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Modulo arithmetic

 Exponentiation in multiplicative group Zp
*:

– Choose a large prime number p (e.g. 2048 bits long) 

– Zp
* is the group of integers {1,…,p-1}; 

group operation is multiplication modulo p

– Exponentiation xk means multiplying x with itself k times modulo p

– g is a generator if gk for k=0,1,2,3,… produces all the values 1,…,p-1

 For Diffie-Hellman, choose parameters p and g
– Many critical details not covered here; see crypto literature!

 Exponentiation is commutative: (gx)y = (gy)x

i.e. (gx mod p)y mod p = (gy mod p)x mod p
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Elliptic curve (EC) 

 Points on an elliptic curve form an additive group 

– Commonly used curves: Curve25519, Curve448 

– See cryptography literature for details

 Point multiplication n · P means adding P to itself n times

– n is an integer; P is a point on the elliptic curve

 Point G is a generator point if k · G for k=0,1,2,3,… produces all 
the values of the group or a large subgroup

 Point multiplication is commutative:  n · m · G  =  m · n · G
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Discrete logarithm problem

 Discrete logarithm problem in Zp*: given gk mod p, solve k

– Believed to be a hard problem for large primes p and random k

– Typical p 1024..8096 bits; k 256 bits

 Discrete logarithm problem in EC:  given n · P , solve n

– Believed to be a hard problem 

– Typical point lengths are 160..571 bits, depending on the curve; 
multiplier n 256 bits

– Why EC? Shorter key lengths and lower computation 
cost for the same level of security
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Unauthenticated Diffie-Hellman in Zp
*

 A and B have previously agreed on g and p
 All operations are in Zp

* i.e. modulo p

A chooses a random x and computes key share gx

B chooses a random y and computes key share gy

1.  A → B:  A, gx

2.  B → A:  B, gy

A calculates shared secret  K = (gy)x

B calculates shared secret  K = (gx)y

 It works because exponentiation is commutative
 Sniffer learns gx and gy ; cannot compute x, y, or gxy
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Elliptic Curve Diffie-Hellman (ECDH)

 A and B have previously agreed on a curve and G

A chooses a random dA and computes key share QA =  dA · G
B chooses a random dB and computes key share QB =  dB · G
1.  A → B:  A, QA

2.  B → A:  B, QB

A computes the shared secret  SK = dA · QB =  dA · dB · G
B computes the shared secret  SK = dB · QA =  dB · dA · G

 It works because point multiplication is commutative
 Sniffer learns QA and QB ; cannot compute dA, dB, or SK
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For protocol 

designers, DH 

and ECDH are 

interchangeable 

algorithms
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Diffie-Hellman assumption

 Diffie-Hellman assumption in Zp*: 

given gx and gy, hard to solve K = gxy

 Diffie-Hellman assumption in EC:  

given dA · G and dB · G, hard to solve K = dA · dB · G

 Believed to be as hard as the discrete logarithm problem

– Ability to compute discrete logarithms also breaks the 
DH assumption

– Quantum computers could compute discrete logarithms

8
The slides from CS-E4300 - Network Security at Aalto 

University 
Uploaded By: anonymousSTUDENTS-HUB.com



9

Domain parameters
 Domain parameters in Diffie-Hellman:

– In Zp*, A and B must agree on the prime p and generator g
– In ECDH, A and B must agree the curve and generator point G

 How to agree on the domain parameters?
– Method 1: standardized parameters for each protocol or application
– Method 2: one party chooses and signs the parameters
– Method 3: negotiation where one party offers parameters, and the other 

party chooses from them

 Protocol standards usually allow many key lengths or 
ECDH curves, and the key-exchange starts with 
parameter negotiation
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Sniffing

 Unauthenticated Diffie-Hellman is secure against passive
attackers
– Not possible to discover the shared secret KAB by sniffing 

the key shares

A, gx

A B

B, gy

KAB= (gy)x = gxy KAB= (gx)y = gxy

y := randx := rand
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Impersonation attack

 Unauthenticated Diffie-Hellman is vulnerable to an active
attacks such as impersonation:

– Shared secret key was created, but with whom?

A, gx

A E

B, gz

KAB= (gz)x = gzx KAB= (gx)z = gxz

z := randx := rand
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A, gx

A B

B, gz

KAB= gzy K’AB= gxu

y := randx := rand A, gu

B, gy

E

u,z := 
rand

Man in the Middle (MitM)

 Attacker impersonates A to B, and B to A

 Attacker creates shared session keys with both A and B

 Later, attacker can forward data between the two “secure” sessions

KAB, 
K’AB
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Authenticated DH
1. A → B:  A, gx, SA(gx), CertA

2. B → A:  B, gy, SB(gy), CertB

SK = h(gxy)

 SA(gx) = A’s signature
 CertA = standard (X.509) public-key certificate or certificate chain

– Subject name in the certificate must be A
– B verifies the signature with A’s public key from the certificate

 h(gxy) = key material for deriving all necessary session keys

 Authentication prevents impersonation and MitM attacks
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Note: This is still 

an impractical toy 

protocol. Please 

read  further
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Authenticated DH with key confirmation
 Three messages needed for authentication and key confirmation

1. A → B:  A, B, NA, gx

2. B → A:  A, B, NB, gy,  SB(“Msg2”, NA, NB, gx , gy), CertB, 
3. A → B:  A, B,  SA(“Msg3”, NA, NB, gx , gy), CertA

SK = h(NA, NB, gxy)

 Signatures on fresh data authenticate the endpoints
 Key confirmation: signatures prove that each endpoint knows all 

the parameters needed to compute the session key 
– Endpoints must trust each other about knowing the exponent
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Still not a good 

protocol! Please 

read  further
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 Misbinding of the initiator: B thinks it is connected to E. In fact, A 
and B are connected

 E is a dishonest insider (E can legitimately connect to B)
 Misbinding of the responder is similarly possible

A, gx

A E B
E, gx

B, gy, S
B
(gx,gy)B, gy, S

B
(gx,gy)

S
E
(gx,gy)S

A
(gx,gy)

Misbinding attack
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A, gx

A B

B, gy, S
B
(gx, gy, A)

S
A
(gx, gy, B)

Solutions to misbinding: 
check peer identifier

gx

A B

B, gy, S
B
(gx, gy), MACK(B)

A, S
A
(gx, gy), MACK(A)

ISO 9798-3

SIGMA

(easier security proofs, and 

slightly better protection in 

case of an incompetent CA)
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Detecting 

misbinding of 

initiator in

ISO 9798-3

A, gx

A E B
E, gx

B, gy, S
B
(gx,gy,E)B, gy, S

B
(gx,gy,E)

Sig
E
(gx,gy, B)Sig

A
(gx,gy, B)

E≠A

Detecting 

misbinding of 

initiator in

SIGMA

gx

A E B
gx

B, gy, S
B
(gx,gy), MACK(B)B,gy, S

B
(gx,gy), MACK(B)

E, S
E
(gx,gy), MACK(A)A, S

A
(gx,gy), MACK(A)

MACK(A) 

≠

MACK(E)
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A MORE REALISTIC AUTHENTICATED DIFFIE-
HELLMAN PROTOCOL
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Authenticated DH

 Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

 Prevents impersonation, MitM and misbinding attacks

 Why so complicated?
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Authenticated DH

 Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

 Signatures and certificates for authentication, nonces for 
freshness, MAC for key confirmation
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Authenticated DH

 Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B, NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

 Signatures and certificates for authentication, nonces for 
freshness, MAC for key confirmation
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Authenticated DH

 Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B, NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

 Signatures and certificates for authentication, nonces for 
freshness, MAC for key confirmation
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Authenticated DH

 Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

 Signatures and certificates for authentication, nonces for 
freshness, MAC for key confirmation
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Authenticated DH

 Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

 Signatures and certificates for authentication, nonces for 
freshness, MAC for key confirmation
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Ephemeral Diffie-Hellman (DHE)

 Perfect forward secrecy (PFS): session keys and data from past 
sessions are safe even if the long-term secrets, such as private 
keys, are later compromised
– Even participants themselves cannot recover old session keys

 Ephemeral DH (DHE): new random DH exponents for every key 
exchange, forget the exponent values afterwards  PFS
– Similarly, ephemeral ECDH (ECDHE)

– Cost-security trade-off: replace DH exponents periodically, 
e.g. once in a day or an hour, and use nonces for 
freshness: SK = h(NA, NB, gxy)
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Diffie-Hellman and nonces
 Are the nonces needed in Diffie-Hellman?

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,
MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)

 Old DH implementations reuse exponents 
 Saving on computation. Lack of PFS. Nonces needed for freshness

 After Snowden, PFS has become mandatory  Ephemeral DH. Nonces optional
 Prudent protocol design still separates the two concerns: nonces for freshness of 

authentication and session key, DH for secrecy and new exponents for PSF
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Network Security: 
Goals of authenticated key exchange
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Purpose of key exchange

 With public keys:
– A and B each have public-private key pairs and certificates

– Goal: generate a symmetric shared secret session key

– Public keys are used for the key exchange. Session keys are used for 
efficient protection session data (symmetric encryption and MAC or AE)

 With a shared master secret:
– A and B share a secret master key, e.g., 128-bit random number

– Goal: generate a shared session key for short-term use

– Motivation: compromise of a session key is quite likely; the seldom-used 
master key can be better protected, e.g., SIM

 The master key and certificates (or the CA) are called roots of trust
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Basic security goals

 Create a good session key: 

– Secret i.e. known only to the intended participants

– Fresh i.e. never seen or used before

– Separation short-term secrets and long-term security: compromise of 
session keys does not endanger future authentication or secrecy

 Authentication: 

– Mutual = two-directional authentication: each party knows who it 
shares the session key with

– Sometimes only one-way = unidirectional authentication
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Other common security properties

 Perfect forward secrecy (PFS)

– Compromise of long-term secrets today should not compromise old 
session data

– Typically achieved with empheral Diffie-Helmann

– Can also be implemented with public-key encryption by creating a 
fresh key pair and then throwing it away
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Other common security properties

 Entity authentication: each (or one) participant knows that the 
other is online and participated in the protocol

 Key confirmation: each (or one) participant knows that the other 
knows the session key (implies entity authentication)
– Receives proof vs. trusts the other participant

A knows SK. 

B knows SK. B knows that A knows SK.

A knows that B knows SK. A knows that B knows that A knows SK.

…

But common knowledge is not possible in a distributed system.
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Correspondence properties

 Correspondence properties (or consistency): agreement 
between the states and beliefs of the two endpoints, or 
between the endpoints’ initial intentions and final states

– More precise definition of authentication and key confirmation

– Example: 
If responder B accepts the session key K for communication with 
initiator A, then A has previously created the key K for 
communication with B

32
The slides from CS-E4300 - Network Security at Aalto 

University 
Uploaded By: anonymousSTUDENTS-HUB.com



Other common security properties

 Contributory key exchange: both endpoints contribute 
randomness to the session key; neither can decide the key alone 

– Key distribution where one party decides the key; common in 
broadcast and sometimes in asynchronous communication

 Algorithm agility: support for negotiating, upgrading and 
deprecating algorithms

– Downgrading protection: Endpoints negotiate the best algorithms and 
latest protocol version supported by both, and the attacker cannot 
manipulate the process (never absolute protection)
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Privacy and identity issues

 Identity protection

– Unauthenticated Diffie-Hellman first; then encrypt the identities and 
certificates 

– Passive sniffer cannot learn the identities of the protocol participants

– Usually only one side can have identity protection against active 
attacks: one side must reveal its identity first, making its identity 
vulnerable to active attacks

Would you give stronger identity 

protection to the initiator or responder? 
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Privacy and identity issues

 Non-repudiation

– Evidence preserved, so that a participant cannot later deny taking 
part in the protocol (usually not an explicit goal)

 Plausible deniability

– No evidence left of taking part (usually not an explicit goal either)
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DoS resistance

 Various denial-of-service resistance requirements:

– The protocol cannot be used to exhaust memory or CPU of the 
participants

– Not easy to spoof packets that prevent others from completing a key 
exchange (especially off-route attackers)

– When an on-route MitM attacker stops dropping and breaking 
messages, the protocol recovers

– The protocol cannot be used to flood third parties with data or to 
amplify DDoS attacks

 DoS protection is never absolute
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Authenticated DH properties

 Signed Diffie-Hellman with nonces and key confirmation:

1. A → B:  A, B,  NA, g, p, gx,  SA(“Msg1”, A, B, NA, g, p, gx),  CertA

2. B → A:  A, B,  NB, gy,  SB(“Msg2”, A, B, NB, gy),  CertB,

MACSK(A, B, “Responder done.”)

3. A → B:  A, B,  MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, gxy)
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Which security properties?

• Secret, fresh session key

• Mutual or one-way authentication

• Entity authentication, key confirmation

• Perfect forward secrecy (PFS)

• Contributory key exchange

• Downgrading protection

• Identity protection

• Non-repudiation

• Plausible deniability

• DoS resistance
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What is a protocol flaw?

 Poorly understood security requirements

 Limitations on the applicability of the protocol:
– Is the protocol used for a new purpose or in a new environment? 

– Historical examples: insider attacks, multiple parallel executions 

– Timely example: distributed cloud implementation

 Unwritten expectations for implementations
– Encryption in old specs is assumed to protect integrity

– Authenticated messages should include type tags

 New attacks and security requirements arise over time:
– DoS amplification, PFS, identity protection 
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Notes on protocol engineering
 Security is just one requirement for network protocols

– Cost, implementation complexity, performance, deployability, code reuse, time 
to market etc. may override some security properties

 Security protocol engineering requires experienced experts and peer 
scrutiny
– Reuse well-understood solutions like TLS; avoid designing your own 

– Only use strong security solutions (privacy and DoS protection are never strong, 
though)

 The most difficult part is understanding the problem
– Must understand both security and the application domain 

– When the security requirements are well understood, potential solutions often 
become obvious
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