
Lehninger

SIXTH EDITION

Principles of Biochemistry

David L. Nelson | Michael M. Cox

Catalysis

Think of sugar:

Our bodies use it to give energy within seconds (converting it to CO₂ + H₂O)

But a bag of sugar can be on the shelve for years even though the process is very thermodynamically favorable

The difference is catalysis

- Biological catalysts
- Highly specialized proteins or RNA
- Extraordinary catalytic power
- High degree of specificity
- Accelerate chemical reactions tremendously
- Function in aqueous solutions under very mild conditions of temperature and pH

Very few non-biological molecules have all these properties

- Enzymes are catalysts
 - Increase reaction rates without being used up
- Most enzymes are globular proteins
 - However, <u>some RNA</u> (ribozymes and ribosomal RNA) also catalyze reactions
- Study of enzymatic processes is the oldest field of biochemistry, dating back to late 1700s
- Study of enzymes has dominated biochemistry in the past and continues to do so

- Some enzymes need other chemical groups
- <u>Cofactors</u> either one or more inorganic ions
- <u>Coenzymes</u> complex organic or metalloorganic molecules
- Some enzymes require both
- Prosthetic group a coenzyme or cofactor that is very tightly (or covalently) bound to an enzyme
- Holoenzyme a complete active enzyme with its bound cofactor or coenzyme
- Apoprotein the protein part of a holoenzyme

- Enzyme classification
- Common names (DNA polymerase, urease; pepsin; lysozyme, etc.)
- 6 classes each with subclasses

Group	Reaction catalyzed	Typical reaction	Enzyme example(s) with trivial name
EC 1 Oxidoreductases	To catalyze oxidation/reduction reactions; transfer of H and O atoms or electrons from one substance to another	$AH + B \rightarrow A + BH \text{ (reduced)}$ $A + O \rightarrow AO \text{ (oxidized)}$	Dehydrogenase, oxidase
EC 2 Transferases	Transfer of a functional group from one substance to another. The group may be methyl-, acyl-, amino- or phosphate group	$AB + C \rightarrow A + BC$	Transaminase, kinase
EC 3 Hydrolases	Formation of two products from a substrate by hydrolysis	$AB + H_2O \rightarrow AOH + BH$	Lipase, amylase, peptidase
EC 4 Lyases	Non-hydrolytic addition or removal of groups from substrates. C-C, C-N, C-O or C-S bonds may be cleaved	RCOCOOH \rightarrow RCOH + CO ₂ or [X-A-B-Y] \rightarrow [A=B + X-Y]	Decarboxylase
EC 5 Isomerases	Intramolecule rearrangement, i.e. isomerization changes within a single molecule	$AB \rightarrow BA$	Isomerase, mutase
EC 6 Ligases	Join together two molecules by synthesis of new C-O, C-S, C-N or C-C bonds with simultaneous breakdown of ATP	$X + Y + ATP \rightarrow XY + ADP + Pi$	Synthetase

Example:

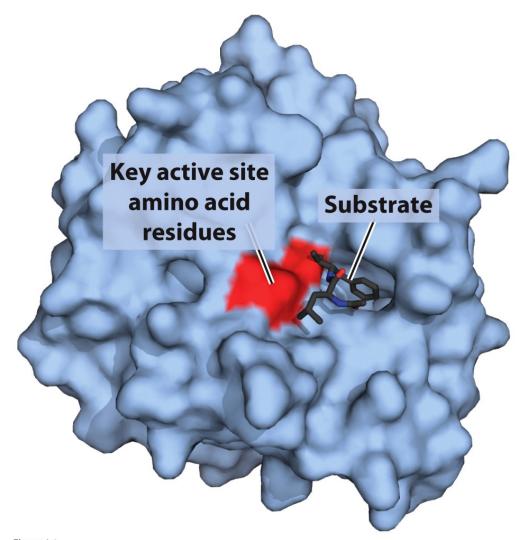
- ATP + _D-glucose → ADP + _D-glucose 6-phosphate
- Formal name: ATP:glucose phosphotransferase
- Common name: hexokinase
- E.C. number (enzyme commission): 2.7.1.1
- 2 -> class name (transferases)
- 7 → subclass (phosphotransferases)
- 1 → phosphotransferase with –OH as acceptor
- 1 → _D-glucose is the phosphoryl group acceptor

Why biocatalysis over inorganic catalysts?

- Greater reaction specificity: avoids side products
- Milder reaction conditions: conducive to conditions in cells
- Higher reaction rates: in a biologically useful timeframe
- Capacity for regulation: control of biological pathways

 Metabolites have many potential pathways of decomposition

desired one most favorable


Enzymatic Substrate Selectivity

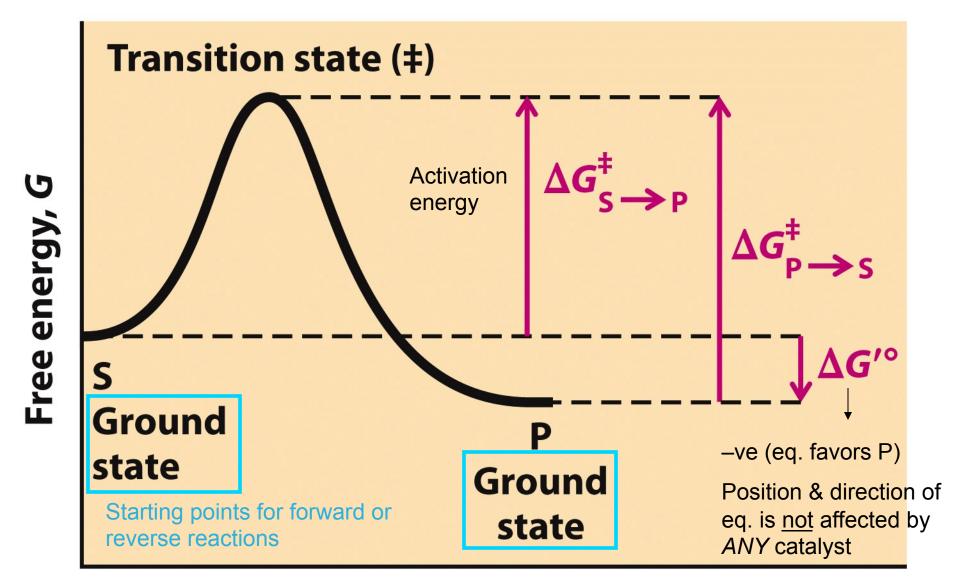
Example: Phenylalanine hydroxylase

6.2 How Enzymes Work

- Recall:
- Active site
- Substrate

Binding of a substrate to an enzyme at the active site (chemotrypsin)

Figure 6-1 *Lehninger Principles of Biochemistry*, Sixth Edition © 2013 W. H. Freeman and Company

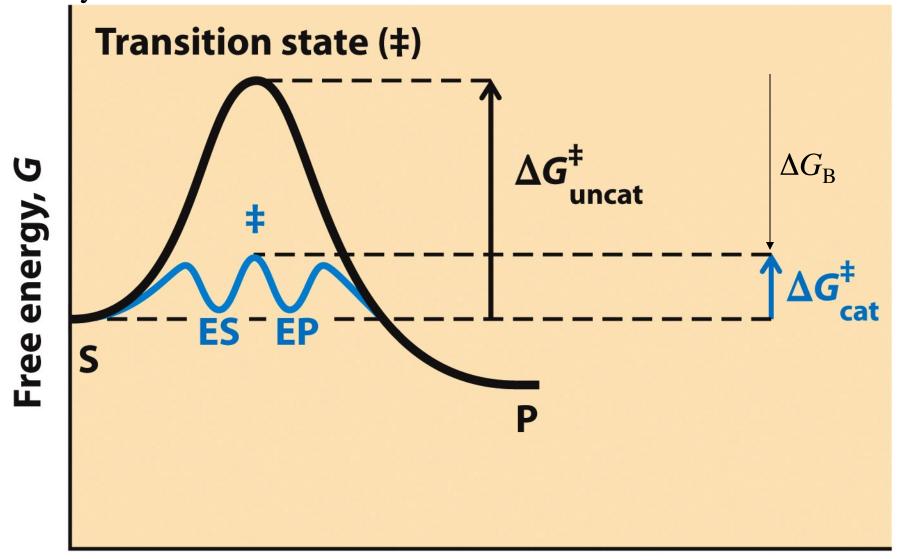

Enzymes affect reaction rates not equilibria

A simple enzyme reaction:

$$E + S \longleftrightarrow ES \longleftrightarrow EP \longleftrightarrow E + P$$

- The function of a catalyst is to increase the rate of the reaction.
- Catalysts do not affect the equilibrium
- Reaction coordinate diagram

Reaction coordinate diagram. The free energy of the system is plotted against the progress of the reaction $S \rightarrow P$.


Reaction coordinate

Enzymes affect reaction rates not equilibria

- A favorable equilibrium does not mean the S → P
 conversion would be detectable
- The rate of the reaction depends on the energy barrier (the activation energy):
 - a higher activation energy → slower reaction

- Rates of reactions can be increased with:
 - increasing temperature
 - increasing pressure
 - the addition of catalysts

Reaction coordinate diagram comparing enzyme-catalyzed and uncatalyzed reactions

Reaction coordinate

Reaction rates & equilibria have precise thermodynamic definitions

$$S \leftarrow \rightarrow P$$
 $K'_{eq} = [P] / [S]$ (equilibrium constant)
 $AG' \circ = -RT \ln K'_{eq}$

- A large –ve free-energy change → a favorable reaction equilibrium (but does not mean the reaction will proceed at a high rate!)
- The rate of any reaction depends on [reactant] and k (rate constant)
- V = k[S] (1st order reaction) units of k (s⁻¹)
- $V = k[S_1][S_2]$ (2nd order reaction) units of k (M⁻¹s⁻¹)

Transition State Theory

- Slow reactions face significant activation barriers that must be surmounted during the reaction
 - -transition state theory is applicable for catalysis
 - -rate constants and free energies can be related
 - –Enzymes increase reaction rates (k) by decreasing ΔG^{\ddagger}

$$k = \left(\frac{k_B T}{h}\right) \exp\left(\frac{-\Delta G^{\neq}}{RT}\right)$$
 k_B : Boltzmann const.
 h : Planck's const.

k is inversely proportional to ΔG^{\ddagger} and exponential

a lower activation energy means a faster rate

Uploaded By: Rawan Rous

How do enzymes lower ΔG^{\neq} ?

Enzymes organize reactive groups into close proximity and proper orientation

- Uncatalyzed bimolecular reactions two free reactants → single restricted transition state conversion is entropically unfavorable
- Uncatalyzed unimolecular reactions
 flexible reactant → rigid transition state conversion is
 entropically unfavorable for flexible reactants
- Catalyzed reactions

Enzyme uses the binding energy of substrates to organize the reactants to a fairly rigid ES complex

Entropy cost is paid during binding


Rigid reactant complex → transition state conversion is entropically OK

Weak interactions are optimized in the TS (active sites are

complementary to TS)

Support for the Proximity Model

The rate of anhydride formation from esters and carboxylates shows a strong dependence on proximity of two reactive groups (work by Thomas C. Bruice's group).

How to Lower ΔG^{\neq}

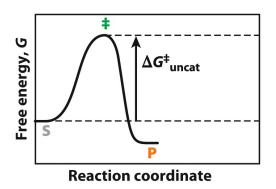
Enzymes bind transition states best

- The idea was proposed by Linus Pauling in 1946
 - Enzyme active sites are complimentary to the transition state of the reaction
 - Enzymes bind transition states better than substrates
 - Stronger/additional interactions with the transition state as compared to the ground state lower the activation barrier

Weak interactions are optimized in TS

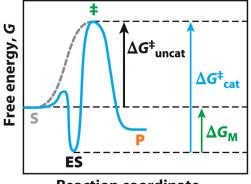
- "Lock and key" model substrate fits the enzyme like a key in a lock
- This hypothesis can be misleading in terms of enzymatic reactions
- An enzyme completely complementary to its substrate is a very poor enzyme!

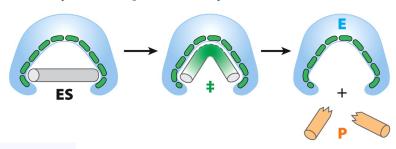
Illustration of TS Stabilization Idea

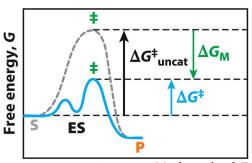

(a) No enzyme

Imaginary Stickase

Transition state Substrate (metal stick) (bent stick)


Products (broken stick)


(b) Enzyme complementary to substrate



Reaction coordinate

(c) Enzyme complementary to transition state

Reaction coordinate ded By: Rawan Rous

Rate Enhancement by Enzymes

TABLE 6-5

Some Rate Enhancements Produced by Enzymes

Cyclophilin	10 ⁵
Carbonic anhydrase	10 ⁷
Triose phosphate isomerase	10°
Carboxypeptidase A	10 ¹¹
Phosphoglucomutase	10 ¹²
Succinyl-CoA transferase	10 ¹³
Urease	10 ¹⁴
Orotidine monophosphate decarboxylase	10 ¹⁷

Table 6-5

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Specific catalytic groups contribute to catalysis

 When a substrate binds to an enzyme, catalytic functional groups which are place in proper positions help in the breaking and making bonds by many mechanisms:

Catalytic Mechanisms

- acid-base catalysis: give and take protons
- covalent catalysis: change reaction paths
- metal ion catalysis: use redox cofactors, pK_a shifters
- electrostatic catalysis: preferential interactions with TS

Acid-base Catalysis: Chemical Example

Consider ester hydrolysis:

$$R \xrightarrow{O} + H \xrightarrow{O} + H \xrightarrow{O} + CH_3OH$$

$$CH_3$$

Water is a poor nucleophile, and methanol is a poor leaving group

Aqueous hydrolysis can be catalyzed either by acids or by bases

Enzymes can do acid and base catalysis simultaneously

How a catalyst stabilizes unfavorable charge development during amide hydrolysis

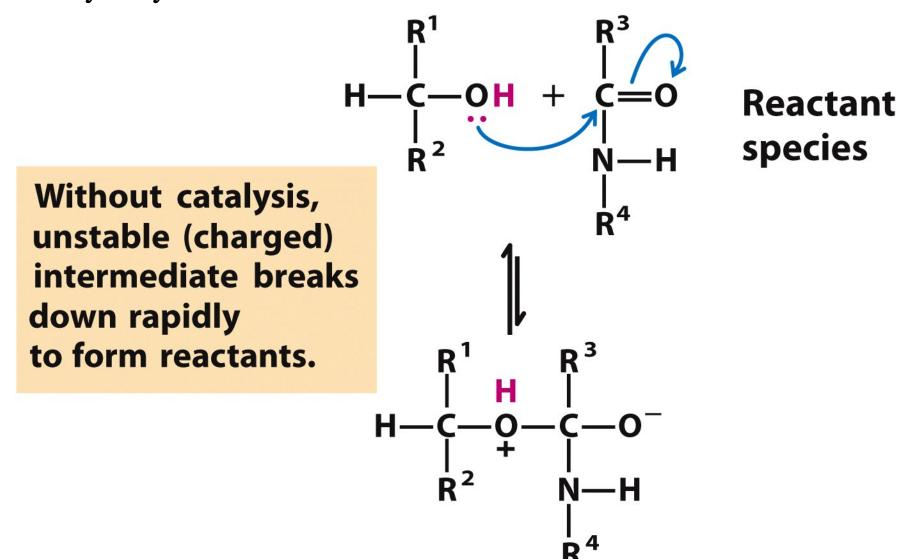


Figure 6-8 part 1

Lehninger Principles of Biochemistry, Fifth Edition

LOGAN Feet Bocomony

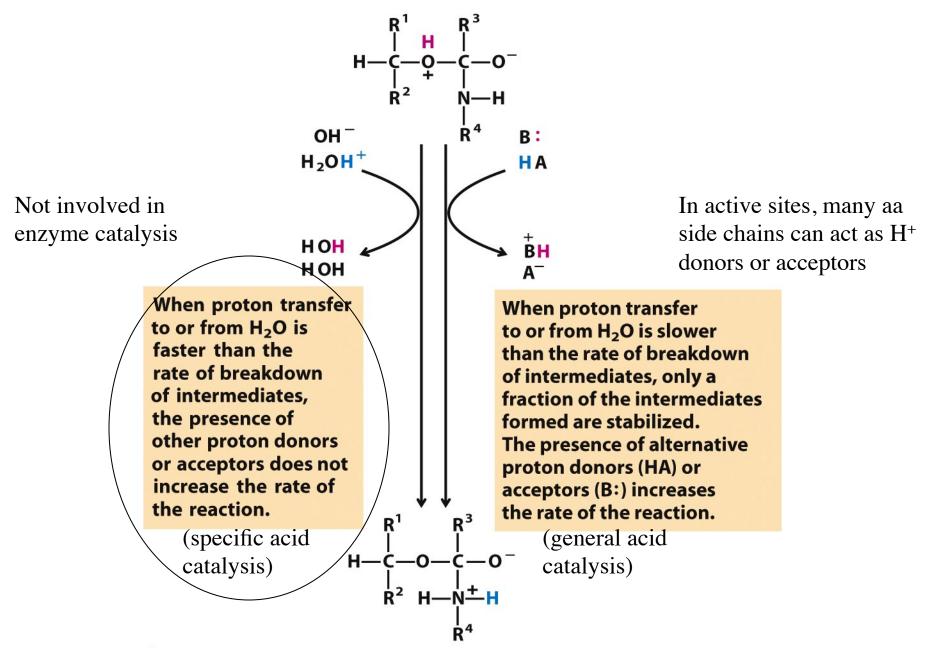



Figure 6-8 part 2
Lehninger Principles of Biochemistry, Fifth Edition

Products

Figure 6-8 part 3

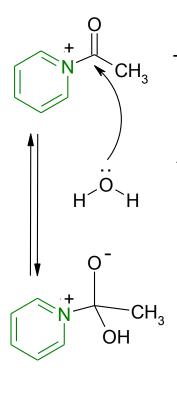
Lehninger Principles of Biochemistry, Fifth Edition

STUDENTS HUB COPPANY

Amino Acids in General Acid-Base Catalysis

Amino acid residues	General acid form (proton donor)	General base form (proton acceptor)
Glu, Asp	R—COOH	R—COO-
Lys, Arg	R ⁺ H H H	R—NH ₂
Cys	R—SH	R— S⁻
His	R—C=CH / \+ HN NH H	R—C=CH HN N: H
Ser	R-OH	R—O-
Tyr	R—OH	R—————————————————————————————————————

Covalent Catalysis


- A transient covalent bond between the enzyme and the substrate
- Changes the reaction Pathway

- Uncatalyzed:
$$A - B \stackrel{\text{\tiny H2O}}{\Rightarrow} A + B$$

- Catalyzed:
$$A \longrightarrow B + X : \rightarrow A \longrightarrow X + B \xrightarrow{120} A + X : + B$$

- Requires a nucleophile on the enzyme
 - Can be a reactive serine, thiolate, amine, or carboxylate

Covalent Catalysis: Chemical Example

- The anhydride hydrolysis reaction is catalyzed by pyridine, a better nucleophile than water (p K_a =5.5).
- Hydrolysis is accelerated because of charge loss in the transition state makes pyridine a good leaving group.
- The new reaction has a new pathway which lowers the activation energy Uploaded By: Rawan Rous

Metal-ion Catalysis

 Weak bonding between metal and substrate (similar to binding energy of substrate to enzyme)

- Redox reactions (metal ions can change their oxidation state reversibly)
- ~ ¹/₃ of all known enzymes need one or more metal ions for catalysis

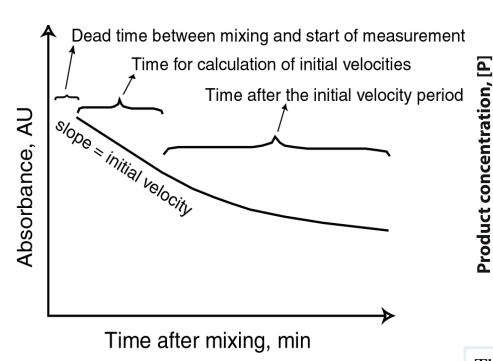
6.3 Enzyme Kinetics

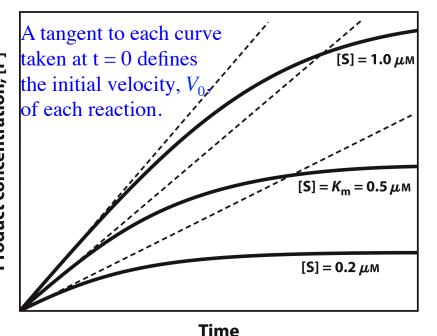
- Kinetics is the study of the <u>rate</u> at which compounds react
- Rate of enzymatic reaction is affected by
 - Enzyme
 - Substrate
 - Effectors
 - Temperature
 - Etc.

Leonor Michaelis 1875–1949

Unnumbered 6 p201

Lehninger Principles of Biochemistry, Sixth Edition


STUDENBYS-LEGBROOMS

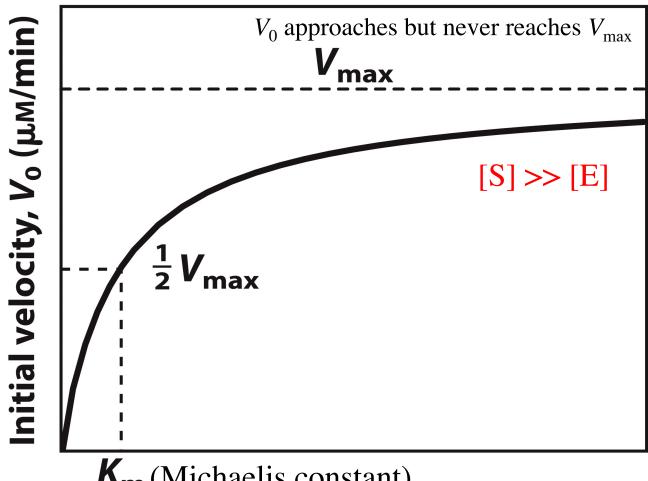


How to Do Kinetic Measurements

Experiment:

- 1) Mix enzyme + substrate
- Record rate of substrate disappearance/product formation as a function of time (the velocity of reaction)
- 3) Plot initial velocity versus substrate concentration.
- 4) Change substrate concentration and repeat

The rate of an enzyme-catalyzed reaction declines as substrate is converted to producted By: Rawan Rous

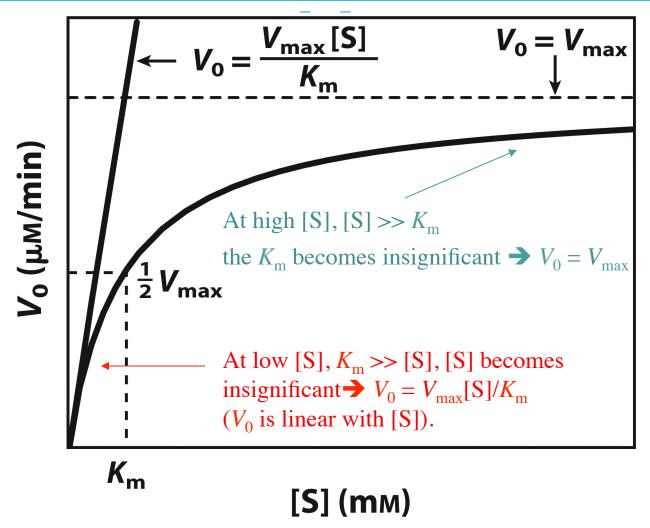

Effect of [S] on reaction rate

- The relationship between [S] and V_0 is similar for most enzymes (rectangular hyperbola)
- Mathematically expressed by Michaelis-Menten equation: $V_0 = \frac{V_{\max}[S]}{K_m + [S]}$

• Deviations due to:

- limitation of measurements
- substrate inhibition
- substrate prep contains inhibitors

Effect of Substrate Concentration

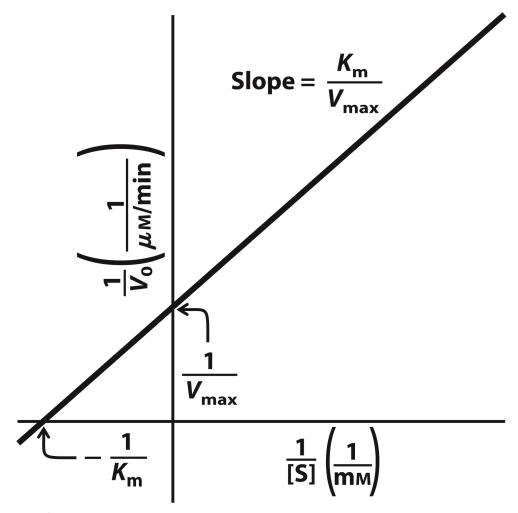


K_m (Michaelis constant)

Substrate concentration, [S] (mm)

Saturation Kinetics:

At high [S] velocity does not depend on


Determination of Kinetic Parameters

Nonlinear Michaelis-Menten plot should be used to calculate parameters $K_{\rm m}$ and $V_{\rm max}$.

Linearized **double-reciprocal** (Lineweaver-Burk) plot is good for analysis of two-substrate data or inhibition.

Lineweaver-Burk Plot: Linearized, Double-Reciprocal

$$\frac{1}{V_0} = \frac{K_m + [S]}{V_{\text{max}}[S]}$$

Box 6-1 figure 1 *Lehninger Principles of Biochemistry,* Sixth Edition

© 2013 W. H. Freeman and Company

Derivation of Enzyme Kinetics Equations

- Simplest Model Mechanism: $E + S \stackrel{k_1}{\rightarrow} ES \stackrel{k_2}{\rightarrow} E + P$ One reactant, one product, no inhibitors
- Total enzyme concentration is constant
 - Mass balance equation for enzyme: E₊ = [E] + [ES]
 - It is also implicitly assumed that: S_t = [S] + [ES] ≈ [S]
- **Steady state assumption** (initially [ES] is constant!)

$$\frac{d[ES]}{dt}$$
 = rate of formation of ES- rate of breakdown of ES = 0

- What is the observed rate?

- Rate of product formation
$$V_0 = \frac{dP}{dt} = k_2[ES]$$

Some useful equations

- The term: $(k_{-1} + k_2)/k_1$ is **Michaelis constant** (K_m) for a two-step reaction
- The **maximum velocity** of an enzyme (V_{max}) for a two-step reaction occurs when the enzyme is fully saturated with substrate (i.e. when $\mathbf{E_t} = [\mathbf{ES}]) \rightarrow V_{\text{max}} = k_2[\mathbf{E_t}]$
- $K_{\rm m}$ and $V_{\rm max}$ depend on the reaction mechanisms (2-step, 3-step, etc.) → more appropriately we use the general rate constant ($k_{\rm cat}$, turnover number) which describes the rate limiting step of the reaction (for the previous example $k_{\rm cat} = k_2$)
- k_{cat} is equivalent to the number of substrate molecules converted to product in a given unit of time on a single STUDENTS-HEBZYMPE when enzyme is saturated with substrated by: Rawan Rous

Carry out the algebra

The final form in case of a single substrate is

$$V_0 = \frac{k_{cat}[E_t][S]}{K_m + [S]}$$

- The values of K_m and k_{cat} together are useful to evaluate the *kinetic efficiency* of enzymes
 - * Two enzymes catalyzing different reactions may have the same k_{cat} but the uncatalyzed reaction rates can be different \rightarrow the rate enhancement rate will be different
 - * Specificity constant is k_{cat}/K_m (used to compare the catalytic efficiencies of different enzymes or the turnover of different substrates by the same enzyme)

* When [S] $<< K_m$... What happens to the rate equation?

Second order reaction, how?
STUDENTS-HUB.com

Enzyme efficiency is limited by diffusion: $k_{\text{cat}}/K_{\text{M}}$

- Can gain efficiency by having high velocity or affinity for substrate
 - Catalase vs. acetylcholinesterase

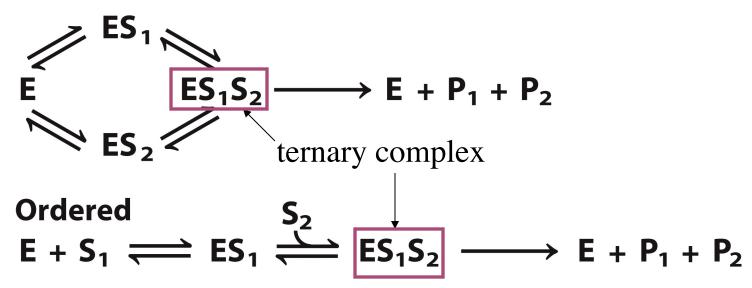
TABLE 6–8 Enzymes for Which k_{cat}/K_m Is Close to the Diffusion-Controlled Limit (10⁸ to 10⁹ m⁻¹s⁻¹)

		K _{cat}	K _m	K_{cat}/K_{m}	
Enzyme	Substrate	(s^{-1})	(M)	$(M^{-1}S^{-1})$	
Acetylcholinesterase	Acetylcholine	1.4 × 10 ⁴	9 × 10 ⁻⁵	1.6×10^8	
Carbonic anhydrase	CO ₂ HCO ₃	$\begin{array}{c} 1\times10^6\\ 4\times10^5\end{array}$	1.2×10^{-2} 2.6×10^{-2}	8.3×10^{7} 1.5×10^{7}	
Catalase	H_2O_2	4×10^7	$1.1 \times 10^{\circ}$	4×10^7	
Crotonase	Crotonyl-CoA	5.7×10^3	2 × 10 ⁻⁵	2.8×10^8	
Fumarase	Fumarate Malate	8×10^2 9×10^2	5×10^{-6} 2.5 \times 10 ⁻⁵	1.6×10^8 3.6×10^7	
$oldsymbol{eta}$ -Lactamase	Benzylpenicillin	2.0×10^3	2 × 10 ⁻⁵	1×10^8	

Source: Fersht, A. (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York.

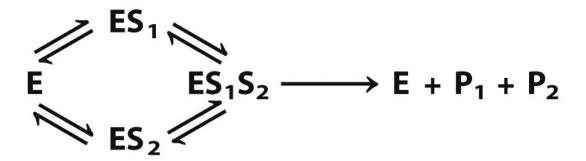
Table 6-8

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

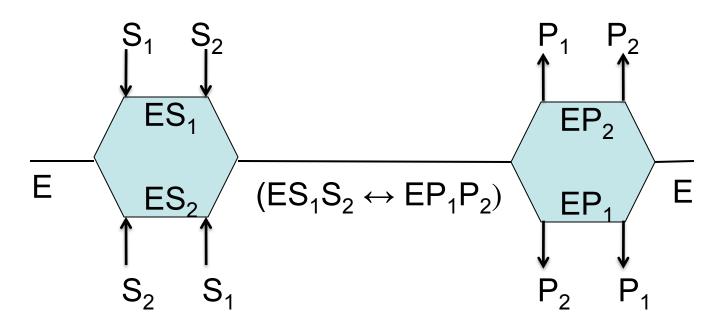

 K_m for an enzyme tends to be similar to its substrate's cellular concentration ploaded By: Rawan Rous

Two-Substrate Reactions

- The rate of a bisubstrate reaction can also be analyzed by Michaelis-Menten kinetics. Enzymes catalyzing polysubstrate reactions have $K_{\rm m}$ for each of their substrates
- Kinetic mechanism: the order of binding of substrates and release of products
- When two or more reactants are involved, enzyme kinetics allows to distinguish between different kinetic mechanisms
 - Sequential mechanism (involving a ternary complex)
- *Ping-Pong* (double displacement) mechanism
 Uploaded By: Rawan Rous

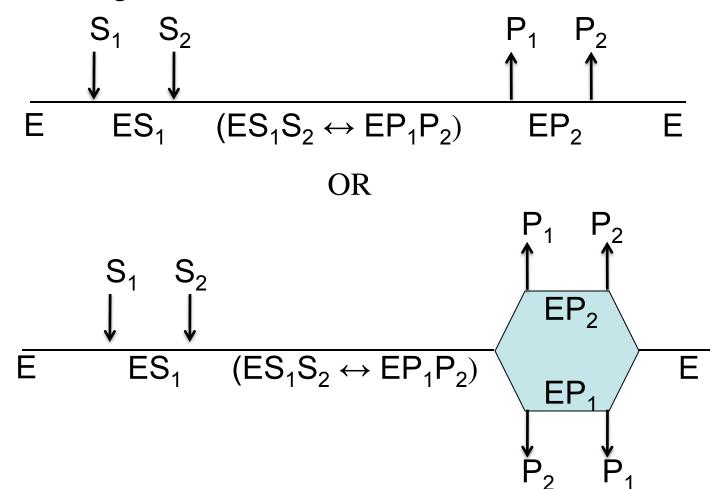

(a) Enzyme reaction involving a ternary complex

Random order

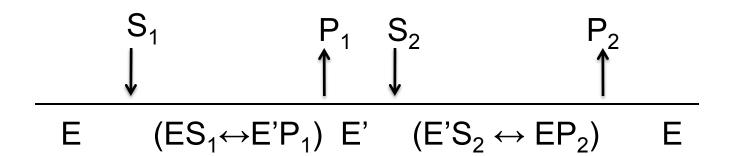


(b) Enzyme reaction in which no ternary complex is formed

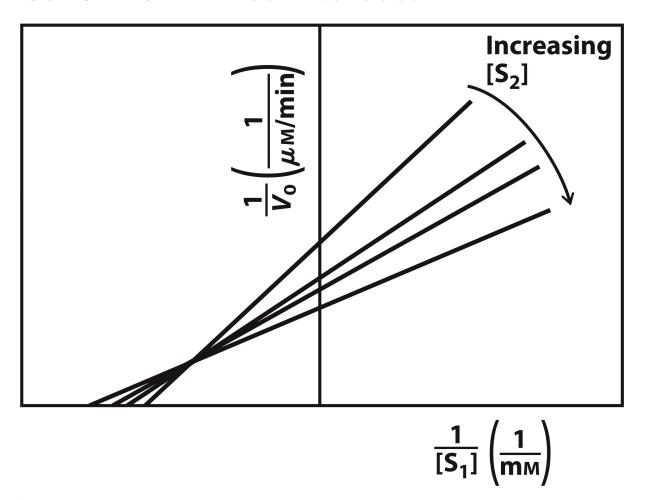
$$E + S_1 \Longrightarrow ES_1 \Longrightarrow E'P_1 \stackrel{P_1}{\Longleftrightarrow} E' \stackrel{S_2}{\Longleftrightarrow} E'S_2 \longrightarrow E + P_2$$



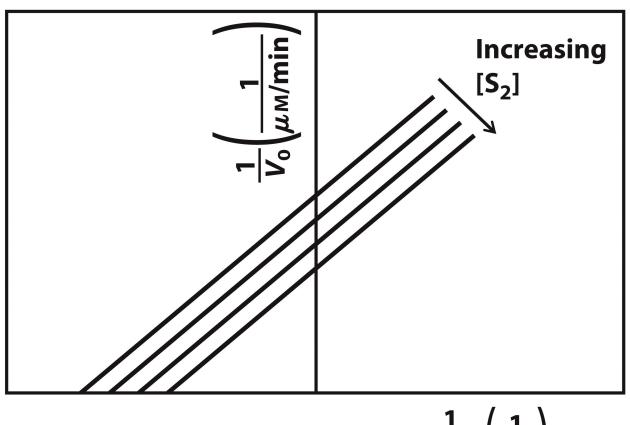
Cleland Diagram


$$E + S_1 \Longrightarrow ES_1 \stackrel{S_2}{\Longleftrightarrow} ES_1S_2 \longrightarrow E + P_1 + P_2$$

Cleland Diagram


$$E + S_1 \Longrightarrow ES_1 \Longrightarrow E'P_1 \stackrel{P_1}{\Longleftrightarrow} E' \stackrel{S_2}{\Longleftrightarrow} E'S_2 \longrightarrow E + P_2$$

Cleland Diagram


Sequential Kinetic Mechanism

- We cannot easily distinguish random from ordered
- Lineweaver-Burk: lines intersect

Ping-Pong Kinetic Mechanism

Lineweaver-Burk: lines are parallel

$$\frac{1}{[S_1]} \left(\frac{1}{mM} \right)$$

Enzyme Inhibition

Inhibitors are compounds that decrease enzyme's activity

- Irreversible inhibitors (inactivators) react with the enzyme
 - One inhibitor molecule can permanently shut off one enzyme molecule
 - They are often powerful toxins but also may be used as drugs
- Reversible inhibitors bind to and can dissociate from the enzyme
 - They are often structural analogs of substrates or products
 - They are often used as drugs to slow down a specific enzyme
- Reversible inhibitor can bind:
 - to the free enzyme and prevent the binding of the substrate
 - to the enzyme-substrate complex and prevent the reaction

Competitive Inhibition

- Competes with substrate for binding
 - Binds active site
 - Does not affect catalysis
 - many competitive inhibitors are similar in structure to the substrate, and combine with the enzyme to form an EI complex
- No change in V_{max} ; apparent increase in K_{m}
- Lineweaver-Burk: lines intersect at the y-axis at $-1/V_{max}$

Competitive Inhibition

Competitive inhibition

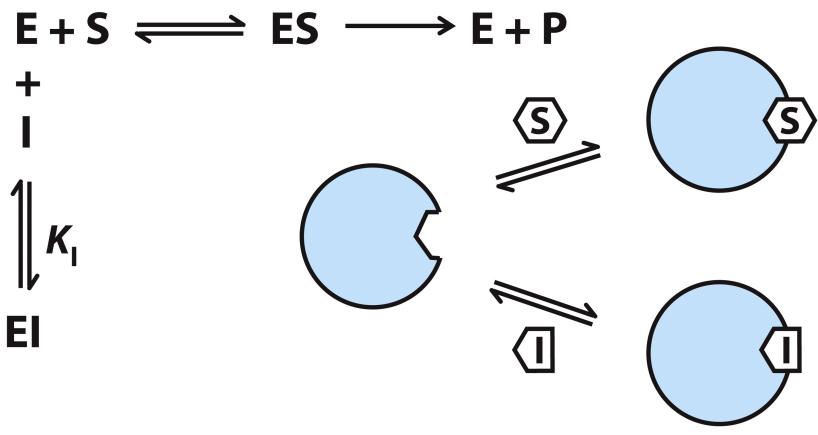
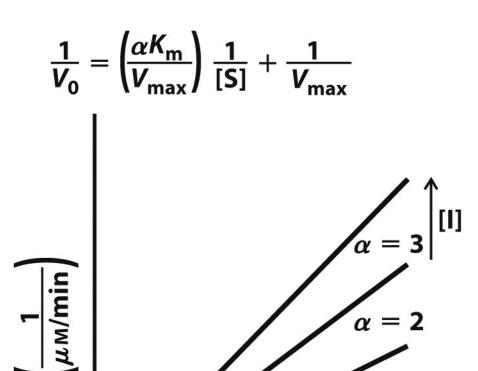
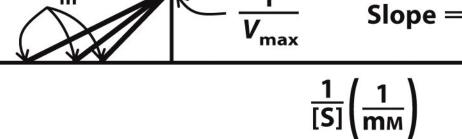


Figure 6-15a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

$$\alpha = 1 + [I]/K_I$$

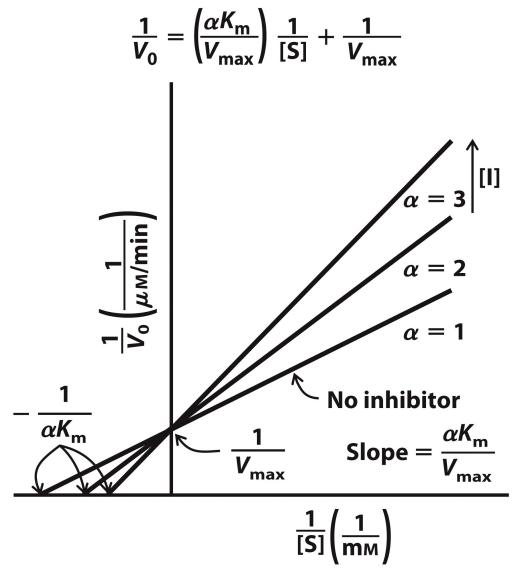

$$K_I = [E][I]/[EI]$$


 $\alpha K_{\rm m}$ (the apparent $K_{\rm m}$) is the $K_{\rm m}$ measured in the presence of an inhibitor

When $[S] \gg [I] \rightarrow$ reaction shows normal V_{max} because the substrate competes out the inhibitor

No effect of the competitive inhibitor on

STUDENTS-HUB.com


Box 6-2 figure 1
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

 αK_{m}

Uploaded By: Rawan Rous

No inhibitor

Competitive Inhibition

Uncompetitive Inhibition

- Only binds to ES complex
 - Does not affect substrate binding
 - Inhibits catalytic function

- Decrease in V_{max} ; apparent decrease in K_{m}
- No change in $K_{\rm m}/V_{\rm max}$
- Lineweaver-Burk: lines are parallel

Uncompetitive Inhibition

Uncompetitive inhibition

$$E + S \iff ES \implies E + P$$

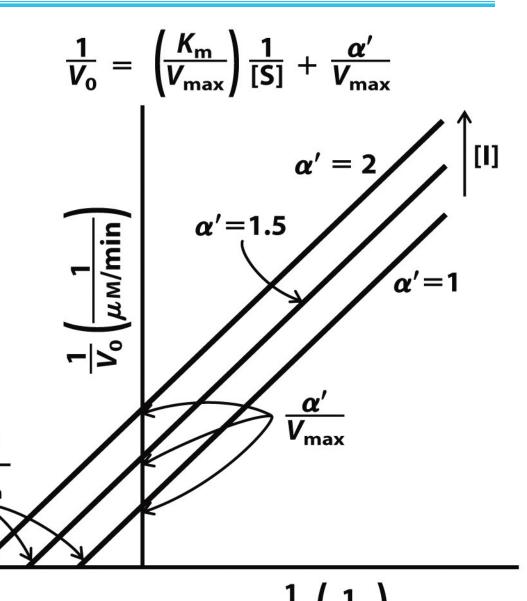
$$\downarrow I \qquad \qquad \downarrow S$$

$$\downarrow K_{I}' \qquad \qquad \downarrow S$$

$$ESI \qquad \qquad \downarrow I$$

$$\downarrow I \qquad \qquad \downarrow S$$

$$\downarrow S$$

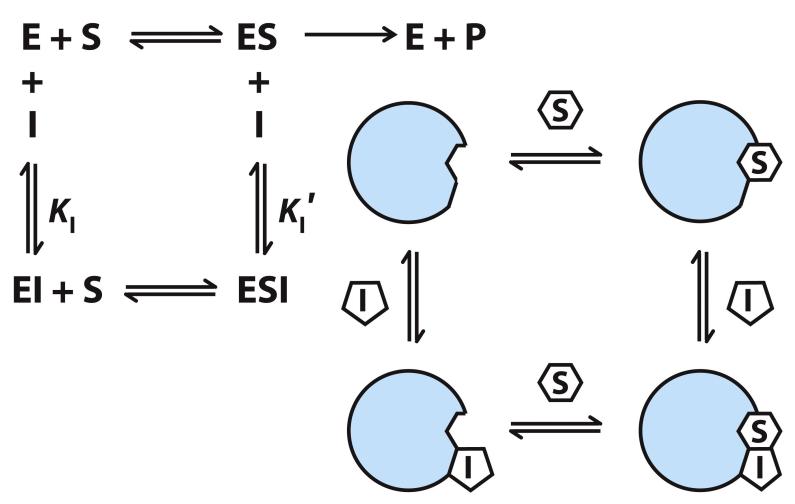

Uncompetitive Inhibition

$$\alpha' = 1 + [I]/K_I$$
 $K'_I = [ES][I]/[ESI]$

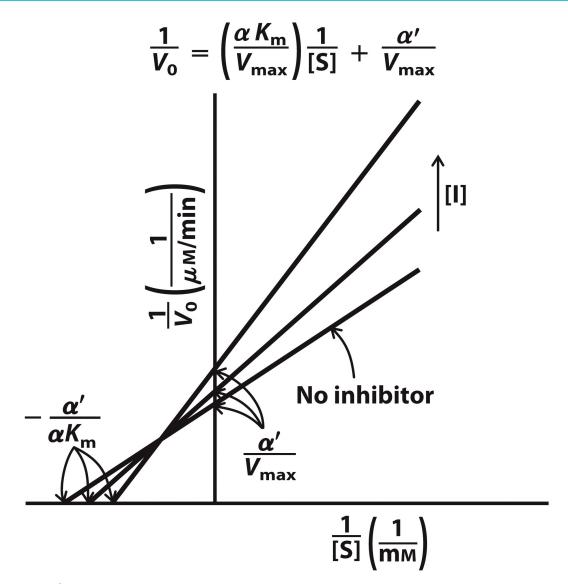
At high [S], $V_0 \rightarrow V_{\text{max}}/\alpha$

Therefore, an uncompetitive inhibitor lowers the measured $V_{\rm max}$

 $K_{\rm m}$ also decreases because [S] required to reach $\frac{1}{2} V_{\rm max}$ is reduced by the factor α '



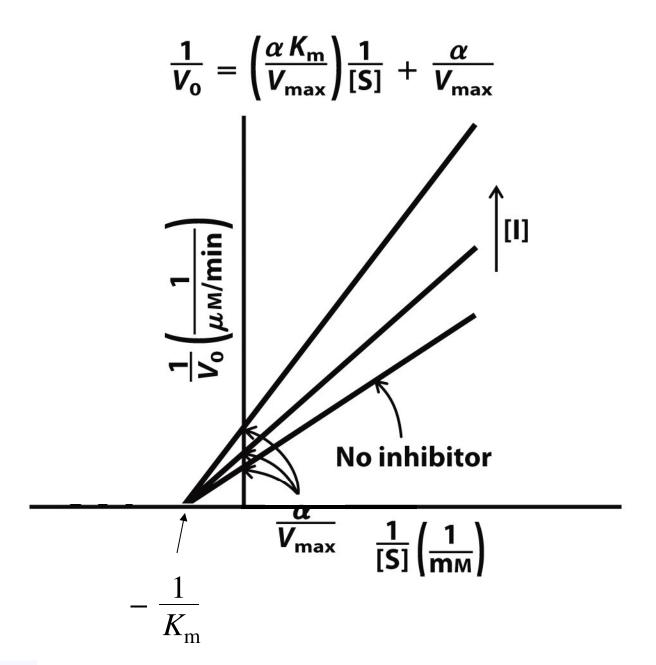
Mixed Inhibition


- Binds enzyme with or without substrate
 - Binds to regulatory site
 - Inhibits both substrate binding and catalysis
- Decrease in V_{max} ; apparent change in K_{m}
- Lineweaver-Burk: lines intersect left from the y-axis
- Noncompetitive inhibitors are mixed inhibitors such that there is no change in $K_{\rm m}$

Mixed Inhibition

Mixed inhibition

Mixed Inhibition



A special case

• Noncompetitve inhibitors: a special (rare) case of mixed inhibitors when α and α ' are equal

• x-intercept is $-1/K_m$ (no effect on K_m with increasing [I])

V_{max} is lowered with increasing [I]

$$V_0 = \frac{V_{\text{max}}[S]}{\alpha K_m + \alpha'[S]}$$

When $\alpha = 1 \rightarrow$ uncompetitive

When $\alpha' = 1 \rightarrow$ competitive

When $\alpha' = \alpha \neq 1 \rightarrow$ noncompetitive

TABLE 6-9

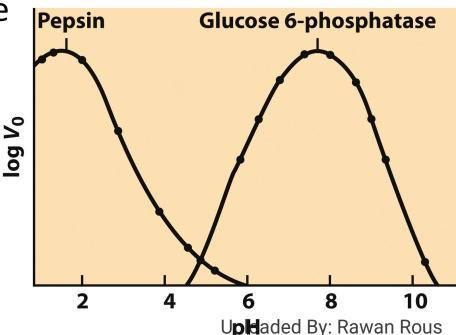
Effects of Reversible Inhibitors on Apparent V_{max} and Apparent K_{m}

Inhibitor type	Apparent V _{max}	Apparent K _m
None	V _{max}	<i>K</i> _m
Competitive	V _{max}	$lpha K_{m}$
Uncompetitive	$V_{ m max}/lpha'$	$K_{\rm m}/lpha'$
Mixed	$V_{ m max}/lpha'$	$\alpha K_{\rm m}/\alpha'$

Table 6-9

Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W. H. Freeman and Company


Enzyme activity depends on pH

- Enzymes have optimum pH ranges at which their activity is maximal:
 - Activity decreases at higher or lower pH values

Due to the physical and chemical properties of

amino acids and their side

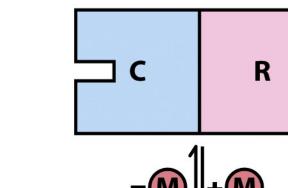
chains

6.5 Regulatory Enzymes

• Each cellular metabolism pathway has one or more **regulatory enzymes** (enzymes that have a greater effect on the rate of the overall sequence)

 They show increased or decreased activities in response to certain signals (function as switches)

 Generally, the first enzyme in a pathway is a regulatory enzyme (not always true!)

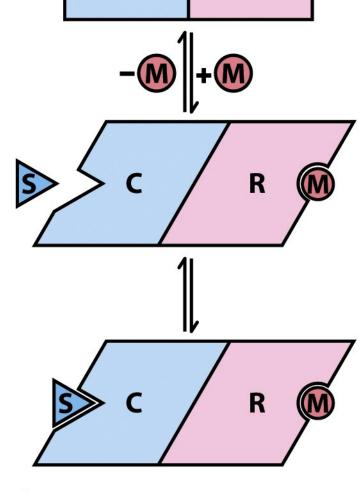

Regulatory Enzymes

- Classes of regulatory enzymes:
- allosteric enzymes (affected by reversible noncovalent binding of allosteric modulators)
- nonallosteric/covalent enzymes (affected by reversible covalent modification)
- regulatory protein binding enzymes (stimulated or inhibited by the binding of separate regulatory proteins)
- proteolytically activated enzymes (activated by the removal of some segments of their polypeptide sequence by proteolytic cleavage)

Allosteric Enzymes

- Allosteric enzymes function through reversible, noncovalent binding of regulatory compounds (allosteric modulators, aka allosteric effectors)
- Modulators can be stimulatory or inhibitory
- Sometimes, the regulatory site and the catalytic site are in different subunits
- Recall: homotropic and heterotropic enzymes
- Conformational change from an inactive T state to an active R state and vice versa

(C) catalytic (R) regulatory subunits



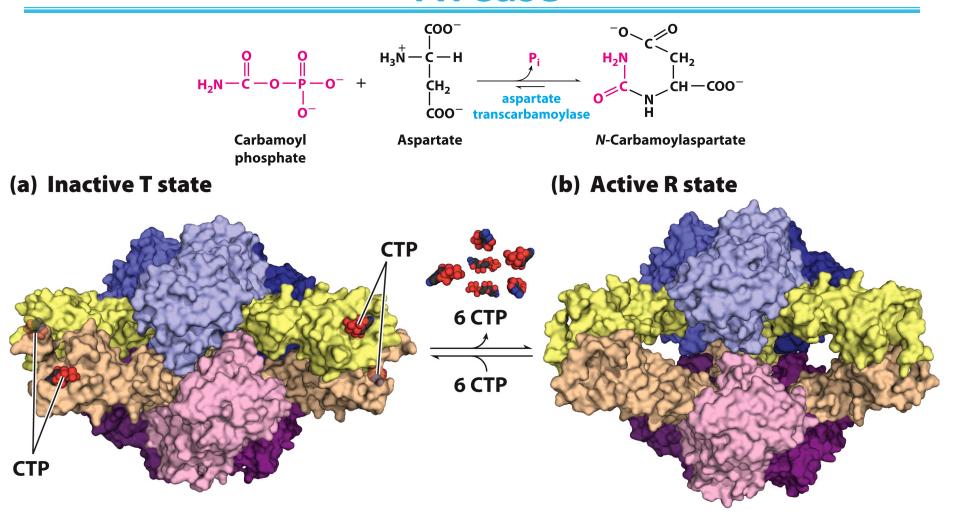
Less-active enzyme

- Not to be confused with uncompetitive or mixed inhibitors...
- Those inhibitors are kinetically distinct and they do not necessarily induce conformational changes

STUDENTS-HUB.com

Active enzyme-substrate complex

More-active enzyme


Figure 6-31
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Allosteric Enzymes

- Allosteric enzymes are generally larger and more complex than nonallosteric enzymes with more subunits
- Aspartate transcarbamoylase (ATCase) catalyzes an early step in pyrimidine nucleotide biosynthesis
- Allosteric enzyme, composed of 6 catalytic subunits (organized as 2 trimeric complexes) and 6 regulatory subunits (organized as 3 dimeric complexes)
- Catalytic subunits function cooperatively
- Regulatory subunits have binding sites for ATP (+ve regulator) and CTP (–ve regulator)

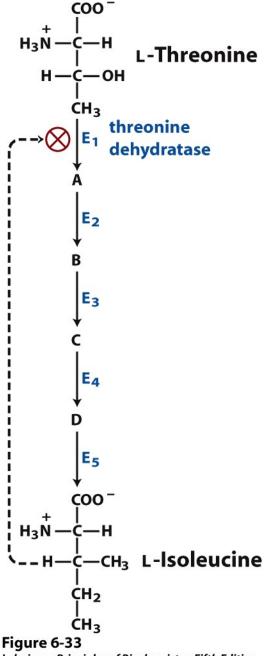
-HUB.com Uploaded By: Rawan Rous

ATCase

- CTP is an end product of the pathway, negative feedback
- ATP signifies energy abundance → need for growth → need for RNA transcription and DNA replication → need for new nucleotides

 STUDENTS-HUB.com

 Uploaded By: Rawan Rous

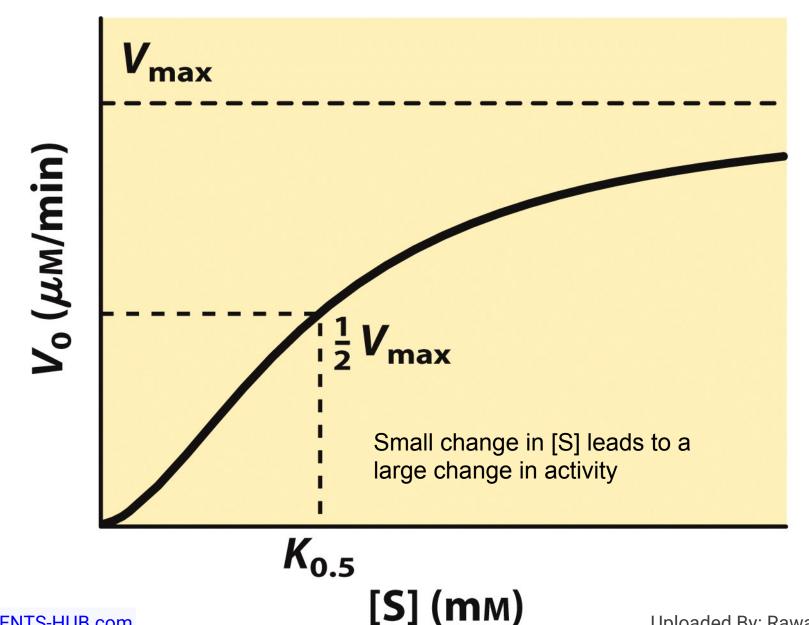

Regulated Steps Are Catalyzed by Allosteric Enzymes

- Feedback inhibition regulatory enzymes are specifically inhibited by the end product of the pathway whenever the concentration of the end product exceeds the cell's requirements
- Heterotropic allosteric inhibition

Threonine dehydratase (E_1) is specifically inhibited allosterically by L-isoleucine, the end product of the sequence, but not by any of the four intermediates (A to D).

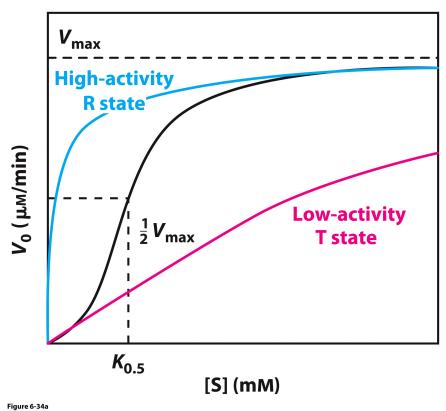
Ile does not binds to the active site but to a regulatory site on the enzyme.

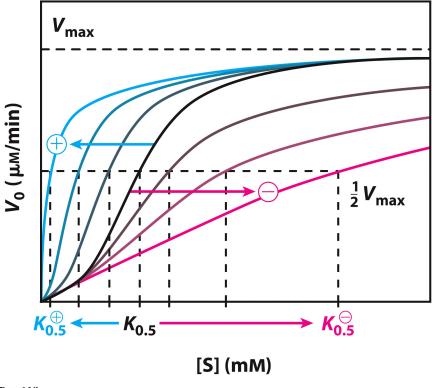
The binding is reversible: if [Ile] $\downarrow \rightarrow$ rate of Thr dehydration \uparrow



Uploaded By: Rawan Rous © 2008 W. H. Freeman and Company

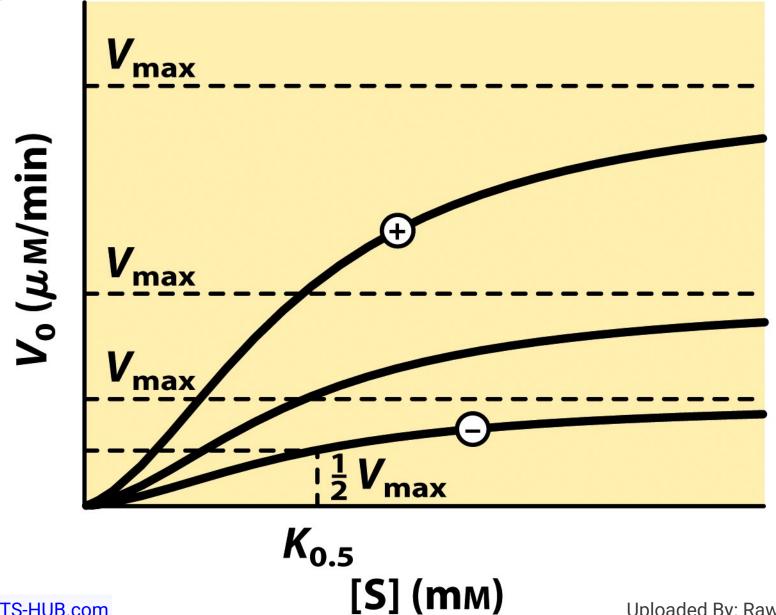
Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior


- For some allosteric enzymes, plots of V_0 vs [S] give sigmoid (not hyperbolic) saturation curves
- In a sigmoid curve, the [S] that gives $\frac{1}{2} V_{\text{max}}$ is $K_{0.5}$
- Homotropic allosteric enzymes are multisubunit proteins. The same binding site on each subunit serves as both an active and regulatory site
- Heterotropic allosteric enzymes, an activator causes the curve to be more hyperbolic (also \downarrow in $K_{0.5}$; no change in V_{max}) and an inhibitor produces a more signoid curve (\uparrow in $K_{0.5}$; no change in V_{max}) loaded By: Rawan Rous


The sigmoid curve of a homotropic enzyme, in which the substrate also serves as a positive (stimulatory) modulator, or activator

Noncovalent Modification: Allosteric Regulators

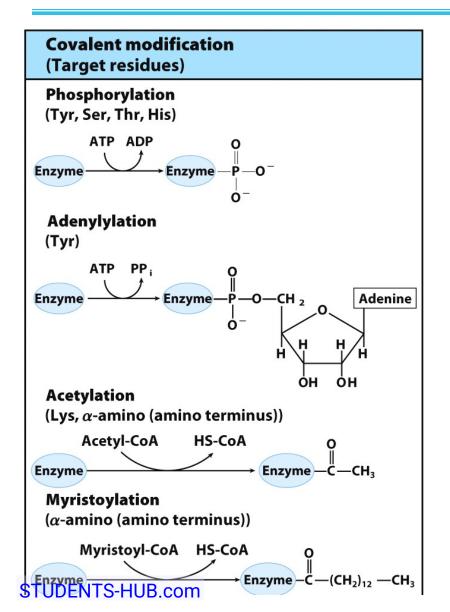
The kinetics of allosteric regulators differ from Michaelis-Menten kinetics.



Lehninger Principles of Biochemistry, Sixth Edition

Figure 6-34b

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company


A less common type of modulation, in which $V_{\rm max}$ is changed and $K_{0.5}$ is nearly constant.

Some Enzymes Are Regulated by Reversible Covalent Modification

- Over 500 different kinds of covalent modifications are found in proteins
- Covalent bonds form (reversibly) between regulatory molecules and aa residues in proteins
- When an aa residue is modified, a new aa with changed properties has effectively been introduced in the enzyme (for instance, Ser-OH can be phosphorylated to Ser-O-PO₃⁻ changing the properties → conformation → function, etc.)

Some Reversible Covalent Modifications

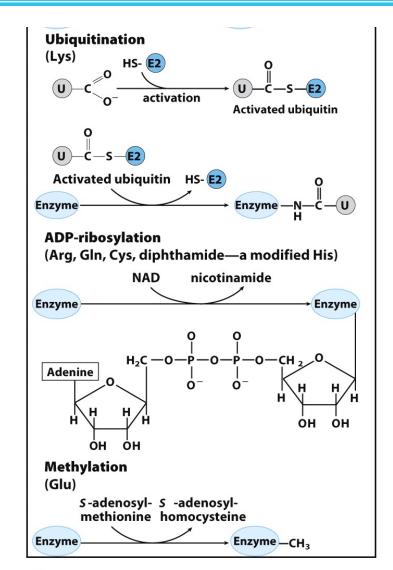
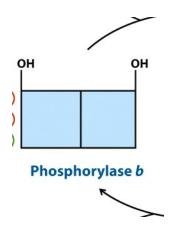
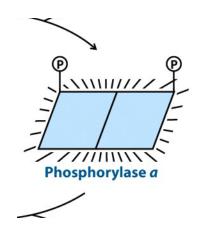


Figure 6-35

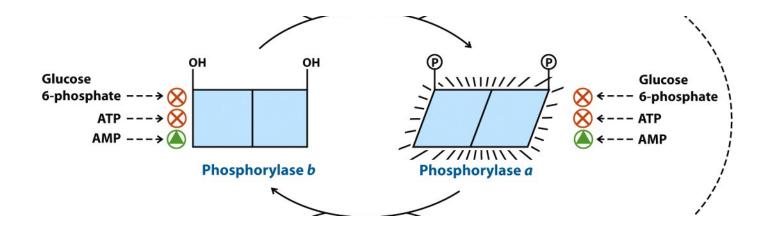
Uploaded By: Rawan Rous

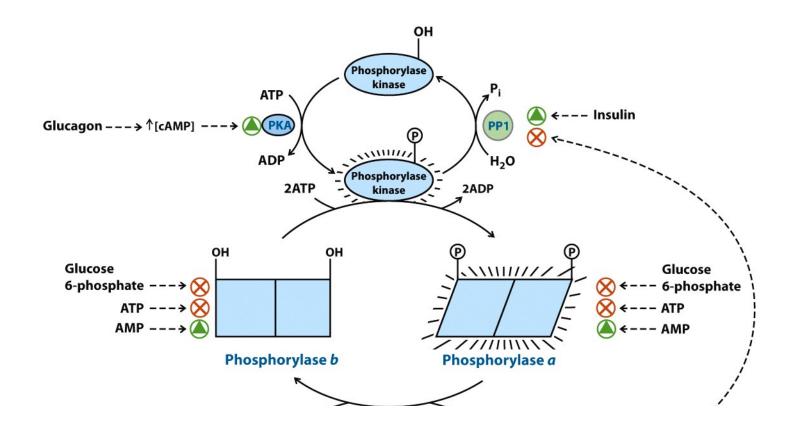

Example on Protein Phosphorylation

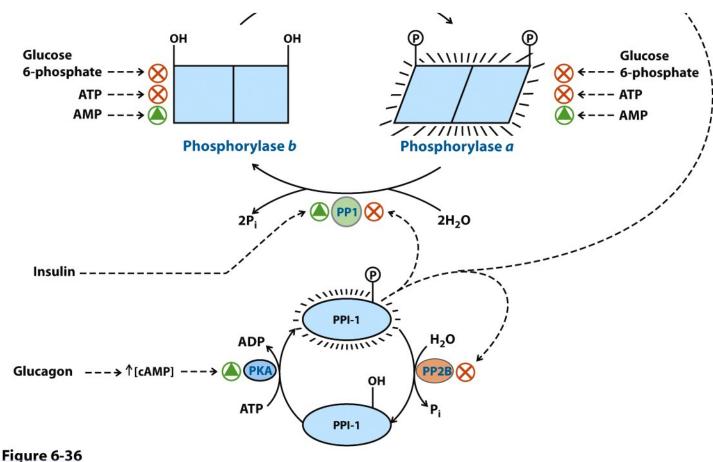
- Protein kinases add phosphate groups on specific aa residues of other proteins
- Protein phosphatases remove phosphate groups from phosphorylated proteins


glycogen phosphorylase

• Glucose_n + P_i → glucose_{n-1} + glucose 1-phosphate (Glycogen)


The less active form of the enzyme, *phosphorylase b*, specific Ser residues, one on each subunit, are <u>not phosphorylated</u>.


In the more active form of the enzyme, *phosphorylase a*, specific Ser residues, one on each subunit, are <u>phosphorylated</u>.


Phosphorylase b and phosphorylase a can be interconverted.

Phosphorylase b can be converted (activated) to phosphorylase a by the action of phosphorylase kinase.

Phosphorylase a is converted to the less active phosphorylase b by enzymatic loss of these phosphoryl groups, promoted by phosphoprotein phosphatase 1 (PP1).

- The activity of both forms of the enzyme is allosterically regulated by an activator (AMP) and by inhibitors (glucose 6-phosphate and ATP) that bind to separate sites on the enzyme
- The activities of phosphorylase kinase and PP1 are also regulated via a short pathway that responds to the hormones glucagon and epinephrine

- When blood sugar levels are low, the pancreas and adrenal glands secrete glucagon and epinephrine.
- Epinephrine binds to its receptor in muscle and some other tissues, and activates the enzyme adenylyl cyclase.
- Glucagon plays a similar role, binding to receptors in the liver.
- This leads to the synthesis of high levels of cAMP, activating the enzyme cAMP-dependent protein kinase (PKA).
- PKA phosphorylates several target proteins, among them phosphorylase kinase and phosphoprotein phosphatase inhibitor 1 (PPI-1).
- The phosphorylated phosphorylase kinase is activated and in turn phosphorylates and activates glycogen phosphorylase.
- At the same time, the phosphorylated PPI-1 interacts with and inhibits PP1.
- PPI-1 also keeps itself active (phosphorylated) by inhibiting phosphoprotein phosphatase 2B (PP2B), the enzyme that dephosphorylates (inactivates) it.
- In this way, the equilibrium between the a and b forms of glycogen phosphorylase is shifted decisively toward the more