

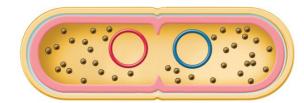
7

Microbial Growth

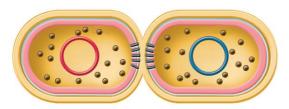
Reproductive Strategies

- The reproductive strategies of eukaryotic microbes
 - asexual and sexual, haploid or diploid
- Bacteria and Archaea
 - haploid only, asexual binary fission, budding, filamentous
 - all must replicate and segregate the genome prior to division

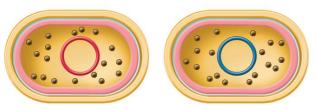
(a) A young cell at early phase of cycle


Cell wall
Cell membrane

Chromosome 1
Chromosome 2

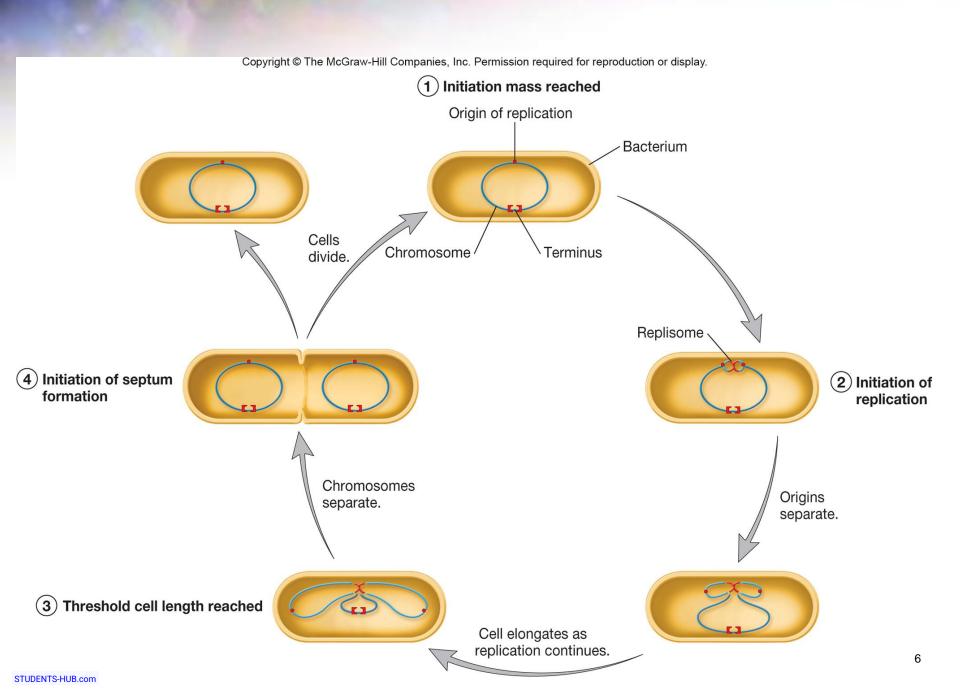

Ribosomes

(b) A parent cell prepares for division by enlarging its cell wall, cell membrane, and overall volume. DNA replication then starts.


(c) The septum begins to grow inward as the chromosomes move toward opposite ends of the cell. Other cytoplasmic components are distributed to the two developing cells.

(d) The septum is synthesized completely through the cell center, creating two separate cell chambers.

(e) At this point, the daughter cells are divided. Some species separate completely as shown here, while others remain attached, forming chains, doublets, or other cellular arrangements.



Bacterial Cell Cycle

- Cell cycle is sequence of events from formation of new cell through the next cell division
 - most bacteria divide by binary fission
- Two pathways function during cycle
 - DNA replication and partition
 - cytokinesis

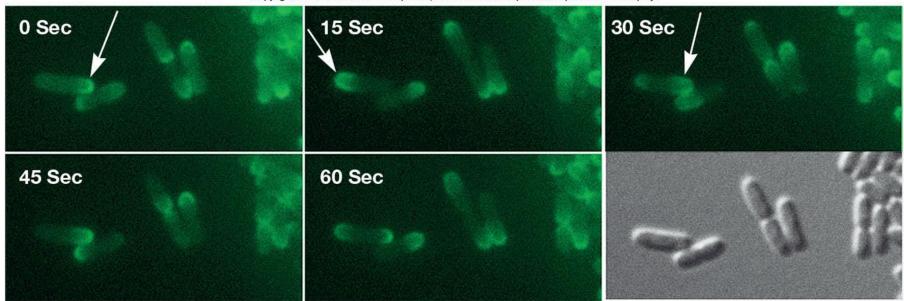
Chromosome Replication and Partitioning - 1

- Most bacterial chromosomes are circular
- Single origin of replication site at which replication begins
- Terminus site at which replication is terminated, located opposite of the origin
- Replisome group of proteins needed for DNA synthesis
- DNA replication proceeds in both directions from the origin
- Origins move to opposite ends of the cell

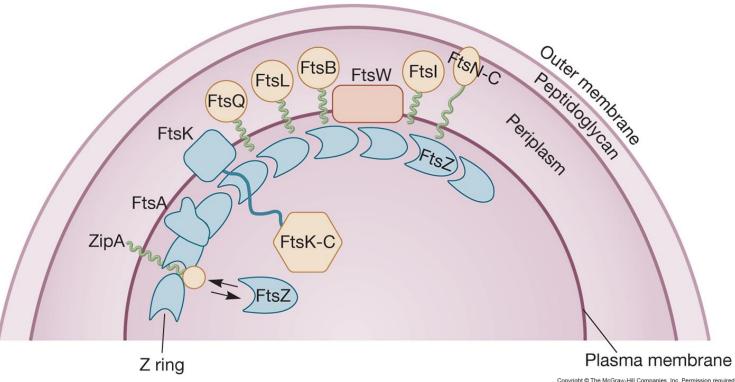
Chromosome Partitioning

- Replisome pushes, or condensation of, daughter chromosomes to opposite ends
- MreB (murein cluster B) an actin homolog, plays role in determination of cell shape as spiral inside cell periphery, and chromosome segregation
 - new origins associate with MreB tracks
 - if MreB is mutated, chromosomes do not segregate

Cytokinesis - Septation


- Septation formation of cross walls between daughter cells
- Several steps
 - selection of site for septum formation
 - assembly of Z ring
 - linkage of Z ring to plasma membrane (cell wall)
 - assembly of cell wall synthesizing machinery
 - constriction of cell and septum formation

Z Ring Formation - Role in Septation


Protein FtsZ

- tubulin homologue, found in most bacteria and archaea
- polymerization forms Z ring, filaments of meshwork
- MinCDE system in E. coli limits the Z ring to the center of the cell
 - MinC, MinD, MinE oscillate from one side of cell to other
 - link Z ring to cell membrane
 - Z ring constricts and cell wall synthesis of septal wall

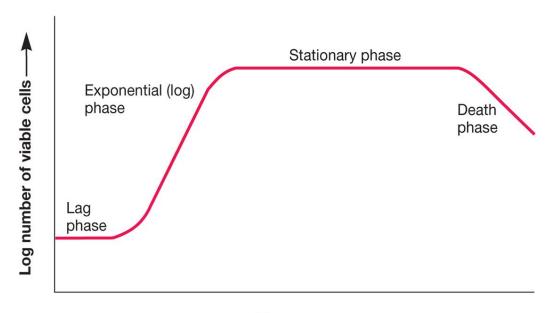
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reprinted with permission from the American Society for Microbiology (Microbe 2008, 3(7): 629-36); 7.15a: Dr. Joachim Reitner

The E. coli divisome

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 7.1 Divisome Proteins and Their Functions				
Divisome Protein	Function			
FtsA, ZipA	Anchor Z ring to plasma membrane			
FtsZ	Forms Z ring			
FtsK	Chromosome segregation and separation of chromosome dimers			
FtsQLB	May provide a scaffold for assembly of proteins involved in peptidoglycan synthesis			
Ftsl ¹ , FtsW	Peptidoglycan synthesis			
FtsN	Thought to trigger constriction initiation			


Growth

- Increase in cellular constituents that may result in:
 - increase in cell number
 - increase in cell size
- Growth refers to population growth rather than growth of individual cells

The Growth Curve

- Observed when microorganisms are cultivated in batch culture
- Usually plotted as logarithm of cell number versus time
- Has four distinct phases

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lag Phase

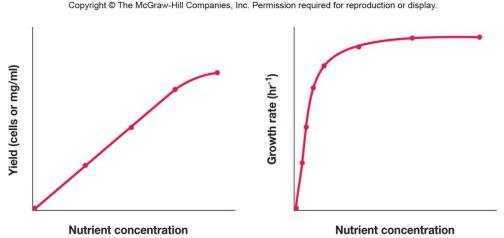
Cell synthesizing new components

- e.g., to replenish spent materials
- e.g., to adapt to new medium or other conditions

Varies in length

 in some cases can be very short or even absent

Exponential Phase


- Also called log phase
- Rate of growth and division is constant and maximal
- Population is most uniform in terms of chemical and physical properties during this phase

Balanced Growth

- During log phase, cells exhibit balanced growth
 - cellular constituents manufactured at constant rates relative to each other

Unbalanced Growth

- Rates of synthesis vary relative to each other
- Occurs under a variety of conditions
 - change in nutrient levels
 - shift-up (poor medium to rich medium)
 - shift-down (rich medium to poor medium)
 - change in environmental conditions

17

STUDENTS-HUB.com (a) (b)

Stationary Phase

- Closed system population growth eventually ceases, total number of viable cells remains constant
 - active cells stop reproducing or reproductive rate is balanced by death rate

Possible Reasons for Stationary Phase

- Nutrient limitation
- Limited oxygen availability
- Toxic waste accumulation
- Critical population density reached

Stationary Phase and Starvation Response

- Entry into stationary phase due to starvation and other stressful conditions activates survival strategy
 - morphological changes
 - e.g., endospore formation
 - decrease in size, protoplast shrinkage, and nucleoid condensation
 - RpoS protein assists RNA polymerase in transcribing genes for starvation proteins

Starvation Responses

- Production of starvation proteins
 - increase cross-linking in cell wall
 - Dps protein protects DNA
 - chaperone proteins prevent protein damage
- Cells are called persister cells
 - long-term survival
 - increased virulence

Senescence and Death Phase

- Two alternative hypotheses
 - cells are Viable But Not Culturable (VBNC)
 - cells alive, but dormant, capable of new growth when conditions are right
- Programmed cell death
 - fraction of the population genetically programmed to die (commit suicide)

The Influence of Environmental Factors on Growth

 Most organisms grow in fairly moderate environmental conditions

Extremophiles

grow under harsh conditions that would kill most other organisms

(239) Extremophiles 101 | National Geographic - YouTube

Copyright & The McGraw-fill Companies, Inc. Fermission required for reproduction of display.					
Table 7.2 Microbial Responses to Environmental Factors					
Descriptive Term	Definition	Representative Microorganisms			
Solute and Water Ac	tivity				
Osmotolerant	Able to grow over wide ranges of water activity or osmotic concentration	Staphylococcus aureus, Saccharomyces rouxii			
Halophile	Requires high levels of sodium chloride, usually above about 0.2 M, to grow	Halobacterium, Dunaliella, Ectothiorhodospira			
pH					
Acidophile	Growth optimum between pH 0 and 5.5	Sulfolobus, Picrophilus, Ferroplasma, Acontium			
Neutrophile	Growth optimum between pH 5.5 and 8.0	Escherichia, Euglena, Paramecium			
Alkaliphile	Growth optimum between pH 8.0 and 11.5	Bacillus alcalophilus, Natronobacterium			
Temperature					
Psychrophile	Grows at 0°C and has an optimum growth temperature of 15°C or lower	Bacillus psychrophilus, Chlamydomonas nivalis			
Psychrotroph	Can grow at 0–7°C; has an optimum between 20 and 30°C and a maximum around 35°C	Listeria monocytogenes, Pseudomonas fluorescens			
Mesophile	Has growth optimum between 20 and 45°C	Escherichia coli, Trichomonas vaginalis			
Thermophile	Can grow at 55°C or higher; optimum often between 55 and 65°C	Geobacillus stearothermophilus, Thermus aquaticus, Cyanidium caldarium, Chaetomium thermophile			
Hyperthermophile	Has an optimum between 85 and about 113°C	Sulfolobus, Pyrococcus, Pyrodictium			
Oxygen Concentration	on				
Obligate aerobe	Completely dependent on atmospheric O ₂ for growth	Micrococcus luteus, most protists and fungi			
Facultative anaerobe	Does not require O ₂ for growth but grows better in its presence	Escherichia, Enterococcus, Saccharomyces cerevisiae			
Aerotolerant anaerobe	Grows equally well in presence or absence of O ₂	Streptococcus pyogenes			
Obligate anaerobe	Does not tolerate O ₂ and dies in its presence	Clostridium, Bacteroides, Methanobacterium			
Microaerophile	Requires O_2 levels between 2–10% for growth and is damaged by atmospheric O_2 levels (20%)	Campylobacter, Spirillum volutans, Treponema pallidum			
Pressure					
Piezophile (barophile)	Growth more rapid at high hydrostatic pressures	Photobacterium profundum, Shewanella benthica			

Solutes and Water Activity

- Changes in osmotic concentrations in the environment may affect microbial cells
 - hypotonic solution (lower osmotic concentration)
 - water enters the cell
 - cell swells may burst
 - hypertonic (higher osmotic concentration)
 - water leaves the cell
 - membrane shrinks from the cell wall (plasmolysis) may occur

Water Activity (a_w)

- Water activity of a solution is 1/100 the relative humidity of solution
- Also equal to ratio of solution's vapor pressure (Psoln) to that of pure water (Pwater)
- Aw = Psoln/ Pwater
 - low water activity means most water is bound
- Osmotolerant microbes can grow over wide ranges of water activity

Solutes and Water Activity

- water activity (a_w)
 - amount of water available to organisms
 - reduced by interaction with solute molecules (osmotic effect)

higher [solute] \Rightarrow lower a_w

reduced by adsorption to surfaces (matric effect)

Microbes Adapt to Changes in Osmotic Concentrations

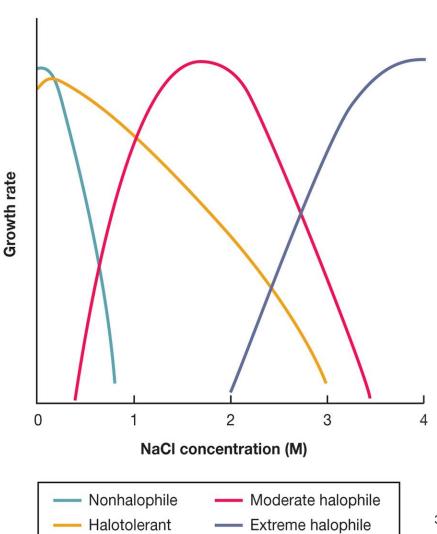
- Reduce osmotic concentration of cytoplasm in hypotonic solutions
 - mechanosensitive (MS) channels in plasma membrane allow solutes to leave
- Increase internal solute concentration with <u>compatible solutes</u> to increase their internal osmotic concentration in hypertonic solutions
 - solutes compatible with metabolism and growth

Extremely Adapted Microbes

Halophiles

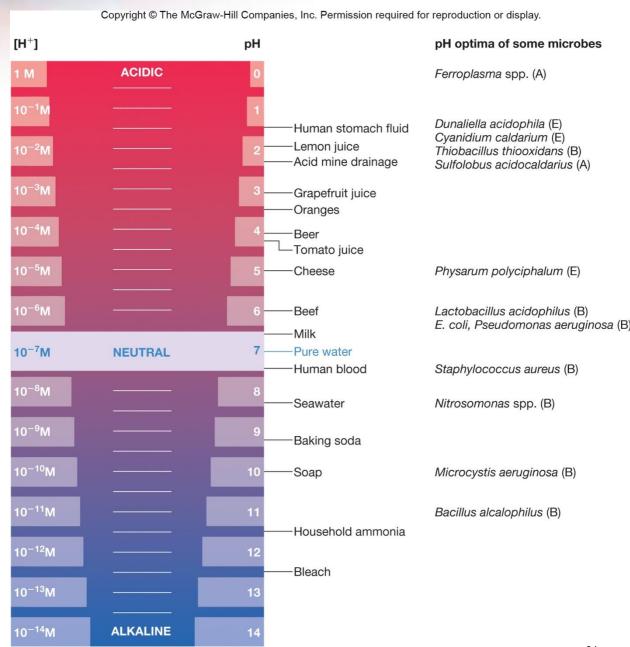
 grow optimally in the presence of NaCl or other salts at a concentration above about 0.2M

Extreme halophiles


- require salt concentrations of 2M and 6.2M
- extremely high concentrations of potassium
- cell wall, proteins, and plasma membrane require high salt to maintain stability and activity

Effects of NaCl on Microbial **Growth**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Halophiles

- grow optimally at >0.2 M
- Extreme halophiles
 - require >2 M

pH

- measure of the relative acidity of a solution
- negative logarithm of the hydrogen ion concentration

pH

Acidophiles

- growth optimum between pH 0 and pH 5.5

Neutrophiles

growth optimum between pH 5.5 and pH 7

Alkaliphiles (alkalophiles)

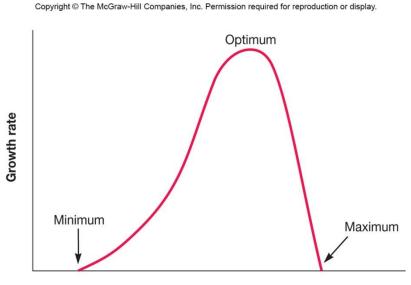
growth optimum between pH 8.5 and pH 11.5

pH

- Most microbes maintain an internal pH near neutrality
 - the plasma membrane is impermeable to proton
 - exchange potassium for protons
- Acidic tolerance response
 - pump protons out of the cell
 - some synthesize acid and heat shock proteins that protect proteins
- Many microorganisms change the pH of their habitat by producing acidic or basic waste products

Temperature

- Microbes cannot regulate their internal temperature
- Enzymes have optimal temperature at which they function optimally
- High temperatures may inhibit enzyme functioning and be lethal


Organisms exhibit distinct cardinal growth

temperatures

- minimal

maximal

optimal

Temperature Ranges for Microbial Growth

- psychrophiles 0° C to 20° C
- psychrotrophs 0° C to 35° C
- mesophiles 20° C to 45° C
- thermophiles 55° C to 85° C
- hyperthermophiles 85° C to 113° C

Hyperthermophiles
Thermophiles
Mesophiles

50

Temperature (°C)

60

80

Psychrotrophs

20

30 40

Psychrophiles

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

90 100 110 120

Table 7.3 Temperature Ranges for Microbial Growth					
CARDINAL TEMPERATURES (°C)					
Microorganism	Minimum	Optimum	Maximum		
Nonphotosynthetic Bacteria and Archaea					
Bacillus psychrophilus	-10	23-24	28-30		
Pseudomonas fluorescens	4	25-30	40		
Enterococcus faecalis	0	37	44		
Escherichia coli	10	37	45		
Neisseria gonorrhoeae	30	35–36	38		
Thermoplasma acidophilum	45	59	62		
Thermus aquaticus	40	70-72	79		
Pyrococcus abyssi	67	96	102		
Pyrodictium occultum	82	105	110		
Pyrolobus fumarii	90	106	113		
Photosynthetic Bacteria					
Anabaena variabilis	ND ¹	35	ND		
Synechococcus eximius	70	79	84		
Protists					
Chlamydomonas nivalis	-36	0	4		
Amoeba proteus	4–6	22	35		
Skeletonema costatum	6	16-26	>28		
Trichomonas vaginalis	25	32-39	42		
Tetrahymena pyriformis	6–7	20-25	33		
Cyclidium citrullus	18	43	47		
Fungi					
Candida scotti	0	4–15	15		
Saccharomyces cerevisiae	1–3	28	40		
Mucor pusillus	21–23	45-50	50-58		

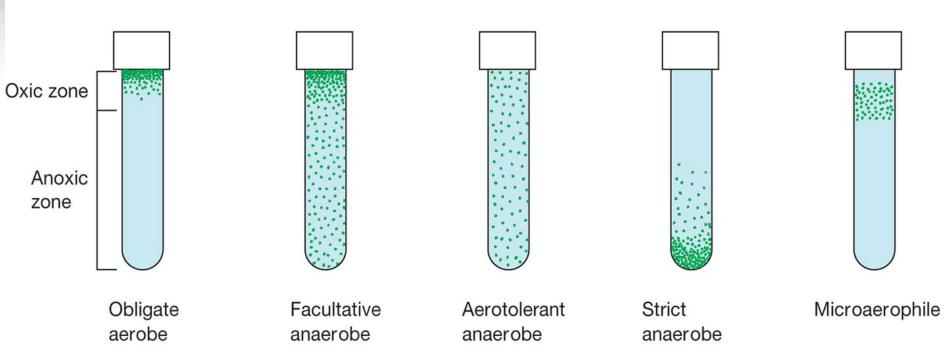
Adaptations of Thermophiles

- Protein structure stabilized by a variety of means
 - e.g., more H bonds
 - e.g., more proline
 - e.g., chaperones
- Histone-like proteins stabilize DNA
- Membrane stabilized by variety of means
 - e.g., more saturated, more branched and higher molecular weight lipids
 - e.g., ether linkages (archaeal membranes)

(239) thermophiles & hyperthermophiles - YouTube

Oxygen Concentration

 growth in oxygen correlates with microbes energy conserving metabolic processes and the electron transport chain (ETC) and nature of terminal electron acceptor


Oxygen and Bacterial Growth

- Aerobe
 - grows in presence of atmospheric oxygen (O₂)
 which is 20% O₂
- Obligate aerobe requires O₂
- Anaerobe
 - grows in the absence of O₂
- Obligate anaerobe
 - usually killed in presence of O₂

Oxygen and Bacterial Growth

- Microaerophiles
 - requires 2–10% O₂
- Facultative anaerobes
 - do not require O₂ but grow better in its presence
- Aerotolerant anaerobes
 - grow with or without O_2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Enzyme content

+ SOD + Catalase

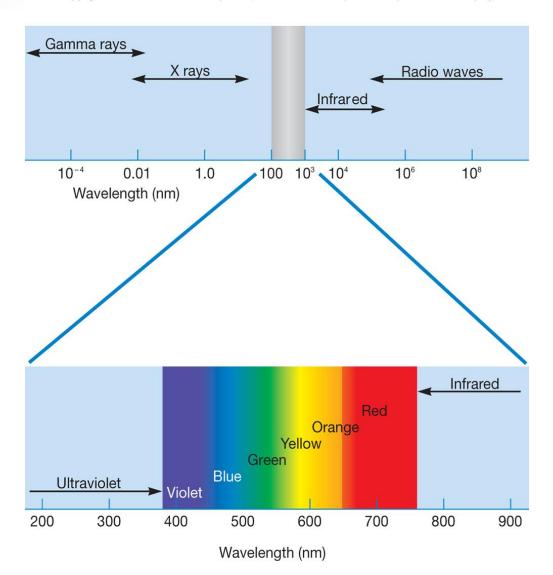
- + SOD
- + Catalase

- + SOD
- Catalase

- SOD
- Catalase

- + SOD
- +/- Catalase (low levels)

Basis of Different Oxygen Sensitivities


- Oxygen easily reduced to toxic reactive oxygen species (ROS)
 - superoxide radical
 - hydrogen peroxide
 - hydroxyl radical
- Aerobes produce protective enzymes
 - superoxide dismutase (SOD)
 - catalase
 - peroxidase

Strict Anaerobic Microbes

- All strict anaerobic microorganisms lack or have very low quantities of
 - superoxide dismutase
 - catalase
- These microbes cannot tolerate O₂
- Anaerobes must be grown without O₂
 - work station with incubator
 - gaspak anaerobic system

The Electromagnetic Spectrum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Radiation Damage

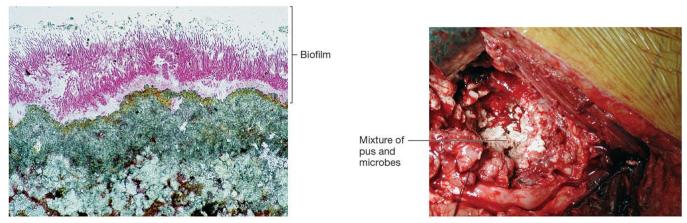
- Ionizing radiation
 - x-rays and gamma rays
 - mutations → death (sterilization)
 - disrupts chemical structure of many molecules, including DNA
 - damage may be repaired by DNA repair mechanisms if small dose
 - Deinococcus radiodurans
 - extremely resistant to DNA damage

Radiation Damage...

- Ultraviolet (UV) radiation
 - wavelength most effectively absorbed by DNA is 260 nm
 - mutations → death
 - causes formation of thymine dimers in DNA
 - requires direct exposure on microbial surface
 - DNA damage can be repaired by several repair mechanisms

Radiation Damage...

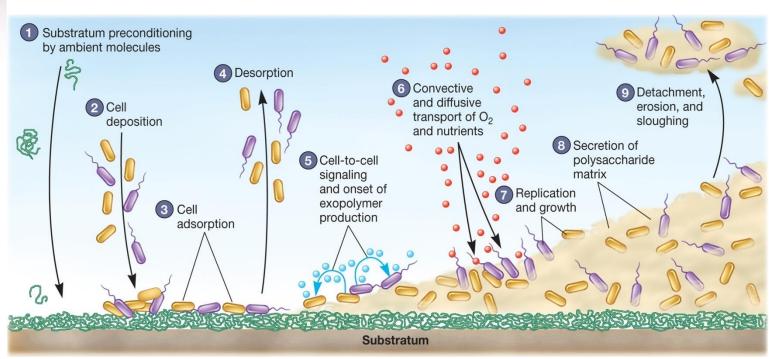
- Visible light
 - at high intensities generates singlet oxygen (¹O₂)
 - powerful oxidizing agent
 - carotenoid pigments
 - protect many light-exposed microorganisms from photooxidation


Microbial Growth in Natural Environments

 Microbial environments are complex, constantly changing, often contain low nutrient concentrations (oligotrophic environment) and may expose a microorganism to overlapping gradients of nutrients and environmental factors

Biofilms

- Most microbes grow attached to surfaces (sessile) rather than free floating (planktonic)
- These attached microbes are members of complex, slime enclosed communities called a biofilm
- Biofilms are ubiquitous in nature in water
- Can be formed on any conditioned surface


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Charged matrix Positively charged Cell-to-cell antimicrobial signals (binds to negatively charged slime) Change in physiology Persister cells Nutrient gradient Few nutrients Oxygen gradient > Low O₂ Genetic diversity Slow Fast growers growers

Biofilm Formation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Microbes reversibly attach to conditioned surface and release polysaccharides, proteins, and DNA to form the extracellular polymeric substance (EPS)
- Additional polymers are produced as microbes reproduce and biofilm matures

Biofilms

- a mature biofilm is a complex, dynamic community of microorganisms
- heterogeneity is differences in metabolic activity and locations of microbes
- interactions occur among the attached organisms
 - exchanges take place metabolically, DNA uptake and communication

Biofilm Microorganisms

- The EPS and change in attached organisms' physiology protects microbes from harmful agents
 - UV light, antibiotics, antimicrobials
- When formed on medical devices, such as implants, often lead to illness
- Sloughing off of organisms can result in contamination of water phase above the biofilm such as in a drinking water system

Cell to Cell Communication Within the Microbial Populations

- Bacterial cells in biofilms communicate in a density-dependent manner called quorum sensing
- Produce small proteins that increase in concentration as microbes replicate and convert a microbe to a competent state
 - DNA uptake occurs, bacteriocins are released

(239) Extremophiles 101 | National Geographic - YouTube

Quorum Sensing

- Acylhomoserine lactone (AHL) is an autoinducer molecule produced by many gram-negative organisms
 - diffuses acrossplasma membrane
 - once inside the cell,
 induces expression of
 target genes
 regulating a variety of
 functions

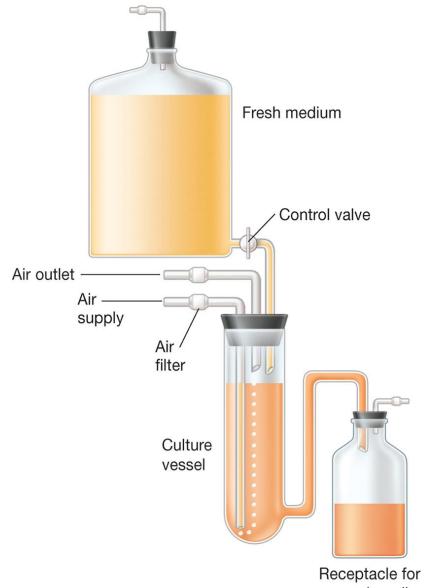
Signal and Structure	Representative Organism	Function Regulated
N-acylhomoserine lactone (AHL)	Vibrio fischeri Agrobacterium tumefaciens Erwinia carotovora Pseudomonas aeruginosa Burkholderia cepacia	Bioluminescence Plasmid transfer Virulence and antibiotic production Virulence and biofilm formation Virulence
Furanosylborate (Al-2) HO HO HO HO HO	Vibrio harveyi ^a	Bioluminescence
Cyclic thiolactone (AIP-II) Gly—Val—Asn—Ala—Cys—Ser-	Staphylococcus aureus O	Virulence
Hydroxy-palmitic acid methyl ester (PAME)	Ralstonia solanacearum	Virulence
Methyl dodecenoic acid	Xanthomonas campestris	Virulence
Farnesoic acid	Candida albicans O I C-OH	Dimorphic transition and virulence
3-hydroxytridecan-4-one	Vibrio cholerae	Virulence

a Other bacteria make a form of Al-2 that lacks boron

7.8 Continuous culture of microorganisms

- 1. Distinguish batch culture and continuous culture
- 2. Differentiate chemostats and turbidostats
- 3. Discuss the relationship between the dilution rate of a chemostat and population size and growth rate

The Continuous Culture of Microorganisms

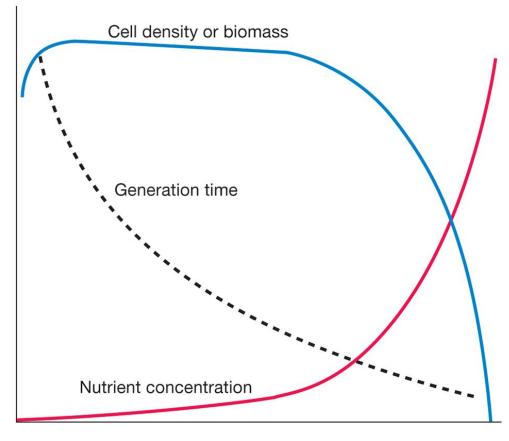

- Growth in an open system
 - continual provision of nutrients
 - continual removal of wastes
- Maintains cells in log phase at a constant biomass concentration for extended periods
- Achieved using a continuous culture system

Importance of Continuous Culture Methods

- Constant supply of cells in exponential phase growing at a known rate
- Study of microbial growth at very low nutrient concentrations, close to those present in natural environment
- Study of interactions of microbes under conditions resembling those in aquatic environments
- Food and industrial microbiology

The Chemostat

- Rate of incoming medium = rate of removal of medium from vesse
- An essential nutrient is in limiting quantities


Dilution Rate and Microbial Growth

Measurement value

dilution rate – rate at which medium flows through vessel relative to vessel size

note: cell density
maintained at wide
range of dilution
rates and
chemostat operates
best at low dilution
rate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dilution rate