Function

Using functions in shell scripts allows you to organize your code,
promote reusability, and make your scripts more manageable.
Here’s a guide on how to define and use functions in a Bash shell
script.

1. Defining a Function

function_name() {
Commands to be executed

or
function function_name {
Commands to be executed

Example:
e Here’s a simple example of a function that prints a

greeting:

greet() {
echo "Hello, $1!"

}

e To call the function, simply use its name followed by
any required arguments:
greet "Alice" # Output: Hello, Alice!

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

2. Using Return Values:
Functions can return a status code (an integer) using the
return statement. By convention, a return value of
indicates success, while any non-zero value indicates an
error.
Exmp:

A.
add() {
result=$(($1 + $2))
return $result

}

Call the function

add 53

echo $? # Output: 8 (the exit status of the
last command)

B. To return a value that can be used outside of the
function, you can use echo and capture the output
when calling the function:

multiply() {
echo $(($1 * $2))

}

result=$(multiply 4 5)
echo "The result is $result” # Output: The
result is 20

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

Example:
Here’s a complete example script that uses functions:

--..._...l...r J— i o P
FUuneci 5 P To areeit

e L eArd -

{
"Hello, $1!

=

= G W 00

— o 1
Eiygnetr1nn o ard

ine dd two

ACLLOor L0 dldl

{
$(($1 + $2)

_—] y] "

U0y o e p o o~y o -~ r

Function to multiply
]

{
$(($1 * $2)

w M=

" . r e
R A e e

el = g
™ Ll LI M o AT D

greet "Alice"

~lh w1 I

sum=$ (add)
"The sum is: $sum”

-
“
-
e
-
e
-
i
-
ra
-
“
m
r
-
e
-
i
-
ra
=

product=$%$(multiply)
"The product is: $product”

L
[I S I T w4]

L L

Hello, Alice!
The sum is: 8
The product is:

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

STUDENTS-HUB.com Uploaded By: Ahmad K Hamdan

