ENCS2340 | Section 2 | Fall 2024/2025 Chapter 2 Solution - Extra Exercises-01

```
H2-2
e. XY+YZ+ XYZ
  = XT + Y[Z+ZX]
```

2, contd.

d.
$$CD + (\overline{A}B)C + (A+B)D$$

Let $A+B=W \rightarrow \overline{A}B=W$
 $CD + \overline{W}C + \overline{W}D = \overline{W}C + WD$
 $= \overline{ABC} + (A+B)D$
 $= \overline{ABC} + AD + BD$

3. $F = (AB' + C'D)(DE' + W)$

(i) Using De Morganis

 $F = (AB' + C'D) \cdot (DE' + W)$
 $= (AB' + C'D) \cdot (DE' + W)$
 $= (A'+B)(C+D) + (D'+E)W$
 $= A'C + BC + A'D + BD + D'W' + EW' (SOP)$

(ii) Using Duality

 $F_{dual} = (A+B')(C'+D) + (D+E')(W)$
 $= AC' + B'C' + AD + BD' + DW' + EW'$

with literals complemented

 $= \exp(CC')$
 $= \exp(CC')$
 $= \exp(CC')$
 $= \exp(CC')$
 $= \exp(CC')$
 $= \exp(CC')$
 $= \exp(CC')$

	H2-4
1. F = EW'+(AB') (C'+D)	
$F = \overline{F} = Ew' + AB'(C'+D)$	
	= C · B'
$F = \overline{Ew' \cdot (AB) \cdot C \cdot D'}$	= NOT_AND-NOT
b. Using OR, NOT gates:	
F = EW' . AB'(C'+D)	
$= (E'+w) \cdot [AB'+(C'+D)]$ $= (E'+w) \cdot [(A'+B)+(C'+D)]$	
$= (E'+W) \cdot ((A'+B)+(C'+D))$ $= (E'+W) + [(A'+B)+(C'+D)]$	
5. a. $F = (A + \overline{B})C$ $F = (A + \overline{B}) \cdot C = (A + \overline{B}) + \overline{C}$ $= \overline{AB + \overline{C}}$	
i. A B C F=AC+BC F=AB+C	From the truth take
	F is the complement
	,

H2-5
5 b ii. $F\overline{F} = [(A+B)C][\overline{A}B+\overline{C}]$ $= [AC+BC][\overline{A}B+\overline{C}]$ $= AC\overline{A}B + BC\overline{A}B + AC\overline{C} + BC\overline{C}$
$F+F=(A+B)C+\overline{A}B+\overline{C}$ $=AC+BC+\overline{A}B+\overline{C}$
$= \overline{c} + AC + \overline{B}C + \overline{A}B$ $= (\overline{c} + c)(\overline{c} + A) + \overline{B}C + \overline{A}B$
$= \overline{c} + \overline{B}C + A + \overline{A}B$ $= (\overline{c} + C)(\overline{c} + \overline{D}) + (A + \overline{A})(A + R)$
$= (\overline{c} + c)(\overline{c} + \overline{B}) + (A + \overline{A})(A + B)$ $= \overline{c} + \overline{B} + B + A$
$= 1 + A + \overline{c} = 1$
O. (AC + BA) (C + AB) $Dua0:$
$[(A+\overline{c})\cdot(B+A)] + C\cdot(A+\overline{B})$ $\mp F(x,y,z) = xy' + xz' + Z(X+y')$
x y z x x x z (x + y) z (x + y) = F

