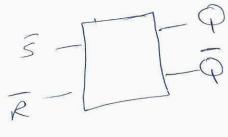
Chapter 53-Synchronous Sequential Logic

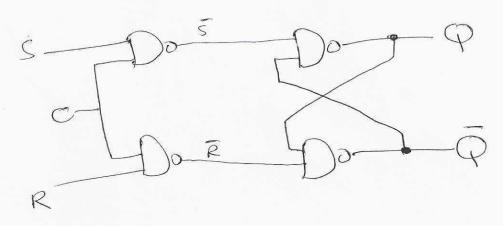
* Combinational Versus Sequential :-


1 - Combinational Circuits 2n circuit outputs The outputs depend only on inputs @ Sequential Circuits - The outputs depend on inputs and previous output (current, or present state) outputs Present state outputs inputs Subinational P.S Storage memory Cival Storage Cival storage memory feed back Asynchronous = Clock Synchronous * Clock & periodic train of pulses five pulse $f = \frac{1}{T}$ o lo lo ko lo negative edge positive edge negative STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan pulse

*Memory & Can store and maintain binary state (0 or 1) > Latches 2 are level sensitive DElip-Flopso are edge sensitive, built with latches * latches & store one bit of information 1) Two inverters Latch Do-p F Lat = --------------This Circuit Can't change the stored Value

STUDENTS- HUB. compircuit Singrom

Functional table \overline{Q} R \mathcal{O} 5 1 set state 0 ١ 0 ١ 0 \bigcirc \bigcirc Reset state \mathcal{O} \bigcirc 0 0 0 o undéfined Õ l 1 * Characteristic Equation of the SR Latch Q(++1) Q(t)R 5 0 \mathcal{O} 0 0 10 01 00 0 \bigcirc \mathcal{O} 0 D \mathcal{O} undefined 1 0 $Q(t+1) = S + \overline{R} Q(t)$ 1 0 0 0 \mathcal{O} 1 0 undefined


NAND gates SR Latch with 3 5 (set) R (Reset) Circuit d'agram

block diagram

Functional table Q Q R 5 o set state 0 0 Reset State 0 1 \bigcirc 0 11 1 un Sefined 1 00

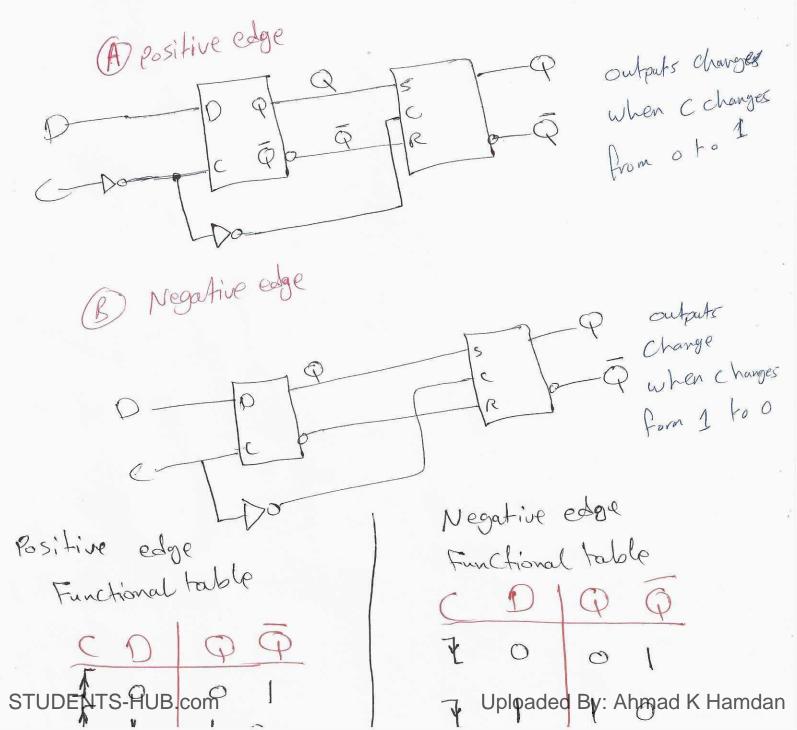
(I) SR Latch with a clock input

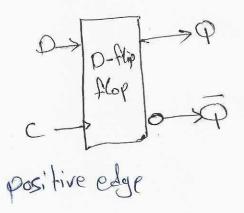
Circlait diagram

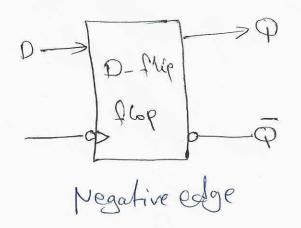
STUDENTS-HUB.com

 $rac{1}{R}$

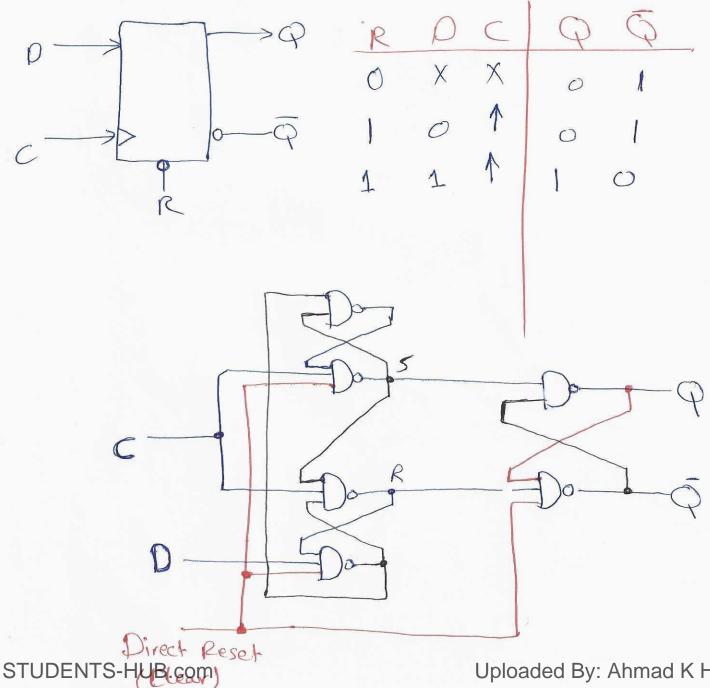
black Siggrom


Function Table


B Q R Ć No Charge Х X \mathcal{O} No change \bigcirc \bigcirc 0 Reset state 1 set state V 0 4 0 undefined

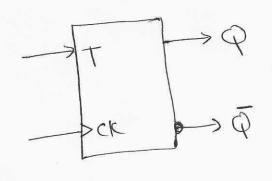

) latch with a clock input g-15 R Functional Table C ($^{\circ}$ X No Chang 0 reset state 1 set state 0

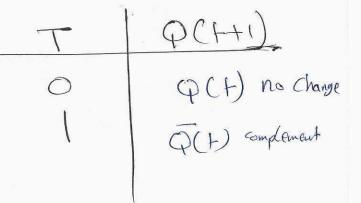
* Flip-Flops 3- sensitive to the edge of the clock Called edge-triggered memory element


P Flip-Flop = Built using two latches (master and slave) moster Latch (D-type) L> slave Latch (SR-type)

* Oflip-flop with Asynchronous Reset

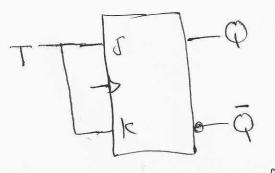
* JK Flip flop


block diggram

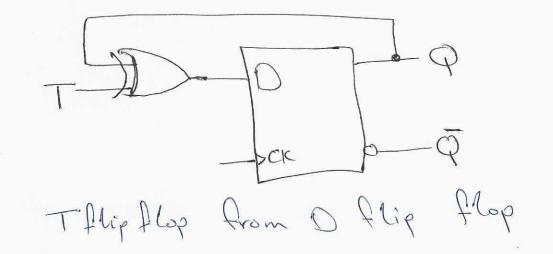

Q(++1)K Q(+) no Change OO 0 Reset 1 \mathcal{O} 1 set 0 Q(+) inverse

Function table

Truth table $\phi(r+1)$ K $\overline{\mathcal{S}}$ CP(+)No chang 0 0 0 0 Reset ··· 0 1 0 0 set 1 1 0 0 complement 1 1 1 0 no change 1 0 ()reset 0 0 1 1 set complement 0 0 K-Do 1 Q VOO 01 0 Circuit Jiagram Q(++1)=JQ+KQ STUDENTS HUB FOR equation of JK flip flop Characteris FPE equation of JK flip ploaded By: Ahmad K Hamdan

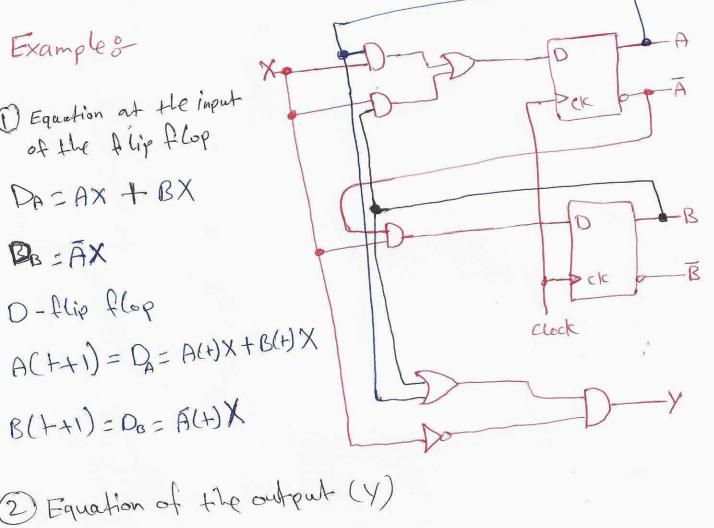

* T Flip - flop

block diagram


we can design I flip flop from JK flip flop Ousing JK flig-flop Q(H) JK = 00, T= Q(H) $\delta k = 11$ $q(h+1) = \bar{q}(h)$

Quising D flip flop

P(t) T P(t+1) 0 0 0 0 1 10 1 STUDENTS-HUB.com


 $\varphi(t+1) = T\bar{\varphi} + \bar{T}\varphi$ $= T\bar{\Theta}\varphi$ Uploaded By: Ahmad K Hamdan

* Flip Flop Chovaetenistics Equation

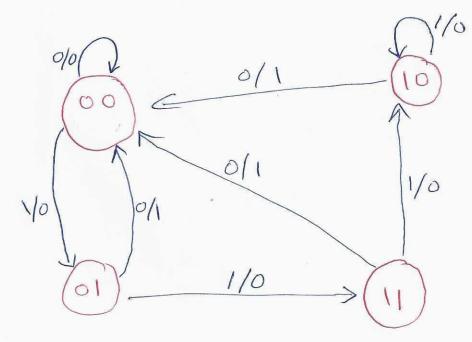
T-flip-flop DFlip-flop JKFlip-flop q(++) JK Q(H+1) D Q(++i) O O Reset I I set 0 Q(+) No change Q(+) compleme 0 0 Q(t) Nochang 0 1 0 reset 1 0 1 set 1 1 Q(t) Complement $Q(r+1) = T \oplus Q(r)$ $Q(t+1) = J\bar{q}(t) + \bar{k}Q(t)$ Q(1+1) = D

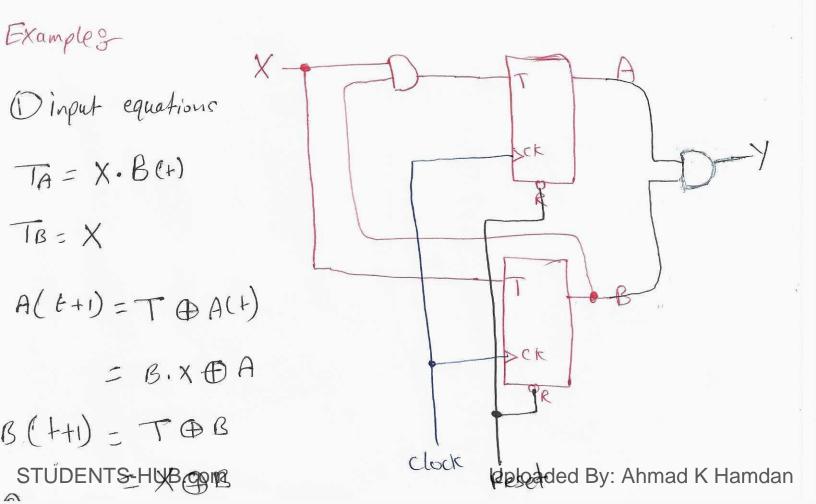
* Analysis of clocked Sequential Circuits 1-obtain the equations at the inputs of the flip-flop 2-obtain the oupput equation. 3-Fill the state table for all possible inputs and shate values 4- Draw the state diagram.

$$Y = (A + B) \cdot \tilde{X}$$

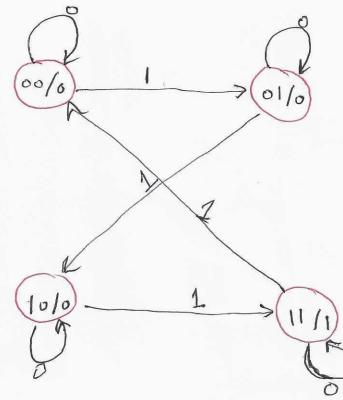
STUDENTS-HUB.com

3 state Tables-									
Pre S	esent itate B		inpu X			iext tate 1 B		out	put
0	0		0		0	0		0	ß
0	0		١		0	١		\bigcirc	
0	I		\bigcirc		0	Ø		1	
\bigcirc	1		١		١	1		0	
1	0		0		0	Ø			
1	0				}	0		0.	
1	I		O		0	0		(
١	1		1		1	0		D	
1				ł					
					Nex	ts	ati	C	out
P S	resent fate	B	i.,	X A	= 0 B		× A	(= 1 B	X=0 Y
F	1			0	0		0	ł	C
C	0	0		0			1		
	0	(l	,	
		0		0	0		1	0	

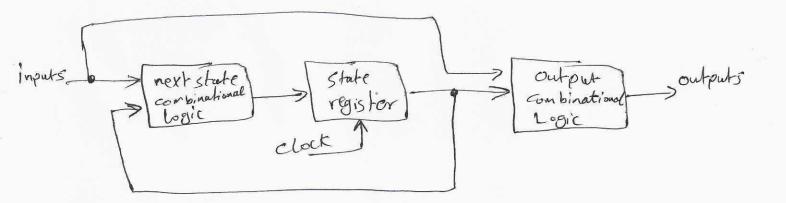

A(++1)= A(+) X + B(+) X 3(1+1) = AX Y= (A+B) X

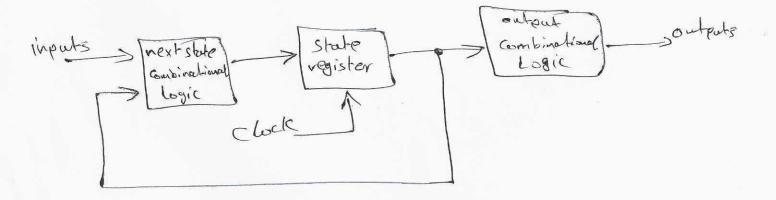

-			Next state.						output			
prese state A	e B		X= 7	o B			:=1 B	X=	0	X	=1 2	
0	0	c	0	Ö		0	ł	C	2	(0	
0	1	C	0	0		ł	1	1		C	C	
١	0	C	C	0		١	0	1		(0	
\$	1	(2	0		P	U	1		(0	

STUDENTS-HUB.com

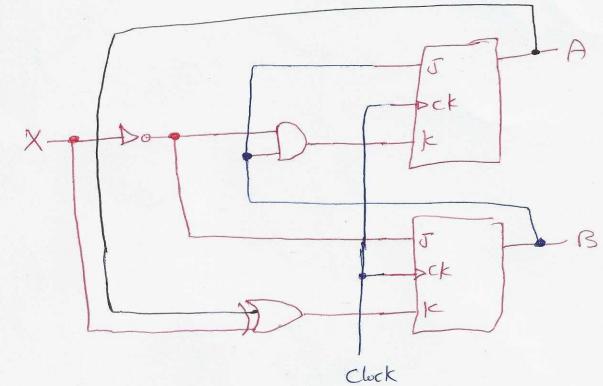

(D) state diagram = graphical representation of the state table # of flip flips The circles are the states 2

@ Arcs are the state transitions labeled with input x /output y

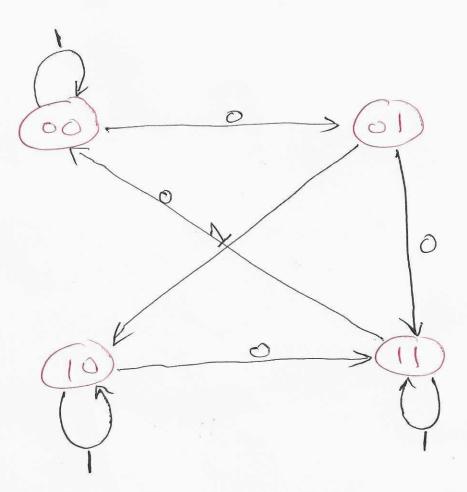

e) State present	table			
present	input	Ne	ate	output
A B	X	A	B	X
0 0	0	0	0	0
0 0	(0	l.	0
0	Ö	0	1	Õ
0	t	١	0	O
0	0	· 21	Ö	0
0	t	1	١	0
1	0	l		
()	1 (0	0	<i>e</i>



* Types of synchronouse sequential Circuits


There are two ways to design a synchronous sequential Circuits on

(D) Mealy machine



() input equations $\overline{D}_A = B$ $K_A = \overline{X}B$ $A(F+I) = \overline{D}A \overline{A}(F) + \overline{K}_A \overline{A}(F)$ $= B \overline{A} + (\overline{X}B)A = \overline{A}B + A\overline{B} + A\overline{X}$

JB = X KB = X @A B(I+1) = JB B + FB B = XB + (X@A) B STUDENTS-HUEFCOMF AX + AX]. B

tablesate Present State A R Next input X B B Ó 0 0 \mathcal{O} \bigcirc 0 0 000 M 0 6 0 Ø \mathcal{O} 0 1

