values of t. In the discrete 
case"a s11l1,lmation would replace the integral. " , 

Every distribution has a unique characteristic function; and to each 
characteristic function there corresponds a unique distribution of prob­
ability. If X has a distribution with characterjstic function cp( t), ,then, for 
instance, if E(X) and E(Xl) exist, they are ,given, ,resPectively, by iE(X) = 
cpi(O) and j2 E(Xl) = q,"(O). Readers who are.' familiiar with complex-valued 
functions may"write cp(t) , M(it) and, throughout' this bOOk, may prove 
certain theorems in complete' generality. " , ' ", 

Those who have studied Laplace and Fourier transforms will note a 
similarity between these transforms and M(t) and cp(t); it is the uniqueness of 
these transforms that allows us to assert the uniqueness of each of the 
moment-generating and characteristic functions. 

EXERCISES 

1.89. Find the mean and variance, if tbey exist, of each of the following 
distributions. ' 

31 (1)3 
(a) f(x) = x! (3 _ x)! \2 ,x ,= 0, 1, 2, 3, zero elsewhere. 

(b) f(x) = 6x(l - x), 0 '< x < I, zero elsewhere. 
(c) f(x) =,2/xJ, 1 -< x < 00, zero elsewhere. 

1.90. Let f(x) = GY, x = 1,2,3, ... , zero elsewhere, be the p.d.f. of the 
random variable X. Find the m.g.f., the mean, and the variance of X. 

1.91. For each of the following probability density functions, compute 
Pr (p - 2t1 < X < p + 2t1). 
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(a)'f{x) = 6x(1 - x), 0 < x< I, zero. elsewhere. 
(b) f(x) = (iY, x = 1.2,3, ." ..• zero elsewhere. 

1.92. If the variance of the random variable X exists, show that 

.E(XZ)~[E(X)]2. 

1.93. Let a random variable X of the continuous type have! ap.d.f./(x) 
whose graph is symmetric with reSpect"to'x = c. If the mean value of X 
existS, show that E(X) = c. 

Hint: Show that E(X - c) equals zero by writing E(X - c) as the sum 
of two integrals: one from· - 00 to c and the other ftorn c to 00. In the first, 

• 
let y = c - x; and, in the second, Z = x-c. Finally, use the symmetry 
condition f( c - y) = f( c '+ y) in the first. . 

1.94. Let the random variable X' h~ve mean p, standard deviation u" and 
m.g.f. M( t), - h < t <:: h. Show that' 

and 

-hu < t < hu. 

1.95. Show that the m.g.f. of the random variable X having thep.d·f.f(x) = i, 
-I < x < 2, zero elsewhere, is 

M(t) = il' - e- t 
0 

3t ' t =F , 

= I, t = O. 

1.96. Let Xbe a random variable such that E[(X"':' b)2] exists for all real b. 
Show that E(X - b)2] is a minimum when b = E(X). 

1.97. Let X denote a random variable for which E[(X - a)2] exists. Give an 
example of a distribution of a discrete type such that this expectation is 
zero. Such a distribution is called a degenerate distribution. 

1.98. Let X Jx: a randolll variable such that K(t) = E(tX
). exists for 

all real 'values of t in a certaiIi open interval that includes; the p,oint 
t = 1. Show that ~m)(I) is equal to the mth factorial moment 
E[X(X - I) ... (X - m + 1)]. 

1.99. Let X be a random variable. If m is a positive integer, the expectation 
E[(X - b)m], ifit exists, is called the mth moment of the distribution about 
the point b. Let the first, second, and third moments of the distribution 
about the point 7 be 3, II, and 15, respectively. Determine the mean p of 
X; and then find the first, second, and third moments of the distribution 
about the point p. 
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1.100. Let X be a random variable such that R(t) = E(e'(X - b» exists for 
- h < t < h. If m is a positive integer, show that Rtm)(o) is equal to the mth 
moment of; th~:distribution about the point b. 

1.101. Let X be a random variable with mean Jl and variance al such that the 
third moment E[(X - Jl)3] about the vertical line through Jl exists. The value 
of the. ratio E[(X....., Jl)3]/(l3 is often used as a mea~ure of skewness. Graph 
each of the following probability density functions and show that this 
measure is negative, zero, and positive for the~ respective distributions 
(whicl) are said \0 be skewed to the .left, not skewed, and skewed to the 
right", respectively). 
(a) f(x) = (x + I )/2; -I < x < I, zero elsewhere. 
(b) j{x), =!, -I < x:< 1, zero else'Yhere . 

. (c) f(x) = (f-.x){2, ~ I < x < 1. zero elsewhere. 

1.102. Let X be a random variable with mean Jl and variance al sitch that the 
fourth moment E[(X -'Jlt1 about the vertical tine through Jl exists. The 
value of the ratio E[(X - Jlt1/oA is often used as a measure.of kurtosis. 
Graph each of the following probability density functions and show that 
this measure is smaller for the first distribution. 
(a) f(x) = i, -I < x < 1, zero elsewhere. 
(b) f(x) = 3(1 - r){4, -I < x .< I, zero elsewhere . 

.1.103. Let ' the random variable X have p.d£ 

j{x) = p, x=-I,I, 

= I - 2p, x = 0, 

= 0 elsewhere, 

where 0 < p < t. Find the measure of kurtosis as a function of p. Determine 
its value when p ::= i, p = !. p = -/0, and p = I~' Note that the kurtosis 
increases as p decreases. 

1.104. Let t/I(t) = In M(t), where M(t) is the m.g.f. of a distribution. Prove that 
t/I'(O) = Jl and t/I"(O) = (12. 

1.1OS. 'Find the mean arid the 'variance "of the distributiort that has' the 
distribution function 

F(x) = 0, x < 0, 

=-
8 ' 

o <x < 2, 

2 <x < 4, 

= 1, 4<x. 

Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 1.91 'Some Specilll Ex!iectat;ons 67 

1.106. Find the moments of the distribution that has m.g.f. M(I) == (l - 1)-3, 

I < I. 
Hinl: Find the MacLaurin"s series for M(/). 

1.107. Let X be a random variable of the continuous type with p.d.f. I(x). 
which is positive provided 0 < x < b:k,'oo, and is equaJ to zero elsewhere. 
Show that 

E(X) = f [I - flx») ax. 

where F(x) I~ the distriblftJon function of X. 

1.108. Let X be a random variable of the discrete type with p.d.f. j(x) that 
is positive on the nonnegative integers and is equal to zero elsewhere. Show 
that 

00 , 

E(X) = L [1 - F(x)J, 
x =0 ' 

where F(x) is the distribution function of X. 

1.109. LetXhavethep.d.f.j(x) = I/k.x = 1,2, ... ,k,zeroelsewhere. Show 
that the rn.g.f. is 

et(1 - e*t) 
M(/) , k(l _ e)' t ;i: 0, 

" ' 1, . 1= 0.', 

1.110. Let X have the distribution function F(x) that is a mixture of the 
continuous and discrete types, namely 

F(x) = 0, x < 0, 

x+1 
=-4- O<x<l. 

= I, 1 <x. 

Find Jl = E(X) and rr = var (X). 
Hinl: Determine that part of the p.d.f. associated with each of the 

discrete and continuous types, and then sum for the discrete part and 
integrate for the continuous part. 

1.111. Consider k continuous-type distributions with the following charac­
teristics: p.d.f. /;(x), mean Jli' and variance 0':, i = ),2, ... ,k. If Ci ~ 0, 
j = 1,2, ... , k, and CI + C2 + ... + Ck = I, show that the mean and the 
variance of the distribution having p.d.f. cdj(x) + ... + ckfi(x) are 

k k 

Jl = L CiJlj and rr = L cj[U; + (Pi - p)2), respectively. 
i ... 1 i 1 
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1.10 Chebyshev's Inequality 

In this section we prove a theorem that enables us to find upper (or 
lower) bounds for certain probabilities. These bounds, however, are 
not necessarily close to the exact probabilities and, accordingly, we 
ordinarily do not use the'theorem to approximate a probability. The 
principal uses of the theorem and a special case of it are in theoretical 
discussions in other chapters. 

Theorem 6. Let u(X) be a nonnegative function of the random 
variable X. If E[u(X)] exists, then, for every positive constant c, 

Pr [u(X) > c] < E[u(X)] . 
c 

Proof. The proof is given when the random variable X is of the 
continuous type; but the proof can be adapted to the discrete case 
if we replace integrals by sums. Let A = {x: u(x) > c} and let f(x) 
denote the p.d.f. of X. Then 

E[u(X)] = [, u(x)Jtx) dx = 1 u(x)Jtx) dx + 1. u(x)f(x) dx. 

Since each of the integrals in the extreme right-hand member of the 
preceding equation is nonnegative, the left-hand member is greater 
than or eqQaI to either of them. In particular, 

E[u(X)] ~ f u(xlftx) dx. 
A 

However, if x E A, then u(x) ~ c; accordingly, the right-hand member 
of the preceding inequality is not increased if we replace u(x) by c. Thus 

E[u(X)] > c f Jtx) dx. 
... A 

Since 

1 Jtx) dx = Pr (X E A)· Pr [u(X) > c]. 

it follows that 

E[u(X)] > cPr [u(X) ~ c], 

which is the desired result. 
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The preceding theorem is a generalization of an inequality that is 
often called Chebyshev's inequality. This inequality will now be 
established. 

TheOrem 7! Chebyshev's InequaHty. Let the random variable X have 
a distribution of probability about which we assume only that there is a 
finite variance u2

• This, of course, implies that there is a mean p.. Then 
for every k > 0, 

or, equivalently, 

I 
Pr (IX - ttl ~ ku) < k2" 

, I 
Pr (IX p.1 < ku) ~ I - ~. 

Proof-In Theorem 6 take u(X) = (X - ttf and c = k2til. Then we 
have 

Pr [(X _ ,..)' > ic'n'l < E[(~:"..)'l . 

Since the numerator of the right-hand member of the preceding 
inequality is til, the inequality may be written 

I 
Pr (IX - ttl > ku) < k2 ' 

which is the desired result. Naturally, we would take the positive 
number k to be greater than 1 to have an inequality of interest. 

It is seen that the number 1/~ is an upper bound for the probability 
Pr (IX - p.1 > ku). In the following example this upper bound and the 
exact value of the probability are compared in special instances~' 

Example 1. Let X have the p.d.f. 

1 
j{x)=-, 

2)3 
= 0' elsewhere. 

Here p. = 0 and (12 = 1. If k = !, we have the exact probability 

Pr (IX -' III >k(1) = Pr (IXl > ~) = I - r'" I r.; dx = I - f. 
13/22...; 3 
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By Chebyshev's inequality, the preceding probability has the upper bound 
l/k2 =~. Since I - J3/2 = 0.134, approximately, the exact probability in 
this case is considerably less than the upper bound;. If we take k = 2, we have 
the exact probability Pr (IX - JlI ~ 20') = Pr (IXI > 2) = O. This again is 
considerably less than the upper bound 1/12 = ~ provided by Chebyshev's 
ineq uality. 

In each of the instances in the preceding example, the probability 
Pr (IX - ILl > ku) and its upper bound 1/k2 differ considerably. This 
suggests that this inequality might be made sharper. However, if we 
want an inequality that holds for every k > 0 and holds for all random 
variables having finite variance, such an improvement is impossible, as 
is shown by the following example. 

EXlI1IIple 2. Let the random variable X of the discrete type have 
probabilities i, I, l at the points x = -1,0, I, reSpectively. Here Jl = 0 and 
0'2 = 1. If k = 2, then l/k2 = 1 and Pr (IX - III ~ kO') = Pr (IXI ~ 1) = i. That 
is, the probability Pr (IX - JlI > kO') here attains the upper bound l/tz = *. 
Hence the inequality cannot be improved without further assumptions about 
the distribution of X. 

EXERCISES 

1.112. Let X be a random variable with mean Jl and let E[(X - Jl)2k] exist. 
Show, with d> 0, that Pr (IX - III ~ d) < E[(X - 1l)2k]/tP. This is 
essentially Chebyshev's inequality when k = I. The fact that this holds for 
all k = 1, 2, 3, ... , when those (2k)th moments exist, usually provides a 
much smaller upper bound for Pr (IX - JlI ~ d) than does Chebyshev's 
result. 

1.113. Let X be a random variable such that Pr (X < 0) = 0 and let Il = E(X) 
exist. Show that Pr (X > 2Jl) <!. 

1.114. If X is a random variable such that E(X) = 3 and E(..f2) = 13, use 
Chebyshev's inequality to determine a lower bound for the probability 
Pr(-2 < X < 8). 

1.115. Let X be a random variable with m.g.f. M( I), - h < I < h. Prove that 

Pr (X > a) < e-arM(/), 0 < 1< h, 

and that 

Pr (X < a) < e-OfM(t), -h < t < O. 

Hinl: Let u(x) = e(X and c = eta in Theorem 6. Nole. These results imply 
that Pr (X ~ a) and Pr (X < a) are less than the respective greatest lower 
bounds for e-O'M(t) when 0 < t < h and when -h < 1<0. 
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1.116. The m.g.f. of X exists for all real values of t and is given by 

M(t) = e' ~te-' , t :p. 0, M(O) = I. 

Use the results of the preceding exercise to show that Pr (X ~ I) = 0 and 
Pr (X ::;; 1) = O. Note that here h is infinite. 

ADDITIONAL EXERCISES 

1.117. Players A and B playa sequence of independent games. Player A 
throws a die first and wins on a ·'six.:~ Ifhe.fails,B throws and wins on a 
"five" or "six." If he fails, A throws again and wins on a "four," "five," 
or "six." And so on. Find the probability of each player winning the 
sequence. 

1.118. Let X be the number of gallons of ice cream that is requested at a 
certain store on a hot summer day. Let us assume that the p.d.f. of X is 
j{x) = 12x(lOOO - x)2/1012, 0 <x < 1000, zero elsewhere. How many 
gallons of ice cream should the store have on hand each of these days, so 
that the probability of exhausting its supply on a particular day is 0.05? 

1.119. Find the 25th percentile of the distribution having p.d.f. j{x) = Ixl/4, 
:..... 2 < x < 2, zero elsewhere. 

1.120~ Let A" A2, A3 be independent. events with probabilities !, 1, ~, 
respectively. Compute Pr (AI U A2 U A3)' 

1.121. From a bowl containing 5 red, 3 white, and 7 blue chips, select 4 at 
random and without replacement. Compute the conditional probability of 
I red, 0 white, and 3 blue chips, given that there are at least 3 blue chips 
in this sample of 4 chips. 

1.122. Let the three independent events A, B, and C be such that 
P(A) = P(B) = P(C> =~. Find P[(A* t1 B*) u Cl. 

1.123. Person A tosses a coin and then person B rol1s a die. This is repeated 
independently until a head or one ofthe numbers I, 2, 3,4 appears, at which 
time the game is stopped. Person A wins with the head and B wins with one 
of the numbers 1,2,3,4. Compute the probability that A wins the game. 

1.124. Find the mean and variance of the random variable X having 
distribution function 

F{x) = 0, . x < 0, 

x = '4> 0 <x < 1, 
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4 ' 1 <x < 2, 

= 1, 2 <x. 

1.125. Let X be a random variable having distribution function 

F(x) = 0, x < 0, 

= 2r. O::s.; x < t. 
= ] - 2(1 - X)2. 

,= I, 3 :4::s.; x. 

Find Pr(! < X <i) and the variance of the distribution. 
Hint: Note that there is a step in F(x). 

1.126. Bowl 1 contains 7 red and 3 white chips and bowl II has 4 red and 6 
white chips. Two chips are selected at random and without replacement 
from I and transferred to II. Three chips are then selected at random and 
without replacement from II. 
(a) What is the probability that all three are white? 
(b) Given that three white chips are selected from II, what is the 

conditional probability that two white chips were transferred from 11 

1.127. A bowl contains ten chips numbered 1.2, ... , 10, respectively. Five 
chips are drawn at random, one at a time, and without replacement. What 
is the probability that exactly two even-numbered chips are dr:awn and they 
occur on even-numbered draws? 

1.128. Let E(X'') = r ~ I • r = I, 2, 3, .... Find the series representation for 

the m.g.f. of X. Sum this serieS'. . 

1.129. Let X have the p.dJ.j{x) = 2x, 0 < x < I. zero elsewhere. Compute 
the probability that X is at least ~ given that X is at least i. 

1.130. Divide a line segment into two parts by selecting a point at random. 
Find the probability that the larger segment is at least three times the 
shorter. Assume a uniform distribution. 

1.131. Three chips are selected at random and without replacement from a 
bowl containing 5 white. 4 black. and 7 red chips. Find the probability that 
these three chips are alike in color. 

1.132. Factories A, B, and C produce, respectively, 20~ 30, and 50%. of a 
certain company's output. The items produced in A, B. and C are 1,2. and 
3 percent defective. respectively. We observe one item from the company's 
output at random and find it defective. What is the conditional probability 
that the item was from A? 
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1.133. The probabilities that the independent events A, B, and C will occur 
are l, t, and i. What is the probability that at least one of the three events 
will happen? 

1.134. A person bets I dollar to b dollars that he can draw two cards from 
an ordinary deck without replacement and that they will be of the same suit. 
Find b so that the bet will be fair. 

1.135. 'A bowl contains 6 chips: 4 are red and 2 are white. Three chips are 
selected at random and without replacement; then a coin is tossed a number 
ofindependent times that is equal to the number of red chips in this sample 
of 3. For example, if we have 2 red and I white, the coin is tossed twice. 
Given that one head results, compute the conditional probability that the 
sample contains 1 red and 2 whit~. . 
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CHAPTER 2 

Multivariate 
Distributions 

2.1 Distributions of Two Random Variables 

We begin the discussion of two random variables with the following 
example. A coin is to be tossed three times and our interest is in 
the ordered number pair (number of H's on first two tosses, number 
ofH's on all three tosses), where Hand T represent, respectively, heads 
and tails. Thus the sample space is ~ = {c : c = c;, i = 1,2, ... ,8}, 
where c, is 'TTT, C2 is TTH, C3 is THT, C4 is HTT, CS is THH, C6 is 
HTH, C7 is HHT, and Cg is HHH. Let XI and X 2 be two functions 
such that X1(CI) = XI (C2) = 0, X.(C3) = X I (C4) = XI (cs) = X,(C6) = 1, 
XI (C7) = XI (Cg) = 2; and X 2(c.) = 0, X 2(C2) = X 2(C3) = X2(C4) = I, 
X 2(cs) , X2(C6) = X2(C7) = 2, X2(Cg) = 3. Thus XI and X2 are 
real-valued functions defined on the sample space ~, which take us 
from that sample space to the space of ordered number pairs 

.91 = {(O, 0), (0, 1), (1, 1), (I, 2), (2, 2), (2, 3)}. 

Thus XI and X 2 are two random variables defined on the space ~, 
and, in this example, the space of these random variables is the two-
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dimensional set .91 given immediately above. We now formulate the 
definition of the space of two random variables. 

Definition 1. Given a random experiment with a sample space~. 
Consider two random variables XI and X2, which assigl1 t.9 each 
element c of~ one and only one ordered pair of numbers XI (c) = XI, 

X2(c) = X2' The space of XI and X2 is the set of ordered pairs' 
.91 = {(Xb X2) : XI = XI (c), X2 = X2(c), c E ~}. 

Let.91 be the space associated with the two random variables XI and 
X 2 and let A be a subset of .91. As in the case of one random variable, 
we shall speak of the event A. We wish to define the probability of the 
event A, which we denote by Pr [(XI, X 2 ) E A]. Take C = {c : c E ~ and 
[XI(c), X2(C)] E A}, where ~ is the sample space. We then define 
Pr [(Xb X2) EA]= P(C), where P is the probability set function 
defined for subsets C of~. Here again we could denote Pr [(XI' X2) E A] 
by the probability set function px,.x2(A); but, with our previous 
convention, we simply write 

Again it is important to observe that this function is a probability set 
function defined for subsets A of the space .91. 

Let us return to the example in our discussion of two random 
variables. Consider the subset A of .91, ~here A = {(1, 1), (1, 2)}. 
To compute Pr [(XI' X2) E A] = P(A), we must include as elements of C 
all outcomes in rc for which the random variables X, and X2 take values 
(x" X2) whi¢h are elements of A. Now X,(C3) = 1, X2(C3) = 1, 
X I (c4) = 1, and X2(C4) = 1. Also, X,(cs) = 1., X2(cs) = 2, X I(C6) = 1, 
and X 2(C6) = 2. Thus P(A) = Pr [(XI, X2) E A] = P( C), where 
C = {C3' C4, Cs, or C6}' Suppose that our probability set function P(C) 
assigns a probability of i to each of the eight elements of~. This 
assignment seems reasonable if PCT) = P(H) = i and the tosses are 
independent. For ilJustration, 

P({c.}) = Pr (TTT) = (i)(DG) = 4. 

Then P(A), which can be written as Pr (XI = 1, X 2 = 1 or 2), is equal 
to ~ = 4. It is left for the reader to show that we 'can tabulate the 
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probability, which is then assigned to each of the elements of d, with 
the following result: 

(0, 0) (0, 1) (1, 1) (1, 2) (2~2) (2, 3) 

J 
'8 

J 
'8 

.2 
8" 

2 
'8 

J 
'8 

J 
i 

This table depicts the distribution of probability over the elements of 
d, the space of the random variables XI and X2• 

Again in statistics we are more interested in the space d of two 
random variables, say Xand.Y, than that ofCG. Moreover, the notion 
of the p.d.f. of one random variable X can be extended to the notion 
of the p.d.f. of two or more random variables. Under .certain 
restrictions on the space d and the function I> 0 on d (restrictions 
that will not be enumerated here), we say that the two random variables 
X and Yare of the discrete type or of the continuous·type, and have 
a distribution of that type, according as the probability set function 
P(A), A c;::::: d, can be expressed as 

P(A) = Pr [(X, Y) E A] = I If(x, y), 
.It 

or as 

P(A) = Pr [(X, Y) E AJ = f f f(x, y) dx dy . 

.It 

In either case I is called the p.d.f. of the two random variables X and 
Y. Of necessity, P(d) = 1 in each case. 

We may extend the definition of a p~d.f. I(x, y) over the entire 
xy-plane by using zero elsewhere. We shall do this consistently so that 
tedious, repetitious references to the space d can be avoided. Once this 
is done, we replace . 

L f f(x,y) dx dy by r r f(x, y) dx dy.' 
-00 -00 

Similarly, after extending the definition of a p.d.f. of the discrete type, 
we replace 

. II/(x,y) by II/(x,y) . 
.l1/ y x 

In accordance with this convention (of extending the definition of 
a p.dJ.), it is seen that a point function J, whether in one or two 
variables, essentially satisfies the conditions of being a p.d.f. if (a) I 
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is defined and is nonnegative for aU real values of its argument(s) and 
if (b) its integral [for the continuous type of random variable(s)], or 
its sum [for the discrete type of random variable(s)] over all real values 
of its arguments(s) is I. 

Finally, if a p.d.f. inane or.more variables is explicitly defined,' we 
can see by inspection whether the random variables are of the con­
tinuous or discrete type. For example, it seems obvious that the p.d.f. 

· 9 
f(x, y) = 4x + y ' x' 1, 2, 3, ... , y = 1, 2, 3, ... , 

= 0 elsewhere, 

is a p.dJ. of two discrete-type random variables X and Y, whereas the 
p.d.f. 

f(x, y) = 4xye-x'--r, 0 < x< 00, 0 < y < oo~ 

·=0 . elsewhere,' 

is clearly a p.d.f. of two continuous-type random variables X and Y. 
In such cases it seems unnecessary to specify which of the two simpler 
types of random variables is under consideration. 

EXll1IIple 1. Let 

I(x,y) = 6.x2y, 0 -< x < 1, 0 ~y <.1, 

=0 elsewhere, 

be the p.d.f. of two random variables X and Y, which must be of tpe 
continuous type. We have, for instance, ' . , . ., 

1213/4 
Pr (0 < X < i, j < Y < 2) = f(x, y) dx dy 

1/3 0 

II 1314 12

1314 

= 6rydxdy + 0 dxdy 
1/3 0 I 0 

=1+0=1 8 8' 

Note that this probability is the volume under the surface/(x, y) = 6ry and 
above the rectangular set {(x, y) : 0 < x < ~, ~ < y < I} in the xy-plane. 

, 
Let the random variables X and Yhave the probability set function 

P(A), where A is a two-dimensional set. ''If A is the unbounded set 
{(u, v): u < x, v <y}, where x and yare real numbers, we have 

P(A) = Pr [(X, Y) e A] = Pr (X S x, Y < y). 
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This function ,of the point (x, y) is called the distribution function of X 
and Y and is denoted by 

F(x, y) = Pr (X < x, Y < y). 

If X and Yare random variables of the continuous type that have p.d.f. 
f(x, y), then 

F(x, y) = foo foo flu, v) du dv. 

Accordingly, at points of continuity of f(x, y), we have 

iJ2F(x, y) 
ox oy = f(x, y). 

It is left as an exercise to show"in every case, that 

Pr (a < X s; b, c < Y s; d) = F(b, d) - F(b, c) - F(a, d) + F(a, c), 

for all real constants a < b, c <: d. , 
Consider next an experiment in which a person chooses 

at random a point (X,Y) from the unit square 'G = .rI- = 
{(x, y): 0 < x < 1,0 < y < I}. Suppose that our interest is not in X or 
iIi Y but in Z = X + Y. Once a suitable probability model has been 
adopted, we shall see how to find the p.d.f. of Z. To be specific, let the 
nature of the random experiment be such that it is reasonable to assume 
that the distribution of probability over the unit square is uniform. 
Then the p.d.f. of X and Y may be written 

f(x, y) = I, 0 < x < 1, 0 < y < I, 

= 0 elsewhere, 

and this describes the probability model. Now let the distribution 
function of Z be denoted by G(z) = Pr (X + Y < z). Then 

G(z) == 0, z < 0, 

i
z iZ-X 2 

= 0 0 dydx=~, o <z < I, 

II II" (2 - Z)2 
= 1 - .. dy dx = I - 2 ' 

. :-1 :-x 

I <z < 2, 

=1, 2<z. 
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Since~G'(z) exists for all values of z, the p.d.f. of Z may then be written 

g(z) = z, 0 < z < I, 

= 2 - z, I < z < 2, 

= 0 elsewhere. 

It is clear that a different -choice of the p.d.f. f(x, y) that describes 
the probability mode~ will, in general, lead to a different p.d.f. of 
Z. 

Let f(x" X2) be the p.dJ. of two random variables XI and X2• From 
this point on, for emphasis and clarity, we shall call a p.dJ. or a 
distribution function a joint p.d.f. or a joint distribution function when 
more than one random variable is involved. Thusf(xl, X2) is the joint 
p.d.f. of the random variables X, and X2• Consider the event 
a < XI < b, a < b. This event can occur when and only when the event 
a < XI < b, - 00 < X2 < 00 occurs; that is, the two e~ents are 
equivalent, so that they have 'the same probability. But the probability 
of the latter event has been ~efined and is given by 

Pr (a < X, < b, - 00 < X, < 00) = r f'" I(x" x,) dx,dx, 
o -00 

for the continuous case, and by 

Pr (a < XI < b l , - 00 < X 2 < 00) = I I f(x" X2) 
0< XI <h X2 

for the discrete case. Now each of 

f'" [(x" x,) dx, and 
-00 

is a function of XI alone, say!.(x,). Thus, (or every a < b, we have 

Pr (a < X, < b) = r fi(x,) dx, (continuous case), 
o 

(discrete case), 

so that !.(XI) is the p.d.f. of X, alone. Since !.(XI) is found by 
summing (or integrating) the joint p.d.f. f(x" X2) over all X2 for a 
fixed XI' we can think of recording this sum in the Hmargin" of the 

Uploaded By: anonymousSTUDENTS-HUB.com



10 

XIXt"plane. Accordingly, .t;(xl ) is called the marginal p~d.f. of XI' In 
like manner 

!,(x,) = I: [(XI' x,) dXI (continuous case), 

(discrete case), 

is called the marginal p.d.f. of X2 • 

Exlllllpk 2. Consider a random experiment that· consists of drawing at 
random one chip from a bowl containing 10 chips of the sam~ shape and size. 
Each chip has an ordered pair of numbers on it: one with (1, 1), one with (2, 1), 
two with (3,1), one with (1, 2), two with (2,2), and three with (3, 2). Let th~ 
random variables XI and X2 be defined as the respective first and second values 
of the ordered pair. Thus the joint p.d,.f. f(x I, x2) of XI and X2 can be given 
by the following table, withf(x" x2)~equal to zero elsewhere. 

XI 

X2 L 2 3 Ji(X2) 

1 I I 2 4 
TO TO TO TO 

2 I 2 3 6 
10 10 10 TO 

Ji(x.) 2 3 5 
iii iii iii 

The joint probabilities have been summed in each row and each column and 
these sums recorded in the margins to give the marginal probability density 
functions of XI and X2, respectively. Note that it is not necessary to have a 
formula for f(x., X2) to ~o this. 

Example 3. Let XI and X 2 have the joint p.d.f. 

O<x, < I, O<X2< I, 

= 0 elsewhere. 

The marginal p.d.f. of XI is 

!o(x,) = f (XI + x,) dx, = XI +~, 0 < X, < I, 

zero elsewhere, and the marginal p.d.f. of X 2 is 

.. f,(x,) = f (~; + x,)dx, =! + X" 0"" X, < I, 
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zero elsewhere. A probability like Pr (XI S; !) can be computed from either 
"(XI) or !(xJ, X2) because 

(/2 rl rl/2 
J
o 

J
o 

f(XI,'X2) dx2dxI = J
o 

"(XI) dXI = i· 
However to find a probability like Pr (XI + X2 < 1), we must use the joint 
p.d.f. !(X., X2) as follows: • 

II II - XI II [ (1 X )2J 
o (XI + X2) dX2 dxl = 0 XI(l - XI) + -2 I dxl 

-11 (! -! _.2) dx -! - 2 2 ~i 1-3' 

This latter probability is the volume under the surface !(XI, X2) = XI + X2 
above the set{(x .. X2) : 0 < X., 0 < X2, XI + X2 < I}. 

EXERCISES 

2.1. Let !(x" X2) = 4XIX2, 0 < XI < 1, 0 < X2 < 1, zero elsewhere, be the 
p.d.f. of XI and X2. Find Pr (0 < Xl <!, l < X2 < 1), Pr (XI = X2), 
Pr (XI < X2), and Pr (Xl < X 2). • 

Hint: Recall that Pr (XI = X2) would be the volume under the surface 
!(x" X2) = 4XIX2 and above the line segment 0.< XI= X2 < 1 in the 
Xlx2-plane, 

2.2. Let AI = {(x,y): X <2,y< 4}, A2 = {(x,y): X S; 2,y < I}, AJ = 

{(x, y): x ~ 0, y :=;;: 4}, and A4 = {(x. y): X <0, y < I} be subsets of the 
space d of two random variables X and Y, which is the entire 
two-dimensional plane. If P(A I) = t, P(A2J = t, P(Aj) = i, and P(A4) = i, 
find P(As), where As = {(x, y) : 0 < X < 2, 1 < y < 4}. 

2.3. Let 11x, y) be the distribution function of X and Y. Show that 
Pr (a < X < b, c < Y S; d) = F(b, d) - F(b, c) -11a, d) + 11a, c), for all 
real constants a < b, c < d. 

2.4. Show that the function 11x, y) that is equal to 1 provided that X + 2y ~ I, 
and that is equal to zero provided that X + 2y < 1, cannot be a distribution 
function of two riindOm. vaiiables. 

Hint: Find fOlJr numbers a < b, c < d, so that 

F(b, d) - 11a, d) - ,11b, c) + F(a, c) 

is less than zero. 

2.5. GiV~ that the nbnnegative functio~ g(x) has the property that r g(x)dx = 1. 
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Show that 

!(x). X2) = [2g(Jxi + xn]/(1tJ xi + xD, 0 < XI < 00,0 < X2 < 00, 

zero elsewhere, satisfies the conditions of being a p.d.f. of two 
continuous-type random variables XI and X2• 

Hint: Use polar coordinates. 

2.6. Let f(x, y) = e- X 
-', 0 < X < 00, 0 < y < '00, zero elsewhere, be the 

p.d.f. of X and Y. Then if Z = X + Y, ~mpute Pr (Z < 0), Pr (Z < 6), 
and, more generally, Pr (Z < z), for 0 < z < 00. What is the p.d.f. of 
Z? 

2.7. Let X and Y have thep.d.f. /(x. y) = ]. 0 < x < I. 0 < y < ). zero 
elsewhere. Find the p.d.f. of the product Z = XY. 

2.8. Let ] 3 cards be taken, at random and without replacement, from an 
ordinary deck of playing cards. If X is the number of spades in these ) 3 
cards, find the p.d.f. of X. If, in addition. Y is the number of hearts in these 
13 cards, find the probability Pr (X = 2, Y = 5). What is the joint p.d.f. of 
Xand Y? 

2.9. Let the random variables XI and X2 have the joint p.d.f. described as 
follows: 

2 
il 

3 
il 

~ 

2 
i2 

an~ /(XI, X2) is equal to zero elsewhere. 

2 
i2 

2 
11 

I 
i2 

(a) Write. these probabilities in a rectangular array as in Example 2. 
recording each marginal p.d.f. in the "margins.", " 

(b) What is Pr (XI + X2 = 1)1 

2.10. Let XI an<tX2 have the joint p.d.f. !(x .. X2) = 15x~ X2, 0 < Xl < X2 < I, 
zero elsewhere. Find each marginal p.d.f. and compute Pr (XI' + X2 < 1). 

Hint: Graph the space of Xl and X2 and carefully choose the limits 
of integration in determining each marginal p.d.f. 

2.2 Conditional Distributions and Ex~tatiops 

We shall now discuss the notion of a conditional p.d.f. Let 
XI and X2 denote random variables of the discrete type which 
have the joint p.d.f. f(xJ, X2) which is positive on d and is 
zero elsewhere. Let fi(xl) and h.(X2) denote, respectively" the 
marginal probability density functions of XI and X2• Take AI to "be 
the set AI = {(XI' X2): XI = x~, -00< X2 < oo}, where x~ is such 
that P(A I ) = Pr (XI = xD = t.(xD > 0, and take A2 to be the set 
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A2 == {(x" x2) : - 00 < XI < 00, x2 = x;}. Then, by definition, the 
conditional probability of the event A2, given the event Ah is 

( I ) P(AI () A2) Pr (XI = xi, X2 = xl) j{x" xl) 
PA2A I = = =---

P(A,) Pr (XI = XI) !.(xi) . 

That is, if (x" X2) is any point at which !.(x, ) > 0, the conditional 
probability that X2 = Xh given that X, = x), is./tx" X2)/!.(XI)' With x, 
held fast, and with!. (x,) > 0, this function of X2 satisfies the conditions 
of being a p.d.f. of a discrete type of random variable X2 because 
./tx" X2)/!.(XI) is nonnegative and 

L./tx" X2) = I L j{x" X2) =!.(x,) = I,. 
X2 ft(xd Ji(xl) X2 "(XI) 

We now define the symbol f21\ (x2Ix\) by the relation 

j{Xh X2) 
hll(X2Ix\) = !.(x\) , 

and we can hi. (x2Ix.) the conditional p.d.! of the discrete type of 
random variable X2, given (hat the discrete type of random variable 
X. = XI' In a similar manner we define the symbol Ji1ixllx2) by the 
re~oo . . 

./tx., X2) , 
ft'2(x,lx2) = h(X2) , h(X2) > 0, 

and we call J. 12(Xllx2) the conditional p.d.f. of the discrete type of 
random variable' XI' given that the discrete type of random variable 
X 2 = X2' 

Now let XI and X2 denote random variables of the continuous type 
that have the joint p.d.f . ./tXI, X2) and the marginal probability density 
functionsJ.(x,) andh(x2), respectively. We shall use the results of the 
preceding paragraph to motivate a definition of a conditional p.d.f. of 
a continuous type of random variable. When!. (x\) > 0, we define the 
symbolhll(x2Ix\) by the relation 

j{x!, X2) 
hl.(X2Ix\) = ft(x.) . 

In this relation, XI is to be thought of as having a fixed (but any fixed) 
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value for whichlt(x,) > 0. It is evident thathl,(x2Ix,) is nonnegative 
and that 

JOO Joof(X
" 

X2) 
hll(X2lxl ) dX2,=. It (XI) dX2 

-00 ·-00 

I Joo = It (XI) f(Xh X2) dX2 
-00 

I 
= It (XI) It(XI) = 1. 

That is, hll (x2Ixl) has the properties of a p.d.f. of one continuous type 
of random variable. It is called the conditional p.d.! of the continuous 
type of random variable X2, given that the continuous type of random 
variable XI has the value XI' Whenh(x2) > 0, the conditional p.d.f. of 
the continuous type of random variable XI, given that the continuous 
type of random variable X2 has the value X2, is defined by 

f(XI, X2) 
1t12(Xllx 2) = h(X2) , h(X2) > 0, 

Since each of f211(X21xl) and 1t12(Xllx2) is a p.d.f. of one random 
variable (whether of the discrete or the contInuous type), each has all 
the properties of such a p.d.f. Thus we can compute probabilities and 
mathematical ex~tations. If the random variables are of the 
continuous type, the probability 

Pr (a < X, < blX, = x,) = r hi, (x,lx,) dx, 
Q 

• 
is called Uthe conditional probability that a <X2 < b,· given that 
XI = XI'" If there is no ambiguity, this may be written in the 
form Pr (a < X2 < blxl)' Similarly, the conditional probability that 
c < XI < d, givenX2 = X2, is 

. ' d 

Pr (c < X, <: dlX, = x,) = i Jil,(x.lx,) dx,. 
c 

If u(X2) is a function of X2, the expectation 

E[u(X,)lx,] = Joo u(x,V~,(x,lx,) dx, 
-00 

is called the conditional expectation of u(X2), given that XI = XI' 
In particular, if they do exist, then E(X2Ixl) is the mean and 
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E{[X2 - E(X2Ix.)]2Ix.} is the variance of the conditional distribution of 
X2, given X. = x., which can be written more simply as var (X2Ix.). It 
is convenient to refer to these as the "conditional mean" and the 
"conditional variance" of X2, given XI = XI' Of course, we have 

var (X2 Ix,) = E(l1lx,) - [E(X2Ix.)]2 

from an earlier result. In like manner, the conditional expectation of 
u(X,), given X2 = X2, is given by 

E[u(X,)lx,l = f~ u(x,llil,(xtlx,) th:,. 
-00 

With random variables of the discrete type, these conditional 
probabilities and conditional expectations are computed by using 
summation insteac;l of integration. An illustrative example follows. 

UIIIIIJI/e 1. Let Xl and X2 have the joint p.d.f. 

f(Xh X2) = 2, 0 < X I < X2 < 1, 

= 0 elsewhere. 

Then the marginal probability density functions are, respectively, 

and 

!,(x,) = f.' 2 tix, = 2(1 - x,), 0 < x, < I, 
.YI 

= 0 elsewhere, 

f,(x,) = r 2 tix, = 2x" 

= 0 elsewhere. 

The conditional p.d.f. of XI, given X2 = X2, 0 < X2 < I, is 
2 I 

J.12(Xllx2) = 2x = - , 0 < XI < X2. 
2 X2 

= 0 elsewhere. 

Here the conditional mean and conditional variance of Xl, given X2 = X2, are, 
respectively, 

E(X,lx,) = f~ XJ.I'(X, Ix,) tix, 
-00 
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var(X.lx,) = r (x, - ~')'(~,}dr, 
xi 

= 12 ' 0 < X2 < I. 

Finally, we shall compare the values of 

Pr (0 < XI < !IX2 = i) and Pr (0 < XI < !). 
We have 

rl/2 rl/2 

Pr (0 < XI < 41%2 = ~) = J
o 

Jil2(xlln dXI = J
o 

(1) dx, = i, 

but 

Pr (0 < X, < D = f"f,(X,) dr, = 1''' 2(1 - x,) dr, -~. 
Since E(X2Ixl) is a function of x .. then E(X2IX1) is a random 

variable with its own distribution, mean, and variance. Let us consider 
the following illustration of this. 

EXll1IIple 2. Let XI and X2 have the joint p.d.f. 

f(xr. X2) = 6X2, 

=0 
Then the marginal p.d.f. of XI is 

0< X2 < XI < I, 
elsewhere. 

Ji(XI) = rx

, 6X2 dX2 = 3~, . Jo 
0< XI < I, 

zero elsewhere. The conditional p.d.f. of X2, given XI = XI, is 

6X2 2X2 
hll(X2!XI) = 3x: = _..2 ' 0 < X2 < X .. 

I Xi 

zero elsewhere, where 0 < x I < 1. The conditional mean of X2, given XI = x I, 
is 

Now E(X2IXI ) = 2X,/3 is a random variable, say Y. The distribution function 
of Y = 2X,/3 is 

G(y) = Pr (Y < y) = Pr (X, < 3;). 
From the p.d.f. Ji (XI), we have 

1
31/2 27y 

G(y) = 3~ dx, = - • 
o 8 
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Of course, G(y) = 0, if y < 0, and G(y) = 1, if J < y. The p.d.f., mean, and 
variance of Y = 2Xt/3 are 

S1y2 2 
g(y)=-S-' 0<y<3' 

zero elsewhere, 

12/3 (SII) 1 
E( 1') = 0 y -S- dy = 2' 

and 

12/3 (SII) 1 1 
var (1') = 0 y -S- dy - 4 = 60' 

Since the marginal p.d.f. of X2 is 

[,(x,) = r 6x, dx, = 6x,(1 - x,), 
X2 

0< X2 < 1, 

zero elsewhere, it is easy to show that E(X2) = ! and var (X2) = ~. That is, here 

E(1') = E[E(X2IXI)] = E(X2) 

and 

var (1') = var [E(X2IX.)] < var (X2). 

Example 2 is excellent, as it provides us with the opportunity to 
apply many of these new definitions as well as review the distribution 
function technique for finding the distribution of a function of a ran­
dom variable, namely Y = 2X. /3. Moreover, the two observations at 
the end of Example 2 are no 3;ccident because it is true, in general, that 

To prove these two facts, we must first comment on the expectation 
of a function of two random variables, say u(XJ' X2). We do this for 
the continuous case, but the argument holds in the discrete case with 
summations replacing integrals. Of course, Y = u(X., X 2) is a random 
variable and has a p.d.f., say g(y), and 

E(Y) = r yg(y)dy. 
-(I) 

However, as before,. it can be proved (Section 4.7) that E( 1') equals 

E[u(X,. X,») = f"'., f"'", u(x,. x,)j{x" x,) dx, dx,. 
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We ~all E[u(X., X2 )) the expectation (mathematical expectation or 
expected value) of u(X., X2), and it can be shown to be a linear 
operator as in the one-variable case. We also note that the expected 
value of X2 can be found in two ways: 

EX..X,) = f'" r x,j(x" x,) dx, dx, = f'" x,J,(x,) dx" 
-00 -00 -00 

the latter single integral being obtained from the double integral by 
integrating on XI first. 

EXflmpk 3. Let XI and X2 have the,p.d.f. 

fl.x .. X2) = 8X1X2. 0 < XI < X2 < I, 

= 0 elsewhere. 

Then 

E(X,Xi) = L: L: x,x"f{x, , x,) dx, dx, 

= f.' r bixl dx, dx, 

= f.' Ndx, = :,0 

In addition, 

l
'lX2 E(X2) = 0 0 x2(8x\X2) dx, dx2 =!. 

Since X2 has the p.d.f. Ji(X2) = 4x~. 0 < X2 < 1, zero elsewhere, the latter 
expectation can be found by 

Finally, 

E(X,) = f.' x,(4xl> dx, = ~o 

E(7X,xi + 5X2) = 7E(XI XD + 5E(X2) 

= (7)(28
,) + (5)(~) = ¥. 

We begin the proof of E[E(X2IX1)] = E(X2) and var [E(X2IX1)] < 
var (X2) by noting that 

E(X,) = i'" f'" x,j(x" x,) dx, dx, 
-00 -00 
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roo [rOO f(x., X2) ] 
= J-

oo 
J-

oo 
X2 Ji(XI) dx2 Ji(x.) dXI 

= fro E(X,lx,)Ji(x,) <ix, 
-00 

= E[E(X2IX,»), 

which is the first result. Consider next, with 112 = E(X2), 

var (X2) = E[(X2 - 1l2)2] 

= E{[X2 - E(X2IX.) + E(X2IX,) - 1l2]2} 

= E{(X2 - E(X2IXI)]2} + E{[E(X2IX,) - 1l2]2} 

+ 2E{[X2 - E(X2IX,)][E(X2IX,) - 1l2]}' 

We shall show that the last term of the right-hand member of the 
immediately preceding equation is zero. It is equal to 

2 fro fro [x, - E(X,lx, )][E(X,lx,) - Il,l/tx" x,) <ix, <ix, 
-00 -00 

= 2 r [E(X,lx,) -11,1 
-00 

{
rOO f(x" X2) } 

x J-
oo 

[X2 - E(X2Ix,)] Ji(XI) dX2 Ji(XI) ~I' 

But E(X2Ixl) is the conditional mean of X2, given X, = XI' Since the 
expression in the inner braces is equal to 

E(X2Ixl) - E(X2Ixl) = 0, 

the double integral is equal to zero. Accordingly, we have 

var (X2) = E{[X2 - E(X2IX,)]2} + E{[E(X2IX1) - 1l2f}. 

The first term in the right-hand member of this equation is nonnegative 
because it is the expected value of a nonnegative function, namely 
[X2 - E(X2IXI )f Since E[E(X2IX,)] = 1l2, the second term will be the 
var [E(X2IX))]. Hence we have 

var (X2) > var [E(X2IX,)], 

which completes the proof. 
Intuitively, this result could have this useful interpretation. Both 

the random variables X2 and E(X2IX) have the same mean 1l2- If we 
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did not know Ilh we could use either of the two random variables to 
guess at the unknown 1l2' Since, however, var (X2) > var [E(X2IX\)] we 
would put more reliance in E(X2IXI ) as a guess. That is, if we 
observe the pair (XI, X 2) to be (XI, X2), we would prefer to use E(X2Ixl) 
to X2 as a guess at the unknown 1l2' When studying the use of sufficient 
statistics in estimation in Chapter 7, we make use of this famous result, 
attributed to C. R. Rao and David Blackwell. 

EXERCISES 

2.11. Let XI and X2 have the joint p.d.f. j{x" X2) = XI + X2, 0 < XI < 1, 
0< X2 < I, zero elsewhere. Find the conditional mean and variance of X2, 

given XI = X., 0 < XI < l. 

2.12. Let JiI2(XtlX2) = clxdxi, 0 < XI < X2, 0 < X2 < 1, zero elsewhere, and 
};(X2) = C2X~, 0 < X2 < 1, zero elsewhere, denote, respectively, the 
conditional p.d.f. of X., given X2 = X2, and the marginal p.d.f. of X2. 

Determine: 
(a) The constants CI and C2' 

(b) The joint p.d.f. of XI and X2• 

(c) Pr G < XI < tlx2 = i)· 
(d) Pr (~ < Xl < !). 

2.13. Let j{x., X2) = 2Ixix1, 0 < XI < X2 < I, zero elsewhere, be the joint 
p.d.f. of XI and X2• 

(a) Find the conditional mean and variance of X" given X2 = X2, 

0< X2 < 1. 
(b) Find the distribution of Y = E(XI IX2). 

(c) Detennine E( y) and var (Y) and compare these to E(XI ) and var (XI), 
respectively. 

2.14. If XI and Xl are random variables of the discrete type having 
p.d.C. j{x" X2) = (XI + 2x2)/18, (XI' X2) = (I, 1), (1,2), (2, I), (2,2), zero 
elsewhere, detennine the conditional mean and variance of X2, given . ' 

XI = XI .• for XI = 1 or 2. Also compute E(3X, - 2X2). 

2.15. Five cards are drawn at random and without replacement from a bridge 
deck. Let the random variables XI' X2, and Xl denote, respectively, the 
number of spades, the number of hearts, and the number of diamonds that 
appear among the five cards. 
(a) Determine the joint p.d.f. of XI, X2, and Xl' 
(b) Find the marginal probability density functions of X" X2, and Xl: 
(c) What is the joint conditional p.d.f. of X2 and X). given that XI = 31 
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2.16. Let XI and X2 have the joint p.d.f. j{XI, X2) described as follows: 

(0, 0) (0, I) (l, 0) (l, I) (2, 0) (2, l) 

I 
T8 

3 
T8 

4 
T8 

3 
T8 

6 
T8 

I 
T8 

91 

and j{x I , X2) is equal to zero elsewhere. Find the two marginal probability 
density functions and the two conditional means. 

Hint: Write the probabilities in a rectangular array. 

2.17. Let us choose at random a point from the interval (0, I) and let the 
random variable XI be equal to the number which corresponds to that point. 
Then choose a point at random from the interval (0, Xl), where XI is the 
experimental value of XI; and let the random variable X2 be equal to the 
number which corresponds to this point. 
(a) Make assumptions about the marginal p.d.f. Ji (x I)' and the conditional 

p.d.f. Ill' (x2Ix,). 
(b) . Compute Pr (XI + X2 > I). 
(c) Find the conditional mean E(X,lx2)' 

2.18. Letj{x) and f{x) denote, respeCtively, the p.d.f. and the distribution 
function of the random variable X. The conditional p.d.f. of X, given 
X> Xu, Xo a fixed number, is defined by j{xIX> xo) = j{x)/[l - f{xo)], 
Xo < x, zero elsewhere. This kind of conditional p.d.f. finds application in 
a problem of time until death, given survival until time Xo. 
(a) Show that j{xlX > xo) is a p.d.f. 
(b) Let j{x) = e-x, 0 < X < 00, and zero elsewhere. Compute 

Pr (X > 21X> 1). 

2.19. Let X and Y have the joint p.d.f. j{x, y) = 6(1 - X - y), 0 < X, 0 < y. 
x + y < 1, and zero elsewhere. Compute Pr (2X + 3 Y < I) and 
E(XY + 2X2). 

2.3 The Correlation Coefliclent 

Because the result that we obtain in this section is more familiar in 
terms of X and Y, we use X and Y rather than XI and X2 as symbols 
for our two random variables. Let X and Y have joint p.d.f. f{x, y). If 
u(x, y) is a function of x and y, then E[u(X, Y)] was defined, subject to 
its existence, in Section 2.2. The existence of all mathematical 
expectations will be assumed in this discussion. The means of X and 
Y, say III and 1l2' are obtained by taking u(x, y) to be x and y, 
respectively; and the variances of X and Y, say qi and O'~, are 

Uploaded By: anonymousSTUDENTS-HUB.com



92 

obtained by setting the function u(x~ y) equal to (x - JlI)2 and (y - Jl2)2 ~ 
respectively. Consider the mathematical expectation 

E[(X - P.I)( Y - P.2)] = E(XY - Jl2 X - JlI Y + JlIJl2) 

= E(Xy) - Jl2E(X) - Jl,E(y) + JlI/'2 

= E(Xy) - Jl,Jl2' 

This number is called the covariance of X and Yand is often denoted 
by cov (X. Y). If each of (II and (12 is positive. the number 

E[(X - Jl,)( Y - Jl2)] cov (X~Y) 
P= -

is called the correlation coefficient of X and Y. If the standard deviations 
are positive. the correlation coefficient of any two random variables is 
defined to be the covariance of the two random variables divided by 
the product of the standard deviations of the two random variables. 
It should be noted that the expected val ue 'of the product of two random 
variables is equal to the product of their expectations plus their 
covariance: that is. E(XY) = JlIJl2 + P(lI(l2 = Jl.Jl2 + cov (X. Y). 

Example 1. Let the random variables X and Y have the joint p.d.f. 

i(x. y) = x + y; 0 < x < 1, 0 < y < I. 

= 0 elsewhere. 

We shall compute the correlation coefficient of X and Y. When only two 
variables are under consideration. we shall denote the correlation coefficient 
by p. Now 

and 

Similarly. 

ilil 7 
111 = E(X) = x(x + y) dx dy = 12 

I) (I 

1
111 (7)2 II af = E(X2) - l1i = 0 0 x 2(x + y) dx dy - 12 .. = 144' 

7 
112 = E( Y) = -12 

and 

The covariance of X and Y is 

illl (7)2 I 
E(Xy) - 111112 = 0 0 xy(x + y) dx dy - T2 = -144' 
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Accordingly, the correlation coefficient of X and Y is 
I 

-144 I 
p= =--

J(I~)(IIi.) II' 

93 

Remark. For certain kinds of distributions of two random variables, say 
X and Y, the correlation coefficient p proves to be a very useful characteristic 
of the distribution. Unfortunately, the fonnal definition of p does not reveal 
this fact. At this time we make some observations about p, some of which will 
be explored more fully at a later stage. It will soon be seen that if a joint 
distribution of two variables has a correlation coefficient (that is, if both of 
the variances are positive), then p satisfies - I < p :s; I. If p = I, there is a line 
with equation y = a + bx, b > 0, the graph of which contains all of the 
probability of the distribution of X and Y. In this extreme case, we have 
Pr (Y = a + bX) = I. If p = - I, we have the same state of affairs except that 
b < O. This suggests the following interesting question: When p does not have 
one of its extreme values, is there a line in the xy-plane such that the 
probability for X and Y tends to be concentrated in a band about this line? 
Under certain restrictive conditions this is in fact the case, and under those 
conditions we can look upon p as a measure of the intensity of the 
concentration of the probability for X and Yabout that line. 

Next, let fix, y) denote the joint p.d.f. of two random variables X 
and Y and let J. (x) denote the marginal p.d.f. of X. The conditional 
p.d.f. of Y, given X = x, is 

I(x, y) 
h,l(ylx) = J.(x) 

at points where J. (x) > O. Then the conditional mean of Y, given 
X = x, is given by 

iO r yf(x. y) dy 

E(Ylx) = I YJi,,(ylx) dy = -'" f,(x) • 
-<Xl 

when dealing with random variables of the continuous type. This 
conditional mean of Y, given X = x, is, of course, a function of x alone, 
say u(x). In like vein, the conditional mean of X, given Y = y, is a 
function of y alone, say v(y). 

In case u(x) is a linear function of x, say u(x) = a + bx, we say the 
conditional mean of Y is linear in x; or that Y has a linear conditional 
mean. When u(x) = a + bx, the constants a and b have simple values 
which will now be determined. 
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It will be assumed that neither 01 nor oi, the variances of X and Y, 
is zero. From 

r yf{x,y)dy 

E(Ylx) = -00 = a + bx, 
!J(x) 

we have 

f yf{x, y) dy = (a + bx)f,(x). 
-00 

(1) 

If both members of Equation (1) are integrated on x, it is seen that 

E(Y) = a + bE(X), 

or 

(2) 

where PI = E(X) and P2 = E(Y). If both members of Equation (I) are 
first mUltiplied by x and then integrated on x, we have 

E(XY) = aE(X) + bE(X2), 

or 

(3) 

where P(lI(l2 is the covariance of X and Y. The simultaneous solution 
of Equations (2) and (3) yields 

and 

That is, 

(12 
u(x) = E( Ylx) = P2 + p - (x - PI) 

(II 

is the conditional mean of Y, given X = x, when the conditional mean 
of Y is linear in x. If the conditional mean of X, given Y = y, is linear 
in y, then that conditional mean is given by 

0'1 
v(y) = E(X\y) = PI + p - (y - P2)' 

0'2 

We shall next investigate the variance of a conditional distribution 
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under the assumption that the conditional mean is linear. 
conditional variance of Y is given by 

var (Ylx) = 1~ ~ -112 - P :: (x - Ill)]' f~I(Ylx) dy 

r [(y - 1l2) - P :: (x - Ill) J j{x, y) dy 
-00 

-------------~~-------------II (x) 

The 

(4) 

when the random variables are of the continuous type. This variance 
is nonnegative and is at most a function of x alone. If then, it is 
multiplied by II (x) and integrated on x, the result obtained will be 
nonnegative. This result is 

[[ [(y - 1l2) - P :: (x - Ill) J j{x,y) dy dx 

= f., [[ (y - 1l2)' - 2p :: (y - 1l2)(X - Ill) 

+ p2 O'~ (x - J1.1)2]f{X, y) dy d~ 
0'1 

= E[(Y - J1.2)2] - 2p 0'2 E[(X - J1.1)(Y - J1.2)] 
- 0'1 

+ p2 ~ E[(X - J1.1)2] 
0'1 

1 0'2 2 ~ 2 = 0'2 - 2p - PO'J0'2 + p """20'1 
0', 0'1 

= u; - 2pl~ + pl~ = 0'~(1 - p2) > O. 

That is, if the variance, Equation (4), is denoted by k(x) , then 
E[k(X)] = O'~(l - p2» O. Accordingly, pl < 1, or -1 ~ p < 1. It is 
left as an exercise to prove that - 1 ~ p < 1 whether the conditional 
mean is or is not linear. 

Suppose that the variance, Equation (4), is positive but not a 
function of x; that is, the variance is a constant k > O. Now if k is 
multiplied by II (x) and integrated on x, the result is k, so that 
k = ~(l - p2). Thus, in this case, the variance of each conditional 
distribution of Y, given X = x, is O'~( 1 - p2). If p = 0, the variance of 
each conditional distribution of Y, given X = x, is O'i, the variance of 
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the marginal distribution of Y. On the other hand, if p2 is near one, 
the variance of each conditional distribution of Y, given X = x, is 
relatively small, and there is a high concentration of the probability 
for this conditional distribution near the mean E( Ylx) = 112 + 
P(U2/UI)(X - Ill)' 

It should be pointed out that if the random variables X and Yin 
the preceding discussion are taken to be of the discrete type, the results 
just obtained are valid. 

Example 2. Let the random variables X and Y have the linear con­
ditional means E( Ylx) = 4x + 3 and E(XlYl = 1'6Y - 3. In accordance with the 
general formulas for the linear conditional means, we see that E( Ylx) = P2 if 
x = PI and E(XIY) = PI if Y = P2' Accord.ingly, in this special case, we have 
P2 = 4PI + 3 and PI = I~P2 - 3 so that PI = - ~ and P2 = - 12. The general 
formulas for the linear conditional means also show that the product of the 
coefficients of x and y, respectively, is equal to p2 and that the quotient of these 
coefficients is equal to 03/~. Here p2 = 4(1~) = ~ with p = ! (not -!), and 
03/~ = 64. Thus, from the two linear conditional means, we are able to find 
the values of Ph P2, p, and (J2/(J" but not the values of (JI and (J2' 

Example 3. To illustrate how the correlation coefficient measures the 
intensity of the concentration of the probability for X and Yabout a line, let 
these random variables have a distribution that is uniform over the area 
depicted in Figure 2.1. That is, the joint p.d.f. of X and Y is 

1 
f(x, y) = 4ah ' - a + bx < y < a + bx, - h < x < h, 

= 0 elsewhere. 

FIGURE 2.1 
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We assume here that b;;::: 0, but the argument can be modified for b :S O. It 
is easy to show that the p.d.f. of X is uniform, namely 

f
tl+bX 1 1 

!J(x) = 4ah dy = 2h' -h < x < h, 
-II +bx 

= 0 elsewhere. 

Thus the conditional p.d.f. of Y, given X = x, is uniform: 

1/4ah 1 
hll(ylx) = 1/2h = 2a' 

= 0 elsewhere. 

The conditional mean and variance are 

E(Ylx) = bx and 

-a + bx < y < a + bx, 

ti 
var (Ylx) = 1"' 

From the general expressions for those characteristics we know that 

(12 
b=p-

(II 
and 

In addition, we know that CJi = nz/3. If we solve these three equations, we 
obtain an expression for the correlation coefficient, namely 

bh 
p - -:;:::;::::::=== - Ja2 + Irh2 ' 

Referring to Figure 2.1, we note: 

I. As a gets small (large), the straight line etTect is more (less) intense and p 
is closer to 1 (zero). 

2. As h gets large (small), the straight line etTect is more (less) intense and p 
is closer to 1 (zero). 

3. As b gets large (small), the straight line etTect is more (less) intense and p 
is closer to 1 (zero). 

This section will conclude with a definition and an illustrative 
example. Let f(x, y) denote the joint p.d.f. of the two random vari­
ables X and Y. If E(e'IX+IZY) exists for -hi < tl < hh -h2 < t2 < h2, 
where hi and h2 are positive, it is denoted by M(tl, t2) and is called the 
moment-generating function (m.g.f.) of the joint distribution of X and 
Y. As in the case of one random variable, the m.g.f. M(t I, t2 ) completely 
determines the joint distribution of X and Y, and hence the marginal 
distributions of X and Y. In fact, the m.gJ. MI(t,) of X is 

M1(t l ) = E(etIX
) = M(tl' 0) 
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and the m.g.f. M 2(t2) of Y is 

M2(t2) = E(et2Y
) = M(O, t2)' 

In addition, in the case of random variables of the continuous type, 

ak+mM(t l t2) Ja:: Joo ----'-= xi'y m et 1x+/2Yflx y)dxdy atk atm J\ , , 
I 2 -00 -00 

For instance, in a simplified notation which appears to be clear, 

= E(X) = aM(O, 0) _ E(y) _ aM(O, O) 
JlI at

l 
' Jl2 - - at

2 
' 

u7 = B(X2) _ 2 = a2
M(O, 0) _ 2 

1 JlI at~ JlI' 

.-2 _ r(y2) 2 _ a2M(0, 0) 2 
U2 - Li - Jl2 - a 2 - Jl2' 

t2 

(5) 

a2M(O, 0) 
E[(X - Jld(Y - Jl2)] = at, at

2 
- JlIJl2, 

and from these we can compute the correlation coefficient p. 
It is fairly obvious that the results of Equations (5) hold if X and 

Yare random variables of the discrete type. Thus the correlation 
coefficients may be computed by using the m.g.f. of the joint 
distribution if that function is readily available. An illustrative example 
follows. In this, we let eIN = exp (w). 

Ex(llftpie 4. Let the continuous-type random variables X and Y have the 
joint p.d.f. 

I(x, y) = e-', 0 < x < y < 00. 

= 0 elsewhere. 

The m.g.f. of this joint distribution is 

M(I,. I,) = ioo 

[ exp (I IX + l,y - y) dy dx 

1 
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provided that II + 12 < 1 and 12 < 1. For this distribution, Equations (5) 
become 

PI = 1, 

oi = 1, 

E[(X - 1'1)( Y 

P2 = 2, 

ai = 2, (6) 

1'2)] = 1. 

Verification of results of Equations (6) is left as an exercise. If, momen­
tarily, we accept these results, the correlation coefficient of X and Y is 
p = 1/j2. Furthermore, the moment-generating functions of the marginal 
distributions of X and Yare, respectively, 

1 
M(/, , 0) = 1 ' I. < 1, 

- II 

1 
M(O, (2) = (I _ (2)2 ' 12 < 1. 

These moment-generating functions are, of course, respectively, those of 
the marginal probability density functions, 

[.(x) = I~ e-Y dy - e-X, 0 < x < 00, 

zero elsewhere, and 

/'(y) = r Y r dx = ye-', o <y < 00, 

zero elsewhere. 

EXERCISES 

2.20. Let the random variables X and Y have the joint p.d.f. 
(a) f(x, y) =!, (x, y) = (0,0), (1, 1), (2,2), zero elsewhere. 
(b) f(x, y) = j, (x, y) = (0, 2), (I, 1), (2,0), zero elsewhere. 
(c) f(x, y) = !, (x, y) = (0,0), (1, 1), (2,0), zero elsewhere. 
In each case compute the correlation coefficient of X and Y. 

2.21. Let X and Y have the joint p.d.f. described as follows: 

(x, y) (1, 1) (1,2) (1,3) (2, 1) (2,2) (2,3) 

f() 2 4 3 I • 4 
x, Y 15 IS 15 IS is is 

and f(x, y) is equal to zero elsewhere. (a) Find the means PI and Jl2, the 
variances oi and ai, and the correlation coefficient p. (b) Compute 
E(YIX = 1), E( YIX = 2), and the line 1'2 + P(U2/UI)(X - },.). Do the points 
[k, E(YIX = k)], k = 1.2, lie on this line? 
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2.22. Letftx, y) == 2,0 < x < y, 0 < y < I, zero elsewhere, be the joint p.d.f. 
of X and Y. Show that the conditional means are, respectively, (I + x)/2, 
o < x < I, and y/2, 0 < y < I. Show that the correlation coefficient of X 
and Yis p =!. 

2.23. Show that the variance ofthe conditional distribution of Y. given X = x, 
in Exercise 2.22, is (I - x)2/12, 0 < x < I, and that the variance of the 
conditional distribution of X, given Y = y, is y2/12, 0 < y < 1. 

2.24. Verify the results of Equations (6) of this section. 

2.2S. Let X and Y have the joint p.d.f. j{x, y) = I, -x < y < x, 0 < x < I, 
zero elsewhere. Show that, on the set of positive probability density, the 
graph of E(Ylx) is a straight line. whereas that of E(Xly) is not a straight 
line. 

2.26. If the correlation coefficient p of X and Yexists, show that - I :s p :s I. 
Hint: Consider the discriminant of the nonnegative quadratic func­

tion h(v) = E{[(X - Ill) + v(Y - 1l2)]2}, where vis real and is nota function 
of X nor of Y. 

2.27. Let t/I(tl' 12) = In M(t" t2). where M(tlt 12) is the m.g.f. of X and Y. 
Show that 

ot/l(O, O) iJ2t/1(O, 0) 
i = 1,2, at, off 

and 

o2t/1(0, 0) 

01. 012 

yield the means, the variances, and the covariance of the two random 
variables. Use this result to find the means, the variances, and the covariance 
of X and Y of Example 4. 

2.4 Independent Random Variables 

Let XI and X2 denote random variables of either the continuous or 
the discrete type which have the joint p.d.f. j{XI, X2) and marginal 
probability density functions !t(Xt) and };(X2), respectively. In 
accordance with the definition of the conditional p.d.f. h'I(X2Ix,), we 
may write the joint p.d.f. j{XI, X2) as 

!(Xh X2) '!2JI(x2Ixl)!.(XI)' 

Suppose that we have an instance where h'I(X2Ix,) does not depend 
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upon x I. Then the marginal p.d.f. of X 2 is, for random variables of the 
continuous type, 

h(x,) = foo hi' (x,lx,)f, (xtl dx, 
-00 

= hli(X,lx,) r f,(x,) dx, 
-00 

Accordingly, 

h(X2) = hll(x2Ix l ) and 

whenhl,(x2IxJ) does not depend upon XI. That is, if the conditional 
distribution of X 2, given XI = X" is independent of any assumption 
about XI~' thenj{x" x 2) = j;(xl )h(X2). These considerations motivate 
the following definition. 

Definition 2. Let the random variables XI and X2 have the joint 
p.d.f. j{XI, X2) and the marginal probability density functions j; (x I) 
and};(x2), respectively. The random variables XI and X 2 are said to be 
independent if, and only if,j{x" X2) '!t(xl)h(X2). Random variables 
that are not independent are said to be dependent. 

Remar~. Two comments should be made about the preceding definition. 
First, the product of two positive functions j; (XI )!2(X2) means a function 
that is positive on a product space. That is, ifj;(xl) and!2(x2) are positive 
on, and only on, the respective spaces .911 and .912 , then the product of 
!t (XI) and !2(X2) is positive on," and only on, the product space 
d::;;: {(Xh X2): XI E d h X2 E d 2}. Forinstance, if d l = {XI: 0 < XI. < I} and 
.912 ='{X2: 0 < X2 < 3}, then .91 = {(x" X2): 0 < Xl < 1,0 < X2 < 3}. The 
second remark pertains te t~~ identity. The identity in Definition 2 should be 
interpreted as follows. There "may be certain points (XI' X2) E.9I at which 
f{x., X2) #: j;(XI)!2(X2). However, if A is the set of points (XI' X2) at which the 
equality does not hold, then P(A) = O. In the subsequent theorems and the 
subsequent generalizations, a product of nonnegative functions and an 
identity should be interpreted in an analogous manner. 

Example 1. Let the joint p.d.f. of XI and X2 be 

0< XI < 1, 0 < X2 < 1, 

= 0 ' elsewhere. 
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It will be shown that XI and X2 are dependent. Here the marginal probability 
density functions are 

!.(x,) = [ f(x" xJ dx, = f (x, + x,) dx, = x, + !. 
-00 0_ 

0< XI < I, 

= 0 elsewhere, 

and 

J,(x,) = l~ f(x" x,) dx, = f (x, + x,) dx, -1 + x,. 0< X2 < 1, 

= 0 elsewhere. 

Since!(x" X2) 'I=!J(x l lt;(x2), the random variables XI and X2 are dependent 

The following theorem makes it possible to assert, without 
computing the marginal probability density functions, that the random 
variables XI and X2 of Example I are dependent. 

Theorem 1. Let the random variables XI and X2 have the joint p.d.! 
f(x l, x2). Then XI and X2 are independent if and only if f(xl, X2) can be 
written as a product.of a nonnegative function of XI alone and a 
nonnegative function of X2 alone. That is, 

where g(x,) > 0, XI E .911, zero elsewhere, and h(X2) > 0, X2 E .912, 'zero 
elsewhere. 

Proof If XI and X2 are independent, thenf(x l , X2) =fi(XI)h.(X2), 
wherejj(x l ) andJi(x2) are the marginal probability density functions 
of XI and X2, respectively. Thus the condition !(XIt X2) = g(xl)h(X2) 
is fulfilled. 

Conversely, if!(xb X2) = g(X,)h(X2), then, for random variables of 
the continuous type, we have '.' " 

f,(x,) = fro g(x,)h(x,) dx2 = g(x,) fro h(X2) dx2 = c,g(x,) 
-00 -00 

and 

J,(X2) = fro g(X,)1i(X2) dx, = h(X2) fro g(x,) dx, --: c2h(X2). 
-00 -00 
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where CI and C2 are constants, not functions of XI or X2. Moreover, 
CI C2 = I because 

These results imply that 

. 
Accordingly, XI and X2 are independent. 

If we now refer to Example 1, we see that the joint p.d.f. 

o < XI < 1, 0 < X2 < 1, 

= 0 elsewhere, 

cannot be written as the product of a nonnegative function of XI alone 
and a nonnegative function of X2 alone. Accordingly, XI and X2 are 
dependent. 

Example Z. Let the p.d.f. of the random variables XI and X2 be 
/(x" X2) = 8X,X2, 0 < XI < X2 < 1, zero elsewhere. The formula 8X1X2 might 
suggest to some that Xl and X2 are independent. However, if we consider the 
space sI = {(XI, X2): 0 < XI < X2 < I}, we see that it is not a product space. 
This should make it clear that, in general, XI and X2 must be dependent if the 
space of positive probability density of XI and X2 is bounded by a curve that 
is neither a horizontal Bor a vertical line. 

We now give a theorem that frequently simplifies the calculations 
of probabilities of events which involve independent variables. 

Theorem 2. If XI and X2 :are independent random variables· with 
margmal probability density functions h (XI) and f2(x2), respectively, then 

Pr (a < Xl < b, c < X2 < d) = Pr (a < XI < b) Pr (c < X2 < d) 

for every a < band c < d, where a, b, c, and dare constQJIts. 

Proof From the independence of Xl and X2, the joint p.d~f. of XI 
and X2' is j';(xl)f2(x2 ). Accordingly, in the continuous case, 
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Pr (a< X, < b, c < X, '< if) = f r f,(x,)[,(x,) dx, tIx, 
a c 

= Pr(a < XI < b)Pr(c < X2 < d); 

or, in the discrete case, 

Pr (a < X, < b, c < Xz < d) = L L t.(X.)h(X2) 
a < XI < b r < x2 < d 

= Pr (a < XI < b) Pr (c < X2 < d), 
as was to be shown. 

Example 3. In Example I, XI and X2 were found to be dependent. There, 
in general, 

Pr (a < XI < b, c < X2 < d) #:- Pr (a < XI < b) Pr (c < X2 < d). 

For instance, 

Pr (0 < X, <!, 0 < X, < D = iii' 1'12 (x, + x,) dx, dx, = j, 

whereas 

and 

Pr,(O < X, < D = 1'12 6 + x,) dx, = l. 

Not merely are calculations of some probabilities usually simpler 
when we have independent random variables, but many expectations, 
including certain moment-generating functions, have comparably 
simpler computations. The following result will prove so useful that we 
statejt in the form of a theorem. 

Theorem 3. Let the independent random variables XI and X2 have the 
marginal probaBility density functions t. (XI) and h(X2), respectively. 
The expected value of the product of a function u(XI) of XI alone and 
a function v(X21, of Xz· alone- is, subject to their existence, equal to 
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the product of the expected value ofu(X.) and the expected value of v(X2); 
that is, 

E[U(X1)V(X2)] = E[u(X)]E[v(X2)]. 

Proof. The independence of XI and X2 implies that the joint p.d.f. 
of XI and X2 is/. (x)f2(xl)' Thus we have, by definition of expectation, 
in the continuous case, ' 

E(~X, )v(X,») = [ [ u(~,)V(x'lIi (x, )fz(x,) d~, tix, 
-00 -00 

= [[ ~,)J,(x,) tix'][[V(X,)[,(X,) tix, ] 
= E[u(XI)]E[v(X2 )]; 

or, in the discrete case, 

E[U(XI)v(X2)l = L L u(x,)v(x2)!.(x,1J;(x2) 
X2 XI 

• 

as stated in the theorem. 

Extunple 4. Let X and Y be two indePendent random variables with 
means III and 112 and p,ositivC? variancescr. a~d ai. respectively. We shaUshow 
that the independence of X and Y implies that the correlation coefficient of 
X and Y is zero. This is true because the covariance of X and Y is equal to 

E[(X - 1l1)(Y - 1l2)] = E(X - IlI)E(Y - 1l2) = O. 

We shall now ptovea ve..y useful theorem about independent"' 
random variables. The proofqf t~e theorem relies hell-vily upon our 
assertion that an m.g.f., when h exists, is un~que and that it uniquely 
determines the distribution _ 9f probability. . < < 

TheoreDl4. Let Xl and X2 denote 1'(lndom "arklbles that have 1h'e.jrJint 
• p.d! f(x), X2) and the marginal probability density functions!.·(xl) and 

fi(X2), respectively. Furthermore, let M(t., t2). denote the m.g.f. of the 
distribution. Then XI and X2 are independent,;f and only if ' 

M(t., t2)'= M(th O)M(O, t2)" 
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Proof If XI and ~2 are independent, then 
M(IJ, 12) = E(et\x\ + t2X2) 

= E(et\X\et2X2) 

" . = E(etIXI)E(et2X2) 

= M(t\, O)M(O, 12)' 

Thus the independence of XI and X2 implies that the m.g.f. of the joint 
distribution factors .into the product of the moment-generating 
functions of the two marginal distributions. 

Suppose next that the m.g.f. of the joint distribution of X\ and X2 

is given by M(t" 12}= M(fr, O)M(O, 12)' Now XI has the unique m.g.f. 
which, in the continuous case, is given by 

M(I, , 0) = 1~~ e" x1.(x,) dx',. 

Similarly, the unique m.g.f. of X2 , in the continuous case, is given by 

M(O, I,) = f~ e"x'.f,(x,) dx,. 
-«) 

Thus we have 

M( I" O)M(O, I,) = [f e" x1. (Xl) dx, ] [f e":ti(x,) dx, ] 
-«) -«) 

= [[ e"x, + "X2f, (x,)f,(x,) dx, dx,. 

We are given that M(I., 12) = M(t\, O)M(O, 12); so 

. '. M(t" I,):... f'" [ e"x' +I:,X'f,(x,}h(x,) dx, dx,. 
. -«)-«) 

But M(IJ" I),) is t~e m .. g.f. of XI and X2• Thus also 

Mel" I,) = f'" f'" e"x' + I,X'fl.x, , x,) dx, dx,. 
-«) -«) , 

The uniqueness of the m.g.f. implies that the two distributions of 
probability that are described by fi(xi)h.(x2) and AXf, X2} are the 
same', Thus· .. · 

Ax., X2) =!t(X,)fi(X2)' 

That is, if M(tl' 12 ) == M(t., O)M(O, h), then XI and X2 are indepen- \ 
dent. This completes the proof when the random variables are of the 
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continuous type. With random variables of the discrete type, the 
proof is made by using summation instead of integration. 

EXERCISES 

2.28. Show that the random variables Xl and X2 with joint p.d.f. [(XI , X2) = 
12x1X2(1 - X2), 0 < XI < I, 0 < X2 < 1, zero elsewhere, are independent. 

2.29. If the random variables XI and X2 have the joint p.d.f. [(XI' X2) = 
2e-X1 -X'2, 0 < XI <X2, 0 < X2 < 00, zero elsewhere, show that XI and X 2 

are dependent. 

2.30. Let [(x" X2) = I~' XI = 1,2,3,4, and X2 = 1,2,3,4, zero elsewhere, 
be ~he Joint p.dJ. of XI and X2• Show that X. and X2 are independent. 

2.31. Find Pr (0 < Xl < !, 0, < X2 < 1) if th:erandom variables Xl and X2 have 
the joint p.d.f. f(x., X2) = 4x l (l - X2), 0 < X, < 1, 0 < X2 < 1, zero 
elsewhere. 

2.32. Find the probability of the union of the events a < X, < b, 
- 00 < X2 < 00 and - 00 < XI < 00, C < X2 < d if XI and X2 are two 
independent variables with Pr (a < X, < b) = j and Pr (c < X2 < d) = i. 

2.33. If [(x" X2) = e-xi - X2, 0 <; XI < 00, 0 < X2 < 00, zero elsewhere, is the 
joint p.d.f. of the random variables XI and X2, show that XI and X2 are 
independent and that M(t., 12) = (1 - 11)-1(1 - 12)-1, 12 < 1, II < l. Also 
show that 

E(et(XI + X2» = (1 - 1)-2, I < 1. 

Accordingly, find the mean and the variance of Y = XI + X2• 

2.34. Let the random variables XI and X2 have the joint p.d.f. [(x, , X2) = 1 In, 
(x, 1)2 + (X2 + 2)2 < 1, zero elsewhere. Find!.(xl)and./2(x2)' Are XI and 
X2 independent? 

2.35. Let X and Y have the joint p.d.f. [(x, y) = 3x, 0 < y < X < 1, zero 
elsewhere. Are X and Y independent? If not, find E(Xly). 

2.36. Suppose that a man leaves for work between 8:00 A.M. and 8:30 A.M. 

and takes between 40 and SO minutes to get to the office. Let X denote the 
time of departure and let Y denote the time of travel. Ifwe assume that these 
random variables are independent and uniformly distributed, find the 
probability that he arrives at the office 'before 9:00 A.M. 

2.5 Extension to Several Random Variables 

The notions about two random variables can be extended 
immediately to n random variables. We make the following definition 
of the space of n random variables. 
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Definition 3. Consider a random' experiment with the sample 
space ce. Let the ~andom variable Xi assign to each. element 
c E ce one and only one real number Xi(C) = Xi' i = 1,2, ... ''!-' 
The space of these random variables is the set of ordered n-tuples 
.91 = {(X., X2, ..• ,xn) : Xl = XI (c), ... ,Xn = Xn(c), C E ce}. Further­
more, letA bea subset of d. ThenPr [(XI).' .. , Xn) E A] = P(C), where 
C = {c: C E ce and {Xl (C), X2(C), ... ,Xn(C)] E A}. 

Again we sh~uld make the comment that Pr [(XI, ... ,Xn ) E A) 
could be denoted by the probability set function PXJ, ...• x,,(A). But, if 
there is no chance of misunderstanding, it will be written simply as 
P(A). We sa.y that the n random variables XI, X2, ••• ,Xn are of the 
discrete type or of the continuous type~ an.d have a distribution of that 
type, according as the probability set function P(A), A c .91, can be 
expressed as 

P(A) = Pr [(XI' ... , Xn) E A] = ~. A • ~!(XI' ... , xn), 

or as 

P(A) = Pr [(X, • ...• X.) E AI = r ~ . ff(X,.' ...• x.) dx, ... dx •. 

In accordance with the convention of extending the definition of a 
p.d.f., it is seen that a point function! essentially satisfies the conditions 
of being a p.d.f. if (a)!is defined and is nonnegative for all real values 
of its argument(s) and if (b) its integral [for the continuous type of 
random variable(s»), or its sum [for the discrete type of random 
variable(s)] over all real values of its argument(s) is 1. 

The distribution function of the n random variables XI, X2, ••• , Xn 
is the point function ' 

F(Xh X2, ••• , xn) = Pr (XI < XI, X2 :=:; X2, ••• , X" :s: x,,). 

An illustrative example follows. 
, 

Example 1. Letf(x; J'. z) = e-{X+Y+i), 0 <.x"y, z < 00, zeroe)~where, be 
the p.d.f. of the random variables X, Y, and t. 'Then the distribution function 
of X. Y. and Z is given by 

F(x, Y. z) = Pr (X S x, y ::;; y, z sz). 

= f r f ,-·-·--dudvdw 

= (l - e-X)(l - e-Y)(l ~ e-Z), o < x, Y. z < 00, 
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and iSt'equal to zero elsewhere. Incidentally, except for a set of probability 
measure zero:, We' have 

a1rtx, y, z) , . 
ax ()y oz = I(x, y, z) . 

. Let XI, x2, ... ,XII be random variables having joint p.d.f. 
f(x" X2' ... ,XII) and let U(XI' X2, ... ,XII) be a function of these 
variables such that the n-fold in~egral . ' 

exists, if the random variables are of the continuous type, or such that 
the n-fold sum 

, 
. I··· I u(Xh Xl, ..• , XII)f(Xh X2, ••• , XII) (2) 

XII XI 

exists if the random variables are of the discrete type. The n-fold 
integral (or the n-fold sum, as the case may be) is called the expectation, 
denoted by E[u(X" X2, ... , XIf)], of the function u(X" X2, ... , XII)' In 
Section 4.7 we 'show this expectation to be equal to' E( y), where 
Y = U(XI' X2, " .. , XII)' Of course, E is a linear operator. 

We shall now discuss the notions of marginal and conditional 
probability density functions from the point of view of n random 
variables. All of the pr«eding definitions can be directly generalized. 
to the case of n variables in the following manner. Let the random 
variables XI, X~, ... , XII have the joint p.d.f.j(x" X2, ••• ,XII)' If-the 
random variables are of the continuous type, then by an argument 
similar to the two-variable case, we have for every a < b, 

Pr (0 < X, < b) = r /i(x,) dx" 
. a 

wherejj(x,) is defined by the (n - I)-fold integral 

/i(x,) == f' '" f' f(x" x" ... ,x.) dx,' .. dx •. 
-00 -00. 

Therefore,j;(xl) is the p.d.f. of the one random variable Xi andj;(xl) 
is called the marginal p.d.f. of XI' The marginal probability density 
functions h(X2), ... ,f,,(x,,) of X2, ... ,XII' respectively, are similar 
(n - I)-fold integrals. 

Up to this point, each marginal p.d.f. has been a p.d.f. of one 
random variable. It is convenient to extend this terminology to joint 
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probability density functions, which we shall do now. Here let 
f(X" X2, ... ,x,,) be the joint p.d.f. of the n random variables 
XI, X2, ... , X"' just as before. Now, however, let us take any group of 
k < n of these random variables and let us find the joint p.d.f. of 
them. This joint p.d.f. is called th~ marginal p.d.f. of this particular 
group of k ,variables. To fix the ideas, take n = 6, k = 3, and let us select 
the group X2, X4 , Xs. Then the marginal p.d.f. of X2 , X4 , Xs is the joint 
p.d.f. of this particular group of three variables, namely, 

f'" [ f'" f(x" X,. X" X4. X" x,) dx, dx, dx~, 
-a:) -a:) -a:) 

if the random variables are of the continuous type. 
Next we extend the definition of a conditional p.d.f. If,t;(x,) > 0, 

the symbol h., , .. "II(X2, ... , x"lxl) is defined by the relation 

f(x" X2, ... , XII) 
h .. ~,.1I11(X2"",xnlxl)= . fi() , 

.,' '.' I Xl 

and h .... ,"II(x2' .. " x"lx.) is called the joint conditional p.d.! of 
Xh •• . , XII' given XI = XI' The jOint conditional p.d.f. of any n - I 
random variables, say XI, ...• Xi _ I' Xi + I, ' •.. , XII' given Xi = Xi, is 
defined as the joint p.d.f .. of X}. X2 , ••• , X" divided by the marginal 
p.d.f. /;(x;), provided that /;(x;) > O. More generally, the joint 
conditional p.d.f. of n - k of the random variables, for given values of 
the Temaining kvariables~ is defined as the joint p.d.f. of the n variables 
divided by the marginal p.d.f. of the particular group of k variables, 
provided that the latter p.d.f. is positive. 'We remark that there are 
many other conditional probability density functions~ for instance, see 
Exercise 2.18. 

Because a conditional p.d.f. is a p.d.f. of a certain number of 
random variables, the expectation of a function of these random 
variables has been defined. To emphasize the fact that a conditional 
p.d.f. is under consideration, such expectations are called con­
ditional expectations. For instance, the conditional expectation of 
U(X2' ... , XII) given XI = X., is, for random variables of the continuous 
type, given by 

. fa:) foo 
Elu(X2, ••• , XII)lxtl = . . . U(X:h ••. , x,,) 

-00 -a:) 
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provided !t(x,) > 0 and the integral ,converges (absolutely), If the 
random variables are of the discrete type, conditional expectations are, 
of course,. computed by using sums instead of integrals. 

Let the random variables XI, X2 , ••• ,Xn have the joint p.d.f. 
f(x" X2, ... ,xn ) and the marginal probability density functions 
!.(xl),h(X2), ... ,J,,(xn ), respectively. The definition of the indepen­
dence of XI and X2 is generalized to the mutual independence 
of X" X2, ••• , Xn as follows: The random variables X" X2 , ••• ,Xn 
are said to be mutually independent if and only if 

f(x" X2,· .. , x n) =!.(XI}fi(X2)·· ·J,,(xn )· 

It follows immediately from this,definition of the mutual independence 
of XI ~X2' ... "Xn that, , 

Pr (al <: XI < b., 02 < X2 < b2, .... ,. ,a,,< Xn< bn) " 

= Pr (d l < X/~ hi) Pr (a2 < 1'2< b;) ; .. Pr (a:<Xn < bn)' 

n 

= nPr (aJ < Xi < hi), 

n . 

where the symbol n cp(l) is defined to be 
i = I 

n n cp(z) = cp(l)cp(2) ... cp(n). 
;= I 

The theorem that 

E[u(XI)v(X2)] = E[u(XI)]E[v(X2)] 

for independent random variables XI and X2 becomes, for mutually 
independent random variables X" X2, ... ,Xn, 

E[UI(XI)U2(X2) ... un(Xn)] = E[u,(XI)]E[U2(X2)] ••• E[un(Xn)], 
or 

The moment-generating function of the joint distribution of n 
random variables XI, X2, ••• , Xn is defined as follows. Let , 

E[exp (tIXI + 12X2 + ,'.'. + InXn)] 

exist for - hi < Ii < hi, i = 1, 2, .. ' .. , n, where each hi is positive. This 
expectation is denoted bY M(t

" 
t 2 , ••• , tn) and it i~'called the m.g.f. 

of the joint distribution of XI,' .. ,Xn (or simply the m.gJ. of 
X" ... ,Xn). As in the cases of one and two variables, this m.gJ. 
is unique and uniquely determines the joint distribution of the n 
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variables (and hence all marginal distributions). For example, the 
m.g.f. of the marginal distribution of Xi is M(O, . .. , 0, Ii' 0, ... , 0), 
i = 1, 2, ... ,n; that of the marginal distribution of Xj and ~ is 
M(O, ... , 0, Ii, 0, ... , 0; Ij' 0, ... ,0); and, so on. Theorem 4 of this 
chapter can be generalized, and the factorization 

II 

M(Ij, th ... , III) = n 'M(O, ... ,0, th 0, ... ,0) 
i-I 

is a nec~ssary and sufficient condition for the mu.tual independence of 
Xh X2, ••• , XII' 

Remark. If X" X2, and Xl are mutually independent, they are pairwise 
independent (that is, XI and ~, i =F j, where i,j = 1,'2,3, are independent). 
However, the following example, due to S. Bernstein, shows that pairwise 
independence does not necessarily imply mutual independence. Let XI' X2, 

and X3 have the joint p.dJ. 

j{x., X2, X3) =~, (X., X2, Xl) E {(I, 0, 0), (0, 1,0), (0, 0, 1), (1, 1, I)}, 

= 0 elsewhere. 

The joint p.d.f. of Xi and ~, i ::F j, is 

!ij(Xi, Xj) = *, (Xi' Xj) E {(O, 0), (I, 0), (0, I), (I, I)}, 

= 0 elsewhere, 

whereas the marginal p.d.f. of Xi is 

/;(xi) =!, Xi = 0, J, 

= 0 . elsewhere. 

Obviously, if i =F j, we have 

/;j(X j , x) == /;(x;)fj(xj), 

and thus Xi and Xj are independent. However, 

j{XI, X2, X3) 1= Ii (XI )Ji(X2)};(X3)' 

Thus XI' X 2, and Xl are not mutually independent. 

Example 2. Let XI. X2 , and X3 be three mutually independent random 
variables and let each have the p.d.f.j{x) ~ 2x,O < X < 1, zero elsewhere. The 
joint p.d.f. of X" X2, Xl iSj{XI)j{X2)j{X3) = 8XIX2Xl, 0 < Xi < I, i = 1,2,3, 
zero elsewhere. Then, for il1ustration, the expected value of SKI X~ + 3X2X; 
is 
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Let- Y be the maximum of XI. X2• and Xl' Then. for instance, we have 

Pr (Y < !> = Pr (XI < !. X2 < i,. Xl < !) 

= f' I'll I'll 8x l x,x, tixl tix, <{X, 

= (1)6 = 1-
2 64' 

In a similar manner, we find that the distribution function of Y is 

G(y) = Pr(Y ~ y) = 0, 

_yli - , 

= I, 
Accordingly, the p.d.f. of Y is 

y<O 

0< y < 1, 

I ~ y. 

g(y) = 6y5, 0 < y< 1. 

= 0 elsewhere. 

113 

Remark. Unless there is a possible misunderstanding between mutual and 
pairwise independence. we usually drop the modifier mutual. Accordingly, 
using this practice in Example 2, we say that XI' X2, Xl are independent 
random variables, meaning that they are mutually independent. Occasionally, 
for emphasis, we use mutually independent so that the reader is reminded that 
this is different from pairwise independence. 

EXERCISES 

2.37. Let X, Y, Z have joint p.d.f. j{x, y, z)' , '2(x + y + z)/3, 0 < x < 1, 
0< y < 1,0 < z < 1. zero elsewhere. 
(a) Find the marginal probability density functions.' 
(b) Compute Pr (0 < X < !. 0 < Y < !, 0 < Z < !) and Pr (0 < X < !) = 

Pr (0 < Y <I) = Pr (0 < Z <!l. 
(c) Are X, Y, and Z independent? 
(d) C1l1culate E(X2 yZ + 3Xy4Z2). 
(e) Determine the distribution function of X, Y, and Z. 
(f) Find the conditional distribution of X and Y, given Z = z, and evaluate 

E(X + Ylz). . 
(g) Determine the conditional distribution 'of X, given Y = Y and Z = z, 

and compute E(Xly, z). 

2.38. Let j{x" X2' Xl) = exp [-(XI + X2 + X3)], 0 < XI < 00, 0 < X2 < 00, 

o < ~3 < 00, zero elsewhere, be the joint p.d.f. of XI. X2; X3. 
(a) ComputePr (XI <;X2 < Xl) and Pr (XI = X2 < Xl)' 
(b) Determine the m.gJ. of X" X2, and X). Are these random variables 

independent? 
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2.39. Let X., Xi, X3, andX'4 be four independent random variables, each with 
p.d.f. f(x) = 3(1 - X)2, 0 < X < 1, zero ~lsewhe:re. If Y i~ the minimum of 
these four variables, find the distribution function and the p.d.f. of Y. 

2.40. A fair die is cast at random three independent times. Let the random 
variable Xi be equal to the number of spots that appear on the ith trial, 
i = I, 2, 3. Let the random variable Y be equal to max (Xi)' Find the 
distribution functi~n ~nd .the p.d.f. of Y. 

Hint: Pr (Y::s;; y) = Pr(Xi < y, i = 1,2,3). 

2.41. Let M(th t2, t3) be the m.g.f. of the random variables XI> X2, and 
X3 of Bernstein's example, described in the remark preceding Example 
2 of this section. Show that M(t .. t2, 0) = M(tJ> 0, O)M(O, t2, 0), 
M(t., 0, t3) = M(t" 0, O)M(O, 0, t3), M(O, t2, t3) = M(O, 12, O)M(O, 0, t3), 
but M(t .. t2, t3) ::1= M(t., 0, O)M(O, t2, 0) M(O, o. t). Thus X., X2, X3 are 
pairwise independent but not mutually independent. 

2.42. Let XI' X2, and X3 be three random variables with means, variances, and 
correlation coefficients, denoted by Il .. J.l.2, J.l.3; ui, ~, 03; and P12, P13' P23' 
respectively. IfE(X, ~l'llxi" X3) = b2(X2 - 1'2) + b3(X3 - J.l.3), where ~ and 
b3 are constants, determine b2 and b3 in terms of the variances and the 
correlation coefficients. 

ADDITIONAL EXERCISES 

2.43. Find Pr [X, X2 < 2], where XI and X2 are independent and each has the 
distribution wit~ p.d.f. f(x) = 1, 1 < x < 2, zero elsewhere. 

" ~ 't ' 

2.44. Let the joint p.d.f. of X and r ,be. given by f(x, y) = (1 + ; + y)3 , 

0< x < 00,0 <y < 00, zero elsewhere: 
(a) Compute the marginal p.d.f. of X and the conditional p.d.f. of Y, 

given X = x. 
(b) For a fixed X = x, compute E(I + x + Ylx) and use the result to 

compute E( fix). 

2.4S. Let XI, X2, X3 be independent and each have a distribution with p.d.f. 
f(x) = exp( - x), 0 < x< ,co, zero elsewhere. Evaluate: 
(a) Pr (XI < X2IX. < 2X2). 
(b) Pr (XI < X2 < X)IX3 < 1). ' 

2.46. Let X and Y be random variables with space consisting of the four 
points: (0,0), (1, 1), (1,0), (I, -1). Assign positive probabilities to these 
four points so that the correlation coeffioient is equal to zero. Are X and 
Y independent? 

Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 2.51 Extelfsion to Sne,tIl RfIIIIIom YlII'itdJIes 115 

2.47. Two line segments, each of length 2 units, are placed. along the x = 
axis. The midpoint of the first is between x = ° and x := 14 and that of the 
second is between x = 6 and x = 20. Assuming independence and uniform 
distributions for these midpoints, find the probability that the line segments 
overlap. 

2.48. Let X and Yhavethejointp.d.f.f(x,y) =~,(x,y)'= (0,0),(1,0),(0, 1), 
(1, 1), (2, I), (l, 2), (2, 2), and zero elsewhere. Find the correlation 
coefficient p. 

2.49. Let XI and Xl have the joint p.d.f. described by the fonowing table: 

(0,0) (0, 1) (0,2) (1, I) (1,2) (2, 2) 

I 
i2 

Find .Ii (XI). h(Xl). Ph Pl. a1, ~, and p. 

4 
i2 

I 
i2 

2.50. If the discrete random variables XI: and X2 have, jOint p.d.f. 
f(x., Xl) = (3xl + xl)/24, (X., X2) = (1, 1), (1,2), (2, I), (2,2), zero else­
where, find the conditional mean E(Xllx,), when XI = 1. 

2.51. Lei X and Y have the joint p.d.f. f(x, y) = 21x2y3, ° < x < y < 1, zero 
elsewhere. Find the conditional mean E( Ylx) of Y, given X = x. 

2.52. Let XI andX2havethep.d.f.f(xl' X2) """ XI + X2,0 < XI < 1,0 < X2 < I, 
zero elsewhere. Evaluate Pr (XI/Xl < 2). 

2.53. Cast a fair die and let X = 0 if 1,2, or 3 spots appear, let X = 1 if 4 or 
5 spots appear, and let X = 2 if 6 spots appear. Do this two independent 
times, obtaining XI and Xl' Calculate Pr ((XI - Xli = 1). 

2.54. Let a1 = u~ = u2 be the c~mmon variance of XI and Xl and let p be the 
correlation coefficient 'of Xl and Xl' Show that, 

, 2(1 + p) 
Pr [I(XI - PI) + (X2 - P2)\ > ku] < ~ . 

, . 
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CHAPTER 3 

Some Special 
Distributions 

3.1 The Binomial and Related Distributions 

In Chapter I we introduced the uniform distribution and the 
hypergeometric distribution. 'In this chapter we discuss some other 
important distributions of· random variables frequently used in 
statistics. We begin with the binomial and related distributions. 

A Bernoulli experiment is a random experiment, the outcome of 
which can be classified in but one of two mutually exclusive and 
exhaustive ways, say, success or failure (e.g., female or male, life or 
death, nondefective or defective). A sequence of Bernoulli trials occurs 
when a Bernoulli experiment is performed several independent times 
so that the probability of success, say p, remains the same from trial 
to trial. That is, in such a sequence, we let p denote the probability of 
success on each trial. 

Let X be a random variable associated with a Bernoulli trial by 
defining it as folJows: 

X(success) = I and X(failure) = o. 
116 
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That is, the two outcomes, success and failure, are denoted by one and 
zero, respectively. The p.d.f. of X can be written as 

f(x) = y(l - p)I-X, x = 0, I, 

and we say that X has a Bernoulli distribution. The expected value of 
Xis 

I 

Jl. = E(X) = L xy(l - p)I-X = (0)(1 - p) + (l)(P) = p, 
x=o 

and the variance of X is 
I 

u'- = var (X) = L (x - p)2y(l - p)I-X 
x=o 

= p2(l - p) + (I - p)2p = p(l - pl. 

It follows that the standard deviation of X is (J = Jp(1 - pl. 

In a sequence of n Bernoulli trials, we shall let Xi denote the 
Bernoulli random variable associated with the ith trial. An observed 
sequence of n Bernoulli trials will then be an n-tuple of zeros and ones. 
In such a sequence of Bernoulli trials, we are often interested in the total 
number of successes and not in the order of their occurrence. If we let 
the random variable X equal the number of observed successes in n 
Bernoulli trials, the possible values of X are 0, I, 2, ... , n. If x successes 
occur, where x = 0, I, 2, ... , n, then n - x failures occur. The number 
of ways of selecting x positions for the x successes in the n trials is 

(n) n! 
x - x! (n - x)! . 

Since the trials are independent and since the probabilities of success 
and failure on each trial are, respectively, p and 1 - p, the probability 
of each of these ways is y(1 - p)n - x. Thus the p.d.f. of X, say f(x) , is 

~he sum of the probabilities ofthese ( : ) mutually exclusive events; that 
IS, 

x = 0, 1, 2, ... , n, 

= ° elsewhere. 
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Recall, if n is a positive integer, that 

(a + b)n = t (n) Iran-x. 
x=o X 

Thus it is clear thatf(x) ~ 0 and that 

L f(x) = t (n)r(1 - py-x 
x x ... o X 

= [(1 - p) + pf = 1. 

That is, f(x) satisfies the conditions of being a p.d.f. of a random 
variable X of the discrete type. A rar;tdom variable X that has a p.d.f. 
of the form of f(x) is said to have a binomial distribution, and any such 
f(x) is called a binomial p.d./. A binomial distribution will be denoted 
by the symbol ben, pl. The constants nand p are called the parameters 
of the binomial distribution. Thus, if we say that X is b(5, ~), we mean 
that X has the binomial p.d.f. 

(5)(I)X(2)5 -x 
f(x) = x "3 "3 ' x = 0, I, ... , 5, 

= 0 elsewhere. 

The m.g.f. of a binomial distribution is easily found. It is 

M(t) = ~ e"j{x) = .to e"(~ )[1'(1 - p)' x 

= t (n) (pe' )X(1 - pt- x 

x=o x 

= [(1 - p) + pe' ]n 

for all real values of t. The mean Jl and the variance cr of X may be 
computed from M(t). Since 

M'(t) = n[(1 - p) + pe'f - I(pe' ) 

and 

M"(t) = n[(1 - p) + pe,]n-I(pe') + n(n - 1)[(1 - p) + pe,]n-2(pe,)2, 

it follows that 

Jl = M'(O) = np 
and 

(12 = M"(O) - Jl2 = np + n(n - l)p2 - (np)2 = np(l - pl. 
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Example 1 •. Le.! Xbe the number of heads (successes) in n = 7 independent 
tosses of an unbiased coin. The p.d.f. of X is 

,. (7)(I)X( 1)7_X 
I(x) = x "2 . 1 -"2 ' x = 0, 1,2, ... , 7, 

= 0 elsewhere. 

Then X has the m.g.f. 
M(t) = G +- !e')7, 

has mean Jl = np = t, and has variance (J2 = np(l - p) =~. Furthermore, we 
have 

1 'I 7 8 
Pr (0 < X < 1) = L I(x) = 128 + 128 = 128 

x=o 

and 
Pr (X = 5) = 1(5) 

7! (1)5(1)2 21 
= 5! 2!"2 "2 = 128· 

Example 2. If the m.g.f. of a random variable X is 

M(t) = (j + je'lS, 
then X has a binomial distribution with n = 5 and p = !; that is, thep.d.f. of 
Xis 

(5)(I)X(2)S-X .. ,' 
I(x) =, x . 3 3 ' x = 0, I, 2, ... , 5, 

= 0 elsewhere. 
, . . 

Here Jl = np = j and (J2 = np(l- p) = l~. 

. Example 3. If Y is b(n,t), then Pr (Y > 1) = 1- Pr (Y = 0) = 1 _ (~)n. 
Supp~se that we wish to find the smallest value of n that yields 
Pr (Y > I) > 0.80. We have 1 - (i)n > 0.80 and 0.20 > (~)n; Either by 
inspection or by use of logarithms, we see that n = 4 is the solution. That is, 
the probability of at least one success throughout n = 4 independent 
repetitions of a random experiment with probability of success p = ! is greater 
than 0.80. 

Example 4. Let the random variable· Y be equal to the number of 
successes throughout n independent repetitions of a random experiment 
with probability p of success. That is, Y is ben, pl. The ratio Yin is called the 
relative frequency of success. For every £: > 0, we have 

Pr ( ~ - p > <) = Pr (I Y - npl > <11) 

= Pr (I Y - 1'1 <:. < JP<I n P)"). 
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where II = np" and (12 = np(1 - p). In accordance with Chebyshev's inequality 
with k = €Jnfp(1 - p), we have 

( .[1;) p(l-p) 
Pr IY - III > € (J < 2 

p(l- p) n£ 

and hence 

Now, for every fixed £ > 0, the right-hand member of the preceding inequality 
is close to zero for sufficiently large n. That is, 

hm Pr - - p ~ £ = ° .' ( Y ) 
n-+oo n 

and 

lim Pr ( Y - P < €) = 1. 
n-+oo n 

Since this is true for every fixed € > 0, we see, in a certain sense, that the relative 
frequency of success is for large values of n, close to the probability p of 
success. This result is one form of the law of large numbers. It was alluded to 
in the initial discussion of probability in Chapter I and will be considered 
again, along with related concepts, in Chapter S. 

Example S. Let the independent random variables XI, Xl> X3 have the 
same distribution function F(x). Let Y be the middle value of Xl> Xl> X 3• To 
determine the distribution function of Y,say G(y) = Pr (Y:::;; y), we note that 
Y < y if and only if at least two of the random variables XI, X2, X3 are less 
than or equal to y. Let us say that the ith "trial" is a success if Xi < y, 
j = 1,2, 3; here each "trial" has the probability of success F(y). In this 
terminology, G(y) = Pr (Y <: y) is then the probability of at least two 
successes in three independent trials. Thus 

G(y) = (~) [F(y))'[I7" F(y)] + [F(y)]'. 

If F(x) is a continuous type of distribution function so that the p.d.f. of X is 
F(x) = f(x), then the p.d:f. of Y is 

g(y) = G'(y) = 6[F(y)][1 - F(y)]f(y). 

Example 6. Consider a sequence of independent repetitions of a random 
experiment with constant probability p of success. Let the random variable 
Y denote the total number of failures in this sequence before the rth success; 
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that is, Y + r is equal to the number, of trials necessary to produce exactly r 
successes. Here r is a fixed positive integer. To determine the p.d.f. of Y,)et 
y be an element of {y : y = 0, I, ~, ... }. Then,. by the m~ltiplication rule of 
probabilities, Pr (Y = y) = g(y) is equal to the product of the probability 

of obtaining' exactly r - I successes in the first y + r - I trials and the 
probability p of a success on the (y + r)th trial. Thus the p.d.f. g(y) of Y is 
given by 

" (y + r - I) g(y) = r _ I p'(I - p)Y, y = 0, 1,2, ... , 

= ° elsewhere. 

A distribution with a p.d.f. of the form g(y) is called a negative binomial 
distribution; and any such g(y) is called a negative binomial p.d.f. The 
distribution derives its name from the fact that g(y) is a general term in 
the expansion of p'[1 - (1 - p)]-'. It is left as an exercise to show that the 
m.g.f. of this distribution is M(t) = p'[1 - (1 - p)el

]-', for t < -In (1 -p) .. 
If r = I, then Y has the p.d.f. , 1 

g(y) = P(I - p)', .r == 0, 1,2, ... , 

zero elsewhere, and the m.g.f. M(t) = p[1 (~(I - p)el]-I. In this special caSe, 
r = I, we say that Y has a geometric distribution. 

The binomi~l distribution is generalized to the multinQmial 
distribution as follows. Let a random experiment be repeated n 
independent times. On each repetitiqn, the experiment terrilinates in 
but one of k mutually exclusive and exhaustive ways, say 
C., C2, ••• , Ck • Let Pi be the probability that the outcome is an element 
of Cj and let Pi remain constant throughout the n independent 
repetitions, i = 1,-2, ... , k. Define the random variable Xi to be equal 
to the number of outcomes that are elements of C1, i = 1, 2, ... , 
k - I. Furthermore, let XI, X2, ••• , Xk _ I be nonnegative integers so 
that XI +.x2 + ... + Xk I:S; n. Then the probability that exactly 
XI terminations of the experiment are in Ch ••• , exactly Xk-I 

terminations are in Ck _ I, and hence exactly n - (XI + ... + Xk - d 
terminations are in Ck is 

n' ___ • __ nXl ••• nXk - I nXk 

X , ••• X , X ,I'I Pk - I I'k , 
\. k-I' k' 

where Xk is merely an abbreviation for n - (XI + ... + Xk _ I)' This is 

Uploaded By: anonymousSTUDENTS-HUB.com



122 Some Special Distrilnltiolls leb. 3 

the multinomial p.d./. of k - I random variables XI, Xh ••• , Xk _ I of 
the discrete type. To see that this is correct, note that the number of 
distinguishable arrangements of XI CI '8, X2C2'S, ••. , XkCk'S is 

(
n)(n-xl ) ••• (n-x1 -"'-Xk _ 2)= n! 
XI X2 Xk-I XI! X2! ••• Xk! 

and that the probability of each of these distinguishable arrangements 
is 

..x1..x2 ••. pXIc " 
1'1 1'2 k • 

Hence the product of these two latter expressions gives the correct 
probability, which is in agreement with the formula for the multinomial 
p.d.( , 

When k = 3, we often let X = XI and Y = X2; then 
n - X - Y = X3• We say that X and Y have a trinomial distribution. 
The joint p.d.f. of X and Y is 

. , '. t· ' 
1"1) n. ' x Y rII - x - y 
J\X' Y = xl y! (n - X _ y)! PIP2Y3 '" 

where X and y are nonnegative integers with X + y S;; n, and PI' P2, 
and P3 are positive proper fractions with pr+ P2;+ P3 = 1; and let 
f(x, y) = 0 elsewhere. Accordingly, f(x, y) satisfies the conditions of 
being a joint p.d.f. of two random variables X and Y of the discrete 
type; that is~ f(x, y) is nonnegative and its sum over all points (x, y) 
at whichf(x, y) is positive is equal to <p\ +. P2 + P3)" = 1. " 

U n'is:a positive integer and ai' a2' a3 arefiJted constants~ we have 

f ~"x n! a;~a: - x- y 

x'=o y'=o x! y! (n - x - y)! I 2.,3 

" , ....x n - x; ( )' =" n. "I " n - x . tr.,l:f.. - x - Y 

x'=o xl (n - x)! y'=oY! (n - x - y)! 2 3 . 

(1) 

Consequently, the m.g.f. of a trinomial distribution, in accordance 
with Equation (1), is given by 

" ,,- x n' 
M(t" t2) = x~o Y~O x! y! (n ~ x _ y)! {ple

tl
)X(p2e

t2
)yJI; -x- y 

= (Pletl + P2et2 + P3)", 
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for all real values of 11 and 12, The moment-generating functions of the 
marginal distributions of X and Y are, respectively, 

M(tI,O) = (Pie" + P2 + P3Y = [(1 - PI) + P\etl)n 

and 

M(O, (2) = (PI + P2et2 + P3)n = [(1 - P,J + p2et2 )n. 

We see immediately, from Theorem 4, Section 2.4, that X and 
Yare dependent random variables. In addition, X is b(n, PI) and 
Y is b(n,P2)' Accordingly, the means and the variances of X 
and Yare, respectively, III = npl, 112 = np2, O'i = npl(l - PI), and 
o-i = np2(1 - P2)' 

Consider next the conditional p.dJ. of Y, given X = x. We have 

I' ( I ) _ n - x . P2 P3 ( ) f ( )'( )n-x-, 
nil Y x - , y = 0, I, ... , n - x, 

y! (n-x-y)! I-PI I-PI 

= 0 elsewhere. 

Thus the conditional distribution of Y, given X = x, is b[n - x, 
P2/0 - PI »). Hence the conditional mean of Y, given X = x, is the 
linear function 

E(YIx) = (n - X)( P2 ). 
I-PI 

We also find that the conditional distribution of X, given Y = y, is 
b[n - y, PI/(l - P2») and thus 

E(Xly) = (n - y)( PI ). 
I - P2 

Now recall (Example 2, Section 2.3) that the square of the correlation 
coefficient, say p2, is equal to the product of -P21(l - PI) and 
- PI 1(1 - P2), the coefficients of x and y in the respective conditional 
means. Since both of these coefficients are negative (and thus p is 
negative), we have 

p= -

In general, the .m.g.f. of a multinomial distribution is given by 

M(II' ... ,1,,-1) = (p,e t
, + ... + Pk ,etk - I + Pk)n 
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for all real values of I" Ih •.. , Ik _ I' Thus each one-variable marginal 
p.d.f. is binomial, each two-variable marginal p.d.f. is trinomial, and 
so on. 

EXERCISES 

3.1. If the m.g.f. of a random variable X is (1 + je')s, find Pr (X = 2 or 3). 

3.2. The m.g.f. of a random variable X is (j + le')9. Show that 

s (9)(I)X(2)9 -x Pr (I' - 20' < X < I' + 20') = X~I X j j . 

3.3. If X is b(n, p), show that 

and 

3.4. Let the independent random variables XI, X2, Xl have the same p.d.f. 
f(x) = 3r,0 < x < 1, zero elsewhere. Find the probability that exactly two 
of these three variables exceed !. 

3.S. Let Y be the number of successes in n independent repetitions of a 
random experiment having the probability of success P = j. If n = 3, 
compute Pr (2 < Y); if n = 5, compute Pr (3 < Y). 

3.6. Let Y be the number of successes throughout n independent repetitions 
of a random experiment having probability of success p = !. Determine the 
smallest value of n so that Pr (1 s; Y) ~ 0.70. 

3.7. Let the independent random variables XI and X2 have binomial 
distributions with parameters n, = 3, PI = j and n2 = 4. P2 = !, respectively. 
Compute Pr (XI = X2). 

Hint: List the four mutually exclusive ways that XI = X2 and compute 
the probability of each. 

3.8. Toss two nickels and three dimes at random. Make appropriate 
assumptions and compute the probability that there are more heads 
showing on the nickels than on the dimes. 

3.9. Let XI' X2, ••• , Xk _ I have a multinomial distribution. 
(a) Find the m.g.f. of X2, X:h ••• , Xk _ I' 

(b) What is the p.d.f. of X2• Xl, .. - • Xk _,1 
(c) Determine the conditional p.d.f. of X" given that 

X2 = X2 • ••• , Xk - I = Xk - ,-

(d) What is the conditional expectation E(X,lx2' - ..• Xk _ 1)1 

3.10. Let Xbe b(2, p) and let Y be b(4,p). IfPr (X ~ 1) = j, find Pr (Y > 1). 
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3.11. If x = r is the unique mode of a distribution that is b(n,p), show that 

(n + l)p - I < r < (n + I )p. 

Hint: Determine the values of x for which the ratio f(x + 1)lf(x) > I. 

3.t2. Let X have ~ binomial distribution with parameters nand p =~. 
Determine the smallest integer n can be such that Pr (X ~ 1) ~ 0.8,5. 

3.t3. Let X have the p.d.f. j{x) = (~)(iY, x = 0, 1,2,3, ... , zero elsewhere. 
Find the conditional p.d.f. of X, given that X > 3. 

3.14. One of the numbers 1, 2, ... , 6 is to be chosen by casting an unbiased 
die. Let this random experiment be repeated five independent times. Let the 
random variable XI be the number of terminations in the set {x : x = 1, 2, 3} 
and let the random variable X2 be the number of terminations in the set 
{x: x = 4, 5}. Compute Pr (XI = 2, X2 = 1). 

3.15. Show that the m.g.f.· of the negative binomial distribution is 
M(t) = p'[1 - (1 - p)et]-r. Find the mean and the variance of this 
distribution. 

Hint: In the summation representing M(t), make use ofthe MacLaurin's 
series for (1 - w)-r. 

3.16. Let XI and X2 have. a trino,nial distribution. Differentiate the 
moment"generating function to show that their covariance is -npIP2' 

3.17. If a fair coin is tossed at random five independent times, find the 
conditional probability of five heads relative to the hypothesis that there 
are at least four heads. 

3.18. Let an ·unbiased die be cast at random seven independent times. 
Compute the conditional prObability that each side appears at least once 
relative to the hypothesis that side 1 appears exactly twice. 

3.19. Compute the measures of skewness and kurtosis of the binomial 
distribution b(n, p). 

3.20. Let 

f(x,. x,) = (;:)Gr(:~). X2 = 0, 1, ... , x .. 
XI = 1, 2, 3,4, 5, 

zero elsewhere, be the joint p.d.f. of Xl and X2• Determine; 
(a) E(X2). 

(b}.u(xl)·= E(X2ix.). 
(c) E[u(X.)]. 
Compare the answers of parts (a) and (c). 
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5 XI 

Hint: Note that E(X2) = L L X2!(XI. X2) and use the fact that 
XI- I X2 =0 

r. y (n)G)R = n/2. Why? 
y=o y 

3.21. Three fair dice are cast. In 10 independent casts, let X be the number 
of times all three faces are alike and let Y be the number of times only two 
faces are alike. Find the joint p.d.f. of X and Yand compute E(6Xy). 

3.2 The Poisson Distnbution 

Recall that the series 
m2 m3 ('()mx 

1 +m+-, +-, + ... == L-, 
2. 3. x-o x. 

converges, for all values of m, to en. Consider the functionf(x) defined 
by 

rnXe- m 

f(x) == xl ' x == 0, 1,2, ... , 

== 0 elsewhere, 

where m > O. Since m > 0, then f(x) > 0 and 

that is, f(x) satisfies the conditions of being a p.d.f. of a discrete type 
of random variable. A random variable that has a p.d.f. of the form 
f(x) is said to have a: Poisson distribution, and any such f(x) is called 
a Poisson p.d.! 

Remarks. Experience indicates that the Poisson p.d.f. may be used in a 
number· of applications with quite satisfactory results. For example, let the 
random variable X denote the number of alpha particles emitted by a 
radioactive substance that enter a prescribed region during a prescribed 
interval of time. With a suitable value of m, it is found that X may be 
assumed to have a Poisson distribution. Again Jet the random variable X 
denote the number of. defects on a manufactured article, such as a 
refrigerator door. Upon examining many of these doors. it is found, with an 
appropriate value of m, that X may be said to have a Poisson distribution. The 
number of automobile accidents in some unit of time (or the number of 
insurance claims in some unit of time) is often assumed to be a random 
variable which has a Poisson distribution. Each of these instances can be 
thought of as a process that generates a number of changes (accidents, 
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claims, etc.) in a fixed interval (of time or space, etc.). If a process leads to 
a Poisson distribution, that process is called a Poisson process. Some 
assumptions that ensure a Poisson process will now be enumerated. 

Let g(x, w) denote the probability of x changes in each interval of length 
w. Furthermore, let the symbol o(h) represent any function such that 
lim [o(h)/h] = 0; for example, h2 = o(h) and o(h) + o(h) = o(h). The Poisson 
po~tulates are the following: 

1. g(l, h) = Ut +. o(h), where 1 is a positive constant and h > 0. 
00 

2. L g(x, h) = o(h). 
x=2 

3. The numbers of changes in nonoverlapping intervals are independent. 

Po'stulates I and 3 state, in effect, that the probability of one change in a 
short interval h is independent of challges in other nonoverlapping intervals 
and is approximately proportional to the length of the interval. The substance 
of postulate 2 is that the probability of two or more changes in the same short 
interval h is essentially equal to zero. If x = 0, we take g(O, 0) = 1. In 
accordance with postulates 1 and 2, the probability of at least one change in 
an interval oflength h is A.h + o(h) + o(h) = lh + o(h). Hence the probability 
of zero changes in this interval of length h is 1 - )'h - o(h). Thus the 
probability g(0, w + h) of zero changes in an interval of length w + h is, in 
accordance with postulate 3, equal to the product of the probability g(0, w) 
of zero changes in an interval oflength wand the probability [1 - )'h - o(h)] 
of zero changes in a nonoverlapping interval of length h. That is, 

g(O, w + h) = g(O, w)[l - )'h - o(h)]. 

Then 

g(O, w + h) - g(O, w) _ _ ).g(0, w) _ o(h)g(O, w). 

h h 

If we take the limit as h -+0, we have 

Dw[g(O, w)1 = - ).g(O, w). 

The solution of this differential equation is 

g(O, w) = ce- Aw
• 

The condition g(0. 0) = I implies that c = I; so 

g(O, w) = e- Aw• 

If x is a positive integer, we take g(x, 0) = 0. The postulates imply that 

g(x, w + h) = [g(x, w)][l - A.h - o(h)] + [g(x - 1, w)][)'h + o(h)] + o(h). 
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Accordingly, we have 

g(x, w + h) - g(x, w) o(h) 
h - - 19(x, w) +lg(x - 1, w) + h 

and 

Dw[g(x, w)] = - 19(x, w) + 19(x - I, w), 

for x = 1,2,3, .... It can be shown, by mathematical induction, that the 
solutions to these differential equations, with boundary conditions g(x, 0) = 0 
for x = 1,2,3, ... , are, respectively, 

(lwYe- AW 

g(x, w) = I' X = 1,2,3, .... x. 

Hence the number of changes X in an interval of length w has a Poisson 
distribution with parameter m = lw. 

The m.g.f. of a Poisson distribution is given by 

<Xl (me'Y 
= e-m L -x-:-'-

x =0 • 

for all real values of t. Since 

M'(t) = em(eI I)(me') 

and 

then 

Jl = M'(O) = m 

and 

(12 = M"(O) - Jl2 = m + m2 - m2 = m. 

That is," a Poisson distribution has Jl = (12 = m > O. On this account, 
a Poisson p.d.f. is frequently written 

f(x) = tf;!-~, x = 0, 1,2, ... , 

= 0 elsewhere. 
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Thus the parameter m in a Poisson p.d.f. is the mean p. Table I in 
Appendix B gives approximately the distribution for various values of 
the parameter m = p. 

Example 1. Suppose that X has a Poisson distribution with Jl = 2. Then 
the p.d.f. of X is 

2xe-2 

f(x) = ""Xl' x = 0, 1,2, ... , 

= 0 elsewhere. 

The variance of this distribution is (12 = Jl = 2. If we wish to compute 
Pr (I S X), we have 

Pr (I < X) = 1 - Pr (X = 0) 

= 1 - f(0) = 1 - e-2 = 0.865, 

approximately. by Table I of Appendix B. 

Example 2. If the m.g.f. of a random variable X is 

M(t) = e4(eI-l), 

then X has a Poisson distribution with Jl = 4. Accordingly, by way of example, 

43e-4 32 
Pr(X= 3) = 3! =T e- 4

; 

or, by Table I, 

Pr (X = 3) = Pr (X < 3) - Pr (X < 2) = 0.433 - 0.238 = 0.195. 

Example 3. Let the probability of exactly one blemish in 1 foot of wire be 
about .C:OO and let the probability of two or more blemishes in that length be, 
for all practical purposes, zero. Let the random variable X be the number of 
blemishes in 3000 feet of wire. Ifwe assume the independence of the numbers 
of blemishes in nonoverlapping intervals, then the postulates of the Poisson 
process are approximated, with A. = ,C:OO and w = 3000. Thus X has an 
approximate Poisson distribution with mean 3000(.~ = 3. For example, the 
probability that there are exactly five blemishes in 3000 feet of wire is 

and by.Table I, 

3Se-3 

Pr(X= 5) =sr-

Pr (X = 5) = Pr (X s 5) - Pr (X s 4) = 0.101, 

approximately. 
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EXERCISES 

3.22. If the random variable X has a Poisson distribution such that 
Pr (X = I) = Pr (X = 2), find Pr (X = 4). 

3.23. The m.g.f. of a random variabJe X is e"<,r - I). Show that 
Pr (Jl- 20' < X < Jl + 20') = 0.931. 

3.24. In a lengthy manuscript, it is discovered that only 13.5 percent of the 
pages contain no typing errors. If we assume that the number of errors per 
page is a random variable with a Poisson distribution, find the percentage 
of pages that have exactly one error. 

3.25. Let the p.d.f. /(x) be positive on and only on the nonnegative integers. 
Given that/(x) = (4/x)/(x - I), x = 1,2,3, .... Find/(x). 

Hint: Note thatf(l) = 4/(0),/(2) = (42/2!)f(0), and so on. That is. find 
each /(x) in terms of /(0) and then determine /(0) from 

1 =/(0) + /(1) + /(2) + .... 
3.26. Let X have a Poisson distribution with Jl = 100. Use Chebyshev'S 

inequality to determine a lower bound for Pr (75 < X < 125). ' 

3.27. Given that g(x, 0) = 0 and that 

Dw[g(x, w)] = - A.g(x, w) + A.g(x - I, w) 

for x = 1. 2, 3. . .. . If g(O, w) = e':' Aw
, show, by mathematical induction, 

that 

(AwYe- Aw 

g(x, w) = , ' x. x = 1.2, 3, .... 

3.28. Let the number of chocolate drops in a certain type of cookie have a 
Poisson distribution. We want the probability that a cookie of this type 
contains at least two chocolate drops to be greater than 0.99. Find the 
smallest value that the mean of the distribution can take. 

3.29. Compute the measures of skewness and kurtosis of the Poisson 
distribution with mean Jl. 

3.30. On the av<?rage a grocer sells 3 of a certain article per week. How many 
of these should he have in stock so that the chance of his running out within 
a week will be less than 0.0 I? Assume a Poisson distribution. 

3.31. Let X have a Poisson distribution. IfPr (X = 1) = Pr (X = 3), find the 
mode of the distribution. 

3.32. Let X have a Poisson distribution with mean ]. Compute. if it exists. 
the expected value E(X1). 
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3.33. Let X and Y have the joint p.d.f. f(x, y) = e- 2/[x!(y - x)!], y = 
0, 1,2, ... ; x = 0, 1, ... ,y, zero elsewhere. 
(a) Find the m.g.f. M(tl' t2) of this joint distribution. 
(b) Compute the means, the variances, and the correlation coefficient of X 

and Y. 
(c) Determine the conditional mean E(Xly). 

Hint: Note that 

12 [exp (tlx)]y!/[x! (y - x)~ = [1 + exp (tl)]Y, 
x-o 

Why? 

3.3 The Gamma and Chi-Square Distributions 

In this section we introduce the gamma and chi-square distri­
butions. It is proved in books on advanced calculus that the integral 

i~ y"-'e-Y dy 

exists for a > 0 and that the value of the integral is a positive number. 
The integral is called the gamma function of a, and we write 

r(lX) = [ y"- 'e-Y dy. 

If (l = 1, clearly 

r(1) = [ e-Y dy = 1. 

If a > I, an integration by parts shows that 

r(1X) - (IX - I) [ y"-'e-Y dy - (IX - 1)r(1X - I). 

Accordingly, if a is a positive integer greater than 1, 

f(a) = (a - I)(a - 2) ... (3)(2)(I)r(l) = (a - I)!. 

Since r(l) = I, this suggests that we take O! = I, as we have done. 
In the integral that defines r(a), let us introduce a new variable x 

by writing y = xlP, where P > O. Then 

r( IX) = [(p)' 'e-xl'(~ ) dx, 
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or, equivalently, 

1 -100 

1 XX - le-x
/fJ dx - r(a.)p . 

o 

Since a. > 0, {1 > 0, and r(a.) > 0, we see that 

f(x) = 1 XX - le- x
/fJ ° < x < 00, r(a.)p , 

= ° elsewhere, 

is a p.d.f. of a random variable of the continuous type. A random 
variable X that has a p.d.f. of this form is said to have a gamma 
distribution with parameters a. and {1; arid any such f(x) is called a 
gamma-type p.d.f 

Remark. The gamma distribution is frequently the probability model for 
waiting times; for instance, in life testing, the waiting time until "death" is the 
random variable which frequently has a gamma distribution. To see this t let 
us assume the postulates of a Poisson process and let the interval of length 
w be a time interval. Specifically, let the random variable W be the time that 
is needed to obtain exactly k changes (possibly deaths), where k is a fixed 
positive integer. Then the distribution function of W is 

G(w) ::::: Pr (W ~ w) ::::: I Pr (W > w). 

However, the event W> w, for w > 0, is equivalent to the event in which there 
are less than k changes in a time interval of length w. That is, if the random 
variable X is the number of changes in an interval of length w, then 

k - I k - I (AwYe- Aw 
Pr (W > w) = L Pr (X = x) = L ,. 

x=o x=o x. 

It is left as an exercise to verify that 

100 Zk le- z k - 1 (AwYe- Aw 
---dz= L ,. 

Aw(k-I)! x-o x. 

If, momentarily, we accept this result, we have, for w > 0, . f.~ zk-1e- z lAW zk -Ie-z 
, G(w) ::::: 1 - r(k) dz = r(k) dz, 

AM' 0 

and for w ~ 0, G(w) = O. If we change the variable of integration in the 
integral that defines G(w) by writing z = AY, then _ f Akyk- Ie-A! 

G(w) - r(k) dy, w > 0, 
o 
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and G(w) = 0, w :::; O. Accordingly, the p.d.f. of W is 

g(w) = G'(w) = Ahvk-1e-
Aw 

0 < w < 00, 
r(k) , 

= 0 elsewhere. 

That ~s, W has a gamma distribution with IX = k and fJ = I/l. If W is the 
waiting time until the first change, that is, if k = 1, the p.d.f. of W is 

g(w) = le- Aw, 0 < w < 00, 

= 0 elsewhere, 

and W is said to have an exponential distribution with mean fJ = l/l. 

We now find the m.g.f. of a gamma distribution. Since 

M(t) = r«> e'x 1 X' - Ie-xIII dx J) r(ex)p« 

= r«> 1 X' - le-x(l - MIll dx J
o 

r(ex)p« , 

we may set y = x(1 - pt)IP, t < lIP, or x = Pyl(l - Pt), to obtain 

M(t) = r«> PI(l - Pt) ( py )Il - le-.r dy. 
Jo r(ex)p« 1 - pt 

That is, 

Now 

M'(t) = (-ex)(1 - pt)-a-l( -P) 

and 

M"(t) = ( - ex) ( -ex - 1)(1 _ pt)-a - 2( _ p)2. 

Hence, for a gamma distribution, we have 

p. == M'(O) = exp 
and 
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Example 1. Let the waiting time W have a gamma p.d.f. with ex = k and 
fJ = Ill. Accordingly, E(W) = kll. If k = 1, then E(W) = Ill; that is, the 
expected waiting time for k = I changes is equal to the reciprocal of A.. 

Example 2. Let X be a random variable such that 

Err') = (m + 3)! 3m 
\ 3!' m = 1,2,3, .... 

Then the m.g.f. of X is given by the series 

M(t) = 1 + 4' 3 1 + 5' 3
2 

t2 + 6! 3
3 

13 + .... 
3! l! 3! 2! 3! 3! 

This, however. is the Maclaurin's series for (l - 31)-" provided that 
- 1 < 31 < 1. Accordingly, X has a gamma distribution with ex = 4 and fJ = 3. 

Remark. The gamma distribution is not only a good model for waiting 
times, but one for many nonnegative random variables of the continudus type. 
For illustration, the distribution of certain incomes could be modeled 
satisfactorily by the gamma distribution, since the two parameters ex and fJ 
provide a great deal offtexibility. Several gamma probability density functions 
are depicted in Figure 3.1. 

Let us now consider the special case of the gamma distribution in 
which ex = r/2, where r is a positive integer, and P = 2. A random 
variable X of the continuous type that has the p.dJ. 

I f(x) = )(/2 le- x/2 
r(r/2)2r/2 ' 

= 0 elsewhere, 

and the m.g.f. 

M(t) = (1 - 2t)-r/2, 

0< x < 00, 

I 
t < 2' 

is said to have a chi-square distribution, and any f(x) of this form is 
called a chi-square p.d.! The mean and the variance of a chi-square 
distribution are 11 = exp = (r/2)2 = rand q2 = exp2 ::;:: (r/2)22 = 2r, 
respectively. For no obvious reason, we call the parameter r the num­
ber of degrees of freedom of the chi-square distribution (or of 
the chi-square p.dJ.). Because the chi-square distribution has an 
important role in statistics and occurs so frequently, we write, for. 
brevity, that X is x2(r) to mean that the random variable X has'a 
chi-square distribution with r degrees of freedom. 
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Example 3. If X has the p.d.f. 

f(x) = ~xe-x!2, 0< x < 00, 

= 0 elsewhere, 

then X is X2(4). Hence Jl = 4, (12 = 8, and M(/) = (l - 21)-2, 1 < 4. 

135 

Example 4. If X has the m.g.f. M(/) = (l - 21)-8, 1 < 4, then X is x2(16). 

If the random variable X is x2(r), then, with c. < C2, we have 

Pr (c, < X < C2) = Pr (X < C2) - Pr (X < CI), 

since Pr (X = CI) = O. To compute such a probability, we need the 
value of an integral like 

I
x I 

Pr (X < x) = W{2-l e-w/2 dw. 
- r(r/2)2,/2 

o 

f(x) 
0.10 

0.08 

0.06 

0.04 

0.02 

x 
5 10 15 20 25 30 

~=4 

fix) 

0.12 ~=2 

0.10 

0.08 

0.06 

0.04 

0.02 

x 
5 10 15 20 25 30 

a=4 

FIGURE 3.1 
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Tables of this integral for selected values of r and x have been prepared 
and are partially reproduced in Table II in Appendix B. 

Example 5. Let Xbe X2(10). Then, by Table II of Appendix B, with r = 10, 

Pr (3.25 < X < 20.5) = Pr (X < 20.5) - Pr (X < 3.25) 

= 0.975 - 0.025 = 0.95. 

Again, by way of example, ifPr (a < X) = 0.05, then Pr (X ~ a) = 0.95, and 
thus a = 18.3 from Table II with r = 10. 

EXIUllpIe 6. Let X have a gamma distribution with IX = r/2, where r is a 
positive integer, and P > O. Define the random variable Y = 2X/p. We seek 
the p.d.f. of Y. Now the distribution function of Y is 

G(y) = Pr (Y < y) = Pr (x < P;). 
If y ~ 0, then G(y) = 0; but if y > 0, then 

I
fJY'2 1 

G(y) x/2 le- x/fJ dx. 
= 0 r(r/2)pr/2 

Accordingly, the p.d.f. of Y is 

g(y) = G'(y) = P/2 (Py/2y/2 - ie -y/2 
r(r/2)p,/2 

1 _ y,f2 - le -y/2 

r(r/2)2,/2 

if y > O. That is, Y is x2(r). 

EXERCISES 

3.34. If (t - 2/)-6, 1 <!, is the m.g.f. of the random variable X, find 
Pr (X < 5.23). 

3.35. If X is l(5), determine the constants c and d so that 
Pr (c < X < d) = 0.95 and Pr (X < c) = 0.025. 

3.36. If X has a gamma distribution with IX = 3 and P = 4, find 
Pr (3.28 < X < 25.2). 

Hint: Consider the probability of the equivalent event 1.64 < Y < 12.6, 
where Y = 2X/4 = X/2. 

3.37. Let X be a random variable such that E(xm) = (m + I)! 2m, 
m = I, 2, 3, . .. . Determine the m.g.f. and the distribution of X. 
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3.38. Show that 

foo I k - I p."e-P 
_-Zk-Ie-zdz= L-­
r(k) ,,-0 x! • 

P 

137 

k "'" 1,2, 3, ... 

This demonstrates the relationship between the distribution functions of 
the gamma and Poisson distributions. 

Hint: Either integrate by parts k - 1 times or simply note that the 
"antiderivative" of zk - le- z is 

k-I -z (k I) k-2-z (k 1)'-Z -z e - - z e _ ... - - . e 

by differentiating the latter expression. 

3.39. Let X" X2, and X3 be independent random variables, each with p.d.f. 
I(x) = e-.'f, 0 < x < 00, zero elsewhere. Find the distribution of 
Y = minimum (X., X2 , X3)' 

Hint: Pr (Y < y) = 1 - Pr (Y > y) = 1 - Pr (Xi> y, i = 1,2,3). 

3.40. Let X have a gamma distribution with p.d.f. 

1 
I(x) = fJ2 xe-x

/P, 0 < x < 00, 

zero elsewhere. If x = 2 is the unique mode of the distribution, find the 
parameter P and Pr (X < 9.49). 

3.41. Compute the measures of skewness and kurtosis of a gamma distri­
bution with parameters a and p. 

3.42. Let X have a gamma distribution with parameters a and p. Show that 
Pr (X ;;::: 2ap) ~ (2Ie)(/.. 

Hint: Use the result of Exercise 1.115. 

3.43. Give a reasonable definition of a chi-square distribution with zero 
degrees of freedom. 

Hint: Work with the m.g.f. of a distribution that is :e(r) and let r = O . . 
3.44. In the Poisson postulates on page 127, let 1 be a nonnegative function 

of w, say l(w), such that D".[g(O, w)] = - l(w)g(O, w). Suppose that 
l( w) = krw' - " r :G::: 1. 
(a) Find g(0, w) noting that g(O, 0) = 1. 
(b) Let W be the time that is needed to obtain exactly one change. Then 

find the distribution function of W, namely G(w) = Pr (W < w) = 
1 - Pr (W > w) = I - g(O, w), 0 < w, and then find the p.d.f. of W. 
This p.d.f. is that of the Weibull distribution, which is used in the study 
of breaking strengths of materials. 

3.45. Let X have a Poisson distribution with parameter m. If m is an 
experimental value of a random variable having a gamma distribution with 
a = 2 and p = 1, compute Pr (X = 0, 1,2). 
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3.46. Let X have the uniform distribution with p.d.f.J(x) = 1,0 < x < 1,zero 
elsewhere. Find the distribution function of Y == - 2 In X. What is the p.d.f. 
of Y? 

3.47. Find the uniform distribution of the continuous type that has the same 
mean and the same variance as those of a chi-square distribution with 8 
degrees of freedom. 

3.4 The Normal Distribution 

Consider the integral 

This integral exists because the integrand is a positive continuous 
function which is bounded by an integrable function; that is, 

0< exp ( -~) < exp (-Iyl + I), -00 < y < 00, 

and r exp ( -Iyl + I) dy = 2e. 
-00 

To evaluate the integral I, we note that I > 0 and that f2 may be written 

f
oo foo ( 2 + 2) 

{l = _., _., exp - y 2 Z dy dz. 

This iterated integral can be evaluated by changing to polar co­
ordinates. If we set y = r cos 8 and z = r sin 8, we have 

{l = f' 1'" r,l"r dr d6 

..: f" d6 = 2x. 

Accordingly, I = fo and 

[ 
_1- e-y2/2 dy = I. 

-oofo 
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If we introduce a new variable of integration, say x, by writing 

x-a 
Y = b ' 

the preceding integral becomes 

b > 0, 

[b~exp[ -(x~a)]dX= 1. 

Since b > 0, this implies that 

I [(x':'" a)2] 
f(x) = bfo exp - 2~ , -oo<x<oo 

139 

satisfies the conditions of being a p.dJ. of a continuous type of ran­
dom variable. A random variable of the continuous type that has a 
p.d.f. of the form off (x) is said to have a normal distribution, and any 
J(x) of this form is called a normal p.d.f. 

We can find the m.g.f. of a normal distribution as follows. In 

M(t) = [ elK b~ exp [ -(x ;,a)] dx 

_ foo 1 (_ - 2b
2
tx + xl - 2ax + a2

) .. d 
. - r,:;: exp 2b2 x 

-00 by 211: 
/ 

we complete the square in the exponent. Thus M(t) becomes 

M( ) [a2 - (a + b2t)2] foo I 
t = exp - 2b2 r,:;: 

-00 by 2n 

[ 
(x- a b2tf] 

x exp - 2b2 dx 

because the integrand of the last integral can be thought of as a normal 
p.d.f. with a replaced by a + b2t, and hence it is equal to 1. 

The mean I' and variance (]2 of a normal distribution will be 
calculated from M(t). Now 

M'(t) = M(t)(a + b2t) 
and 
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Thus 

p. = M'(O) = a 

and 

cr = M"(O) - Jl2 = b2 + Ql- a2 = ~. 

This permits us to write a normal p.d.f. in the form of 

I [(X - Jl)2J 
f(x) = 0'.j2; exp - 20'2 ' - 00 < x < 00, 

a form that shows explicitly the values of Jl and cr. The m.g.f. M( t) can 
be written 

M(t) = exp (Ill + u'!} 
Exanap/l! 1. If X has the m.g.f. 

M(t) = e2'+3212, 

then X has a normal distribution with JI. = 2, u2 = 64. 

The normal p.d.f. occurs so frequently in certain parts of statistics 
that we denote it, for brevity, by N(Jl, cr). Thus, if we say that the 
random variable X is N(O, 1), we mean that Xhas a normal distribution 
with mean Jl = 0 and variance cr = I, so that the p.d.f. of X is 

j{x) = _1_e-x212, -00 < x < 00 • 

.j2; 
If we say that X is N(5, 4), we mean that X has a normal distribution 
with mean Jl = 5 and variance 0'2 = 4, so that the p.d.f. of X is 

1 [(X - 5)2J 
j{x) = 2.j2; exp - 2(4) , - 00 < x < 00. 

Moreover, if 

then X is N(O, 1). 
The graph of 

1 [(X - Jl)2J 
f(x) = 0'.j2; exp - 20'2 ' -00 < x < 00, 
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is seen (I) to be symmetric about a vertical axis through x = p., (2) 
to have its maximum of I/(ufo) at x = p., and (3) to have the x-axis 
as a horizontal asymptote. It should also be verified that (4) there 
are points of inflection at x = p. + (/. 

Remark. Each of the special distributions considered thus far has been 
"justified" by some derivation that is based upon certain concepts found 
in elementary probability theory. Such a motivation for the normal 
distribution is not given at this time; a motivation is presented in Chapter 5. 
However, the normal distribution is one of the more widely used distributions 
in applications of statistical methods. Variables that are often assumed to be 
random variables having normal distributions (with appropriate values of p. 
and u) are the diameter of a hole made by a drill press, the score on a test, 
the yield of a grain on a plot of ground, and the length of a newborn child. 

We now prove a very useful theorem. 

Theorem 1. If the random variable X is N(p., u2
), (/2 > 0, then the 

random variable W = (X - p.)/u is N{O, I). 

Proof. The distribution function G(w) of W is, since u > 0, 

G(w) = Pr (X ~ P < w) = Pr (X < W<1 + p). 

That is, 

J
WU + P. 1 [(X - p.)2] 

G(w) = -(Xl (/fo exp - 2(/2. dx. 

If we change the variable of integration by writingy = (x - p.)/u, then 

G(w) = e-y2/2 dy. f
w 1 

-(Xl fo 
Accordingly, the p.d.f. g(w) = G'(w) of the continuous-type random 
variable W is 

g(w) = _1_ e-WlI2, 

fo 
-00 < w < 00. 

Thus W is N(O, I), which is the desired result (see also Exercise 3.100). 

This fact considerably simplifies the calcula~ions of probabilities 
concerning normally distributed variables, as will be seen presently. 
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tp (Z ) 

0.4 

Z 
-3 -2 -1 0 1 Zo 2 3 

FIGURE 3.2 

Suppose that X is N(p., 0-2
). Then, with CI < C2 we have, since 

Pr (X = CI) = 0, 

= -- e- w2
/2 dw - -- e- W2

{2 dw f
(C2 - p.)fa 1 f(CI - p.)flJ 1 

-00 fo -00 fo 
because W = (X - ,.,.)/(1 is N(O, I). That is, probabilities concerning X, 
which is N(,.,.~ 0-2

), can be expressed in terms of probabilities concerning 
W, which is N(O, I). 

An integral such as 

f* _1_ e- w2/2 dw 

-oofo 
cannot be evaluated by the fundamental theorem of calculus because 
an Uantiderivative~~ of e- w2f2 is not expressible as an elementary 
function. Instead, tables of the approximate value of this integral for 
various values of k have been prepared and are partially reproduced 
in Table III in Appendix B. We use the notation 

Cl»(z) = -- e- w2
/
2 dw. f

~ I 

-oofo 
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Moreover, we say that Cll(z) and its derivative c)'(z) == (,O(z) are, 
respectively, the distribution function and p.d.f. of a standard normal 
distribution N(O, 1). These are depicted in Figure 3.2. 

To summarize, we have shown that if X is N(Jl, 0'2), then 

(
X - Jl C2 - Jl) (X - Jl c, - Jl) Pr (Cl < X < C2) = Pr 0' < 0' - Pr 0' <. 0' 

It is left as an exercise to show that c)( -x) = 1 - c)(x). 

EXlllllp/e 2. Let X be N(2, 25). Then, by Table III. 

and 

(10 - 2) (0 - 2) Pr (0 < X < 10) = <D 5 - <D -5-

= <D(1.6) - <D( -0.4) 

= 0.945 - (l - 0.655) = 0.600 

Pr (-8 < X < I) = <l>e 5 2) -<1>( - 8
5
-2) 

= ([)( -0.2) - <D( - 2) 

= (1 - 0~579) - (1 - 0.977) = 0.398. 

Example 3. Let X be N(p, 0-2). Then, by Ta~le III, 

Pr (p - 20- < X < p + 20-) = <1>( l! + ~ - l! ) - <1>( I' - ~ - l!) 
= <D(2) - <D( - 2) 

= 0.977 - (I - 0.977) = 0.954. 

Example 4. Suppose that 10 percent of the probability for a certain 
distribution that is N(p. 0-2) is below 60 and that 5 percent is above 90. What 
are the values of p and 0-1 We are ,given that the random variable X 
is N(p.0-2) and that Pr (X < 60) = 0.10 and Pr (X < 90) =: 0.95. Thus 
<D[(60 - p)/o-] = 0.10 and <D[(90 - p)/o-] = 0.95. From Table III we have 

60-p 90-1' ---'- = - 1.282, = 1.645. 
0- 0-

These conditions require that p = 73.1 and 0- = 10.2 approximately. 

Remark. In this chapter we have illustrated three types of parameters 
associated with distributions. The mean p of N(p, 0-2) is called a location 
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parameter because changing its value simply changes the location of the 
middle of the normal p.d.f.; that is, the graph of the p.d.f. looks exactly the 
same except for a shift in location. The standard deviation (1 ofN(/l, o-l) is called 
a scale parameter because changing its value changes the spread of the 
distribution. That is, a small value of (1 requires the graph of the normal 
p.d.f. to be tall and narrow, while a large value of (1 requires it to spread out 
and not be so tall. No matter what the values of /l and (1, however, the graph 
of the normal p.d.f. will be that familiar ·'bell shape." Incidentally, the P of 
the gamma distribution is also a scale parameter. On the other hand, the Ct 

of the gamma distribution is called a shape parameter, as changing its value 
modifies the shape of the graph of the p.d.f. as can be seen by referring to 
F~gure 3.1. The parameters p and J1 of the binomial and Poisson distributions, 
respectively, are also shape parameters. 

We close this section with an, important theorem. 

Theorem 2. If the random variable X is N(p., 0-2), 0-2> 0, then the 
random variable V = (X - p.)2/0-2 is x2(1). 

Proof Because V = ~, where W = (X - p.)/o- is N(O, 1), the 
distribution function G(v) of V is, for v > 0, 

G(v) . Pr(~ < v) = Pr(-Jv < W:s; Jv). 
That is, 

i-fi 
G(v) = 2 _1_ e- W212 dw, 

o .ji;c 
o <v, 

and 
G(v) = 0, v < O. 

If we change the variable of integration by writing w = JY, then 

G(v) = r ~=l--=· e-y/2 dy, 
Jo .ji;cJY o <v. 

Hence the p.d.f. g(v) = G'(v) of the continuous-type random variable 
Vis 

1 .. . 
g(v) = V l/2 -le -v/2, 0 < v < 00, 

.fiJi -
= 0 elsewhere. 

Since g(v) is a p.d.f. and hence r g(v)dv = I, 

it must be that rG) = .fi and thus V is i( I). 
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EXERCISES 

3.48. If 

cJ)(z) = JZ _1_ e- W2 2 dw, 

-OO~ 
show that <1>( -z) = 1 - <1>(z). 

3.49. If X is !,,(75. 100). find Pr (X < 60) and Pr (70 < X < 100). 

3.S0. If X is N(Il, 0'2), find b so that Pr [-b < (X - p,)/O' < b] = 0.90. 

14S 

3.S1. Let X be N(Il, 0'2) so that Pr (X < 89) = 0.90 and Pr (X < 94) = 0.95. 
Find p, and 0'2. 

3.S2. Show that the constant c can be selected so that j{x) = c2-x
\ 

- 00 <: x < 00, satisfies the conditions of a normal p.d.f. 
Hint: Write 2 = e1n2• 

3.S3. If X is N(p,. 0'2), show that E(IX p,1) = O',jij;c. 

3.54. Show that the graph of a p.d.f. N(p" 0'2) has points of inflection at 
x = Il - 0' and x = p, + 0'. 

3.SS. Evaluate I1 exp [- 2(x - 3)2] dx. 

3.S6. Determine the ninetieth percentile of the distribution, which is 
N(65,25). 

3.S7. If e31 + 81
2 is the m.g.f. of the random variable X. find Pr ( - 1 < X < 9). 

3.SS. Let the random variable X have the p.d.f. 

j{x) = _2_ e-x2/2, 0 < x < 00, zero elsewhere. 
~ 

Find the mean and variance of X. 
Hint: Compute E(X) directly and E(Xl) by comparing that integral with 

the integral representing the variance of a variable that is N(O, I). 

3.S9. Let X be N(5, 10). Find Pr [0.04 < (X - 5)2 < 38.4]. 

3.60. If X is N( I. 4), compute the probability Pr (I < Xl < 9) . 

. 3.61. If X is N(75, 25), find the conditional probability that X is greater than 
80 relative to the hypothesis that X is greater than 77. See Exercise 2.18. 

3.62. Let X be a random variable such that E(Xlm) = (2m)V(2M m!), 
m = 1,2,3, ... and E(X2m - ') = 0, m = 1,2,3, .... Find the m.g.f. and 
the p.d.f. of X. 

3.63. Let the mutually independent random variables XI' X2, and X3 be 
N(O, I). N(2, 4), and N( - J, I), respectively. Compute the probability that 
exactly two of these three variables are less than zero. 
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3.64. Compute the measures of skewness and kurtosis of a distribution which 
is N(p.. (12). 

3.65. Let the random variable. X have a distribution that is N(p. (12). 

(a) Does the random variable Y = X2 also have a normal distribution? 
(b) Would the random variable Y = aX + b, a and b nonzero constants, 

have a normal distribution? 
Hint: Iri each case. first determine Pr (Y ~ y). 

3.66. ·Let the random variable Xbe N(p., (12). What would this distribution be 
if (12 = 01 

Hint: Look at the m.g.f. of X for (12 > 0 and investigate its limit as 
(12 -+ O. 

3.67. Let q>(x) and <J>(x} .be the p.d.f. and distribution function of a standard 
normal distribution. Let Y have a truncated distribution with p.d.f. 
g(y) = q>(y)/[<J>(b) - 4>(a}]. a < y < b. zero elsewhere. Show that E( Y) is 
equal to [q>(a) - cp(b}]/[<J>(b} - <I>(a}]. 

3.68. Let j{x) and F(x) be the p.d.f. and the distribution function of a 
distribution of the continuous type such that f(x) exists for all x. Let the 
mean of the truncated distribution that has p.d.f. g(y) = j{y)/F(b), 
- 00 < y < b, zero elsewhere, be equal to -j{b)/F(b) for all real b. Prove 
that j{x) is a p.d.f. of a standard normal distribution. 

3.69. Let X and Y be independent random variables, each with a distribution 
that is N(O, I). Let Z = X + Y. Find the integral that represents the 
distribution function G(z) = Pr (X + Y < z) of Z. Determine the p.d.f. 
of Z. 

Hint: We have that G(z} = J~oo H(x. z) dx, where 

H(x. z) = f~x 2~ exp [-(x' + 1)/2] dy. 

Find G'(z) by evaluating J~oo [oH(x. z)/oz] dx. 

3.5 The Bivariate Normal Distribution 

Remark. If the reader with an adequate background in matrix algebra so 
chooses, this section can be omitted at this point and Section 4.10 can be 
considered later. If this decision is made, only an example in Section 4.7 and 
a few exercises need be skipped because the bivariate normal distribution 
would not be known. Many statisticians, however, find it easier to remember 
the multivariate (including the bivariate) normal p.d.f. and m.g.f. using 
matrix notation that is used in Section 4.10. Moreover, that section provides 
an excellent example of a transformation (in particular, an orthogonal one) 

Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 3.5) ,The Bi"aritlte Normal Distri611tion 147 

and a good illustration of the moment-generating function technique; these 
are two of the major concepts introduced in Chapter 4. 

Let us investigate the function 

f(x, y) = I 2 e-q/2, 

27t0"0'2JI - p 
- 00 < x < 00, - 00 < y < C/), 

where, with 0'1 > 0, 0'2> 0, and -1 < P < 1, 

q = I ~ p' [( X ~I PI)' - 2P( X ~I p')(y ~,P2) + (y ~,P2)'J 
At this point we do not know that the constants JJI, JJ2, ai, O'~, and p 
are those respective parameters of a distribution. As a matter of fact, 
we do not know that f(x, y) has the properties of a joint p.d.f. It will 
be shown that: 

1. f(x, y) is a joint p.d.r. 
2. Xis N(JJ" aD and Y is N(JJ2, ~). 
3. p is the correlation coefficient of X and Y. 

A joint p.d.r. of this form is called a bivariate normal p.d.[, and the 
random variables X and Yare said to have a bivariate normal 
distribution. . 

That the nonnegative function f(x, y) is actually a joint p.d.f. can 
be seen as follows. Define It (x) by 

J.(x) = r f{x,y)dy. 
-00 

where b = JJ2 + P(0'2/0'1)(X - JJI)' Thus 

It(x) = exp [-(x ..... JJ,)2/2oil foo exp {-(y - b)2/[2~(l ~. p2
)]} dy. 

0'1Jbr. -00 '0'2Jl - p2Jbr. 
For the purpose of integration, the integrand of the integral in this 
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expression for J. (x) may be considered a normal p.d.f. with mean band 
variance 0'~(1 - p2

). Thus this integral is equal "to 1 and 

1 [(X - PI)2] 
J.(x) = O'ifo exp - 2ur ' -00 < x < 00. 

Since r r j{x,y)dydx = r f,(x) dx = I, 
-00 -00 -00 

the nonnegative function j(x, y) is a joint p.d.f. of two continuous­
type random variables X and Y. Accordingly, the function J.(x) is 
the marginal p.d.f. of X, and X is seen to be N(p.I, aD. In like 
manner, we see that Y is N(p.2' ~). 

Moreover, from the development above, we note that 

( 
I [(y - b )2 ]) 

j{x, y) = J.(x) J 2 ~ exp - 2~(1 _ 2) , 
0'2 I - P V 21t 2 P 

where b = J1.2 + P(0'2/0'1 )(x - PI)' Accordingly, the second factorin the 
right-hand member of the equation above is the conditional p.d.f. of 
Y, given that X = x. That is, the conditional p.d.f. of Y, given X = x, 
is itself normal with mean P2 + P(0'2/0'1)(X - PI) and variance 
~(1 - p2). Thus, with a bivariate normal distribution, the conditional 
mean of Y, given that X = x, is linear in x and is given by 

Since the coefficient of x in this linear conditional mean E(Ylx) 
is P0'2/0'J, and since 0'1 and 0'2 represent the respective standard 
deviations, the number P is, in fact, the correlation coefficient of X and 
Y. This follows from the result, established in Section 2.3, that the 
coefficient of x in a general linear conditional mean E( Ylx) is the 
product of the correlation coefficient and the ratio 0'2/0'1' 

Although the mean of the conditional distribution of Y, given 
X = x, depends upon x (unless p = 0), the variance O'~(l - p2) is the 
same for all real values of x. Thus, by way of example, given that X = x, 
the conditional probability that Y is within (2. 576)0'2 J I - p2 units of 
the conditional mean is 0.99, whatever the value of x may be. In this 
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sense, most of the probability for the distribution of X and Y lies in 
the band 

il2 + P :: (x - Ill) + (2.576)0"2)1 - p2 

about the graph of the linear conditional mean; For every fixed 
positive 0"2, the width of this band depends upon p. Because the band 
is narrow when p2 is nearly I, we see that p does measure the intensity 
of the concentration of the probability for X and Y about the linear 
conditional mean. This is the fact to which we alluded in the remark 
of Section 2.3. 

In a-similar manner we can show that the conditional distribution 
of X, given Y = y, is the normal distribution 

,JI' + P :: (y - JI,), a;(1 - P')]. 

Extunple 1. Let us assume that in a certain population of married 
couples the height XI of the husband and the height X2 of the wife have a 
bivariate nonnat distribution with parameters III = 5.8 feet, 112 = 5.3 feet, 
0", = 0"2 = 0.2 foot, and p = 0.6. The conditional p.d.f. of X2, given XI = 6.3, 
is normal with mean 5.3 + (0.6)(6.3 - 5.8) = 5.6 and standard deviation 
(0.2)J(1 - 0.36) = 0.16. Accordingly, given that the height of the husband 
is 6.3 feet, the probability that his wife has a height between 5.28 and 5.92 
feet is 

Pr (5.28 < X2 < 5.92IX. = 6.3) = <1)(2) - <f)( - 2) = 0.954. 

The interval (5.28,5.92) could be thought of as a 95.4 percent prediction 
interval for the wife's height, given XI = 6.3. 

The m.g.f. of a bivariate normal distribution can be determined as 
follows. We have 

M(/" I,) = foo Joo e,,,,+I'Yj{x, y) dx dy 
-00 -00 

~ r e"Xjj(x>[f e'2.%,(y!x) dy ] dx 
-00 -00 

for all real values of II and 12 , The integral within the brackets is the 
m.g.f. of the conditional p.d.f. hll (ylx). Since hll (ylx) is a normal p.d.f. 
with mean 112 + P(0"2!0"1)(X - Ill) and variance O"~(J - p2), then 

Joo { [ 0"2 ] ~O"~(l - P2)} 
et2YJiII(ylx) dy = exp 12 112 + P 0"1 (x - Ill) + 2 . 

-00 
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Accordingly, M(t., t2) can be written in the form 

{ 
0'2 ~~(l - p2)} r~ [( 0'2) 1 r 

exp t21l2 - t2p O'J III + 2 J-
co 

exp tl + tIP 0'1 x fl(x) dx. 

But E(etX
) = exp [Pit + (uitI )/2] for all real values of t. Accordingly, 

if we set t = tl + t2P(0'2/0'1), we see that M(t" t2) is given by 

tp--111 + 22 - +" t +tp--1 0' t20'2( 1 p2) ( 0' ) 
I 0'1 r1 2 rl I 2 0'1 

It is interesting to note that if, in this m.g.f. M(t., t2), the correlation 
coefficient P is set equal to zero, then 

M(t .. t2) = M(t .. O)M(O, t2). 

Thus X and Yare independent when P = O. If, conversely, 

M(t J , t2) = M(t., O)M(O, 12), 

we have ePulu2t,t2 = 1. Since each of 0'1 and 0'2 is positive, then p = O. 
Accordingly, we have the following theorem. 

Theorem 3. Let X and Y have a bivariate normal distribution with 
means III and 1l2' positive variances O'I and O'~, and correlation coefficient 
p. Then X and Yare independent if and only if P = O. 

As a matter of fact, if any two random variables are independent 
and have positive standard deviations, we have noted in Example 4 of 
Section 2.4 that p =' O. However, P = 0 does not in general imply that 
two variables are independent; this can be seen in Exercises 2.20 (c) and 
2.25. The importance of Theorem 3 lies in the fact that we now know 
when and only when two random variables that have a bivariate 
normal distribution are independent. 
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EXERCISES 

3.70. Let X and Y have a bivariate normal distribution with respective 
parameters Ilx = 2.8, Ily = 110, a~ = 0.16, a~ = 100, and p = 0.6. 
Compute: 
(a) Pr (106 < Y < 124). 
(b) Pr (106 < Y < 1241X = 3.2). 

3.71. Let X and Y have a bivariate normal distribution with parameters 
III = 3', 112 = I, ar 16, ~ = 25, -and p =~. Determine the following 
probabilities: 
(a) Pr (3 < Y < 8). 
(b) Pr (3 < Y < 81X = 7). 
(c) Pr ( - 3 < X < 3). 
(d) Pr (-3 < X < 31Y= -4). 

3.72. If M(t., t2) is the m.g.f. of a bivariate normal distribution, compute the 
covariance by using the formula 

02 M(O, 0) oM(O, 0) oM(O, 0) 

otl ot2 otl ot2 

Now let I/I(t., t2) = In M(tl' t2)' Show that 02t/1(0, 0)/01. ot2 gIves this 
covariance directly. 

3.73. Let X and Y have a bivariate normal distribution with parameters 
III = 5, 112 = 10, oi = 1, ~ = 25, and p > 0. If Pr (4 < Y < 161X = 5) = 
0.954, determine p. 

3.74. Let X and Y have f bivariate normal distribution with parameters 
Il. = 20, 112 = 40, O'i = 9, ~ = 4, and p = 0.6. Find the shortest interval for 
which 0.90 is the conditional probability that Y is in this interval, given that 
X=22. 

3.75. Say the correlation coefficient between the heights of husbands and 
wives is 0.70 and the mean male height is 5 feet 10 inches with standard 
deviation 2 inches, and the mean female height is 5 feet 4 inches with 
standard deviation Ii inches. Assuming a bivariate normal distribution, 
what is the best guess of the height of a woman whose husband's height is 
6 feet? Find a 95 percent prediction intervaLfor her height. 

3.76. Let 

lex, y) == (l/27t) exp [-!(x2 + y)]{1 + xyexp [-i(x2 + y - 2)]), 

where - 00 < x < 00, - 00 < y < 00. lfj{x, y) is a joint p.d.f., it is not a 
normal bivariate p.d.f. Show thatj{x, y) actually is a joint p.d.f. and that 
each marginal p.d.f. is normal. Thus the fact that each marginal p.d.f. is 
normal does not imply that the joint p.d.f. is bivariate normal. 
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3.77. Let X, Y, and Z have the joint p.d.f. 

( 
1 )312 (r + I + zl) [ ( .x

2 
+ y2 + Z2)] . - exp - 1 +xyzexp -----

27t 2 2 ' 

where - 00 < x < 00, - 00 < y < 00, and - 00 < z < 00. While X. Y, and 
Z are obviously dependent, show that X, Y, and Z are pairwise independent 
and that each pair has a bivariate normal distribution. 

3.78. Let X and Y have a bivariate. normal distribution with .parameters 
Jl.1 = Jl.2 = 0, ai = oi = 1, and correlation coefficient p. Find the distribution 
of the random variable Z = aX + bY in which a and b are nonzero 
constants. 

, 

Hint: Write G(z) = Pr (Z < z) as an iterated integral and compute 
G'(z) = g(z) by differentiating under the first integral sign and then 
evaluating the resulting integral by completing the square in the exponent. 

ADDITIONAL EXERCISES 

3.79. Let X have a binomial distribution with parameters n = 288 and 
p =!. Use Chebyshev's inequality to determine a lower bound for 
Pr (76 < X <.116). 

e-P. x • . 
3.80. Let fix) = -+, x = 0, 1,2, ... , zero elsewhere. Fmd' the values x. 

of Jl. so that x = I is the unique mode; that is, J(O) <.I() and 
.1(1) > .1(2) > .1(3) > .... 

3.81. Let X and Y be two independent binomial variables with. parameters 
n = 4, P = ! and n = 3, p = ~, respectively. Determine Pr (X - Y = 3). 

3.82. Let X and Y be two independent binomial variables, both with 
parameters nand p = !. Show that 

(2n)! 
Pr (X - Y = 0) = 2n • 

• "T n! n! (2 ) 

3.83. Two people toss a coin five independent times each. Find the proba­
bility that they will obtain the same number of heads. 

3.84. Color blindness appears in I percent of the people in a certain 
population. How large must a sample with replacement be if the proba­
bility of its containing at least one color-blind person is to be at least 0.95? 
Assume a binomial distribution b(n, p = 0.01) and find n. 

3.SS. Assume that the number X of hours of sunshine per day in a certain 
place has a chi-square distribution with ) 0 degrees qf freedom. The profit 
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of a certain outdoor activity depends upon the number of hours of sun­
shine through the formula 

profit = 1000(1 - e- X11O ). 

Find the expected level of the profit. 

3.86. Place five similar balls (each either red or blue) in a bowl at random as 
follows: A coin is flipped 5 independent times and a red ball is placed in the 
bowl for each head and a blue ball for each tail. The bowl is then taken and 
two balls are selected at random without replacement. Given that each of 
those two balls is red, compute the conditional probability that 5 red b3:lIs 
were placed in the bowl at random. ' 

3.87. If a die is rolled four independent times, what is the probability of one 
four, two fives, and one six, given that at least one six is produced? 

3.88. Let the p.d.f. I(x) . be . positive on, and only. on, the integers 
0, 1,2,3,4,5,6, 7, 8,9, 10, so that I(x) = [(11 - x)/x] I(x - I), x = 1,2, 
3, ... , 10. Find I(x). 

3.89. Let X and Y have a bivariate normal distribution with III = 5, 112 = 10, 
O'~ = I, a3 = 25, and p =~. Compute Pr (7 < Y < 191x = 5). 

3.90. Say that Jim has three cents and that Bill has seven cents. A coin is 
tossed ten independent times. For each head that appears, Bill pays Jim 
two cents, and for each tail that appears, Jim pays Bill one cent. What 
is the probability that neither person is in debt after the ten trials? 

3.91. If E(X') = [(r + 1)!](2r
), r = 1,2, 3, ... , find the m.g.f. and p.d.f. 

of X. 

3.92. For a biased coin, say that the probability of exactly two heads in three 
independent tosses is~. What is the probability of exactly six heads in nine 
independent tosses of this coin? 

3.93. It is discovered that 75 percent of the pages of a certain book contain 
no errors. If we assume that the number of errors per page follows a Poisson 
distribution, find the percentage of pages that have exactly one error. 

3.94. Let X have a Poisson distribution with double mode at x = I and x = 2. 
Find Pr [X = 0]. 

3.95. Let X and Y be jointly normally distributed with Ilx = 20, Ily = 40, 
O'x = 3, O'y = 2, p = 0.6. Find a symmetric interval about the conditional 
mean, so that the probability is 0.90 that Y lies in that interval given that 
X equals 25. 
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3.%. Let flx) = (~)yO'':'' P )'. - " x = 0, I,' ... , 10, zero elsewhere. Find 

the values of P. so thatj{O) ~j{I) ~ ... >j{IO). 

3.97. Let j{x, y) be a bivariate normal p.d.f. and let c be a positive constant 
so that c < (211:0'10'2}1 - p2)-I. Show that c = j{x, y) defines an ellipse in 
the xy·plane. - . 

3.98. Let /.(x, y)' and J2(x, y) be two bivariate normal probability density 
functions, each having means equal to zero and variances equal to I. 
The respective correlation coefficients are p and - p. Consider the joint 
distribution of X and Y defined by the joint p.d.f. [f1(X, y) + J2(x, y)]/2. 
Show that the two marginal distributions are both N(O, 1), X and Yare 
dependent, and E(XY) = 0 and hence the correlation coefficient of X and 
Y is zero. 

3.99. Let X be N(p, 0'2). Define the random variable Y = eX and find its p.d.f. 
by differentiating G(y) = Pr (eX :s;; y) = Pr (X < In y). This is the p.d.f. of a 
lognormal distribution. 

3.100. In the . proof of Theorem 1 of Section 3.4, we could let 

G(w) = Pr (X < MlO' + p) = F(wO' + p), 

where F and F' = f are the distribution function and p.d.f. of X, 
respectively. Then, by the chain rule, 

g(w) = G'(w) ;;: [F'(wO' + p)]O'. 

Show that the right·hand member is the p.d.f. of a standard normal 
distribution; thus this provides another proof of Theorem I. 
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CHAPTER 4 

Distributions 
of Functions 
of Random 
Variables 

4.1 Sampling Theory 

Let XI' X 2 , ••• , Xn denote n random variables that have the joint 
p.d.f. f(xJ' X2, ••• ,xn). These vari~bles mayor may not be 
independent. Problems such as the foJIowing are very interesting in 
themselves; but more important, their solutions often provide the basis 
for making statistical inferences. Let Y be a random variable that is 
defined by a function of XI, X h ••• , Xn, say Y = u(X., X 2 , ••. , Xn). 
Once the p.d.f. f(x. , X2, ••• , xn) is given, can we find the p.d.f. of Y? 
In some of the preceding chapters, we have solved a few of these 
problems. Among them are the following two. If n = 1 and if X. is 
N(Il, 0'2), then Y = (XI - Il)/U is N(O, 1), Let n be a positive integer and 
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let the random variables Xi' i = 1, 2, ... ,n, be independent, each 
having the same p.d.f. j{x) = pX(1 - p)' X, X = 0, 1, and zero else-

II 

where. If Y = L Xi, then Y is b(n, pl. It should be observed that 
I 

Y = u(XI ) = (XI - /l)/(1 is a function of XI that depends upon 
the two parameters of the normal distribution; whereas Y = 

n 

U(XI' X2 , ••• ,Xn) = L X j does not depend upon p, the parameter of 
t 

the common p.d.f. of the Xi, i = 1, 2, ... ,n. The distinction that 
we make between these functions is brought out in the following 
definition. 

Definition 1. A function of one or more random variables that does 
not depend upon any unknown parameter is called a statistic. 

II 

In accordance with this definition, the random variable Y = L Xi 
I 

discussed above is a statistic. But the random variable Y = (XI -p,)/(1 
is not a statistic unless /l and (1 are known numbers. It should be noted 
that, although a statistic does not depend upon any unknown 
parameter, the distribution of the statistic may very well depend upon 
unknown parameters. 

Remark. We remark, for the benefit of the more advanced reader, that a 
statistic is usually defined to be a measurable function ofthe random variables. 
In this book, however, we wish to minimize the use of measure theoretic 
terminology, so we have suppressed the modifier "measurable." It is quite 
clear that a statistic is a random variable. In fact, some probabilists avoid the 
use of the word "statistic" altogether. and they refer to a measurable function 
of random variables as a random variable. We decided to use the word 
"statistic" because the reader will encounter it so frequently in books and 
journals. 

We can motivate the study of the distribution of a statistic in the 
following way. Let a random variable Xbe defined on a sample space 
'G and let the space of X be denoted by d. In many situations 
confronting us, the distribution of X is not completely known. For in­
stance.we may know the distribution except for the value of an 
unknown parameter. To obtain more information about this distri­
bution (or the unknown parameter), we shall repeat under identical 
conditions the random experiment n independent times. Let the 
random variable Xi be a function of the ith outcome, i = 1, 2, ... , n. 
Then we call XI, X2, ••• ,Xn the observations of a random sample 
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from the distribution under consideration. Suppose that we can define 
a statistic Y = U(XI' Xl, ... ,Xn ) whose p.d.f. is found to be g(y). 
Perhaps this p.d.f. shows that there is a great probability that Y has 
a value close to the unknown parameter. Once the experiment has been 
repeated in the manner \indicated and we have XI = XI, ••• , Xn = Xn, 
then y=u(x., X2, ... ,xn) is a known number. It is to be hoped that 
this known number can in some manner be used to elicit information 
about the unknown parameter. Thus a statistic may prove to be useful. 

Remarks. Let the random variable X be defined as the diameter of a hole 
to be drilled by a certain drill press and let it be assumed that X has a normal 
distribution. Past experience with many drill presses makes this assumption 
plausible; but the assumption does not specify the mean JI. nor the variance 
(/2 of this normal distribution. The only way to obtain information about JI. 
and (/2 is to have recourse to experimentation. Thus we shall drill a number, 
say n = 20, of these holes whose diameters will be X., X2, ••• ,X20• Then 
XI, X2, ••• , X20 is a random sample from the norma) distribution under 
consideration. Once the holes have been drilled and the diameters measured, 
the 20 numbers may be used, as will be seen later, to elicit information about 
JI. and (/2. 

The term "random sample" is now defined in a more formal 
manner. 

Definition 2. Let Xl, X 2 , ••• ,Xn denote n independent random 
variables, each of which has the same but possibly unknown 
p.d.f. f(x); that is, the probability density functions of XI, X2, ... , Xn 
are, respectively, j; (XI) - f(XI)' h(X2) = f(Xl) , ... , J,,(xn) = f(xn), so 
that the joint p.d.f. is f(XI}f{X2) ... f(xn). The random variables 
XI, X2, ••• ,Xn are then said to constitute a random sample from 
a distribution that has p.d.f. f(x). That is, the observations of a 
random sample are independent and identically distributed (often 
abbreviated i.i.d.). 

Later we shall define what we mean by a random sample from a 
distribution of more than one random variable. 

Sometimes it is convenient to refer to a random sample of size 
n from a given distribution and, as has been remarked, to refer 
to Xl, X h ... ,Xn as the observations of the random sample. A 
reexamination of Example 2 of Section 2.5 reveals that we found the 
p.d.f. of the statistic, which is the maximum of the observations 
of a random sample of size n = 3, from a distribution with· p.d.f. 
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f(x) = 2x, 0 < X < 1, zero elsewhere. In Section 3.1 we found the 
p.d.f. of the statistic, which is the sum of the observations of a random 
sample of size n from a distribution that has p.d.f.f(x) = r(1 _ p)1 -x, 
X = 0, 1, zero elsewhere. This fact was also referred to at the beginning 
of this section. 

In this book, most of the statistics that we shall encounter will 
be functions of the observations of a random sample from a given 
distribution. Next, we define two important statistics of this type. 

Definition 3. Let XI, X2, ••• , X" denote a random sample of size n 
from a given distribution. The statistic 

X=XI+X2 +···+X,,_ I_Xi 
n i= I n 

is called the mean of the random sample, and the statistic 

is called the variance of the random sample. 

Remarks. Many writers do not define the variance of a random sample 
" -

as we have done but, instead, they take S2 = L (Xi - Xf/(n - I). There are 
I 

good reasons for, doing this. But a certain price has to be paid, as we shaU 
indicate. Let XI, X2, •.• , X" denote experimental values of the random variable 
X that has the p.d.f.Jtx) and the distribution function F(x). Thus we may look 
upon x., X2, •.. , X" as the experimental values of a random sample of size n 
from the given distribution. The distribution of the sample is then defined to 
be the distribution obtained by assigning a probability of lIn to each of 
the points X I, X2, ••• ,x". This is a distribution of the discrete type .. The 
corresponding distribution function will be denoted by Fn(x) and it is a step 
function. If we let h denote the number of sample values that are less than 
or equal to x, then F,,(x) = hln, so that Fn(x) gives the relative frequency of 
the event X :s; X in the set of n observations. The function F,,(x) is often caned 
the "empirical distribution function" and it has a number of uses. 

Because the distribution of the sample is a discrete distribution, the mean 
n 

and the variance have been defined and are, respectively, L xdn = x and 
,,' I 

L (Xi x)2jn = sl. Thus, if one finds the distribution of the sample and the 
I 

associated empirical distribution function to be useful concepts, it would 
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seem logically inconsistent to define the variance of a random sample in any 
way other than we have. 

We have also defined X and S2 only for observations that are i.i.d., that 
is, when XI, X2, ••• , Xn denote a random sample. However, statisticians often 
use these symbols, X and S2, even if the assumption of independence is 
dropped. For example, suppose that X" X2, ••• ,Xn were the observations 
taken at random from a finite collection of numbers without replacement. 
These observations could be thought of as a sample and its mean X and 
variance S2 computed; yet XI, Xl, ... , Xn are dependent. Moreover, the n 
observations could simply be some values, not necessarily taken from a 
distribution, and ~e could compute the mean X and the variance S2 associated 
with these n values. If we do these things, however, we must recognize the 
conditions under which the observations were obtained, and we cannot make 
the same statements that are associated with the mean and the variance of 
what we call a random sample. 

Random sampling distribution theory means the general problem 
of finding distributions of functions of the observations of a random 
sample. Up to this point, the only method, other than direct prob­
abilistic arguments, of finding the distribution of a function of one 
or more random variables is the distribution function technique. 
That is, if XI' X2, ••• , Xn are random variables, the distribution of 
Y = U(XI' Xh .•• ,Xn ) is determined by computing the distribution 
function of Y, 

G(y) = Pr [u(XJ' X2, ••• , X,.) < y). 

Even in what superficially appears to be a very simple problem, this 
can be quite tedious. This fact is illustrated in the next paragraph. 

Let XI, X2, X3 denote a random sample of size 3 from a standard 
normal distribution. Let Y denote the statistic that is the sum of 
the squares of the sample observations. The distribution function 
of Yis 

G(y) = Pr (X7 + X~ + Xi <y). 

If y < 0, then G(y) = 0. However, if y > 0, then 

G(y) = Iff (2~ )'/2 exp [ -4 (xl + xi + xl) ] dx-, dx-, dx" 
A 

where A is the set of points (X., X2, X3) interior to, or on the surface of, 
a sphere with center at (0, 0, 0) and radius equal to JY. This is 
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not a simple integral. We might hope to make progress by changing 
to spherical coordinates: 

XI = p cos 0 sin cp, . X2 = P sin 0 sin cp, X3 = P cos cpo 

where p > 0, 0 < 0 < 27t, 0 < cp < n. Then. for y > o. 

IVY 121t lit 1 
G(y) = 0 0 0 (27t)3/2 e- p

2/
2p2 

sin cp dcp dO dp 

= A flY p'rP''' dp. 

If we change the variable of integration by setting p = Jw, we have 

G(y) = A f f rwl2 dw, 

for y > O. Since Y is a random variable of the continuous type, the 
p.d.f. of Y is g(y) = G'(y). Thus 

1 g(y) = __ y3/2-le-y/2, 

. J2n 
0< y < 00 • 

= 0 elsewhere. 

Because rG) = (!)r(D = (!)~, and thus J2n = r(D2 3/2
, we see that 

Y is X2(3). 
The problem that we have just solved highlights the desirability of 

having, if possible, various methods of determining the distribution of 
a function of random variables. We shall find that other techniques are 
available and that often a particular technique is vastly superior to the 
others in a given situation. These techniques will be discussed in 
subsequent sections. 

Example 1. Let the random variable Y be distributed uniformly over the 
unit interval 0 < y < I; that is, the distribution function of Y is 

G(y) = 0, 

=y, 

= 1, 

y < 0, 

0< y < 1, 

I <yo 

Suppose that F(x) is a distribution function of the continuous type which is 
strictly increasing when 0 < F(x) < 1. If we define the random variable X 
by the relationship Y = F(X), we now show that X has a distribution 
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which corresponds to F(x). If 0 < F(x) < 1, the inequalities X <x and 
F(X) < F(x) are equivalent. Thus, with 0 < F(x) < I, the distribution of Xis 

Pr (X S; x) = Pr [F(X) < F(x)] = Pr [Y < F(x)] 

because Y = F(X). However, Pr (Y < y) = G(y), so we have 

Pr (X < x) = G[F(x)] = F(x), 

That is, the distribution function of X is F(x). 

0< F(x) < 1. 

This result permits us to simulate random variables of different 
types. This is done by simply determining values of the uniform 
variable Y, 'usually with a computer. Then, after determining the 
observed value Y = y, solve the equation y = F(x), either explicitly or 
by numerical methods. This yields the inverse function x = F- 1(y). By 
the preceding result, this number x will be an observed value of X that 
has distribution function Ftx). 

It is also interesting to note that the converse of this result is true. 
If X has distribution function F(x) of the continuous type, then 
Y = F(X) is uniformly distributed over 0 < y < I. The reason for this 
is, for 0 < y < I, that 

Pr (Y ~ y) = Pr [F(X) < y] = Pr [X < F-l(y)]. 

However, it is given that Pr (X < x) = F(x), so 

Pr (Y < y) = FlF-1(y)] = y, 0 < y < 1. 

This is the distribution function of a random variable that is distri­
buted uniformly on the interval (0, 1). 

EXERCISES 

4.1 •. Show that 

_ n 

where X = L X;/n. 
I ' 

4.2. Find the probability that exactly four observations of a random 
sample of size 5 from the distribution having p.d.f. fix) = (x + 1 )/2, 
-I < x < I, zero elsewhere, exceed zero. 

4.3. Let XI, X2, X3 be a random sample of size 3 from a distribution that 
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is N(6, 4). Determine the probability that the largest sample observation 
exceeds 8. 

4.4. What is the probability that at least one observation of a random 
sample of size n = 5 from a continuous-type distribution exceeds the 
90th percentile? 

4.5. Let X have the p.d.f. /(x) = 4x3, 0 < x < 1, zero elsewhere. Show that 
Y = -21n r is X2(2). 

4.6. Let XI, X2 be a random sample of size n = 2 from a distribution with 
p.d.f./(x) = 4x3,0 < x < 1, zero elsewhere. Find the mean and the variance 
of the ratio Y = X./X2• 

Hint: First find the distribution function Pr( Y < y) when 0 < Y < 1 and 
then when 1 <y. 

4.7. Let X., X2 be a random sample from the distribution having 
p.d.f. f(x) = 2x, 0 < x < 1, zero elsewhere. Find Pr (X./X2 <~) and 
Pr (XI X2 > ~). 

4.8. If the sample size is n = 2, find the constant c so that S2 = c(XI - X2)2. 

4.9. If Xi = i, i = 1, 2, ... ,n, compute the values of i = ~ xdn and 
S2 = I: (Xi - i)2/n. 

4.10. Let Yi = a + bx;, i = 1,2, ... ,n, where a and b are constants. Find 
y = I: y;/n and s; = ~ (Yi - y)2/n in terms of a. b. i = I: xdn, a,?-d 
S; = ~ (Xi - i)2/n. 

4.11. Let XI and X2 denote two Li.d. random variables, each from a 
distribution that is N(O, 1). Find the p.d.f. of Y = xf + X~. 

Hint: In the double integral representing Pr (Y < y), use polar 
coordi nates. 

4.12. The four valuesYI = 0.42, Y2 = 0.31, Y3 = 0.87, and Y4 = 0.65 represent 
the observed values of a random sample of size n = 4 from the uniform 
distribution over 0 < Y < 1. Using these four values, find a corresponding 
observed random sample from a distribution that has p.d.f. Ax) = e-X

• 

o < X < 00, zero elsewhere. 

4.13. Let X" X, denote a random sample of size 2 from a distribution with 
p.d.f.Ax) =!, 0 < x < 2, zero elsewhere. Find the joint p.d.f. of XI and X2 • 

Let Y = XI + X2• Find the distribution function and the p.d.f. of Y . 

. 4.14. Let X" X2 denote a random sample of size 2 from a distribution with 
p.d.f. f(x) = 1, 0 < x < 1, zero elsewhere. Find the distribution function 
and the p.d.f. of Y = X I /X2• 

4.15. Let XI, X2• X3 be three Li.d. random variables, each from a distri­
bution having p.d.f. Ax) = 5x\ 0 < x < 1. zero elsewhere. Let Y be the 
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largest observation in the sample. Find the distribution function and p.d.f. 
of Y. 

4.16. Let XI and X2 be observations of a random sample from a distribution 
with p.d.f. f(x) = 2x, 0 < x < 1, zero elsewhere. Evaluate the conditional 
probability Pr (XI < X2IX. < 2X2). . 

4.2 Transformations of Variables of the Discrete Type 

An alternative method of finding the distribution of a function 
of. one or more random variables is called the change-ol-variable 
technique. There are some delicate questions (with particular reference' 
to random variables of the continuous type) involved in this technique, 
and these make it desirable for us first to consider special cases. 

Let X have the Poisson p.d.f. 

f(x) = Ite-
P 

x! ' x = 0, 1,2, ... , 

= ° elsewhere. 

As we have done before, let d denote the space d = {x: X= 

0, 1,2, ... }, so that d is the set where f(x) > 0. Define a new 
random variable Y by Y = 4X. We wish to find the p.d.f. of Y by 
the change-of-variable technique. Let y = 4x. We call y = 4x a 
transformation from x to y, and we say that the transformation maps 
the space d onto the space [fA = {y : y = 0,4, 8, 12, ... }. The space [fA 

is obtained by transforming each point in d in accordance with y = 4x. 
We note two things about this transformation. It is such that to each 
point in d there corresponds one, and only one, point in 14; and 
conversely, to each point in [fA there corresponds one, and only one, 
point in d. That is, the transformation y = 4x sets up a one-to-one 
correspondence between the points of d and those of [fA. Any function 
y = u(x) (not merely y = 4x) that maps a space d (not merely our d) 
onto a space [fA (not merely our [fA) such that there is a one-to-one 
correspondence between the points of d and those of [fA is called a 
one-to-one transformation. It is important to note that a one-to-one 
transformation, y = u(x), implies that x is a single-valued function of 
y. In our case this is obviously true, since y = 4x requires that x = $y. 

Our problem is that of finding the p.d.f. g(y) of the discrete type 
of random variable Y = 4X. Now g(y) = Pr (Y = y). Because there is 
a one-to-one correspondence between the points of d and those of 
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BI, the event Y = y or 4X = y can occur when, and only when, the event 
X = (~)y occurs. That is, the two events are equivalent and have the 
same probability. Hence 

( Y) J.lJl/4e- p 

g(y) = Pr(Y = y) = Pr X =:4 = (y/4)! ' y = 0,4, 8, ... , 

= 0 elsewhere. 

The foregoing detailed discussion should make the subsequent text 
easier to read. Let X be a random variable of the discrete tyPe, having 
p.d.f. f(x). Let d denote the set of discrete points, at each of which 
f(x) > 0, and let y = u(x) define a one-to-one transformation that maps 
d onto 81. Ifwe solve y = u(x) for x in terms of y, say, x = w(y), then 
for each y E 81, we have x = w(y) E d. Consider the random variable 
Y = u(X). If y E BI, then x = w(y) E d, and the events Y = y [or 
u(X) = y] and X = w(y) are equivalent. Accordingly, the p.d.f. of Yis 

-
g(y) = Pr (Y = y) = Pr [X = w(y)] = f[w(y)], Y E 81, 

= 0 elsewhere. 

Example 1. Let X have the binomial p.d.f. 

3! (2)X(I)3-X 
f(x) = x!(3 - x)! "3 "3 ' x = 0, 1,2,3, 

= 0 elsewhere. 

We seek the p.d.f. g(y) of the random variable Y = Xl. The transformation 
y = u(x) = r maps d = {x: x = 0, 1,2, 3} onto £j = {y: y = 0, 1,4, 9}. In 
general, y = r does not define a one-to-one transformation; here, however, it 
does, for there are no negative values of x in d = {x : x = 0, I, 2, 3}. That is, 
we have the single-valued inverse function x = w(y) = Jy (not - Jy), and 
so 

r:. 3' (_2)h (_1)3 -h, g(y) = /('" y) = . <JY)! (3 JY)! 3 3 
y = 0, 1,4,9, 

= 0 elsewhere. 

There are no essential difficulties involved in a problem like 
the following. Let f(X" X2) be the joint p.d.f. of two discrete-type 
random variables XI and X2 with d the (two~dimensional) set of 
points at which f(xJ' X2) > O. Let YI = UI(XI, X2) and Y2 = U2(XI, X2) 
define a one-to-one transformation that maps d onto BI. The joint 
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p.d.f. of the two new random variables YI = UI (XI' X2) and Y2 = 
U2(X\, X2) is given by 

= 0 elsewhere, 

where XI = WI (YI, Y2), X2 = W2(Y', Y2) is the single-valued inverse of 
YI = U. (x" X2), Y2 = U2(X" X2)' From this joint p.d.f. g(y" Y2) we may 
obtain the marginal p.d.f. of Y, by summing on Y2 or the marginal 
p.d.f. of Y2 by summing on y, . 

Perhaps it should be emphasized that the technique of change 
of variables involves the introduction of as many u new" variables 
as there were "old" variables. That is, suppose thatj{x" X2, X3) is the 
joint p.d.f. of XI, X 2, and Xl, with s;/ the set where j{x" X2, X3) > O. 
Let us say we seek the p.d.f. of Yt = UI (XI' X 2, X3)' We would then 
define (if po~sible) Y2 = U2(Xh X 2, Xl) and Yl = Ul(XI, X2, Xl), so 
that y, = UI(XI , X2, Xl), Y2 = U2(X\, Xh Xl), Yl = U3(X" X2, Xl) define a 
one-to-one transformation of s;/ onto fiI. This would enable us to find 
the joint p.d.f. of Yl , Y2 , and Y3 from which we would get the marginal 
p.d.f. of Y, by summing on Y2 and Y3' 

EXlUllple 2. Let XI and X2 be two independent random variables that have 
Poisson distributions with means PI and 1'2, respectively. The joint p.d.f. of 
XI and X2 is 

pt1p'?e-1I1 - 112 

XI!X2! 
XI = 0, 1,2,3, ... , X 2 = 0, 1,2,3, ... , 

and is zero elsewhere. Thus the space sI is the set of points (Xl' X2), where 
each of XI and X2 is a nonnegative integer. We wish to find the p.d.f. of 
YI = XI + X2• If we use the change of variable technique, we need to define 
a second random variable Y2' B~use Y2 is of no interest to us, let us 
choose it in such a w~y that we have a simple one-to-one transformation. 
For example, take Y2 = X2. Then YI = XI + X2 and Y2 = X2 represent a 
one-to-one transformation that maps sI onto 

91 = {(YI. Y2): Y2 = 0, 1, ... , YI and YI = 0, 1,2,' ... }. 

Note that, if(YI' Y2) e 91, then 0 < Y2 < YI' The inverse functions are given by 
XI = YI - Y2 and X2 = Y2- Thus the joint p.d.f. of Y. and Y2 is 
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and is zero elsewhere. Consequently, the marginal p.d.f. of Y1 is given by 
YI 

gl (YI) = L g(y" Y2) 
Y2 =0 

= e-JJ1 - JJ2 I y,! Jlfl - Y2p.{2 

YI! Y2 = 0 (YI - Y2)! Y2! 2 

(J.LI + J.L2)yle-JJI JJ2 
-

YI! 
YI=0,1,2, ... , 

and is zero elsewhere. That is, Y1 = XI + X2 has a Poisson distribution with 
parameter J.LI + J.L2· 

Remark. It should be noted that Example 2 essentiaHy illustrates the 
distribution function technique too. That is, without defining Y2 = X2 , we 
have that the distribution function of Y1 = XI + X2 is 

G1(YI) = Pr (XI + X2 < YI)' 

In this discrete case, with Y. = 0, I, 2, ... , the p.d.f. of Y, is equal to 

g,(YI) = GI(YI) - G.(YI - I) = Pr (XI + X2 = YI)' 

That is, 

g,(YI) =LL 
XI+X2 =YI .. 

~~. 

J.Lf' J.L~2e- III - 112 

x,! X2! 

This summation is over all poihtiof d such that XI + X2 = YI and thus can 
be written as 

which is exactly the summation given in Example 2. 

Extunple 3. In Section 4.1, we found that we could simulate a 
continuous~type random variable X with distribution function F(x) through 
X = F-'(y),where Yhas a uniform distribution on 0 < Y < 1. In a sense, we 
can simulate a discrete-type random variable X in much the same way, but 
we must understand what X = F- I

( Y) means in this case. Here F(x) is a step 
function with the height of the step at x = Xo equal to Pr (X = xo). For 
illustration, in Example 3 of Section 1.5, Pr (X = 3) = i is the height of the 
step at x = 3 in Figure 1.3. that depicts the distribution function. If we now 
think of selecting a random point Y, having the uniform distribution on 
o < y ~ I, on the vertical axis of Figure 1.3, the probability of falling between 
1 and ~ is i. However, if it falls between those two values. the horlzontalline 
drawn from it would "hit" the step at x = 3. That is. for i < Y :s; l. then 
F-1(y) = 3. Of course, ifi < Y <~, then F-1(y) = 2; and if 0 < Y < i, we have 
F-I(y) = I. Thus. with this procedure, we can generate the numbers x = I. 
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x = 2, and x = 3 with respective probabilities ~, ~, and i, as we desired. 
Clearly, this procedure can be generalized to simulate any random variable 

~ X of the discrete type. 

EXERCISES 

4.17. Let X have a p.d.f.j{x) =!, x = 1,2,3, zero elsewhere. Find the p.d.f. 
of Y= 2X + 1. 

4.18. If [(XI> X2) = (j)XI +X2(!)2 XI -x2, (XI> X2) = (0,0), (0, I), (I, 0), (1, 1), 
zero elsewhere, is the joint p.d.f. of XI and X2, find the joint p.d.f. of 
Y1 = XI - X2 and Y2 = Xl + X2• 

4.19. Let X have the p.d.f, j{x) = or, x = I, 2, 3, ... , zero elsewhere. Find 
the p.d.f. of Y = Xl. 

4.20. Let Xi and X2 have the jointp.d.f.j{x., X2) = xlx2/36, Xl = 1,2,3 and 
X2 = 1, 2, 3, zero elsewhere. Find first the joint p.d.f. of YI = XI X2 and 
Y2 = X2, and then find the marginal p.d.f. of YI • 

4.21. Let the independent random variables XI and X2 be b(nl' p) and b(n2' p), 
respectively. Find the joint p:d.f. of YI = XI + X2 and Y2 = X2, and then 
find the marginal p.d.f. of Y I • 

Hint: Use the fact that 

± (nl)( n2 ) = (nl + n2). 
W~O w k w k 

This can be proved by comparing the coefficients of xk in each member of 
the identity (I + x)nl(l + x)n2 == (l + xrl +"2. 

4.22. Let XI and X2 be independent random variables of the discrete type with 
joint p.d.f.-"(x,}h(x2), (XI> X2) e.9l. LetYI = UI(XI) and Y2 = U2(X2) denote 
a one-to-one transformation that maps .91 onto ~. Show that Y I = UI (XI) 
and Y2 = U2(X2) are independent. 

4.23. Consider the random variable X with p.d.f.j{x) = x/IS, x = 1,2,3,4, 
5, and zero elsewhere. 
(a) Graph the distribution function F(x) of X. 
(b) Using a computer or a table of random numbers, determine 30 values 

of Y, which has the (approximate) uniform distribution on 0 < Y < I. 
(c) From these 30 values of Y, find the corresponding 30 values of X and 

determine the relative frequencies of x = I, x = 2, X = 3, x = 4, and 
X = 5. How do these compare to the respective probabilities of 115' 1

2
5' 

1. .! 2.? 
IS' IS' IS' 

4.24. Using the technique given in Example 3 and Exetcise 4.23, generate 50 
values having a Poisson distribution with J.l = 1. 

Hint: Use Table I in Appendix B. 

Uploaded By: anonymousSTUDENTS-HUB.com



168 DistrilJlltio", 0/ F.IICtiD", 0/ RtuUitJm Y lll'itlbles leb. 4 

4.3 Transformations of Variables of the Continuous. Type 

In the preceding section we introduced the notion of a one-to-one 
transformation and the mapping of a set d onto a set rM under that 
transformation. Those ideas were sufficient to enable us to find the 
distribution of a function of several random variables of the discrete 
type. In this section we examine the same problem when the random 
variables are of the continuous type. It is again helpful to begin with 
a special problem. 

Extunpk,1. Let X be a random variable of the continuous type, having 
p.d.f. 

j{x) = 2x, 

=0 

0< x < I, 

elsewhere. 

Here d is the space {x: 0 < x < I}, where j{x) > O. Define the random 
variable Y by Y = 8~ and consider the transformation y = 8x3. Under 
the transformation y = 8x3, the set d is mapped onto the set fJI = 
{y: 0 < y < 8}, and, moreover, the transformation is one-to-one. For every 
o < a < b < 8, the event a < Y < b will occur when, and only when, the 
event i~ < X < !.ft occurs because there is a one· to-one correspondence 
between the points of .911 and fJI. Thus 

Pr(a < Y < b) = Pr(!~ < X < !.ft) 

1
¥b12 

2xdx. 
Y;/2 

Let us rewrite this integral by changing the variable of integration from x to 
y by writing y = 8x3 or x = lYV. Now . 

dx 1 
dy = 6y/3' 

and, accordingly, we have 

Pr(a< Y<h)= [{~X6~)dy 
a 

= [. 6 '," dy. 
a ~ 

Since this is true for every 0 < a < b < 8, the p.d.f. g(y) of Y is the integrand; 
that is, 

1 
g(y) = 6yl/l ' 0 < y < 8, 

= 0 e1sewhere. 

Uploaded By: anonymousSTUDENTS-HUB.com



Sec. 4.3) TrlUlslormtltiollS 01 Ytuia6les oltlle ContiIIJIOIIS Type 169 

It is worth noting that we found the p.d.f. of the random variable 
y , 8X3 by using a theorem on the change of yariable in a definite 
integral. However, to obtain g(y) we actually need only- two things: 
(I) the set 1A of points y where g(y) > 0 and (2) the integrand of the 
integral on y to which Pr (a < -Y < b) is equal. These can be found 
by two simple rules: 

1. Verify that the transformation y = 8x3 maps .91 = {x: 0 < x < I} 
onto 91 = {y: 0 < y < 8} and that the transformation is one­
to·one. 

2. Detennine g(y) on this set fJI by substituting ~.Jy for x in f(x) 
and then mUltiplying this result by the derivative of ~1Y. That 
IS, 

(
1Y) d[(4).Jy] .- 1 

g(y) = f 2 dy = 6yl/3 ' 0< y < 8, 

= 0 elsewhere. 

We shall accept a theorem in analysis on the change of variable in 
a definite integral to enable us to state a more general result. Let X be 
a random variable of the continuous type having p.d.f. f(x). Let .91 
be the one-dimensional space where f(x) > O. Consider the random 
variable Y = u(X), where y = u(x) defines a one-to-one transformation 
that maps the set .91 onto the set 91. Let the inverse of y = u(x) 
be denoted by x = w(y), and let the derivative dx/dy = w'(y) be 
continuous and not equal zero for all poin.ts yin- 91. Then the p.d.f. 
of the random variable Y = u(X) is given by -

g(y) = JIw(y)]lw'(y)l. ye 91, 

= 0 elsewhere, 

where Iw'(y)1 represents the absolute value of w'(y). This is precisely 
what we did in Example I of this section, except there we deliberately 
chose y = 8x3 to be an increasing function so that 

dx~ '() 1 
dy = w y = 6y/3 ' 0< y < 8, 

is positive, and hence 

1 1 
6y2/3 = 6y2/3' 0< y < 8. 
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Henceforth, we shall refer to dxjdy = w'(y) as the Jacobian (denoted 
by J) of the transformation. In most mathematical areas, J = w'(y) is 
referred to as the Jacobian of the inverse transformation x = w(y), but 
in this book it will be called the Jacobian of the transformation, simply 
for convenience. 

EXflmJJ1e 2. Let X have the p.d.f. 

f(x) = 1, 0 < x < 1, 

= 0 elsewhere. 

We are to show that the random variable Y = -21n X has a chi­
square distribution with 2 degrees of freedom. Here the transformation 
is y = u(x) = - 2 In x, so that x = K-iY) = e-y/2. The space .91 is d = 
{x : 0 < x < I}, which the one-to-one transformation y = - 2 In x maps onto 
1M = {y : 0 < y < oo}. The Jacobian of the transformation is 

J = ~; = w'(y) = -~ e-y
/
2

• 

Accordingly, the p.d.f. g(y) of Y = - 2 In X is 

g(y) = f(e- y
/
2)IJI = !e-J'/2, 

;:: 0 elsewhere, 

'0 < y < 00, 

a p.d.f. that is chi-square with 2 degrees of freedom. Note that this problem 
was first proposed in Exercise 3.46. ' 

This method of finding the p.d.f. of a function of one random 
variable of the continuous type will now be extended to functions of 
two random variables of this type. Again, only functions that define 
a one-to-one transformation wilJ be considered at this time. Let 
YI = UI(X" X2) and Y2 = U2(X" X2) define a one-to-one transformation 
that maps a (two-dimensional) set .91 in the x,x2-plane onto a 
(two-dimensional) set f!I in the YIYrplane. Ifwe express each of XI and 
X2 in terms of YI and Y2' we can write XI = WI (YI, Y2), X2 = W2(Y\. Y2)' 
The determinant of order 2, 

aX, OXI 
0YI 0Y2 
OX2 OX2 
0YI 0Y2 

is called the Jacobian of the transformation and will be denoted 
by the symbol J. It will be assumed' that these first-order partial 
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\ derivatives are continuous and that the Jacobian J is not ident­
ically equal to zero in fJI. An illustrative example may be 
desirable before we proceed with the extension of the change of 
variable technique to two random variables of the continuous 
type. 

Example J. Let .s.I be the set .s.I = {(X., Xl): 0 < XI < 1,0 < Xl < I} 
depicted in Figure 4.1. We wish to determine the set fM in the Y,Yrplane that 
is the mapping of .s.I under the one-to-one transformation 

Ii. .. ,; 

and we wish to Compute the 1acobian of the transformation. Now 

XI = w.(y., Y2) -J(YI + Y2), 

X2 = W2(YI, Yl) = ! (YI - Yl)' 

To determine the set fM in the Y,Yrplane onto which.91 is mapped under the 
transformation, note that the boundaries of.s.l are transformed as follows into 
the boundaries of ~; 

XI = 0 into 
I : 

0= i(YI + Y2), 

XI = 1 into 1 =! (YI + Y2), 

Xl = 0 into o = ! (YI - Y2), 

X2 = 1 into 1 = ! (YI - Y2)' 

~----------~----------------------XI 
(0.0) x2 = 0 

FIGURE 4.1 
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( o. 0 ) Ir---- ----t---... " 

FIGURE 4.2 

Accordingly, ffI is shown in Figure 4.2. Finally, 

J= 

ax, ax, 
oy) OY2 
OX2 OX2 
oy, 0Y2 

1 I 
2 2 
I I 
2 -2" 

Remark. Although, in Example 3, we suggest transforming the bound­
aries of sI, others might want to use the inequalities 

0< XI < I and 

directly. These four inequalities become 

and 

It is easy to see that these are equivalent to 

Y2 < YI, 

and they define the set ffI. In this example, these methods were rather simple 
and essentially the same. Other examples could present more complicated 
transformations, and only experience can help one decide which is the best 
method in each case. 

We now proceed with the problem of finding the joint p.d.f. of 
two functions of two continuous-type random variables. Let XI and X2 

be random variables of the continuous type, having joint p.d.f. 
h(Xb X2)' Let d be the two-dimensional set in the x,x2-plane where 
h(x, , X2) > O. Let Y. = u.(X., X2) be a random variable whose p.d.f. 
is to be found. If YI = u,(x" X2) and Y2 = U2(X" X2) define a one-to­
one transformation of d onto a set P,I in the Y'Y2-plane (with 
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nonidentically zero Jacobian), we can find, by use of a theorem in 
analysis, the joint p.d.f. of Y. = U. (X., X 2) and Y2 = U:i(X., X2). Let 
A be a subset of .91, and let B denote the mapping of A under the 
one-to-one transformation (see Figure 4.3). The events (X., X2) E A 
and (Y., Y2) E B are equivalent. Hence 

Pr [(YJ, Y2) E B] = Pr [(X., X2) E A] 

= ff h(x" x,).ix, .ix,_ 
A 

We wish now to change variables of integration by writing Y. = 
u.(X., X2),Y2 = U2(X., X2), or XI = w.(y., Y2),X2 = W2(Y., Y2)' It has been 
proved in analysis that ,this change of variables requires 

ff h(x" x,).ix, .ix, = ff h[w,(y" y,), w,(y" y,)llJl dy, dy,_ 
A . B ' 

Thus, for every set Bin /JI, 

• Pr [(Y" Y,) E B] = ff h[w,(y" y,), w,(y" y,)llJl dy, dy" 
B 

which implies that the joint p.d.f. g(YI, Y2) of YJ and Y2 is 

g(y., Y2) = h[wl(Y" Y2), W2(Y., Y2)]IJ), (Y., Y2) E at, 

= 0 elsewhere. 

Accordingly, the marginal p.d.f. g,(YI) of Y, can be obtained from the 
joint p.d.f. g(y., Y2) in the usual manner by integrating on Y2' Several 
examples of this result will be given. 

Example 4. Let the random variable X have the p.d.f. 

f(x) = 1, 0 < x < 1, 

=0 

I.------_x. 
(0.0) 

elsewhere, 

I.--_____ y. 

(0.0) , 

FIGURE 4.3 

Uploaded By: anonymousSTUDENTS-HUB.com



174 Distrib"tio"s of FlIIICtio"s of RIIIfIiom JlariaIJles ICh. 4 

and let XI ,;X2 denote a random sample from this distribution. The joint p.d.f. 
of XI and X2'.is then. . 

h(xJ, X2) = j{X,l!tX2) = 1, 0 < XI < 1, 0 < X2 < 1, 

= 0 elsewhere. 

Consider the two random variables YI = XI + X2 and Y2 = XI - X2. We wish 
to find the joint p.d.f. of Y, and Y2• Here the two-dimensional space d in the 
xlxrplane is that of Example 3 of this section. The one-to-one transfor­
mation YI = XI + X2, Y2 = XI - Xl maps d onto the space 11 of that example. 
Moreover, the Jacobian of that transformation has been shown to be J = -4. 
Thus 

g(YI, Y2) = h[! (YI + Y2), 4 (YI - Y2)]IJI 

= fH (YI + Y2)]fH (YI - Y2)]IJI = !. 
= o elsewhere. 

Because 11 is not a 'product space, the random variables Y1 and Y2 are 
dependent. The marginal p.d.f. of YI is given by 

g,(y,) = foo g(y,. y,) dy,. 
-00 

If we refer to Figure 4.2, it is seen that 

f
2 - Y, • 

:= ~ dY2 = 2 - y., 
YI-2 

1 < YI < 2, 

= 0 elsewhere. 

f
2 - Y2 

= 4 dYI = I - Y2, 
Yz 

= 0 elsewhere. 

Example 5. Let XI, X2 be a random sample of size n = 2 from a stan­
dard normal distribution. Say that we are interested in the distribution 
of Y1 = XI! X2• Often in seleCting the second random variable, we use 
the denominator of the ratio or a function of that denominator. So let 
Y2 = X2. With the set {(x" X2) : - 00 < XI < 00, - 00 < X2 < oo}, we note 
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that the ratio is not defined at X2 = O. However, Pr (X2 = 0) = 0; so we take 
the p.d.f. of X2 to be zero at X2 = O. This results in the set 

SIf/ = {(Xh X2): - 00 < XI <" 00, - 00 < X2 < 0 or 0 < X2 < oo}. 

With YI = Xi/X2, Y2 = X2 or, equivalently, XI = YIY2, X2 = Y2, SIf/ maps onto 

fJI={(YI,Y2):-00<YI<OO, -00<Y2<0 or 0<Y2<00}. 

Also, 

Since 

J = Y2 YI = Yz ¢ O. 
o 1 

h(x" x,) = 2~ exp [ -~ (xl + xl) J. (x,. x,) e.!il. 

we have that the joint p.d.f. of 'Yr and Y2 is 

g(y,. y,) = 2~ exp [ -~ y1(1 + y1) ] lv,l. (flo y,) e ill . 

Thus • 

Since g(YI, Y2) is an even function of Y2, we can write 

g, (y,) = 2 r 21" ~xp [ -4 y,(1 + I.) }y,) tiy, 

= 1. {-exp [-4 y~(l + yi)]}1Xl = I 
'It 1 + yi I) 1t(1 + I.) , - 00.< YI < 00. 

This marginal p.d.f. of Y1 = Xi/X2 is that of a Cauchy distribution. Although 
the Cauchy p.d.f. is symmetric about YI = 0, the mean does not exist because 
the integral 

does not exist. The median and the mode, however, are both equal to zero. 

Example 6. Let Y1 =! (XI - X2), where XI and X2 are U.d. random 
variables, each being ;(2(2). The joint p.d.f. of XI and X2 is 

I (XI + xz) j{XI)j{X2) = 4exp - 2 ' 0< XI < 00, 0 < X2 < 00, 

= 0 elsewhere. 
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Let Y2 = X2 so that YI = 4 (XI - X2), Y2 = X2 or XI = 2YI + Y2, X2 = Y2 define 
a one-to-one transformation from d = {(X., X2): 0 < XI < co,O < X2 < co} 
onto £I = {(Y"Y2): -2y, < Y2 and 0 < Y2, -co < YI < oo}. Thelacobianof 
the transformation is 

J = 2 ) = 2; 
o 1 

hence the joint p.d.f. of YI and Yz is 

\21 
g(YI, yz) = 4" e-YI - Y2, 

= 0 elsewhere. 

Thus the p.d.f. of YI is given by 

g,(y,) = f' ~ e-Y'- y, dy, = t .,v" 
. -2YI 

-co < y, < 0, 

o <YI < 00, 
• 

or 

g,(YI)=!e-1Y", -00 <YI < 00. 

This p.d.f. is now frequently called the double exponential p.d.f. 

Example 7. In this example a rather important result is established. Let 
XI and X2 be independent random variables of the continuous type with joint 
p.d.f. Ji(XI}h(X2) that is positive on the two-dimensional space .91. Let 
YI = UI(Xt ), a function of XI alone, and Yz = uz(X2), a function of X2 alone. 
We assume for the present that YI = UI(XI), Y2 = U2(XZ) define a one-to-one 
transformation from .91 c,onto a two-dimensional set a in the YIY2-plane. 
Solvingforx, and X2 in terms of Y\ andyz, we have x, = w,(Yt)andx2 = W2(Y2), 
so 

J = way,) 0 = w'(y )w'(y ) ~ o. 
O '() I I 2 Z r W2 Y2 

Hence the joint p.d.f. of Y 1 and Y2 is 

g(y" Y2) . Ji[Wt(YI)]Ji[W2(Y2)]!Way,)W2(Y2)1, 

= 0 elsewhere. 

However, from the procedure for changing variables in the case of 
one random variable, we see that the marginal probability density 
functions of Y1 and Y2 are, respectively, gl(Y,) =Ji[w,(y,)]lw({y,)1 and 
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g2(Y2) = Ji[W2(Y2)] I W2(Y2) I for y, and Y2 in some appropriate sets. Con­
sequently, 

g(y" Y2) = g, (y, )g2(Y2). 

Thus, summarizing, we note that if X, and X2 are independent random 
variables, then Y, = u,(X,) and Y2 = U2(X2) are also independent random 
variables. It has been seen that the result holds if X, and X2 are of the discrete 
type; see Exercise 4.22. 

In the simulation of random variables using uniform random 
variables, it is frequently difficult to solve y= F(x) for x. Thus other 
methods are necessary. For instance, consider the important normal 
case in which we desire to determine X so that it is N(O, I). Of course, 
once X is determined, other normal variables can then be obtained 
through X by the transformation Z = aX + Jl.. 

To simulate normal variables, Box and Muller suggested the 
following procedure. Let Y" Y2 be a random sample from the uniform 
distribution over 0 < y < I. Define X, and X2 by 

X, = ( - 2 In Y, )'/2 cos (2n Y2), 

. X2 = ( - 2 In Y, )'/2 sin (2n Y2). 

The corresponding transformation is one-to-one and maps 
{(y" Y2):0 < y, < I, 0 < Y2 < 1} onto {(x" X2): -00 < x, < 00, 

- 00 < X2 < oo} except for sets involving x, = 0 and X2 = 0, which 
have probability zero. The inverse transformation is given by 

( x~ + x~) 
y, = exp - 2 ' 

1 X2 
Y2 = -2 arctan -. n x, 

This has the J aco bian 

(-x,)exp ( _ xl; x~) ( x~ + x~) 
( - X2) exp - 2 . 

J= 
- X2/X~ I/x, 

(2n)(1 + x~/ xD (21t)(1 + xVxD 

( 
X2 + X2) ( xi + x~) - (1 + x~/xD exp - I 2 2 - exp - 2 

----'-------
(21t)(l + x~/xD 21t 
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Since the joint p.dJ. of Yl and Y2 is 1 on 0 < y, < 1,0 < Y2 < 1, and 
zero elsewhere, the joint p.d.f. of Xl and X2 is 

( 
xi + xi) exp -

2 

21[ -00 < XI < 00, -00 < X2 < 00. 

That is, Xl and X2 are independent standard normal random variables. 
We close this section by observing a way of finding the p.d.f. 

of a sum of two independent random variables. Let XI and X2 

be independent with respective probability density functions !.(x,) 
and fi(X2)' Let Y, == XI + X2 and Y2 = X2• Thus we have the 
one-to-one transformation XI = Yl - Y2 and X2 = Y2 with Jacobian 
J = 1. Here we say that d = {(x" X2): - 00 < XI < 00, - 00 < X2 < oo} 
maps onto fJI = {(y" Y2): - 00< YI < 00, - 00 < Y2< oo}, but we 
recognize that in a particular problem the joint p.d.f. might equal zero 
on some part of these sets. Thus the joint p.d.f. of Y, and Y2 is 

and the marginal p.dJ. of YI = XI + X2 is given by 

g,(y,) = f' f,(y, - y,)./i(y,) dy,. 
-00 

which is the well-known convolution formula. 

EXERCISES 

4.25. Let X have the p.d.f. lex) = x?-/9, 0 < x < 3, zero elsewhere. Find the 
p.d.f. of Y = Xl. 

4.26. If the p.d.f. of X isfix) = 2xe-- x
\ 0 < x < 00, zero elsewhere, determine 

the p.d.f. of Y = )(2. 

4.27. Let X have the logistic p.d.! fix) = e-x/(I + e-x)2, - 00 < x < 00. 

(a) Show that the graph of/ex) is symmetric about the vertical axis through 
x = O. 

(b) Find the distribution function of X. 
(c) Find the p.d.f. of Y = e-x, 
(d) Show that the m.g.f. M(t) of X is f(l - t)f(1 + t), -I < t < 1. 

Hint: In the integral representing M(t), let y = (I + e-X)-I. 
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4.21. Let X have the uniform distribution over the interval (-n/2, n/2). 
Show that Y = tan X has a Cauchy distribution. 

4.29. Let XI and Xi be two independent normal random variables, each 
with mean zero and variance one (possibly reSUlting from a Box-Muller 
transformation). Show that 

ZI = III + 0'1 X\) 

Z2 = 112 + P0'2 X, + 0'2Jl - p2X2' 

where 0 < 0'" 0 < 0'2, and 0 < p < I, have a bivariate normal distribution 
with respective parameters Il" 1l2' O'~, O'~, and p. 

4.30. Let XI and X2 denote a random sample of size 2 from a distribution that 
is N(p, 0-2). Let YI = XI + X2 and Y2 = XI - Xl' Find the joint p.d.[ of Y, 
and Y2 and show that these random variables are independent. • 

4.31. Let XI and Xl denote a random sample of size 2 from a distribution that 
is N{p., 0'2). Let YI = XI + X2 and Yl = XI + 2X2• Show t~at the joint p.d.f. 
of Y, and Y2 is bivariate normal with correlation coefficient 3/~. 

4.32. Use the convolution formula to determine the p.d.f. of YI = XI + X2, 

where XI and X2 are Li.d. random variables, each with p.d.f. f{x) = e-x , 

o < x < 00, zero elsewhere. 
Hint: Note that the integral on Y2 has limits of 0 and y" where 

o <y, < 00. Why? 

4.33. Let XI and X2 have the joint p.d.f. h(x" X2) = 2e-XI - X2 , 

0< XI < X2 < 00, zero elsewhere. Find the joint p.dl. of YI = 2XI and 
Y2 = X2 - XI and argue that Y I and Y2 are independent. 

4.34. Let XI and X2 have the joint p.d.f. h(x" X2) = 8XIX2, 0 < XI < X2 < 1, 
zero elsewhere. Find the joint p.d.f. of Y I = XII X2 and Y2 = X2 and argue 
that Y I and Y2 are independent. 

Hint: Use the inequalities 0 < YIY2 < Y2 < I in considering the mapping 
from .PI onto £f. 

4.4 The Beta, t, and F Distributions 

It is the purpose of this section to define three additional 
distributions quite useful in certain problems of statistical inference. 
These are called, respectively, the beta distribution, the (Student's) 
(-distribution, and the F-distribution. 
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The beta distribution. Let XI and X2 be two independent random 
variables that have gamma distributions and joint p.d.f. 

h( ) 1 «-I fJ-1 -XI-X2 0< < 0< < X., X2 =r(a)r(ft) XI X2 e " XI 00, X2 00, 

zero elsewhere, where a > 0, p > O. Let Y1 = XI + X2 and Y2 = 
XI/(X, + X2). We shall show that Y, and Y2 are independent. 

The space d is, exclusive of the points on the coordinate axes, the 
first quadrant of the xlx2-plane. Now 

y, = u,(x" X2) = XI + X2' 

XI 
Y2 = U2(XI, X2) = + XI X2 

may be written XI = YIY2, X2 = y,(1 - Y2), so 

J = Y2 y, = ~ YI ¥: O. 
1 - Y2 - YI 

The transformation is one-to-one, and it maps d onto rJI = 
{(YI, Y2) : 0 < YI < 00, 0 < Y2 < I} in the YIYrplane. The joint p.d.f. 
of YI and Y2 is then 

I 
g(Yh Y2) = (Y.) r(a)r(p) (YIY2)1I-1[YI(l - Y2)]fJ- 1e-YI 

,,11-1(1 )'-1 
- "2 -Y2 ,,a+fJ-I -YI 0 0 I 
- r(a)r(lI) "I e, <YI<oo, <Y2<, 

= 0 elsewhere. 

In accordance with Theorem 1, Section 2.4, the random variables are 
independent. The marginal p.d.f. of Y2 is 

( ) _"2 - Y2I" ,,11+/1-1 -YI d ,,11-1(1 \8-1 [ 

g2 Y2 - r(a)r(p) o.TI e YI' 

r(a + II) II - 1(1 \6 - I 0 I = r(a)r(p) Y2 - Y2I", < Y2 < , 

= 0 elsewhere. 

This p.d.f. is that of the beta distribution with parameters a and p. Since 
g(YI, Y2) = gl(YI)g2(Y2), it must be that the p.d.f. of YI is 

( ) _ I II + /J _ I - YI 
g, YI -r(a+'p)Yl e, 0< YI < 00, 

= 0 elsewhere, 
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which is that of a gamma distribution with parameter values of 
a + p and I. 

It is an easy exercise to show that the mean and the variance of 
Yh which has a beta distribution with parameters a. and p, are, 
respectively, 

2 ap 
(1 = (a + p + .I)(a + P)2 . 

The t...cJ.istribudOD. Let W denote a random variable that is N(O, 1); 
let V denote a random variable that is x2(r); and let Wand V be 
independent. Then the joint p.d.f. of Wand V, say h(w, v), is the 
product of the p.d.f. of Wand that of V or 

h( ) - _1_ -w'l/2 1 rl2 - 1 -v12 
W,V - fo e r(rI2)2rI2 v e , 

, - 00 <w < 00, 0 < v < 00, 

= 0 elsewhere. 

Define a new random variable T by writing 

T- W - yfvit. 

Th~ change-of-variable technique will be used to obtain the p.d.f. g) (1) 
of T.The ~equations 

w 
t=-- and .u=v 

Jvfr' 
define a one-to-one transformation that maps .s;I = {(w,v) : - 00 < 
w < 00, 0 < v < oo} onto fJI = {(I, u) : - 00 < t < 00, 0 < u < oo}. 
Since w = tJuI;;', v = u, the absolute value of the Jacobian of the 
transformation is 111 = JuIJr. Accordingly, the joint p.d.f. of T 
and U = V is given by 

Ju; . 
g(t, u) = he;, u }JI 

_ ' .. "1 . u'/2-1 exp [_.~ (1 + t2)']'Ju 
fo r('/2)2r/~ . 2, ,Jr ' 

- 00 < 1 < 00, 0 < u < 00, 

= 0 elseWhere. 

, 
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The marginal p.d.f. of T is theft 

g,(t) = foo g(t, u) du 

-eo 

= leo I. u(r + 1)/2 - 1 exp [ _ !!. (I + t2)] duo 
o fo r(r/2)2r/2 2 r 

In this integral let z = u[1 + (t2/r)]/2, and it is seen that 

leo. I (2Z . )(r+ 1)/2-1 ( 2 ) 
gl(t) = .. e- Z dz 

o fo r(r/2)2,/2 1·+ t2/r 1 + t2/r 

r[(r + 1)/2] 1 . 
- fo r(r/2) (1 + fir)"~ + 1)/2 ' 

-oo<t<oo. 

Thus, if W is N(O, 1), if V is x2(r), and if Wand V are independent, 
then 

T= W . for 
has the immediately preceding p.d.f. g,(t). The distribution of the 
random variable T is usually called a t-distribution. It should. 

• be observed that a t-distribution is completely determined by the 
parameter r, the number of degrees of freedom of the random variable 
that has the chi-square distribution. Some approximate values of 

, Pr(T< t)=1 'k,(w)dw 
-ao 

for selected values of rand t can be found in Table IV in Appendix B. 

Remark. This distribution was first discovered by W. S. Gosset when he 
was working for an Irish brewery. Because that brewery did not want other 
breweries to know that.statistical methods were being used, Gosset published -
under the pseudbnym Student. Thus this distribution is often known as 
Student's I-distribution. 

The F-distributiOD. Next consider two independent chi-square 
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random variables U and V having r. and r2 degrees of freedom, 
respectively. The joint p.d.f. h(u, v) of V and V is then 

h(u v) = 1 ",.t2- lvr2/2 1e-(u+v)/2 
, r(rd2)r(r2/2)2(r, + r2)/2 ' 

o < u < 00, 0 < v < 00, 

= 0 elsewhere. 

We define the new random variable 

W= Vir. 
Vlr 2 

and we propose finding the p.d.f. gl(w) of W. The equations 

ulr. 
w=- z=v, vlri' 

define a one-to-one transformation that maps the set d = 
{(u, v): 0< u < 00,0 < v < oo} onto the set.!ir = {(w, z): 0 < w < 00, 
0< Z < oo}, Since u = (rJ!r2)zw, v = z, the absolute value' of the 
Jacobian of the transformation is 1.11 = (r.!r2)z. The joint p.d.f. g(w,z) 
of the random variables Wand Z = V is then 

I. (r1zw)'1/2 I 
g(w, z) = r(r.!2)r(r2/2)2(r, +'2)/2 r, z'212-

1 

[ 
z (rlw )] r,z xexp -- -+ 1 -, 
2 r2 r2 

provided that (w, z) e 91, and zero elsewhere. The marginal p.d.f. gl(w) 
of Wis then 

g,(w) = f' g(w. z) dz 
-00 

x exp [ - ~(r~~ + I)] liz. 

If we change the variable of integration by writing 

y = ~ (r~~ + I). 
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it can be seen that 

_ (OC) (~./r2yI/2(w)'1/2-1 ( 2y· )(rl +r2)/2-1 _y 

gl(W) - J
o 

r(r./2)r(r2/2)2(rl + r2){2 rl w/r2 + I e 

x (" wi;' + 1 )dY 
r[(rl + r2)/2](rdr2y.t2 (w)'.t2 I. 

- r(rl/2)r(r2/2) (1 + rl w/r2)(r l '; r2)/2 ' 
o < w < OC', 

= 0 elsewhere. 

Accordingly, if U and V are independent chi-square variables with 
r. and r2 degrees of freedom, respectively, then 

w= Ujr l 

V/r2 

has the immediately preceding p.d.f. gl(w). The distribution of this 
random variable is usually called an F-distribution; and we often call 
the ratio; which we have denoted by W, F. That is, 

F= Ujrl 
Vjr2 • 

It should be observed that an F-distribution is completely determined 
by the two parameters rl and r2' Table V in Appendix B gives some 
approximate values of 

. , Pr(FS b) .. f g,(w)dw 

for selected values of rl, rh and h. 

EXERCISES 

4.35. Find the inean and variance of the > beta distribution. 
Hint: From that p.d.f., we know that 

11 .,« ~ 1(1 _ \8-1 d = r{IX)r{p) 
oJ· y, Y t( IX + fJ) 

for all IX > 0, fJ > O. 

4.36. Determine the constant c in eC;lch of the following so that each j{x) is 
a beta p.d.f 
(a) j{x) = cx(l - X)3, 0 < X < I, zero elsewhere. 
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(b) fix) = c;('{l-'!- X)~, 0 < ,x < I, ~o ~Isewhere. 
(c) fix) = cr(l - X)8, 0 < x < 1, zero elsewhere. 

185 

4.37. Determine th.e constant i: ~o ~hat f(x) = cx(3 - X)4, 0 < x <3,zerq 
elsewhere, is a p.d.f. . , : 

4.38. Show that the graph of the beta p.d.f. is symmetric a~ut t~ vertical 
line through x = ! if « = p. 

4.39. Show, for k = 1,2, ... , n, that 

f (k - I)~~n _ k)!z'- '(I - zy-' liz = :~: (:))7'(1 -P'f-
x

, 

p 

This demonstrates the relationship between the distri bution functions of the' 
beta and binomial distributions. 

4.40. Let T have a t-distribution with 10 degrees of freedom. Find Pr (i TI > 
2.228) from Table IV. 

4.41. Let T have a t-distribution with 14 degtees of freedom. Determine;h' 
so that Pr ( - b < T < b) = 0.90. 

4.42. Let Fhave an F-distribution with parameters'l and '2' Prove that I/F 
has an F-distribution with parameters '2 and '1' 

4.43. If F has an F-distribution with paritmeters r l = 5 and '2 = 10, find a 
and b so that Pr (F s; a) = 0.05 and Pr (F S; b) = 0.95, and, accordingly, 
'Pr(a < F< b) = 0.90. 

Hint: Write Pr (F < a) = Pr(l/F~ l/a) = ].- Pr (l/F$,. l/a), and use 
the result of Exercise 4.42 and Table V. 

4.44. Let T = W/ Nr, where the independent variables Wand V are, 
respectively, normal with mean zero and variance 1 and chi-square with, 
degrees of fr~edom. Show that T2 has an F-distribution with parameters 
'1 = 1 and '2 = ,. 

Hint: What is the distribution of the numerator of 'P? 

4.45. Show that the t-distribution with , = 1 degree of freedom and the 
Cauchy distribution are the same. 

4.46. Show that 

y= 1 
1 + ('I/'2)W' 

where W has an F-distribution with parameters '1 and '2. has a beta 
distribution. 

4.47. Let XI, X2 be a random sample from a distribution having the p.d.f. 
fix) = e-x

, 0 < x < 00, zero elsewhere. Show that Z = X';X2 has an 
F-distribution. 
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4.5 Extensions of the Change-of-Variable Technique 

In Section 4.3 it was seen that the determination of the joint p.d.f. 
of two functions of two randotn variables of the continuous type was 
essentially a corollary to a theorem in analysis having to do with the 
change of variables ina twofold integral. This theorem has a natural 
extension to n-fold integrals. This extension is as follows. Consider an 
integral of the form r .. f h(x,. x" ... • x,) dx, dx, ... dx. 

A 

taken over a subset A of an n-dimensional space .91. Let 

Y" = U,,(XI' •.• ,x,,), 

together with the inverse functions 

x" = W,,(Y"Y2, ... , Y,,) 

define a one-to ... one transformation that maps .91 onto ~ in the 
y" Y2, ... ,Yn space (and hence maps the subset A of.91 onto a subset 
B of ~). Let the first partial derivatives of the inverse functions be 
continuous and let the n by n determinant (called the Jacobian) 

ox, ox, ox, 
oY, 0Y2 oY" 

J= 

ox" ox" ox" 
OYI 0Y2 ' oY" 

not be identically zero in ~. Then 

f· .. f h(x,. x, • ... • x,) dx, dx, ... dx, 

A 

= r .. f hI w, (y" ... • y .). w,(y" ... • y,) • ... • w.(y" ... , Y:)l 
B 

x IJI dYI dY2 ... dy". 
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Whenever the conditions of this theorem are satisfied, we e~n deter­
mine the joint p.d'.f. of n functions of n random variables. Approp" 
riate changes of notation in Section 4.3 (to indicate n-space as opposed 
to 2-space) are all that is needed to show that the joint p.d.f. of the 
random variables Y1 = UI(X1, X2, ... ,Xn), Y2 = U2(X" X2, ... , Xn), 

... , Yn = Un (X. , Xl, ... , Xn}-where the joint p.d.f. of XI, X2, ••• , Xn 
is h(x l , ••• ,xn}-is given by 

g(YI,Y2,'·· ,Yn) = IJrh[WI(YI"" ,Yn),"" wn(y.,··· ,Yn)], 

when (YI' Y2, ... ,Yn) E tJi, and is zero elsewhere. 

Example 1. Let X., X2, ••• , Xk + • be independent random variables, each 
having a gamma distribution with fJ = t. The joint p.d.f. of these variables 
may be written as 

,0 < Xi < 00, 

= 0 elsewhere. 

Let 

y:. == XI 
I XI + X2 + ... + Xk + I' 

i = t, 2, ... ,k, 

and Y:k +. = XI + X2 + ... + Xk + 1 denote k + t new random variables. The 
associated transformation maps .!II == {(XI" .. , Xk+ I): 0 < Xi <00, i = t, 
... , k + I} onto the space 

fJI == {(YI' ... ,Yh Yk + I) : 0 < Y;, i = I, ... , k, 

YI + ... + Yk < I, 0 < Yk + I < oo}. 

The single-valued inverse functions are X I = YIYk + I, ... , Xk = YkYk + " 

Xk + I = Yk + ,(I - y, - ... - Yk), so that the Jacobian is 

Y~+I 0 0 y, 

0 Yk+ I 0 Y2 

J= = >1+1'-
0 0 Yk+1 Yk 

-Yk+1 -Yk+1 -Yk~1 (I - y, - ... - Yk) , 

Hence the joint p.d.f. of Y:., •.. , Y:h Yk + I is given by 

~~~ ... +iXk+ 1-'y~l- I ••• y:t- 1(1 _ Y1 _ ••. - Yk)CXk+ r'" le-Yk+ I 

r(<<I) .•. r(<<k)r(<<k + I) 
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provided ~hat (y.., ... ,Yb Yk+ I) E £f and is equal to zero elsewhere. The,iQint 
p.d.f. of Y\, ... , Yk is;seen by inspection to be given by 

, .' r(1l1 + ... + Ilk +.) -, . .' 
g(y", . .. ,Yk).= r(Il,) ' .•• r(llk+ I) , y~l- ... y:k-I(l - y, - ... - Yk)(Xk+ I-I, 

when 0 < Yh i = 1, ... , k,lYI + ~':;: + Yk '< 1, while the function g is equal to 
zero elsewhere. Random variables Y" ... , Yk that have a joint p.d.f. of this 
form are said to have aDirichlet distribution with parameters Il., ••. , Ilb Ilk + " 

and any such g(YJ, ... ,Yk) is called a Dirichlet p.d.f. It is seen, in the special 
case of k = 1, that the Dirichlet p.d.f. becomes a beta p.d.f. Moreover, it is 
also clear from the joint p.d.f. of Y" ... , Yk , Yk + I that Yk + I has a gamma 
distribution with parameters III + ... + Ilk + Ilk + 1 and (J = I and that Yk + I 

is independent of Y1 ~ Y2, ••• , Yk • 

We now consider some other problems that are encountered when 
transfonning variables. Let X have the Cauchy p.d.f. 

I 
f(x) = n(l + xl) , -00 < x < 00, 

and let Y == Xl. We seek the p.d.f. g(y) of Y. Consider the 
transfonnation y = xl. This transfonnation maps the space of 
X, d = {x: -00 < x < oo}, onto ~ = {y: 0 <y < oo}. However, 
the transfonnation is not one-to-one. To each ye 91, with the 
exception of y = 0, there correspond two points x e d. For example, 
if y = 4, we may have either x = 2 or x = - 2. In such an instance, 
we represent d as the union of two disjoint sets A I and A 2 such that 
y = xl defines a one-to-one transfonnation that maps each of AI 
and A2 onto ~. If we take AI ~o be {x: - 00 < x < O} and A2 to be 
{x: 0 < x < oo}, we see that AI is D;lapped onto {y: 0 < y< oo}, 
whereas A2 is mapped onto {y : 0 :s; y < oo}, and these sets are not the 
same. Our difficulty is caused by the fact that x = 0 is an element 
of d. Why, then, do we not return to the Cauchy p.d.f. and take 
f(0) = O? Then our new d is d = {- 00 < x <'00 but x #= O}. We 
then take A I = {x: - 00 < x < O} and A2 = {x : 0 < x < oo}. Thus 
y = xl, with the inverse x = -Jy, maps A, onto~ = {y: 0 < y < oo} 
and the transfoqnation is one-to-one. Moreover, the transfonnation 
y = x 2, with inverse x = Jy, maps A2 onto (fl. = {y: 0 < y < oo} 
and the transfonnation is one-to-one. Consider the: probability 
Pr(YeB), where Be (fl. Let A) = {x:x= -Jy,yeB} c AI and 
let A4 = {x: x = Jy, y e B} c A2• Then Ye B when and only when 
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g(y) = r:. ' ,0 < y < 00, 
n(l + Y)y y 

= 0 elsewhere. 

In the preceding discussion of a random variable of the continuous 
type, we had two inverse functions, x = -Jy and x = Jy. That is 
why we sought to partition d (or a modification of d) into two disjoint 
subSets such that"tl}.e transformation y = x2 maps each onto the same 
aI.Had there been three inverse functions, we would have sought to 
partition d (or a modifiec:i- fonn of d) into three disjoint subsets, and 
so on. It is hoped that thfs detailed discussion will make the following 
paragraph easier to read. ,. " 

Let h(Xh X2, ..• , x,,) be the jointp.d.f. of Xh X2, ••• , X"' which 
are random variables of the continuous type. Let d be the 
n-dimensional' spate" where" h(xJ' X2, •.. , x,,) > 0, and consider the 
transformation YI = Ul(Xl, X2, ... , x,,); Y2 = U2(X., X2, ... , x,,), .. '., 
Y" = u,,(xJ' X2' ... ,x,,), which maps d onto aI in the Yh Y2, ... , Y" 
space. To each point of d there will correspond, of course, but one 
point in ~; but to a point in aI there may "correspond more than one 
point in d. That is, the transformation may not be one-to·one. 

Uploaded By: anonymousSTUDENTS-HUB.com



190 >·Diltriblltlou o/PactltHu of.""" """"'6 IQ.. 4 

Suppose, however, that we can represent d as the union of a finite 
number, say k, of mutually disjoint sets A., A 2, ••• , Ak so that 

define a one-to-one transformation of each Ai onto ~. Thus, to each 
point in tM there will correspond exactly one point in each of 
.4., A2, ••• , .4k • Let 

x. = WIi(Y" Y2, •. ~>, YII)' 

X2 = wu(Y., Y2, ••. 'YII)' 

XII -: wlli(Y" Yh ... 'YII)' 

i = 1,2, ... , k, 

denote the k groups of n inverse functions, one group for each of these 
k transformations. Let the first partial derivatives be continuous and 
let each 

OWIi oWIi OWIi 
oY. °Y2 °Yn 
oWu OW2; OW2f 

Jj = oY. °Y2 °YII i = 1,2, ... , k, , 

OWn; OWn; OWn; 
OY. °Y2 OYn 

be not identically equal to zero in ~. From a consideration of the 
probability of the union of k mutually exclusive events and by applying 
the change of variable technique to the ·probability of each of>these 
events, it can be seen that the joint p.d.f. of Y\ = UI (X., X2, ... , Xn), 

Y2 = U2(X., X2 , ••• , XII)' ... ,'Y" = ",,(Xi, X2 , ••• ~. Xn), is given by 

k > 

g(YI' Y2, ••. ,y,,) = L IJilh[wJj(Y., ... ,y,,), ... , W"i(Y" ... ,y,,)], 
j"" 1 

provided that (y" Y2, •.. 'YII) E tM,and equals zero elsewhere. The 
p.d.f. of any Y;, say Y1, is then 

g, (y,) ... fm .. -roo g(y" y" ... ,Y.) dy, ... dy •. 
-ClO -ClO 

An illustrative example follows. 
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Example 2. To illustrate the res.ult just obtained, take n = 2 and let XI, X2 

denote a random sample of size 2 from a standard normal distribution. The 
joint p.d.f. of XI and X2 is 

1 (xi+~) f(x" X2) = 2x exp 2' -00 < XI < 00, -00 < X2 < 00. 

Let YI denote the mean and let Y2 denote twice the variance of the random 
sample. The associated transformation is 

, XI +X2 
YI = 2 

(XI - X2)2 
Y2 = 2 

This transformation maps .d = {(X"X2): -00 <XI < 00, -00 <X2< oo} onto 
dI = {(YI, Y2) : - 00 < YI < 00, 0 ~ Y2 < oo}. But the transformation is not 
one-to-one because, to each point in tM, exclusive of points where Y2 = 0, there 
correspond two points in.9l. In fact, the two groups of inverse functions are 

[Y; 
X,2 =YI + './2 

and 
[Y; 

XI =YI + './2' 
Moreover, the set.d cannot be represented as the union of two disjoint sets, 
each of which under our transformation maps onto tM. Our difficulty is caused 
by those points of .d that lie on the line whose equation is X2 = XI' At each 
of these points, we have Y2 = O. However, we can define f(x., X2) to be zero 
at each point where XI = X2' We can do this without altering the distribution 
of probability, because the probability measure of this set is zero. Thus 
we have'a new .d = {(XI> X2): - 00 < XI < 00, - 00 < Xl < 00, but XI :1= X2}' 
This space is the union of the two disjoint sets AI = {(X., X2) : X2 > x.} 
and A2 = {(x" X2): X2 < XI}' Moreover, our transformation now defines 
a one-to-one transformation of each Ai, i = 1, 2, onto the new dI = 
{(YI' Y2) : - 00 < YI < 00,0 < Y2 < oo}. We can now find the joint p.d.f., say 
g(Yl, Y2), of the mean Y1 and twice the variance Y2 of our random sample. 
An easy computation shows tlt~t lId = 1/21 = I/.Jfi;. Thus 

g( ) 1 [.. (yv .... JYJ2i (YI + JYJ2)2] 1 
YI,Y2 = 2x exp , - 2- 2 'A 

1 [(YI + JYJ2)2 (YI - JYJ2)2J_t_ 
+2x exp - 2 - 2 A 

= (2 e-Yt 1 y~/2-le-Y2/2, - 00 <YI < 00, 0 < Y2 < 00. './2n j2r(i) 
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We can make three interesting observations. The mean YI of our random 
sample is N(O, 4); Y2, which is twice the variance of our sample, is X2(1); and 
the two are independent. Thus the mean and the variance of our sample are 
independent. 

EXERCISES 

4.48. Let XI, X2, X3 denote a random sample from a standard normal 
distribution. Let the random variables Y" Y2, Y3 be defined by 

where 0 < YI < 00, 0 < Y2 < 2n, 0 < Y3 ::;; n. Show that Y" Y2 , Yl are 
mutually independent. 

4.49. Let XI, X2, X3 be i.i.d., each with the distribution having p.d.f. 
f(x) = e-X

, 0 < x < 00, zero elsewhere. Show that 

are mutually independent. 

4.50. Let XI" X2, ••• ,X, be r independent gamma variables with pa­
rameters (X =a; and fJ = 1, i = 1,2, ... ,r, respectively. Show that Y, = 

X, + X2 + ... + X, has a gamma distribution with parameters (X = 
(X, + ... + a, and fJ = 1. 

Hint: Let Y2 = X2 + ... + X" Y3 = X3 + ... + X" ... , Y, = X,. 

4.51. Let YI , •.. , Yt have a Dirichlet distribution with parameters, 
(x" ••• , (Xt, at + , • 
(a) Show that Y. has a beta distribution with parameters a = (XI and 

fJ = (X2 + . . . + (Xt + , • 

(b) Show that YI + ... +, r" r s; k, has a beta distribution with parameters 
a = (Xl + ... + (x, and fJ = (x, + I + ... + (Xl + ,. 

(c) Show that YI + Y2, Yl + Y4 , Ys,' .. , Yh k > 5" have;a Dirichlet 
distribution with parameters (XI + (X2, (Xl + (X4, (Xs, ••• , (Xt. (Xi + ,. 
Hint: Recall the definition of Yj in Example I and use the fact that 

thtt'sum of several independent gamma variables with fJ = I is a gamma 
variable (Exercise 4.50). 

4.52. Let XI' Xl, and X3 be three independent chi-square variables with rl' r2, 
and r3 degrees of freedom, respectively. 
(a) Show that Y, = XdX2 and Y2 = XI + X2 are independent and that Y2 

is x2(r, + r2)' 
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(b) Deduce that 

and 

are independent F-variables. 

4.53. If f(x) = 4, -) < x < ], zero elsewhere, is the p.d.f. of the random 
variable X, find the p.d.f. of Y = X2. 

4.54. If Xl, X2 is a random sample from a standard normal distribution, 
find the joint p.d.f. of Y. = Xf + X~ and Y2 = X2 and the marginal p.d.f. 
of Yl.' 

HiJit: Note that the space of Y1 and Y2 is given by -J'Y. < Y2< Jy;, 
0< Yt < 00. . , 

4.55. If X has the P.9;.f. f(x) = ~, -:- 1 < X; < 3, zero elsewhere, find the p.d.f. 
of Y = ..fl." .' 

Hint: Here !II = {y: 0 ~ Y < 9} and the event Ye B is the union of two 
mutually exclusive events if B = {y : 0 < Y < I}. 

4.6 Distributions of Order Statistics 

In this section the notion of an order statistic will be defined and 
we shall investigate some of the simpler properties of such a statistic. 
These statistics have. in recent times come to play an important role 
in statistical inference partly because some of their properties do 
not depend upon the distribution from which the random sample is 
obtained. 

Let XI' X2, ••• , Xn denote a random sample from a distribution of 
the continuous type having a p.d.f. f(x) that is positive, provided that 
a < x < h. Let Y. be the smalJest of these Xi' Y2 the next Xi in order 
of magnitude, ... , and Yn the largest Xi' That is, Y, < Y2 < ... < Yn 

represent XI, X2, ••• ;.:rn when the latter are arranged in ascending 
order of magnitude. 'Then Y;, I = 1,2, ... ,n, is called the ith order 
statistic ofthe random sample X" X2, ••• , Xn. It will be shown that the 
joint p.d.f. of Y., Y2, ••• , Yn is given by 

g(y" Y2, ... ,Yn) = (n!)f(y,}f(y2) ... f(Yn}, 

a < YI < Y2 < ... < Yn < h, 

=0 elsewhere. (l) 

We shall prove this only for the case n = 3, but the argument is seen 
to be entirely general. With n = 3, the joint p.d.f. of X., X2, X] is 
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since 

f'AX,) dx, 
X2 

is defined in calculus to be zero. As has been pointed out, we may, 
without altering the distribution of· XI, X2, Xl, define the joint 
p.d.f. JtxI1/{x2)Jtx3) to be zero at all points (X., X2, Xl) that.have 
at lea~t two of their coordinates equal. Then the set d, where 
JtX,)J{X2)JtXl) > 0, is the union of the six mutually disjoint sets: 

AI = {(XI, X2, x3): a < x, < X2 < X3 < b}, 

A2 = {(X., X2, X3) : a < X2 < XI < X3 < b}, 

A3 = {(x" X2, X3) : ~ <XI < X) < X2 < b}, 

A4 = {(X., X2, x) : a < X2 < X) < XI < b}, 

As = {(X"X2, x) : a < Xl < Xl < X2 < b}, 

A6 = {(x" X2, X3) : a < X3 < X2 < Xl < b}. 

There are six of .these sets because we can arrange Xl, X2, X) in 
precisely 3! = 6 ways. Consider the functions YI = minimum of 
Xl, X2, Xl; Y7 = middle in magnitude of ~l' :X2' X3; and Y3 = maximum 
of X., X2, Xl' These functions define· one-to-one transformations 
that map each of A" A2, ..• , A6 onto the same set ~ = {(y" Y2, Y3): 
a < YI < Y2 < Y3 < b}: The inverse functions are, for points in A" 
XI = YI, X2 = Y2, x) = Y3; for points in A2, they are XI = Y2, X2 . . y" 
X3 = Y3; and so on, for each of the remaining four sets. Then we have 
that 

1 0 0 
J I = 0 1 0 =1 

0 0 I 

and 

0 1 0 
J2 = 1 0 0 - -I - . 

0 0 1 
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It is easily verified that the absolute value of each of the3! = 6 
lacobians is '+ 1. Thus the joint p.d.f. of the three order statistics 
Y, = minimum of XI. X2, X 3; Y2 = middle in magnitude of XI, X2 , X3; 

Y3 = maximum- of XI' X2, X3 is 

g(y" Y2' Y3) = IJd itYI)itY2)f(Y3) + IJ21 itY2)ity.)itY3) + . .. ' 
+ IJ6 IitY3)itY2)itYI), a < Yl < Y2 < Y3 < b, 

= (3!)f(YI )itY2)ity), a < YI < Y2 < Y3 < b, 

= 0 elsewhere. 

This is Equation (1) with n = 3. 
In accordance with the natural extension of Theorem 1, Section 2.4, 

to distributions of more than two random variables, it is seen that the 
order statistics, unlike the items of the random sample, are dependent. 

Example I. Let X denot~ a random variable of the continuous type with 
a p.d.f. j(x) that is positive and continuous, provided that a < x < band 
is zero elsewhere. The distribution function F(x) of X may be written 

l'{x) = r j{w)dw, a.< x < h. 
Q 

If x < a, F(x) = 0; and if b < x, F(x) = 1. Thus there is a unique median m 
of the distribution with F(m) = !. Let XI, Xh X3 denote a ~andom sample from 
this distribution and let Y1 < Y2 < >,:, denote the order statistics ofthe sample. 
We shall compute the probability that Y2 ~ m. The joint p.d.f. of the three 
order statistics is 

g(y" Y2, Y3) = 6Jty, )J{Y2)f{Y3), 

= 0 elsewhere. 

Q < YI < Y2 < Y3 < b, 

The p.d.f. of Y2 is then 

h(y,) = 6j{y,) r f' j{y,l!ty,) dy, dy,. 
Y2 Q . 

= 6j(Y2)F(Y2)[1 - Fty2»)' Q < Y2 < b. 

= 0 elsewhere. 

Accordingly, 

Pr (Y,:s: m) = 6 [ (l'{y,)j{y,) - [F(y,)l~,)} dy, 
Q 

_ 6{[F(Y2)]2 _ [F(YlW}M _! 
- 2 3 -2' 

a 
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The procedure used in Example I can be used to obtain general 
formulas for the marginal probability density functions of the order 
statistics. We shall do this now. Let X denote a random variable of the 
continuous type having a p.d.f. fix) that is positive and continuous, 
provided that a < x < b, and is zero elsewhere. Then the distribution 
function F(x) may be written 

.F{x) = 0, x < a, 

= f f(w) dw, a < x < b, 
Q 

= I,. b :s: x. 

Accordingly, F(x) = /(x), a < x < b. Moreover, if a «x < b, 

I - .F{x) = .F{b) - .F{x) 

= ff(W)dw':'" fftW)dW 
Q Q 

= ff(W)dW. 
x 

Let XI, X2, ••• , Xn denote a random sample of size n from this 
distribution, and let Y I , Y2, ••• , Yn denote the order statistics of this 
random sample. Then the'joint p.d.f. of Y1, Yh .•• , Ynis 

g(YhY2,··' ,Yn) = n!!(YI)!(Y2)" '!(Yn), a<YI <Y2 <: .. < Yn<b, 

= 0 elsewhere. 

It will first be shown how the marginal p.d.f. of Yn may be expressed 
in terms of the distribution function F(x) and the p.d.f. fix) of the 
random variable X. If a < Yn < b, the marginal p.d.f., of Yn is given by 

gn(Yn) 
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since F(x) = J: Jtw) dw. Now 

1:Y3 [F(y )]2 [3 
F(Y2)JtY2) dY2 = 2

2 

a a 

But 

so 

If the successive integrations on Y 4, ••• , Y n _ I are carried out. it is seen 
that 

( ) _ ,[F(Yn)r- ' 1'1 ) 
gn Yn - n. (n _ I)! J\Yn 

= n[F{Yn)]n ~Yn)' a < Yn < b, 

= 0 elsewhere. 

It will next be shown how to express the marginal p.d.f. of Y1 in 
terms of F(x) and Jtx). We have, for a < YI < b, 

g,(yd = r ... f f f n! j{y,)Jty,) .. 'f(y.) dy. dy. - 1 ••• dy, 
Yl YII-3 Yn-2 Yn 1 

= r·· f f n! j{y,)j{y,) ... 
YI YII-3 YII-2 
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But 

r [ )]f() d [1 - .F{yn- d]2 b 1, 1 - .F{Yn-' Yn-I Yn-I = 2 
Yn-2 Yn-2 

[I - .F{yn _ 2)]2 
- 2 

so that 

g, (y,) = 1. ... f n! j{y,) ... fly.-,) [\- ~'-2)1' dy,_, ... dy,. 

Yl Yn-3 

Upon completing the integrations, it is found that 

g,(YI) = n[1 - .F{y,)]n- ~y,), a < y, < b, 

= 0 elsewhere. 

Once it is observed that r [F(w»)" - 'j{w) dw = I;:»)", IX > 0 
a 

and that 

f [1 - F(w)Y-'j{w) dw = [\ - ?,lY, 
y 

p > 0, 

it is easy to express the marginal p.d.f. of any order statistic, say Yh 

in terms of .F{x) and f(x). This is done by evaluating the integral 

g,(y,) = r··· r r. ... f n! j{y,lf{y,) ... fly,) dy, ... 
a a Yk Yn-I 

The result is 

gk(Yk) = (k _ l)~~n _ k)! [F(Yk)]k -1[1 - .F{yk)]n-~k)' 
a < Yk < b, 

=0 elsewhere. (2) 

ExtUnple 2. Let Y1 < Y2 < Y3 < Y4 denote the order statistics of a random 
sample of size 4 from a distribution having p.d.f. 

fix) = 2x, 0 < x < I, 

= 0 elsewhere. 
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We shall express the p.d.f. of Y3 in terms off{x) and f{x) and then compute 
Pr (! < YJ). Here f{x) = x 2

, provided that 0 < x < 1. so that 

Thus 

g3(Y3) = 2tl! (YD2(1 - y~)(2Y3). 0 < Y3 < I, 

= 0 elsewhere. 

Pr (! < Y3) = f. \Xl g3(Y3) dYJ 
1/2 

= J 24(Yl- yj) dy, = ¥,~. 
1/2 

Finally, the joint p.d.f. of any two order statistics, say Yi < lj, is 
as easily expressed in terms of F(x) ahdJ{x). We have 

1:Y' 1:Y2 ry · (Y' r r g,iy,. y) = ' ... ). J ••• 1. J • • • n!j{y,)· .. 

a a Yi Yj 2 Yj YIf - 1 

f(Yn) dYn ... dYj+ 1 dYJ- I' •• dYi+ IdYl' .'. dYi I' 

Since, for y > 0, r [Fly) - F(w))Hf(w) dw = _IF(y) ~ Flw»)' Y 

x x 

[F(y) - F(x)]" -
it is found that 

n! 
gij(Yi, y) = (i - I)! (j - i-I)! (n - J)! 

x [F(YiW- 1[F(Yj) - F(yJJi i 1[1 - F(y)]n-1(y;)J{y) (3) 

for a < Y; < Yj < b, and zero elsewhere. 

Remark. There is an easy method of remembering a p.d.f. like that given 
in Formula (3). The probability Pr (y; < Yj < Yi + Ai, YJ < YJ <: Yj + Ai)' 
where Ai and Ai are small, can be approximated by the following multinomial 
probability. In n independent trials, i-I ou.tcomes must be less than YI 
(an event that has probability PI = F(y;) on each trial); j - i-I outcomes 
must be between Yi + A; and Yi [an event with approximate probability 
P2 = f{Yj) - F(y;) on each trial]; n - j outcomes must be greater than Yj + Ai 
(an event with approximate probability P3 = I - .fty) on each trial); one 
outcome must be between Yi and Yi + Ai (an event with approximate 
probability P4 = /(Y;) Ai on each trial); and finally one outcome must be 
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between Yj and Yj + Aj [an event with approximate probability p, = f(Yj) A, 
on each trial]. This multinomial probability is 

(i - 1)1 (j - i ~\)! (n - il! l! I! p~- J~-; 'P~-jp4P', 
which is g;,j(Yi, Yj)A;Aj. 

Certain functions of the order statistics Y1, Y2, ••• ,Yn are 
important statistics themselves. A few of these are: (a) Yn - Y1, which 
is called the range of the random sample; (b) (Y. + Yn)/2, which is 
called the midrange of the random sample; and (c) if n odd, Y(n+ 1)/2, 

which is called the median of the random sample. 

Example 3. Let Y I , Y2, Y l be the order statistics of a random sample of 
size 3 from a distribution having p.d.f. 

f(x)=I, O<x<l, 

= 0 elsewhere. 

We seek the p.d.f. of the sample range ZI = Y3 - YI' Since F(x) = x, 
0< x < I, the joint p.d.f. of Y, and Yl is 

= 0 elsewhere. 

In addition to Z\ = Yl - Y" let Z2 = Y3• Consider the functions z, = Y3 - y., 
Z2 = Y3, and their inverses y, = Z2 - Z" Y3 = Z2. so that the corresponding 
Jacobian of the one-to-one transformation is 

OY, OYl 

J= 
OZ, OZ2 -I I 

= -I. 
°Yl °Y3 

- 0 I 
OZl OZ2 

Thus the joint p.d.f. of Z, and Z2 is 

h(zl' Z2) = 1-116z1 = 6z" 0< z, < Z2 < I. 

= 0 elsewhere. 

Accordingly, the p.d.f. of the range Z, = Yl - Y, of the random sample of 
size 3 is 

h,(z,) = r 6z, dz, = 6z,(I - %,). 
~I 

0< z, < I. 

= 0 elsewhere. 
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EXERCISES 

4.56. Let Y1 < Y2 < Y3 < Y. be the order statistics of a random sample of size 
4 from the distribution having p.d.f.f{x) = e-x.O < x < oo,zeroelsewhere. 
Find Pr (3 < Y.). 

4.57. Let XI , X2, X3 be a random sample from a distribution of the continuous 
type having p.d.f. f{x) = 2x. 0 < x < I, zero elsewhere. 
(a) Compute the probability that the smallest of these Xi exceeds the 

median of the distribution. 
(b) If Y. < Y2 < Y3 are the order statistics. find the correlation between Y2 

and Y3• 

4.58. Let j{x) =~, x = I, 2, 3, 4, 5, 6, zero elsewhere, be the p.d.f. of a 
distribution of the discrete type. Show that the p.d.f. of the smallest 
observation of a random sample of size 5 from this distribution is 

. 
gl(v.) = (7 -6 YJ )S _ (6 -6YJ)S. 

7 , Y I = I, 2. . . . , 6, 

zero elsewhere. Note that in this exercise the random sample is from a 
distribution of the discrete type. All formulas in the text were derived under 
the 'assumption that the random sample islfrom a distribution of the 
continuous type and are not applicable. Why? 

4.59. Let Y, < Y2 < Y3 < Y. < Ys denote the order statistics of a random 
sample of size 5 from a distribution baving p.d.f. f{x) = e-X

, 0 < x < 00, 

zero elsewhere. Show that ZI = Y2 and Z2 = Y4 - Y2 are independent. 
Hint: First find the joint p.d.f. of Y2 and Y4 • 

4.60. Let Y1 < Y2 < ... < Yn be the order statistics of a random sample of 
size n from a distribution with p.d.f. j{x) = I, 0 < x < I, zero elsewhere. 
Show that the kth order statistic Yk has a beta p.d.f. with parameters IX = k 
and fJ = n - k + I. 

4.61. Let Y 1 < Y2 < ... < Yn be the order statistics from a Weibull 
distribution, Exercise 3.44', Section 3.3. Find the distribution function and 
p.d.f. of Y J • 

4.62. Find the probability that the range of a random sample of size 4 
from the uniform distribution having the p.d.f. j{x) = 1,0 < x < I, zero 
elsewhere, is less than !. 

4.63. Let Y. < Y2 < Y3 be the order statistics of a random sample of size 3 
from a distribution having the p.dJ.j{x) = 2x,O < x < I, zero elsewhere. 
ShowthatZJ = Yt/Y2,Z2 = Y2!Y3.andZ3 = Y3 aremutuallyindependent. 
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4.64. If a random sample of size 2 is taken from a distribution having p.d.f. 
fix) = 2(1 - x), 0 < x < 1, zero elsewhere, compute the probability that 
one sample observation is at least twice as large as the other. 

4.65. Let Y1 < Y2 < Y3 denote the order statistics of a random sample of size 
3 from a distribution with p.d.f. fix) = 1, 0 < x < I, zero elsewhere. Let 
Z = (Yt + Y3)/2 be the midrange of the sample. Find the p.d.f. of Z. 

4.6(). Let Y, < Y2 denote the order statistics of a random sample of size 2 
from N(O, 0'2). 
(a) Show that E(Yt ) = -0'/;;. 

Hint: Evaluate E(Y1) by using the joint p.d.f. of Y1 and Y2, and 
first integrating on YI' 

(b) Find the covariance of Y, and Y2• 

4.67. Let Yt < Y2 be the order statistics of a random sample of size 2 
from a distribution of the continuous type which has p.d.f. fix) such that 
fix) > 0, provided that x ~ 0, and fix) = 0 elsewhere. Show that the 
independence of Z\ = YI and Z2 = Y2 - YJ characterizes the gamma p.d.f. 
fix), which has parameters (X = I and P > O. 

Hint: Use the change-of-variable technique to find the joint p.d.f. of 
Z. and Z2 from that of Y. and Y2• Accept the fact that the functional 
equation h(O)h(x + y) == h(x)h(y) has the s01ution ~(x) = c.eC2X, where C1 

and C2 are constants. 

4.68. Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample of size 
n = 4 from a distribution with p.d.f. fix) = 2x. 0 < x < 1. 
(a) Find the joint p.d.f. of Y3 and Y4 • 

(b) Find the conditional p.d.f. of Y3 • given Y4 = Y4' 
(c) Evaluate E(Y3 IY4)' 

4.69. Two numbers are Seleeted at random from t~e interval (0. I). If these 
values are uniformly and independently distributed. compute the prob­
ability that the three resulting line segments. by cutting the interval at the 
numbers. can form a triangle. 

4.70. Let X and Y denote independent random variables with respec­
tive probability densit·y functions fix) = 2x. 0 < x < I, zero e1sewhere. 
and g(y) = 3y2. 0 < Y < I. zero elsewhere. Let U = min (X, n and V = 
max (X, n. Find the joint p.d.f. of U and V. 

Hint: Here the two inverse transformations are given by x = u, Y = v 
and x = v, Y = u. 

4.71. Let the joint p.d.f. of X and Y be j{x, y) = 'ix(x + y), 0 < x < I, 
o < Y < ], zero elsewhere. Let U = min (X. n and V = max (X. n. Find 
the joint p.d.f. of U and V. 
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4.72. Let Xt. X2, ••• , Xn be a random sample from a distribution of either 
type. A measure of spread is Gini's mean difference 

10 

(a) If n = 10, find aI, a2, ..• , alO so that G = L ai Yh where 
i= 1 

Y1, Y l , ••• , YIO are the order statistics of the sample. 
(b) Show that E(G) = 2u/j;. if the sample arises from the normal 

distribution N(Il, ( 2). 

4.73. Let Y1 < Y2 < ... < Yn be the order statistics of a random sample of 
size n from the exponential distribution with p.d.f. j{x) = e-X

, 0 < x < 00, 

zero elsewhere. 
(a) Show that ZI = nYh Z2 = (n - 1)(Y2 - Y,). Z3 = (n - 2) (Y3 - Y2), 

... , Zn = Yn - Yn _ 1 are independent and that each Zj has the 
exponential distribution. . 

n 

(b) Demonstrate that all linear functions of Yh Y l , •.. , Yn, such as L aj Yi, 

1 

can be expressed as linear functions of independent random variables. 

4.74. In the Program Evaluation and Review Technique (PERT), we are 
interested in the total time tQ complete a project that is comprised of 
a large number of subprojects. For illustration, let XI, X 2, X3 be three 
independent random times for three subprojects. If these subprojects are 
in series (the first one must be completed before the second starts, etc.), 
then we are interested in the sum Y = XI + X2 + X3• If these are in 
parallel (can be worked on simultaneously), then we are interested in 
Z = max (XI' Xl, X). In the case each of these random variables has the 
uniform distribution with p.d.f. j{x) = 1, 0 < x < 1, zero elsewhere, find 
(a) the p.d.f. of Yand (b) the p.d.£. of Z. 

4.7 The Moment-Generating-Fonction Technique 

The change-of-variable procedure has been seen, in certain cases, 
to be an effective method of finding the distributIon of a function of 
several random variables. An alternative procedure, built around the 
concept of the m.g.f. of a distribution, will be presented in this section. 
This procedure is particularly effective in certain instances. We should 
recall that an m.g.f., when it exists, is unique and that it uniquely 
determines the distribution of probability. 

Let h(x\, X2, ••• ,xn) denote the joint p.d.f. of the n random 
variables XI, X2, ••• , Xn • These random variables mayor may not be 
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the observations of a random sample from some distribution that has 
a given p.d.f. Ax). Let Y. = UI(XI , X2, ••• ,X,,). We seek g(YI), the 
p.d.f. of the random variable Y I • Consider the m.g.f. of Y1• If it exists, 
it is given by 

M(t) = E(e'Y') = fro e'Y,g(y,) dy, 
-00 

in the continuous case. It would seem that we need to know g(y.) before 
we can compute M(t). That this is not the case is a fundamental fact. 
To see this consider 

f' ... f'" exp [tu, (x" ... , x.)]h(x" ... , x.) dx, ... dx.. (1) 
-00 -00 

which we assume to exist for -h < t < h. We shall introduce n 
new variables of integration. They are YI = UI (XI' X2, ••. , x,,), ... , 
Y" = u,,(x., X2, ••• ,x,,). Momentarily, we assume that these func­
tions define a one-~-one transformation. Let Xi = w;(y., Y2, ... ,y,,), 
i = I, 2, ... ,n, deoote the inverse functions and let J denote the 
Jacobian. Under this transformation, display (l) becomes f: ... f: e'Y'IJlh(w" ... , w.) dy, ... dy. dy,. (2) 

In accordance with Section 4.5, 

IJlh[w.(y., Y2, ... ,y,,), ... , w,,(YJ, Y2 • ... 'YII)] 

is the joint p.d.f. of Y" Y2, ••• , Y". The marginal p.d.f. g(y.) of Y1 

is obtained by integrating this joint p.dJ. on Y2, ... ,Yn' Since the 
factor e'YI does not involve the variables Y2, ... ,Yn, display (2) may 
be written as 

(3) 

But this is by definition the m.g.f. M(t) of the distribution of Y •. 
That is, we can compute E{ exp [tUI (XI' ... , Xn)]} and have the value 
of E(eIY.)~ where YI = u.(X" ...• Xn). This fact provides another 
technique to help us find the p.d.f. of a function of several random 
variables. For if the m.g.f. of Y. is seen to be that of a certain kind of 
distribution, the uniqueness property makes it certain that Y. has that 
kind of distribution. When the p.d.f. of Y. is obtained in this manner, 
we say that we use the moment-generating-Junction technique. 
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The reader will observe that we have assumed the transformation 
to be one-to-one. We did this for- simplicity of presentation. If the 
transformation is not one-to-one, let 

Xj = Wj;(YI, ... , Yn), j = 1, 2, ... , n, i = 1, 2, ... , k, 

denote the k groups of n inverse functions each. Let Ji , i =.1, 2, ... , k, 
denote the k lacobians. Then' 

k 

L IJilh[wli(Y,,' .. ,Yn),' .. , Wni(Y., ... ,Yn)] (4) 
; "" I 

is the joint p.d.f. of Y1, ••• , Yn • Then display (1) becomes display (2) 
with IJlh(w" ... , wn) replaced by display (4). Hence our result is valid 
if the transformation is not one-to-one. It seems evident that we can 
treat the discrete case in an analogous manner with the same result. 

It should be noted that the expectation of Y1 can be computed in 
like manner. That is, 

E( Y,) = foo y,g(y,) dy, 
-00 

= foo ... foo u, (x" ... , x.)h(x" ... , x.) dx, ... dx .. 
-00 -00 

and this fact has been mentioned earlier in ,the book. Moreover, this 
holds for the expectation of any function of Y1, say w( Y1); that is, 

E[w(Y,)] = r w(y,)g(y,) dy, 
-00 

= f' ... foo w[u,(x" ... , x.)]h(x" ... , x.) dx, ... dx •. 
-00 -00 

We shall now give some examples and prove some theorems where 
we use the moment-generating-function technique. In the first example. 
to emphasize the nature of the problem, we find the distribution of a 
rather sitnple statistic both by a direct probabilistic argument and by 
the moment-generating-function technique. 

Ex""'ple 1. Let the independent random variables XI and X2 have the 
same p.d.f. 

x 
f(x) = "6' x = 1 ~ 2. 3, 

= 0 elsewhere; 
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so the joint p.d.f. of XI and X2 is 

XI = 1.2,3, X2 = 1,2,3, 

= 0 elsewhere. 

A probability, such as Pr (XI = 2, X2 = 3), can be seen immediately to be 
(2)(3)/36 = i. However, consider a probability such as Pr (XI + X2 = 3). The 
computation can be made by first observing that the event XI + X2 = 3 is the 
union, exclusive of the events with probability zero, of t~e two mutually 
exclusive events (XI = I, X2 = 2) and (XI = 2, X2 = 1). Thus 

Pr (XI + X2 = 3) = Pr (XI = I, X2 = 2) + Pr (XI = 2. X2 = 1) 

(1)(2) (2)(1) 4 
=3"6+3"6=36' 

More generally, let y represent any of the numbers 2,3,4,5,6. The probability 
of each of the events XI + X2 = y, Y = 2, 3, 4, 5, 6. can be computed as in the 
case y = 3. Let g(y) = Pr (XI + X2 = y). Then the table 

y 2 3 456 

g(y) I 
J6 

4 
36 

10 
J6 

12 
J6 

9 
J6 

gives the values of g(y) for y = 2; 3,4, 5, 6. For aU other values of y, g(y) = O. 
What we have actually done is to define a new random variable Y by 
Y = XI + X2, and we have found the p.d.f. g(y) of this random variable Y. 
We shall now solve the same problem, and by the moment-generating-func­
tion technique. 

Now the m.g.f. of Y is 

M(t) = E(et(XI + Xl» 

= E(etXletX2) 

= E(etXI )E(e'X2), 

since XI and X2 are independent. In this example XI and X2 have the same 
distribution, so they have the same m.g.f.; that is, 

E(etX;) = E(etX2) = te' -+ i;t + ~e3t. 
Thus 

M( t) = (~et + ~e2t + ieJt )2 

= ~e2' + 3~e3t + ~:e4' + *eS' + :6~t. 
This form of M(t) tells us immediately that the p.d.f. g(y) of Y is zero except 
at y = 2, 3,4. 5, 6. and that g(y) assumes the values -A. 36' ~, *. :k, 
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res~ctively, at these points where g(y) > O. This is, of course, the same 
result that was obtained in the first solution. There appears here to be little, 
if any, preference for one solution over the other. But in more complicated 
situations, and particularly with random variables of the continuous type, the 
moment-generating-function technique can prove very powerful 

Example 2. Let XI and X2 be independent with normal distributions 
N(llh uD and N(1l2,uD, respectively. Define the random variable Y by 
Y = XI - X2 • The problem is to find g(y), the p.d.f. of Y. This will be done 
by first finding the m.g.f. of Y. It is 

M(t) = E(et(X, - X2» 

= E(e,Xle-tX2) 

= E(e,X')E(e-tX2), 

since XI and X2 are independent. It is known that 

E(e'XI) = exp (I'll + "'t) 
and that 

( 
0'2(2) 

E(eIX2) = exp 1121 + + 
for all real I. Then E(e- tX2) can be obtained from E(eIX2) by replacing t by - t. 
That is, 

Finally, then, 

The distribution of Yis completely determined by its m.g.f. M(t), and it is seen 
that Y has the p.d.f. g(y), which is N(1l1 - 1l2' ui + uD. That is, the difference 
between two independent, normally distributed. random variables is itself a 
random variable which is normally distributed with mean equal to the 

. difference of the means (in the order indicated) and the variance equal to the 
sum of the variances. 

The following theorem, which is a generalization of Example 2, is 
very important in distribution theory. 
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Theorem 1. Let X,, X2, ... ,Xn be independent random variables 
having, respectively, the normal distributions N(p" O'D, N(P2, ~), ... , 
and N(Pn, 0';). The random variable Y = k,X, + k2X2 + ... + knXn' 
where k" k2' ... ,kn are real constants~ is normally distributed with 
mean klPt + ... + knPn and variance krO'r + ... + Jc;a;. That is, Y is 

N( * kill,.. * k;q; ). 
Proof Because Xt, X2, ••• , Xn are independent, the m.g.f. of Y is 

given by 

M(t) = E{exp [t(ktXt + k 2X 2 + ... + knXn)]} 

= E(elk,XI)E(etk2X2) ... E(etknXn). 

Now 

E(etx') = exp (Ilit + ~t'). 

for all real t. i = I, 2, ... ,n. Hence we have 

That is, the m.g.f. of Y is 

n [ (k~O'~)rJ 
M(t) = lJt exp (kip;)t + ' 2' 

(

n n ) But this is the m.g.f. of a distribution that is N ~ kiP" ~ /c70': . 

This is the desired result. 

The next theorem is a generalization of Theorem I. 

Theorem 2. If Xj, X2, ... ,Xn are independent random variables 
with respective moment-generating functions M;(t)~ ; = 1,2,3, ... , n, 
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then the moment·generating function of 
n 

y= L ajXj, 
j = I 

where a., a2, ... , ak are real constants, is 
n 

My(t) = n M;(a;t). 
; >& I 

Proof The m.g.f. of Y is given by 
My(t) = E[e/ f ] = E[e/(Q,X, +Q2X2+'" + QnXn)] 

= E[eOI/XleQ2tX2 ... eOntXn] 

= E[eOltXI]E[e02tX2] ... E[eQntXn] 

because X" X2, ... , Xn are independent. However. since 
E( IXi) = M;(t). 

then 

Thus we have that 

M y(t) = M.(a, t)M2(a2t) ... Mn(ant) 

" = n M;(a{t). 
i = • 

A corollary follows immediately. and it will be used in some 
important examples. 

Corollary. If XI. X2, •••• Xn are observations of a random sample 
from a distribution with moment-generating function M(t), then 

11 

(a) The moment·generatingfunction of Y = L Xi is 
i= • 

" M y(t) = n M(t) = [M(t)]"; 
i = I 

n 

(b) The moment-generating function of X = L O/n)X; is 
i = I 

Proof For (a). let a j = I. i = 1,2 •...• n, in Theorem 2. For (b). 
take aj = I In, i = 1, 2, ...• n. 

Uploaded By: anonymousSTUDENTS-HUB.com



210 DistributiOlU of F_ctiolU of RIIIUIo", Y fll'illbles leb. 4 

The following examples and the exercises give some important appli­
cations of Theorem 2 and its corollary. 

Example 3. Let X" X2 , ••• , X" denote the outcomes on n Bernoulli trials. 
The m.g.f. of Xi' i = 1,2, ... , n, is 

M(t) = I - P + per. 

n 

If Y = L Xi' then 
i-I 

" My(/) = n (I - P + per) = (I - p + pit)". 
i= I 

Thus we again see that Y is b(n, p). 

Example 4. Let X" X2, X3 be the observations of a random sample of size 
n = 3 from the exponential distribution having mean fJ and, of course, m.g.f. 
M(/) = 1/(1 - fJ/), 1< l/fJ. The m.g.f. of Y = X, + X2 + X3 is 

My(/) = [(1 - fJt)-1]3 = (I - fJt)-3, 1< l/fJ, 

which is that of a gamma distributjon with parameters IX = 3 and fJ. Thus Y 
has this distribution. On the other hand, the m.g.f. of X is 

Mx(/) = I - 3
1 = I -; , [( 

fJ )-'J3 ( fJ )-3 t < 3/fJ; 

and hence the distribution of X is gamma with parameters IX = 3 and fJ/3, 
respectively. 

·The next example is so important that we state it as a theorem. 

Theorem 3. Let XI' X2, ... , Xn be independent variables that have, 
respectively, the chi-square distributions x2(r,), x2(r2), ... ,and x2(r,,). 
Then the random variable Y = X, + X2 + ... + X" has a chi-square 
distribution with r, + ... + r" degrees of freedom; that is, Y is 

x2(r, + ... + rn). 

Proof. Since 

M;(t) = E(e'Xi) = (1 - 21)-r;/2, t <~, ; = I, 2, ... , n, 

we have, using Theorem 2 with a, = , .. = all = ), 
M(t) = (1 - 2t)-(TJ +r2+···+rll )/2, t <~. 

But this is the m.g.f. of a distribution that is x2(r, + r2 + ... + rIll. 
Accordingly, Y has this chi-square distribution. 

Next. let XI' X2 • ••• ,X" be a random sample of size n from 
a distribution that is N(p.. (12). In accordance with Theorem 2 of 
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Section 3.4, each of the random variables (Xi - p.)2/U2, i = 1,2, ... ,n, 
is X2(1). Moreover, these n random variables are independent. 

" Accordingly, by Theorem 3, the random variable Y = L [(X; - p.)/uj1 

is t(n). This proves the following theorem. I 

Deorem 4. Let XI, X2, ••• , X" denote a random sample of size n 
from a distribution that is N(p., ( 2). The random variable 

y=t(XI~p )' 
has a chi-square distribution with n degrees of freedom. 

Not always do we sample from a distribution of one random 
variable. Let the random variables X and Y have the joint p.d.f. 
f(x, y) and let the 2n random variables (X" Y,), (X2, Y2), ... ,(X"' Y,,) 
have the joint p.d.f. 

j{x" YI )j{X 2' Y2) ... j{x". y,,). 

The n random pairs (X" f,), (X2' Y2), •••• (X"' Y,,) are then inde­
pendent and are said to constitute a random sample of size n from the 
distribution of X and f. In the next paragraph we shall take f{x, y) to 
be the normal bivariate p.d.f., and we shall solve a problem in sampling 
theory when we are sampling from this two-variable distribution. 

Let (XI' Y,), (X2' Y2), ... ,(X"' Y,,) denote a random sample of 
size n from a bivariate normal distribution with p.d.f. f(x, y) and 
parameters P.h P.2. ur, oi, and p. We wish to find the joint p.d.f. of the 

" " two statistics X = L X;/n and Y = L Y;/n. We call X the mean of 
- , I 

XI' ... , X" and f the mean of fl •... , f". Since the joint p.d.f. of 
the 2n random variables (X;, Y;), i = I. 2, ... , n. is given by 

h = j{x" y, )f(X2' Y2) ... f(x". y,,), 

the m.g.f. of the two means X and Y is given by 

IX) IX) t'Lx; t2 LY; ( " ") 
M(I,. I,) = to·· '1., exp ~ + ~ h dx, ... dy. 
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The justification of the fonn of the right-hand member of the secon4 equal­
ity is that ~ach pair (X~ Yi ) has the same p.d.f. and that these n pairs are 
independent. The twofold integral in the brackets in the last equality is the 
joint m.g.f. of Xi and .t (see Section 3.5) with tl replaced by t.ln and 12 

replaced by t2ln. Accordingly~ 

M(tl , t2) = II exp .IL. + _2"--_,,, 
II [t tu-

i=. n n 

o1(t./ ni + 2PU.U2(t1/ n)(t2/n) + u~ (t2/ni 
+ 2 

[ 
<oi/n)t1 + 2{i.,u1u2/n)t1t2 + (oi/ n)ti] = exp tlILI + t2#L2 + 2 . 

But this is the m.g.f. of a bivariate normal distribution with means 
1'1 and 1'2, variances G'f In and G'~/n, and correlation coefficient p; 
therefore, X and Y have this joint distribution. 

EXERCISES 

4.75. Let the Li.d. random variables XI and X2 have the same p.d.f·fix) = i, 
x = 1,2,3,4, 5, 6~ zero elsewhere. Find the p.d.f. of Y = XI + X2• Note, 
under appropriate assumptions, that Y may be interpreted as the sum of 
the spots that appear when two dice are cast. 

4.76. Let XI and X2 be independent with normal distributions N(6, 1) and 
N(7, 1), respectively. Find Pr (XI> X2 ). 

Hint: Write Pr (X. > X2) = Pr (XI - X2 > 0) and determine the 
distribution of XI - X2• 

4.77. Let XI and X2 be independent random variables. Let XI and 
Y = XI + X2 have chi-square distributions with '. and, degrees Qf freedom, 
respectively. Here rl <:: r. Show that X2 has a chi-square distribution with 
, - " degrees of ft:eedom. 

Hint: Write M(t) = E(e,CXI + Xl» and make use of the independence of XI 
and X2• 

4.18. Let the independent random variables Xl and X2 have binomial 
distributions with parameters n l , PI = i and n2, P2 = !, respectively. Show 
that Y = XI - X2 + n2 has a binomial distribution with parameters 
n = nl + n2, P = 4. 

• 4.79. Let XI, X2, Xl be a random sample ofsizen = 3 from N(l, 4). Compute 
P(X1 + 2X2 - 2Xl > 7). 
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4.80. Let XI and X2 be two independent random variables. Let XI and 
Y = Xl + X2 have Poisson distributions with means PI and P > PI, 
respectively. Find the distribution of X2 • .. 

4.81. Let XI, X2 be two independent gamma random variables with 
parameters tXt = 3, PI = 3 and tX2 = 5, P2 = I, respectively. 
(a) Find the m.g.f. of Y = 2X, + 6X2• 

(b) What is the distribution of Y? 

4.82. A certain job is completed in three steps in series. The means and 
standard deviations for the steps are (in minutes): 

Step Mean Standard Deviation 

I 17 2 
2 13 1 
3 13 2 

Assuming independent steps and normal distributions, compute the 
probability that the job will take less than 40 minutes to complete. 

4.83. Let X be N(O, 1). Use "the moment-generating-function technique to 
show that Y = ~ is X2

( 1). 
Hint: Evaluate the integral that represents E(e'X2) by writing 

w = xJI - 2t, t < i. 
4.84. Let XI; X2 , ••• , X" denote n mutually independent random variables 

with the moment-generating functions M, (t), ,M2(t), ... , M,,(t), re$pect­
ively. 
(a) Show that Y = klX, + k2X2 + ... + k"XIt , wherekJ, k2 , • •• , kit are real 

" constants, has the m.g.f. M(t) = n M/(kit). 
I 

(b) If each k; = 1 and if Xi is Poisson with mean Ph i = 1, 2, ... , n, prove 
that Y is Poisson with mean p, + ... + Pit' 

4.85. If XI, X2 , ••• , XIt is a random sample from a distribution with m.g.f. 
" " , M(t), show that the moment-generating functions ofL Xi and L"X;/n are, 
I I 

respectively, [M(t)]" and [M(tjn)]". 

4.86. In Exercise 4.74 concerning PERT, assume that each of the three 
independent variables has the p.d.f.j{x) = e-x,O < x < 00, zero elsewhere. 
Find: 
(a) The p.d.f. of Y. 
(b) The p.d.f. of Z. 

4.87. If X and Y have a bivariate normal distribution with parameters 
Ph P2, ai, G~, and p, show that Z = aX + bY + cis 

N(apl + bP2 + c, alai + 2abpG,ui ;:. b2uD, 

where a, b, and c are constants. 
Hint: Use the m.g.f. M(tb t2) of X and Y to find the m.g.f. of Z. 
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4.88. Let X and Y have a, bivariate normal distribution with parameters 
PI = 25, /A2 = 35, ~ = 4, ~ = 16. and p = ~~. If Z = 3X - 2 Y. find 
Pr ( - 2 < Z < 19). 

4.89. Let U and V be independent random variables, each having a standard 
normal distribution. Show that the m.g.f. E(t!(UV) of the product UV is 
(I - t2)-1/2~ -1 < t < 1. 

Hint: Compare E(e'U~ with the integral of a bivariate normal p.d.f. that 
has means equal to zero. 

4.90. Let X and Y have a bivariate normal distribution with the parameters 
/AI' /A2' ~, O'~, and p. Show that 

W = X -/AI and Z = (Y -/A2) - P(0'2/0'1)(X -/AI) 

are independent normal variables. 
4.91. Let XI> X2 , X) be a random sample of size n = 3 from the standard 

normal distribution. 
(a) Show that 'YI = XI + <>X), Y2 = X2 + <>X3 has a bivariate normal 

distribution. ' 
(b) Find the value of <> so that the correlation coefficient p = ~. 
(c) What additional transformation involving Y I and Y2 would produce a 

bivariate normal distribution with means /AI and /A2. variances O'~ and 
O'~, and the same correlation coefficient p? 

4.92. Let XI. X2 , ••• ,Xn be a random sample of size n from the normal 
n 

distribution N(/A, ul). Find the joint distribution of Y = L aiXi and 
I 

n 

Z = L bjXj• where the aj and bi are real constants. When. and only when. 
I 

are Yand Z independent? 

Hint: Note that the joint m.g.f. E[ exp (" t a/X, + " t b,X, ) ] is that 

of a bivariate normal distribution. 
4.93. Let XI, X2 be a random sample of size 2 from a distribution with positive 

variance and m.gJ. M(t). If Y = XI + X2 and Z XI '- X2 are independent, 
prove that the distribution from which the sample is taken is a normal 
distri bution. 

Hint: Show that 

m(t., 12 ) = E{exp [/I(XI + X2) + 12(XI - X2 )}} = M(tl + 12)M(t1 - 12)' 
Express each member of m(tl. 12) = m(tl' O)m(O. 12) in terms' of M; differ­
entiate twice with respect to 12; set 12 = 0; and solve the resulting differential 
equation in M. 

4.8 The Distributions of X and nSl/a1 

Let XI, X2 • ••• , Xn denote a random sample of size n > 2 from a 
distribution that is N(p.. u2

). In this section we shall investigate the 
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distributions of the mean and the variance of this random sample, 
- " that is, the distributions of the two statistics X = L X;/n and 

" I 
8 2 = L (X1 - X'lln. 

I 

The problem of the distribution of X, the mean of the sample, is 
solved by the use of Theorem 1 of Section 4.7. We have here, in the 
notation of the statement of that theorem, III = 112 = ... = Il" == Il, 
07 = ~ = ... = U; = cr, and kl = k2 = ... = k" = lIn. Accordingly, 
Y = X has a normal distribution with mean and variance given by 

*(~~)=~, *[(~)'a' ]=:, 
respectively. That is, X is N(p., (l2In). 

Extllllp" 1. Let X be the m~an of a random sample of size 25 from a 
distribution that is N(75, 1(0). Thus X is N(75, 4). Then, for instance, 

Pr (71 < X < 79) = <11(79; 75) - <lie I ; 75) 

= ~(2) - ~( - 2) = 0.954. 
, 

We now take up the problem of the distribution of 8 2
, the variance 

of a random sample XI, ... , X" from a distribution that is N(p., (12). 
To do this, let us first consider the joint distribution of Y, = X, 
Y2 = X2 - X, Y3 = X3 - X, ... , Y" = X" - X. The corresponding 
inverse transformation 

XI = y, - Y2 - Y3 - ••• - Y" 

X2 =y, + Yz 

X3 = y, + Y3 

x" = y, + Y" 

has Jacobian n. Since 

" " L'(Xi - p)Z = I (Xi - X + X - p)2 
I I 

" = I (Xi - X)2 + n(x - p)2 
I 
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n 

because 2(x - Jl} I (X; - X) = 0, the joint p.d.f. of XI' X;, ... , Xn 
I 

can be written 

( l)n [_I (Xi - X)2 _ n(x - Jl)2] 
J2i"r. (/ exp 2(/2 2fil' 

where x represents (XI + X2 + ... + xn)/n and - 00 < Xi < 00, i = 
1,2, ... ,n. Accordingly, with YI = x and XI - X = - Y2 - Y3 - ... 
- Yn, we find that the joint p.d.f. of Y1, Y2, ••• , Yn is . 

( l)n [( -Y2 - ... - Yn}2 ~Y; n(YI - Jl)2] 
(n) J2i"r. (/ exp - 2(/2 - 2(/2 - 2fil ' 

- 00 < Yi < 00, i = 1,2, ... ,n. Note that this is the product of the 
p.d.f. of Y" namely, 

1 [ (YI - Jl)2] --;.=:::== exp -
J21C(/2/n 2rr/n' 

-00 <YI < 00, 

and a function of Y2,"" Yn' Thus YI must be independent of 
the n - I random variables Y2, Y3 , ••• ,Yn and that function of 
Y2, ... ,Yn is the joint p.d.f. of Y2, Y3, ••• , Yn • Moreover, this means 
that Y1 = X and thus ' 

n( YI - Jl)2 _ n(X - PY _ W 
fil - fil - I 

are independent of 
n 

( - Y2 - ... - Yn)2 + I Y; I (X; - i)2 
2 I -w - (/2 - 2' 

Since WI is the square of a standard normal variable, it is distributed 
as i(1). Also, we know that 

" (Xi - Jl)2 W=~ (J =WI +W2 

is x2(n). From the independence of WI and W2, we have 

E(etK) = E(e'W')E(etW2) 

or, equivalently, 

(l - 2t)-n/2 = (l - 2t)-1/2E(e,W2), I 
t < 2' 
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Thus 

I 
t < 2' 

217 

and hence W2 = nS2/rr is t(n - 1). The determination of the p.d.f. of 
S2 is an easy exercise from this result (see Exercise 4.99). 

To summarize, we have established, in this section, three important 
properties of X and S2 when the sample arises from a distribution which 
is N(p" 0'2): 

1. X is N(/1,0'2/n). 
2. nS2/0'2 is x2(n - 1). 
3. X and S2 are independent. 

For illustration, as the result of properlies{l), (2), and (3), we have 
that In(X - p,)/a is·N(O, 1). Thus, from the definition of Student's I, 

T = (X - p,)/(O'/Jn) = X - p, 

JnS2/0'2(n - 1) S/Jn - 1 

has a I-distribution with n - 1 degrees of freedom. It was a 
random variable like this one that motivated Gosset's search for 
the distribution of T. This I-statistic will play an important role in 
statistical applications. 

EXERCISES 

4.94. Let X be the mean of a random sample of size 5 from a normal 
distribution with p. = 0 and rr = 125. Determine c so that Pr (X < c) = 
0.90. 

4.95. If X is the mean of a random sample of size n from a normal distri-
1!ution with mean p. and variance 100, find n so that Pr (p. - 5 <" 
X < p. + 5) = 0.954. 

4.96. Let Xj, X 2 , ••• , X 2S and Y\, Yi;,' . .. , Y2S be two independent random 
same.les fr~m two normal distributions N(O, 16) and N(I, 9), res~tivelY. 
Let X and Y denote the corresponding sample means. Compute Pr (X > Y). 

" -4.97. Find the mean and variance of S2 = L (Xi - X)2/n. where XI. X 2, ••• , 
I 

X" is a random sample from N(p., 0-2). 

Hint: Find the mean and variance of ~S2/rr. 
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4.98. Let S2 be the variance of a random sample of size 6 from the normal 
distribution N(,.", 12). Find Pr (2.30 < 52 < 22.2). 

4.99. Find the p.d.f. of the sample variance V = S2, provided that the 
distribution from which the sample arises is N(J.t, 0'2). 

4.100. Let X and Y be the respective means of two independent random 
samples, each of size 4, from the two respective normal distributions 
N(10, 9) and N(3, 4). Compute Pr (X > 2 Y). 

4.101. Let X" X2, ••• , Xs be a random sample of size n = 5 from N(O, 0'2). (a) 
Find the constant c so that C(XI - X2)/ J X~ + X~ + X; has a t-distribution. 
(b) How many degrees of freedom are associated 'Yith this T? 

4.10l. If a random sample of size 2 is taken from a nQrmal9istribution with 
mean 7 and variance 8, find the probability that the absolute value of the 
difference of these two observations ex~eds 2. 

4.103. 'Let X and 52 be the mean and the variance of a random sample 
of size 25 from a distribution that is N(3, 100). Then evaluate Pr (0 < X < 6, 
55.2 < 52 < 145.6). ' 

4.9 Expectations of Functions of Random Variables 

Let XI, X2, ••• , Xn denote' random variables that have the joint 
p.d.f. f(XI' X2, ••• ,xn). Let the random variable Y be defined by 
Y = u(XIt X2, ••• ,Xn). In Section 4.7, we found that we could 
compute expectations of functions of Y without first finding the p.d.f. 
of Y. Indeed, this fact was the basis of the moment-generating-function 
procedure for finding the p.d.f. of Y. We can take advantage of this 
fact in a number of other instances. Some illustrative examples will be . 
gIven. 

Example 1. Say that W is N(O, I), that V is x2(r) with r ~ 2, and that W 

and V are independent. The mean of the random variable T = W j;iV exists 
and is zero because the graph of the p.d.f. of T (see Section 4.4) is symmetric 
about the vertical axis through t = O. The variance of T, when it exists, 
could be computed by integrating the product of 12 and the p.d.f. of T. 
But it seems much simpJer to compute 

a} = E(T') = ~ W' ~) = E(W')E(~). 
Now WZ is x2(1), so E( W2) = 1. Furthermore, 

E(!.-) = 100 

!:. 1 Vr/2 - le- vl2 dv 
V v 2rI2r(r/2) 

o , 
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exists if r > 2 and is given by 

rr[(r - 2)/2] rr[(r - 2)/2] r 
2r(r/2) = 2[(r - 2)/2]r[(r - 2)/2] = r - 2 . 

Thus ~ = r/(r - 2), r > 2. 

EXflIIIJI/e 2. Let Xi denote a random variable with mean J.l.j and variance 
0';, i - 1,2, ... , n. Let X., X2, ••• , X" be independent and let k .. k2 • ... , k" 
denote real constants. We shall compute the mean and variance of a linear 
function Y = k,x, + k2X2 + ... + k"X". Because E is a linear operator, the 
mean of Y is given by 

Ily = E(k,X, + k2X2 + ... + k"X,,) 

= k,E(X,) + k 2E(X2) + ... + k"E(X,,) 

" = kill, + k21l1 + ... + k"ll" == L kill;. 
I 

The variance of Y is given by 

at = E{[(k,X. + ... + k"X,,) - (klll i + ... + k"Il,,)]2} 

= E{[k,(XI - Il,) + ... + k,,(XII - J.I.,,)]2} 

== E{.t ~(Xi - lli)2 + 2 ~ ~ kikj(Xj - lli)(Xj - Ilj)} ,-I IC} 

II 

= L ~ E!(Xi - Ili)~ + 2 L L k;kjE!(Xi - lli)(Xj - Ilj)]. 
I- , i cj 

Consider E[(X, - lli)(Xj - Ilj)], i < j. Because Xi and Xi are independent, we 
have 

Finally, then, 

" " 
~ == L 14E!(X, - Ill)' = L k;a:. 

1=' ;-1 

We can obtain a more general result if, in Example 2, we remove 
the hypothesis ofindependence of X" Xl, ... , Xn• ,We shall do this and 
we shall let Pi) denote the correlation coefficient of XI and Xl. Thus for 
easy reference to Example 2, we write . 

E[(X; - /J;)(X] - /Jj)] == Pij(Jj(Jj. i < j. 
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n 

If we refer to Example 2, we see that again Jty = L kiJtI' But now 
I 

n 

G~ = L k~G~ + 2 L L k;kjPijGiGj. 
I i<j 

Thus we have the following theorem. 

Theorem S. Let X., . .. ,X" ·denote random variables that have 
means Jt., ... , Jtn and variances G~, ... ,G;. Let Pii' ;:F j, denote the 
correlation coefficient oj Xi and ~ and let k., . .. ,fen denote real 
cons talUs. The mean and the variance oj the linear Junction 

n 

Y= LkiXi 
I 

are, respectively, 
n 

Jty = L kiJti 
I 

and 
" G~ = L k:G; + 2 L L kikjPijG;Gj. 
I i <j 

The following corollary of this theorem is quite useful. 

CoroUary. Let X" ... ,Xn denote the observations oj a random 
sample oJsize nJrom a distribution that has mean Jt and variance G2

, The 

mean and the variance oJY = t kiXiare,respectively,Jty = (t ki)Jtand 
. I I 

/1~ = (*k7 y. 
- " Ex"",," 3. Let X = L Xi/n denote the mean of a random sample of size 

I , 

n from a distribution that has mean Il and variance (12. In accordance with 
n " 

the corollary, we have Ili = Il L (l/n) = Il and (I~ = (l2I (l/n)2 = (l2/n. We 
I I 

have seen, in Section 4.8, that if our sample is from a distribution that is 
N(p, al), then X is N(Il, (l2/n). It is interesting that Ili = Il and (I~ = al/n 
whether the sample is or is not from a normal distribution. 

EXERCISES 
. . 

4.104. Let X" X2, X3, X. be four Li.d. random variables having the same p.d.f. 
f{x) = 2x, 0 < x < I, zero elsewhere. Find the mean and variance of the 
sum Y of these four random variables. 
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4.105. Let XI and X2 be two independent random variables so that the 
. variances of XI and X 2 are oi = k and 01 = 2, respectively. Given that the 

variance of Y = 3X2 - XI is 25, find k. 

4.106. If the independent variables XI and X2 have means PI, P2 and variances 
ai, 01, respectively, show that the mean and variance of the product 
Y = XIX2 are PIP2 and oio1 + P~~ + lJiai, respectively. 

4.107. Find the mean and variance 'of the sum Y of the observations of 
a random sample of size 5 from the' distribution having p.d.f. f(x) = 
6x(1 - x), 0 < x < 1, zero elsewhere. 

4.108. Determine the mean and variance of the mean X of a random sample 
of size 9 from a distribution having p.d.f. f(x) = 4xl, 0 < x < 1, zero 
elsewhere. '\ 

4.109. Let X and Y be random variables with PI = 1, P2 = 4, u~ = 4, ui = 6, 
p = ! . Find the mean and variance of Z = 3X - 2 Y. 

4.110. Let X and Y be independent random variables with means Ph P'l and 
variances ~, ui. Determine the correlation coefficient of X and Z = X - Y 
in terms of Ph P2, u~, 01· 

4.111. Let P and til denote ,the mean and variance of the random variable X. 
Let Y = c + bX, where band c are real constants. Show that the mean and 
the variance of Yare, respectively, c + bp and ~til. 

4.112. Find the mean, and the variar,ce of Y = Xl - 2X2 + 3X,h where 
X" X2, X3 are observations of a random sample from a chi-square 

. distribution with 6 degrees of freedom. 

4.113. Let X and Y be random variables such that var (X) = 4, var (1') = 2, 
and var (X + 21') = 15. Determine the correlation coefficient of X and Y. 

4.114. Let X and Y be random variables with means PI' P2;variances ai, ~; 
and correlation coefficient p. Show that the correlation coefficient of 
W = aX + b, a > 0, and Z = c Y + d, c > 0, is p. 

4.115. A person rolls a die, tosse5'a coin. and draws a card from an ordinary 
deck. He receives $3 for each point up on the die, $10 for a head, $0 for 
a tail, and $1 for each spot on the card (jack = 11, queen == 12, king = 13). 
If we assume that the three random variables involved are independent and 
uniformly distributed, compute the mean and variance of the amount to be 
received. 

4.116. Let U and V be two independent chi-square variables with " 
and '2 degrees of freedom, respectively. Find the mean and variance of 
F = ('2U)/(" V). What restriction is needed on the parameters" and '2 in 
order to ensure the existence of both the mean and the variance of F? 
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4.117. Let X., x2, ••• ,x" be a random sample of size n from a distribution 
with mean II and variance (J2. Show that E(82) = (n - 1)a2/n, where 8 2 is 
the variance of the random sample. 

If 

Hint: Write 8 2 = (l/n) L (Xi - 11)2 - (X - 11)2. 
I 

4.118. Let XI and X2 be independent random variables with nonzero 
variances. Find the correlation coefficient ·of Y = XI X2 and XI in terms of 
the means and variances Of-XI and X2• 

4.119. Let XI and X2 have a joint distribution with parameters II" 112, ~, (J~, 
and p. Find the correlation coefficient of the linear functions 
Y = alX. + a2X2 and Z = b,XI + b2X2 in terms of the real constants a" a2, 
b l , b2, and the parameters of the distribution. 

4.120. Let XI, X2, ..• ,Xn be a random sample of size n from a distribution 
which has mean II and variance (J2.Use Chebyshev's inequality to show, for 
every £ > 0, that lim Pr OX III < £) = 1; this is another form of the law 
of large numbers~"'OCI 

4.121. Let XI, X2, and Xl be random variables with equal variances but with 
correlation coefficients P'2 = 0.3, PIl = 0.5, and P23 = 0.2. Find the 
correlation coefficient of the \ linear functions Y = XI + X2 and 
Z= X2 +X3• 

4.122. Find the variance of the sum of 10 random variables if each has 
variance 5 and if each pair has correl'ation coefficient 0.5. 

4.123. Let X and Y have the parameters Ill' 112, (J~, (J~, and p. Show that the 
correlation coefficient of X and [Y - P«(J2/(J,)X] is zero. 

4.124. Let XI and X2 have a bivariate normal distribution with parameters Ill' 
112, (JL ~, and p. Compute the means, the variances, and the correlation 
coefficient of YI = exp (XI) and Y2 = exp (X2). 

Hinl;'Vatious moments of Y, and Y2 can be found by assigning 
appropriate values to tl and t2 in E[exp (tIXI+ t2X2)]' 

4.12~. Let X be N(p., u2) and consider the transformation X = In Y or, 
equivalently, Y = eX. 
(a) Find the mean and the variance of Y by first determining E(r) and 

E[(r)~. 
Hint: Use the m.g.f. of X. 

(b) Find the p.d.f. of Y. This is the p.d.f. of the lognormal distribution. 

4.126. Let XI and X2 have a trinomial distribution with parametersn, p" P2' 

(a) What is the distribution of Y = XI + X2? 
(b) From the equality (J~ = at + O'~ +2p(JI(J2. once again determine the 

correlation coefficient p of XI and··X2• 
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4.127. Let YI = XI + X2 and Y2 = X2 + Xh where X., X2, and Xl are three 
independent random variables. Find ,the joint m.g.f. and the correlation 
coefficient of Y, and Y2 provided that: 
(a) Xi has a Poisson distribution with mean J.l.i' i = 1. 2, 3. 
(b) Xi is N(J.l.i' 0-;), i = 1, 2,3. 

4.121. Let X" ... ,Xn be random variables that have means J.l.., ..• ,J.l.n and 
variances O'T, ... ,0';. Let Pu, ; =1= j, denote the correlation coefficient of Xi 
and~. Let ai, ... ,an and b l , ••• ,bn be real constants. Show that the 

n n n n 

covariance of Y = L aiX; and Z = L. bj~ is L L a;bjO'iO'jPU' where 
;=1 j=1 j=li=1 

Pii = 1, i = 1, 2, ... , n. 

*4.10 The Multivariate NOl1llal Distribution 

We have studied in some detail normal distributions of one 
random variable. In this section we investigate a joint distribution 
of n random variables that will' be called a multivariate normal 
distribution. This investigation assumes that the student is familiar 
with elementary matrix algebra, with real symmetric quadratic forms, 
and with orthogonal transformations. Henceforth, the expression 
quadratic form means a quadratic form in a prescribed number of 
variables whose matrix is real and symmetric. All symbols that 
represent matrices will be set in boldface type. 

Let A denote an n x n real symmetric matrix which is positive 
definite. Let p denote the n x I matrix such that p', the transpose of 
p, is p' = Uti, 1l2, ... , Iln], where each Ili is a real constant. Finally, let 
x denote the n x 1 matrix such that x' = [XI' X2, ••• ,xnl. We shall .' 
show that if C is an appropriately chosen positive constant, the 
nonnegative function 

,[ (x - p)'A(x - P)] 
f(x" X2, ••• , xn) = C exp 2 ' 

- 00 < Xi < 00, i = I, 2, ... , n, 

is a joint p.d.f. of n random variables XI, X2, ••• , Xn that are of the 
continuous type. Thus we need to show that 

f'" ... f'" j{x" x" ... , x.) dx, dx, ... dx. = I. (I) 
-00 -00 
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Let t denote the n x 1 matrix such that t' = [II" 12 .. ••• ,In], where 
II, 12, ••• , In are arbitrary real numbets. We shall evaluate the integral 

C [ ... [ exp [t'x - (x - p)'~(X - P)}Ix' ... dx., (2) 
-00 -00 

and then we shall subsequently set 'I = 12 = ... = In = 0, and thus 
establish Equation (I). First, we change the variables of integration in 
integral (2) from XI, X2, ... , Xn to y., Y2, ... ,Yn by writing x - p = y, 
where y' = [YI, Y2, ... ,Yn]' The Jacobian of the transformation is one 
and the n-dimensional x-space is mapped onto an n-dimensional 
y-space, so that integral (2) may be written as 

C exp (t'p) fro '" r exp (t'Y - Y'~Y) dy, ... dy.. (3) 
-00 -00 

Because the real symmetric matrix A is positive definite, the n 
characteristic numbers (proper values, latent roots, or eigenvalues) 
Oh a2, ... ,an of.A are positive. There exists an appropriately chosen 
n x n real orthogonal matrix L (L' = L -1, where L -I is the inverse 
of L) such that 

a. 0 0 
o 

L'AL= 

o 0 an 

for a suitable ordering of ai, a2, ... ,an' We shall sometimes write 
L' AL = diag [a., a2, .•. ,an], In integral (3), we shall change the 
variables of integration from Y., Y2, ... ,Yn to Z., Z2, ••• , Zn by writing 
y = Lz, where z' = [ZI, Z2, ••• , zn]. The Jacobian of the transformation 
is the determinant of the orthogonal matrix L. Since L'L = In, where 
In is the unit matrix of order n, we have the determinant \L'LI = 1 and 
ILI2 = 1. Thus the absolute value of the Jacobian is one. Moreover, the 
n-dimensional y-space is mapped onto an n-dimensional z-space. The 
integral (3) becomes 

foo [ [ Z'(L/AL)Z] C exp (t'p) . . . exp t'Lz - 2 dZ I ••• dZn. (4) 
-00 -00 

I t is computationally convenient to write, momentarily, t'L = w', 
where w' = [wJ, W2, ..... wnJ. Then 

exp [t'Lz) = exp [w'z) = exp ( ~ WiZ} 
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Moreover, 

L 2 a·z· 
z'(L' AL)z I I I 

[ 

n ] 

exp [ 2 J = exp - 2 . 

Then integral (4) may be written as the product of n integrals in the 
. following manner: 

C exp (w'L'JI) ,V, [[ exp ( w,z, - a~}Iz,J 

[ 
( a.z7)] 

ft, 
exp WiZ; - 2 t 

= C exp (w'L'p) Ii 2n [ ~ dz;. (5) 
i = I al 21t/a. 

-00 I 

The integral that involves Zi can be treated as the m.g.f., with the more 
familiar symbol t replaced by Wi) of a distribution which is N(O, l/a;). 
Thus the right-hand member of Equation (5) is equal to 

C exp (w'L/p) .Ii [ ~ exp (~.)J 
,.1 "a; at 

= C exp (w'L'JI) a,d:~~~ a, exp (* ;:;,). (6) 

Now, because L -I = L', we have 

(L'AL)-I = L'A -IL = diag [1.,1., ... ,1..J. 
al a2 an 

Thus 

Moreover, the determinant lA-II of A -I is 

lA-II = IL'A-ILI = I . 
0,a2' •• all 

Accordingly, the right-hand member of Equation (6), which is equal 
to j·ntegral (2), may be written as 

(
fA -It) Ce"" J (21t riA -'I exp 2 . (7) 
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If, in this function, we set tl = t2 = ... = tn = 0, we have the value of 
the left-hand member of Equation (I). Thus we have 

CJ(21ttIA -11= 1. 

Accordingly, the function 

- 00 < Xi < 00, i = 1,2, ... , n, is a joint p.d.f. of n random variables 
XI, X2 , ••• , Xn that are of the continuous type. Such a p.d.f. is called 
a nonsingular multivariate normal p.d.f. 

We have now proved that f(x" X2, ••• ,xn ) is a p.d.f. However, 
we have proved more than that. Because f(x l , X2, ••• , xn) is a p.d.f., 
integral (2) is the m.g.f. M(t., 12, ••• , tn ) of this joint distribution of 
probability. Since integral (2) is equal to function (7), the m.g.f. of the 
multivariate normal distribution is given by 

Let the elements of the real, symmetric, and positive definite matrix 
A -I be denoted by (Jij' i,j = 1,2, ... ,n. Then 

(J··t· 
( 2) M(O, ... , 0, ti , 0, ... , 0) = exp liJl; + 2 I 

is the m.g.f. of Xi' i = 1,2, ... , n. Thus Xi is N(Jli. (Jii), i = I, 2, ... , n. 
Moreover, with i #= j, we see that M(O, ... , 0, t i , 0, ...• t), 0, ... , 0), 
the m.g.f. of Xi and ~, is equa1 to 

( 
(Jiit~ + 2(J;it;t) + (Jill) 

exp till; + tiJl) +. 2 ., 

which is the m.g.f. of a bivariate normal distribution. In Exercise 4.131 
the reader is asked to show that (Ji) is the e-ovariance of the random 
variables Xi and Xj. Thus the matrix JI, where 11' = [Il., Jl2, ••• , Jln], 
is the matrix of the means of the random variables X""" Xn • 

Moreover, the elements ,on the principal diagonal of A -I are, 
respectively, the variances (iii = (J7, ; = 1,2, ... ,n. and the elements 
not on the principal diagonal of A -I are, respectively, the covariances 
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(Ii} = PJj(litlj, i ::/;: j, of the random variables XI, X 2, ••• , X". We call the 
matrix A -I, which is given by 

(Ill tlI2 (II" 

(112 tl22 (l2n 

the covariance matrix of the multivariate normal distribution and 
henceforth we shall denote this matrix by the symbol V. In terms 
of the positive definite covariance matrix V, the multivariate normal 
p.d.f. is written 

I . [ (x - JI),V-I(x - JI)] 
IiUi exp 2 ' 

(27t)nI2 V IVI 
-00 < Xi < 00, 

i = I, 2, ... , n, ~nd the m.g.f. of this distribution is given by 

( t'Vt) exp t'JI +2 

for all real values of t. 
Note that this m.g.f. equals the product of n functions, where 

the first is a function of t I alone, the second is a function of t2 alone, 
and so on, if and only if V is a diagonal matrix. This condition, 
(Ii) = Pij(li(lj = 0, means Pij = 0, i ::/;: j. That is, the multivariate normal 
random variables are independent if and only if Pij = 0 for all i ::/;: j. 

EXlUllple 1. Let XI, X2, ••• , X" have a multivariate normal distribution 
with matrix p of means and positive definite covariance matrix V. If we let 
X' = [Xit X2, .,' • ,X,,], then the m.g.f. M(t" t2, ... ,t,,) of this joint distri­
bution of probability is 

( t'Vt) E(e'-'X) = exp t'p + T . (8) 

Consider a linear function Y of Xh X2, ••• ,X" which is defined by Y = 
" " 

c'X = L CiXi , where c' = [CI' e2' ... , elf) and the several el are real and not 
I 

all zero. We wish to find the p.d.f. of Y. The m.g.f. met) of the distribution 
of Y is' given by 

m(t) = E(e't) = E(ec'X). 
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Now the expectation (8) exists for all real values of t. Thus we can replace l' 
in expectation (8) by te' and obtain 

( 
e/Vet2) m(t) = exp te'p + 2 . 

Thus the random variable Y is N(e'p, e'Ve). 

EXERCISES 

4.129. Let XI, X2, ••• ,XII have a multivariate normal distribution with 
• positive definite covariance matrix V. Prove that these random variables are 

mutually independent if and only if V is a diagonal matrix. 

4.130. Let n = 2 and take 

Determine lVI, V-I, and (x - p)'V-I(x - p). Compare the bivariate normal 
p.d.f. of Section 3.5 with this multivariate normal p.d.f. when n = 2. 

4.131. Let m(tj , ti ) represent the m.g.f. of Xi and ~ as given in the text. 
Show that 

&m(O, 0) ~ [om(o, o)][om(o, 0)] = O'ij; 

otjotj , otj otj 

that is, prove that the covariance of Xi and ~ is O'ij' which appears in 
that formula for m(t;, tj ). 

4.132. Let XI' X2, ••• , XII have a multivariate normal distribution, where p 
is the matrix of the means and V is the positive definite covariance matrix. 
Let Y = e'X and Z = d'X, where X' = [XI' ... , X~], e' = [CI' ..• , clll, and 
d' = [dl , ••• , dill are real matrices. 
(a) Find m(t .. t2) = E(eIY+12Z) to see that Yand Zhave a bivariate normal 

distribution. 
(b) Prove that Yand Z are independent if and only if e'Vd = O. 
(c) If XI' X2, ••• ,XII are independent random variables which have the 

same variance 0'2, show that the necessary and sufficient condition of 
part (b) becomes e'd = O. 

4.133. Let X' = [XI> X2, ••• , X,,] have the multivariate normal distribution of 
Exercise 4.132. Consider the p linear functions of XI, ... , XII defined by 
W = BX, where W' = [WI, ... , Wp], p < n, and B is a p x n real matrix of 
rank p. Find m(v., ... , vp) = E(e''W), where v' is a real matrix [v" ... , vp], 

to see that WI, ... , Wp have a p-variate normal distribution which has Up 
for the matrix of the means and BVB' for the covariance matrix. 
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4.134. Let X' = [XI' X2 , ••• ,XII] have the n-variate normal distribution 
of Exercise 4.132. Show that XI, X2, ••• ,Xp , P < n, have a p-variate 
normal distribution. What submatrix of V is the covariance matrix of 
X" X2, •••• Xp? 

Hint: In the m.g.f. M(t" t2 • ••• , til) of X" X 2, ••• , XII. let tp+ I = ... = 
til = O. 

ADDITIONAL EXERCISES 

4.135. If X has the p.d.f.j{x) =!, -1 < x < 2, zero elsewhere, find the p.d.f. 
of Y= X'. 

4.136. The continuous random variable X has a p.d.f. given by f(x) = I, 
o < x < I, zero elsewhere. The random variable Y is such that 
Y = - 2 In X. What is the distribution of Y? What are the mean and the 
variance of Y? 

4.137. Let X" X2 be a random sample of size n = 2 from a Poisson distri­
bution with mean Il. If Pr (XI + X2 = 3) = e3

2)e-\ compute Pr (XI = 2, 
X2 = 4). 

4.J38. Let XI, X2 , ••• ,X2S be a random sample of size n = 25 from a 
distribution with p.d.f.j{x) = 3/x\ I < x < 00, zero elsewhere. Let Yequal 
the number of these X values less than or equal to 2. What is the distribution 
of Y? 

4.139. Find the probability that 'the range of a random sample of size 3 from 
the uniform distribution over the interval ( - 5, 5) is less than 7. 

4.140. Let YI < Y2 < Y3 be the order statistics of a sample of size 3 from a 
distribution having p.d.f.f(x) = t, -I < x < 2, zero elsewhere. Determine 
Pr [-~ < Y2 < ~]. 

4.141. Let X and Y be random variables so that Z = X - 2Y has variance 
equal to 28. If ~ = 4 and PXY =!, find the variance O'~ of Y. 

4.142. Let YI < Y2 < Y3 < Y4 be the order statistics of a random sample 
of size n = 4 from a distribution with p.d.f. j{x) = 2(1 - x), 0 < x < I, 
zero elsewhere. Compute Pr (YI < 0.1). 

4.143. A certain job is completed in three steps in series. The means and 
standard deviations for the steps are (in hours): 

Step 

1 
2 
3 

Mean 

3 
1 
4 

Standard Deviation 

0.2 
0.1 
0.2 
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Assuming normal distributions and independent steps, compute the prob­
ability that the job will take less than 7.6 hours to complete. 

4.144. Let XI, x2, ••• , xn be a random sample of size n from a distribution 
having mean p and variance 25. Use Chebyshev's inequality to determine 
the smallest value of n so that 0.75 is a lower bound for Pr [IX - III s: 11· 

4.145. Let XI and X2 be independent random variables with joint p.d.f. 

x.(4 - X2) 
j(Xl, X2) = 36 ' XI = 1,2,3, X2 = 1,2, 3, 

and zero elsewhere. Find the p.d.f. of Y = XI - X2• 

4.146. An unbiased die is cast eight independent times. Let Y be the smallest 
of the eight numbers obtained. Find the p.d.f. of Y. 

4.147. Let X" X2, X3 be i.i.d. N(p, u2) and define 

YI = XI + <5X3 

and 

Y2 = X2 + <5X3• 

(a) Find the means and variances of YI and Y2 and their correlation 
coefficient. 

(b) Find the joint m.g.f. of YI and Y2 • 

4.148. The following were obtained from two sets of data: 

x = 25, 

Y = 20, 

s; = 5, 

S;= 4. 

Find the mean and variance of the combined sample. 

4.149. Let Y1 < Y2 < ... < Ys be the order statistics of a random sample 
of size 5 from a distribution that has the p.d.f. j(x) = I, 0 < X < 1, zero 
elsewhere. Compute Pr (Y. < ~, Ys > ~). 

4.150. Let M(t) = (l - 1)-3, 1 < 1, be the m.g.f. of X. Find the m.g.f. of 
X-IO 

Y= 25 

4.151. Let X be the mean of. a random sample of size n from a normal 
distribution with mean p and variance q2 = 64. Find n so that 

Pr(p- 6 < X < p + 6) = 0.9973. 

4.152. Find the probability of obtaining a total of 14 in one toss of four dice. 
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4.153. Two independent random samples, each of size 6, are taken from two 
normal distributions having common variance fil. If WI and W2 are the 
variances of these respective samples, find the constant k such that 

Pr [ nnn(:;. ~:) < k] = 0.10. 

4.154. The mean and variance of 9 observations are 411nd 14, respectively. 
We find that a tenth observation equals 6. Find the mean and the variance 
. of the 10 observations. 

4.155. Draw 15 cards at random and without replacement from a pack of 25 
cards numbered 1,2,3, ... ,25. Find the probability that 10 is the median 
of the cards selected. 

4.156. Let Y I < Y2 < Y) < Y. be the order statistics of a random sample of 
size n = 4 from a uniform distribution over the interval (0, 1). 
(a) Find the joint p.d.f. of Y. and Y •. 
(b) Determine the conditional p.d.f. of Y2 and Y). given Y. = y, and 

Y4 = Y4' 

(c) Find the joint p.d.f. of z. = Y'/Y4 and Z2 = Y4 • 

4.157. Let XI, X2 • ••• ,Xn be a random sample from a distribution with 
mean Jl and variance (12. Consider the second differences 

j = 1,2, ... , n - 2. 
n-2 

Compute the variance of the average, L Z;/(n - 2). of the second 
. j-I 

differences. 

4.158. Let X and Y have a bivariate normal distribution. Show that X + Y 
and X - Yare independent if and only if 07 = (Ii. 

4.159. Let X be a Poisson random variable with mean p.. If the conditional 
distribution of Y, given X = x. is b(x, pl. Show that Y has a Poisson 
distribution and is independent of X - Y. 

4.160. Let XI' X2, ••• , Xn be a random sample from N(p.. fill. Show that the 
sample mean i and each Xi - X, i = I, 2, ... , n, are independent. Actually 
i and the vector (XI - i, X 2 - X, . .. ,Xn - i) are independent and this 

_ n _ 

implies that X and L (Xi - X)2 are independent. Thus we could find the 
i~ • 

joint distribution of X and n$l /(12 using this result. 

4.161. Let XI' X2 , ••• ,Xn be a random sample from a distribution with 
p.d.f. f{x) = ~, x = 1,2, .. -. ,6. zero elsewhere. Let Y = min (Xi) and 
Z = max (Xi)' Say that the joint distribution function of Y and Z is 
G(y, z) = Pr (Y ~ y, Z < z), where y and z are nonnegative integers such 
that 1 <y < z < 6. 
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(a) Show that 

G(y, z) = F"(z) - [F(z) - F(y)]", 

where F(x) is the distribution func~ion associated with f(x). 
Hint: Note that the event (Z :s; z) = (Y < y, Z S; z) U (y < Y, Z < z) 

(b) Find the joint p.d.f. of Yand Z by evaluating 

g(y, z) = G(y, z) - G(y - 1, z) - G(y, z - I) + G(y - I, z - I), 

4.162. Let X = (XI, X2, X3)' have a multivariate normal distribution with 
mean vector II = (6, -2, 1)' and covariance matrix 

V= [ ~ 
-1 ' 

o -1] 2 I. 
1 3 

Find the joint p.d.f. of 

Y1 = 3X, + X2 - 2X3 and 

4.163. If 

[

1 P P] V = pIp 
p p I 

is a covariance matrix, what can be said about the value of p? 
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CHAPTER 5 

Limiting 
Distributions 

S.1 ConvergeDCe in Distribution 

In some of the preceding chapters it has been demonstrated by 
example that the distribution of a random variable (perhaps a statistic) 
often depends upon a positive integer n. For example, if the random 
variable X is b(n, p), the distribution of X depends upon n. If X is the 
mean of a random sample of size n from a distribution that is N(p" u2), 
then X is itself N(p., (12 In) and the distribution of X depends upon n. If 
$1. is the variance of this random sample from the normal distribution 
to which we have just referred, the random variable nS''ju2 is x2(n - 1), 
and so the distribution of this random variable depends upon n. 

We know from experience that the determination ofthtr probability 
. density function of a random variable can, upon occasion, Eresent 

rather formidable computational difficulties. For example, if X is the 
mean of a random sample Xl, X2, ••• , X" from a distribution that has 
the following p.d.f. 
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