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Boundary-Value Problems in Other Coordinate Systems

CHAPTER CONTENTS

14.1 Problems in Polar Coordinates
14.2 Problems in Cylindrical Coordinates
14.3 Problems in Spherical Coordinates

Chapter 14 in Review

In the previous chapter we utilized Fourier series to solve boundary-value problems that were
described in the Cartesian or rectangular coordinate system. In this chapter we will finally put to
practical use the theory of Fourier—Bessel series (Section 14.2) and Fourier—Legendre series
(Section 14.3) in the solution of boundary-value problems described, respectively in cylindrical
coordinates and in spherical coordinates.

14.1 Problems in Polar Coordinates

= Introduction All the boundary-value problems that have been considered so far have been
expressed in terms of rectangular coordinates. If, however, we wish to find temperatures in a circular
disk, a circular cylinder, or in a sphere, we would naturally try to describe the problems in polar
coordinates, cylindrical coordinates, or spherical coordinates, respectively.

Because we consider only steady-state temperature problems in polar coordinates in this section,
the first thing that must be done is to convert the familiar Laplace’s equation in rectangular
coordinates to polar coordinates.

[J Laplacian in Polar Coordinates The relationships between polar coordinates in the plane and
rectangular coordinates are given by

x=rcosf, y=rsind and e mnﬂ:%_

See FIGURE 14.1.1 The first pair of equations transform polar coordinates (r, #) into rectangular
coordinates (x, y); the second pair of equations enable us to transform rectangular coordinates into
polar coordinates. These equations also make it possible to convert the two-dimensional Laplacian of
the function u, V2u = 0°u/0x*+0%u/0y?, into polar coordinates. You are encouraged to work through
the details of the Chain Rule and show that

x, yvhor
(r.g}
™

FIGURE 14.1.1 Polar coordinates of a point (x, y) are (r, 0)
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Adding (1) and (2) and simplifying yields the Laplacian of u in polar coordinates:

- é.lzu+ldu+ 1ty
= _— ———
ar? rear riae?

In this section we shall concentrate only on boundary-value problems involving Laplace’s equation
in polar coordinates:

o-i 1 oid I

_+ RN
S e S a1

= 0. (3)

Our first example is the Dirichlet problem for a circular disk. We wish to solve Laplace’s equation
(3) for the steady-state temperature u (», ) in a circular disk or plate of radius ¢ when the
temperature of the circumference is u (¢, €) = f(6), 0 < 6 <2x. See FIGURE 14.1.2. It is assumed that
the two faces of the plate are insulated. This seemingly simple problem is unlike any we have
encountered in the previous chapter.

v
=l

<

FIGURE 14.1.2 Dirichlet problem for a circular plate

EXAMPLE 1| Steady Temperatures in a Circular Plate

Solve Laplace’s equation (3) subject to u (¢, 8) = (), 0 <0 < 2x.

SOLUTION Before attempting separation of variables we note that the single boundary condition is
nonhomogeneous. In other words, there are no explicit conditions in the statement of the problem that
enable us to determine either the coefficients in the solutions of the separated ODEs or the requirec
eigenvalues. However, there are some implicit conditions.

First, our physical intuition leads us to expect that the temperature u(r, 6) should be continuous and
therefore bounded inside the circle » = c¢. In addition, the temperature u(r, ) should be single-valued;
this means that the value of u should be the same at a specified point in the plate regardless of the

p%gﬁ(}f_&({%ﬁggg oint. Since (r, 6 + 2r) 1s an equivalent destgrl tio eoé E(;/ 21)7;3.)}‘?(% Igr rr(% we

must have u(r, 0 2m). That 1s, u(r, 8) must be periodic in R perio e seek a
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product solution u = R(r)®(6), then ®(0) needs to be 2z-periodic.

With all this in mind, we choose to write the separation constant in the separation of variables as
A

r:R’-‘ + },R.' B B.-r

R o
The separated equations are then
r*R" + rR" — AR=0 (4)
"+ A0 =0 (5)
We are seeking a solution of the problem
@" + A0 =0, O(f) = 08 + 2m). (6)

Although (6) i1s not a regular Sturm-Liouville problem, nonetheless the problem generates
eigenvalues and eigenfunctions. The latter form an orthogonal set on the interval [0, 2z]. Of the three
possible general solutions of (5),

8(0) = ¢, + ¢, 8, A=10 {7)
®i#) = ¢, cosh af + ¢, sinh a8, A=—a?<D (8)
B(f) = ¢, cos af + ¢, sin ab, A=igr S (9)

we can dismiss (8) as inherently non-periodic unless ¢; =c¢, = 0. Similarly, solution (7) is non-
periodic unless we define ¢, = 0. The remaining constant solution ®(0) = ¢, ¢; # 0, can be assigned

any period and so A = 0 is an eigenvalue. Finally, solution (9) will be 2z-periodic if we take o = n,
where n =1, 2,.... * The eigenvalues of (6) are then Ay =0 and A, = nn=1,2,...Ifwe correspond

Ay =0 with n = 0, the eigenfunctions of (6) are
08 =c,n=0, and Gf)=ccosnb + cysinnf, n=1,2,. ...
When A, = n%,n=0,1,2,.... the solutions of the Cauchy—Euler DE (4) are
Rir) =c; + glnr, n. =0, (10)
R = Y™ et =20 (11}

Now observe in (11) that »™ = 1/7". In either of the solutions (10) or (11), we must define ¢, = 0 in

order to guarantee that the solutionu 1s bounded at the center of the plate (which is » = 0). Thus
product solutions u, = R(r)®(0) for Laplace’s equation in polar coordinates are

y = A, n =0, and i, = r"(A,cosnd + B sinnd), n=1,2, ...,
where we have replaced c;c; by 4, forn = 0 and by 4, forn = 1, 2,....; the product c;c, has been

replaced by B,,. The superposition principle then gives

u(r, 8) = Ay + > r"(A, cosnf + B,sinné). (12)

n=1

By apphying e bowdarygendition at » = ¢ to the result in (12) we re¢oghizeded By: anonymous



f(8) = A, + > c"(A, cosn8 + B, sinné)

n=1

For example, note that cos n(6 + 2x) = cos(nf + 2nm) = cos no.

as an expansion of f'in a full Fourier series. Consequently we can make the identifications

a

A, = Tl AL e, and R = By
That is,
I I'fr
Agi= ,|—| f(8)de (13)
=TT o
N
A= ’_—l filB)ycosnB db {14)
CT
i rdm
F r—| fi@)sinn@ do. {15)

C™T Jg

The solution of the problem consists of the series given in (12), where the coefficients 4, 4,, and B

are defined in (13), (14), and (15), respectively.

S

Observe in Example 1 that corresponding to eachpositive eigenvalue, A, = n’,n=1,2,..., there

are two different eigenfunctions—namely, cos n6 and sin#n6. In this situation the eigenvalues are

sometimes called double eigenvalues.

EXAMPLE 2| Steady Temperatures in a Semicircular Plate

Find the steady-state temperature u(r, ) in the semicircular plate shown in FIGURE 14.1.3.

SOLUTION The boundary-value problem is

=10 at
'H =R

FIGURE 14.1.3 Semicircular plate in Example 2
Defining u = R(7)®(6) and separating variables gives

r'R"+rR' _ @
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and
PR+ R —AR=0 {16)
&+ A =0, (17)

The homogeneous conditions stipulated at the boundaries 8 = 0 and 6 = r translate into ®(0) = 0 and
O(m) = 0. These conditions together with equation (17) constitute a regular Sturm—Liouville problem:

A"+ A0 =0, O0) =0 06(mz)=0. (18)

This familiar problem* possesses eigenvalues A, = n> and eigenfunctions @(0) = c, sinn 6, n =1, 2,.
... Also, by replacing A by n? the solution of (16) is R(r) =c3" +cg™. The reasoning used in
Example 1; namely, that we expect a solution u of the problem to be bounded at » = 0, prompts us to
define ¢, = 0. Therefore u,, = R(r)O(0) = 4,7" sinn 6 and

ulr, 8) = > A r"sinné.
1

A=

The remaining boundary condition at » = ¢ gives the Fourier sine series

1]
Uy = Eﬂ_,,c"" sin n#.
n=1
1l [l
Consequently Ac' = L| Uy sinnf da,
’ "-r_.'l_'_l )

20 1 — (—1)"

and so A, =
r(..'l ”

Hence the solution of the problem is given by

2iug = 1 — (=1 fr\"
sl =N f\—. sin n 8.
n=1 n L

14.1 | Exercises Answers to selected odd-numbered problems begin on page ANS-33.

In Problems 1-4, find the steady-state temperature u(r, 8) in a circular plate of radius 1 if the
temperature on the circumference is as given.

1. 0=<6 <=
u(l, 8) = {””‘ =T
0, o< 8 < 27

2- . = = T
wl,® = {E' Uil m

a— 8, w<8< 2w
3. wl.8)=2m0—620=8<2r
4. u(l,6)=0.0<6<2mw
5. Ifthe boundaries 8 = 0 and 8 = & of a semicircular plate of radius 2 are insulated, we then have
ol
8 |p=a

STREMNT Sehtly Besiermperature u(r, 0) if Uploaded By: anonymous
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o 0<8<a/2
w2, 8) = { 2 . :

0, @«f2<8<,
where u 1s a constant.

6. Find the steady-state temperature u(r, ) in a semicircular plate of radius 1 if the boundary-
conditions are

wl,® =u, 0<0<w
wr,) =0, wir,m) =1y, 0<r=<1,
where u 1s a constant.

7. Find the steady-state temperature u(7, 6) in the plate in the shape of an annulus bounded between
two concentric circles of radius a and b, a < b, shown in FIGURE 14.1.4. [Hint: Proceed as in
Example 1.]

dr
A

FIGURE 14.1.4 Annular plate in Problem 7

8. Ifthe boundary-conditions for the annular plate in Figure 14.1.4 are
wa, ) =y, ulb,0) =u,, 0<8 <2,
where u( and u; are constants, show that the steady-state temperature is given by

tp In(r/b) — u, In(r/a)

ir, 8y =

Infa/b)

[Hint: Try a solution of the form u(r, 8) = v(r, 8) + y(r).]
9. Find the steady-state temperature u(r, 6) in the annular plate shown in Figure 14.1.4 if the
boundary conditions are

d
2V =0, upb.8)=f06), 0<8<2m

ar r=a

10. Find the steady-state temperature u(r, ) in the annular plate shown in Figure 14.1.4ifa=1,b =
2, and

wil,® =75sinP, w28 =60cosd, 0827

11. Find the steady-state temperature u(r, 6) in the semiannular plate shown in FIGURE 14.1.5if
the boundary conditions are

STUDENTS-HUB.com Uploaded By: anonymous


LENOVO
Highlight


wa, ) =8(m—6), wb H=0, 0<@ <7

wr,M =0, wr,a)=0, a<r <25

FIGURE 14.1.5 Semiannular plate in Problem 11

12. Find the steady-state temperature u(r, 6) in the semiannular plate shown in Figure 14.1.5 ifa =
1,b=2, and

wl,0) =0, w2.0)=uy 0<0 <
wr,M =0, wr,am)=0, 1<r<2,
where 1, 1s a constant.

13. Find the steady-state temperature u(r, 8) in the quarter-circular plate shown in FIGURE 14.1.6.

¥
M :__l"i.[-] j

FIGURE 14.1.6 Quarter plate in Problem 13

14. Find the steady-state temperature u(», 6) in the quarter-circular plate shown in Figure 14.1.6 if
the boundaries & = 0 and 0 = 7/2 are insulated, and

{ 1, 0<6<u/4
e, 8) = ,
0, m/4<d<m.

15. Find the steady-state temperature u(r, ) in the infinite wedge-shaped plate shown in FIGURE
14.1.7. [Hint: Assume that the temperature is bounded as » — 0 and as » — .]

y

=30

I "
u=10

FIGURE 14.1.7 Wedge-shaped plate in Problem 15

1§Tuﬁ1€|ﬂ1—5§'ﬁl%@9@ quadrant shown in FIGURE 14.1.8is onU-@l%ﬁ’tQQﬁ fRY aRRGEY piatesn



Figure 14.1.4. Find the steady-steady temperature u(r, ).

v P=3z

FIGURE 14.1.8 Plate in Problem 16

17.

Solve the exterior Dirichlet problem for a circular disk of radius ¢ shown in FIGURE 14.1.9. In
other words, find the steady-state temperature u(r, 8) in a plate that coincides with the entire xy-
plane in which a circular hole of radius ¢ has been cut out around the origin and the temperature
on the circumference of the hole is f(6). [Hint: Assume that the temperature u is bounded as r —
00.

u=jig)

ar
Y,

FIGURE 14.1.9 Infinite plate in Problem 17

18.

Consider the steady-state temperature u(r, 6) in the semiannular plate shown in Figure 14.1.5
witha =1, b =2, and boundary conditions

wl, @ =0 w2.6H=0, 08 <
wr,M =0, wlr,my=r, 1 <r<2.

Show that in this case the choice of A = —a? in (4) and (5) leads to eigenvalues and
eigenfunctions. Find the steady-steady temperature u(r, ).

Computer Lab Assignment

19. (a) Find the series solution for u(r, ) in Example 1 when

u(l. §1 = {]{}D 0<8 <7
5 ) = {]. T .,-_._-. E -r_'_\'_ 27‘_.

See Problem 1.

(b) Use a CAS or a graphing utility to plot the partial sumSs(r, 8) consisting of the first five

nonzero terms of the solution in part (a) forr = 0.9, = 0.7, = 0.5, = 0.3, = 0.1.
Superimpose the graphs on the same coordinate axes.

STV@ E%B%Jd%&ﬁmemperamres 1(0.9, 1.3), u(0.7, 2), u(0.5, é?ﬁ!%é‘.@?zﬁ,yél@ﬂ?%ﬁ%n



approximate u(0.9, 2z — 1.3), u(0.7, 2z — 2), u(0.5, 27 — 3.5), u(0.3, 27 — 4), u(0.1, 27 —
5.5).

(d) What is the temperature at the center of the circular plate? Why is it appropriate to call this
value the average temperature in the plate? [ Hint: Look at the graphs in part (b) and look at
the numbers in part (c).]

= Discussion Problems

20. Solve the Neumann problem for a circular plate:

#Fu 1 ou 1 o%u ’

et kg el Q- ey slirlie
ar®  rar  r? o

did . i

== =fif), 0<0 < 2w

E”‘ r=a

Give the compatibility condition. [Hint: See Problem 21 of Exercises 13.5.]

21. Consider the annular plate shown in Figure 14.1.4. Discuss how the steady-state temperature
u(r, ) can be found when the boundary conditions are

wia, 8) = fi@), u(b.8)=g@). 0=0=17.

14.2 Problems in Cylindrical Coordinates

= Introduction In this section we are going to consider boundary-value problems involving forms
of the heat and wave equation in polar coordinates and a form of Laplace’s equation in cylindrical
coordinates. There is a commonality throughout the examples and most of the exercises—the
boundary-value problem possesses radial symmetry.

[] Radial Symmetry The two-dimensional heat and wave equations

au du i T B ail
l—+-—>)=— and & —+—J=—

Ly at s

expressed in polar coordinates are, in turn,

3 1 al Lg% i a
B e+ =22 4 I)=—“‘ and af(

a2 | roar | r2ar) T it ar

2

-

g . 1.8 . 4 dlu) & u
o R R TR 1) =

rar PG ()

where u =u(r, 0, t). To solve a boundary-value problem involving either of these equations by
separation of variables we must define u = R(r)®(0)7(¢). As in Section 13.8, this assumption leads to
multiple infinite series. See Problem 17 in Exercises 14.2. In the discussion that follows we shal
consider the simpler, but still important, problems that possess radial symme try—that is, problems
in which the unknown function u is independent of the angular coordinate 6. In this case the heat and
wave equations in (1) take, in turn, the forms
£ ¥ : g 2
k(d“+ ]ﬂ)=:—: and a"'{'lmf+la—u)=a—lf. (2)

ar®  roar gor- roar ar’

:’&%fg Buﬁ:sﬁ _f_t S(-rlll L?B .Xg)rrﬁltions described by the second equationuaO(ggle%eB;e}ign%)nl;/?n rgl(JiiSal
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The first example deals with the free undamped radial vibrations of a thin circular membrane. We
assume that the displacements are small and that the motion is such that each point on the membrane
moves in a direction perpendicular to the xy-plane (transverse vibrations)—that is, the u-axis is
perpendicular to the xy-plane. A physical model to keep in mind while studying this example is a
vibrating drumhead.

EXAMPLE 1| Radial Vibrations of a Circular Membrane

Find the displacement u(r, ¢) of a circular membrane of radius ¢ clamped along its circumference if
its initial displacement is f(r) and its initial velocity is g(r). See FIGURE 14.2.1.

1 u=firyatt=0
o 4

FIGURE 14.2.1 Initial displacement of circular membrane in Example 1

SOLUTION The boundary-value problem to be solved is

wic,Hr=0, =0

ou
wir, 0y = fir), _r = gfn, D<r=e¢

r=0
Substituting u = R(r)T(¢) into the partial differential equation and separating variables gives

[
RU R '
r T,r

R aT

—A. (3)
Note in (3) we have returned to our usual separation constant —A. The two equations obtained fromr
(3) are
fIR"+ R+ &rR=10 (4)
and
T" + a’AT = 0. (5)

Because of the vibrational nature of the problem, equation (5) suggests that we use only A =a? > 0, a
> 0. Now (4) 1s not a Cauchy—Euler equation but is the parametric Bessel differential equation o
order v = 0; that is, YR” + R’ + a’rR = 0. From (13) of Section 5.3 the general solution of the last
equation is

Rir) = c fyfar) + c,Yyiar).

STUDENTS-HUB.com UpI(‘)%ded By: anonymous


LENOVO
Highlight

LENOVO
Highlight


The general solution of the familiar equation (5) is
1(t) = cscosaat + c4sinaat

Now recall, the Bessel function of the second kind of order zero has the property that Y(ar) — —oo as

r — 07, and so the implicit assumption that the displacement u(r, ¢) should be bounded at » = 0 forces
us to define ¢, = 0 in (6). Thus R(r) = cJy(ar).

Since the boundary conditionu(c, f) = 0 1s equivalent to R(c) = 0, we must have c;Jy(ac) = 0. We
rule out ¢; = 0 (this would lead to a trivial solution of the PDE), so consequently

Jo(aec) = 0. {7

If x, = a,c are the positive roots of (7), then a,, = x,/c and so the eigenvalues of the problem are A, =
o, = x* /c? and the eigenfunctions are c;Jy(a,7). Product solutions that satisfy the partial differential

equation and the boundary condition are
u, = R(rT(t) = (A, cos aa,t + B, sin aa,H)Jy(a,r), (8)

where we have done the usual relabeling of the constants. The superposition principle then gives

wir,t) = E[s—‘l_., cos aa,t + B, sin aa,)Jyla,r). {9)

n=1

The given initial conditions determine the coefficients 4, and B,,.
Setting £ = 0 in (9) and using u(r, 0) =/ (r) gives

fir) = D Audolanr). (10)
n=1

This last result is recognized as the Fourier—Bessel expansion of the functionf on the interval (0, c).
Hence by a direct comparison of (7) and (10) with (8) and (15) of Section 12.6 we can identify the
coefficients 4, with those given in (16) of Section 12.6:

- o
A, = ——| rifa,)f(r) dr. (1)
o Jila,c) o

Next, we differentiate (9) with respect to t, set # = 0, and use u/(r, 0) = g(r):

(==}
alr) = 2 aee, B, Jole,r).

n=1

This 1s now a Fourier—Bessel expansion of the functiong. By identifying the total coefficientaa,B,
with (16) of Section 12.6 we can write

?

B o= —,,| rl e rigir) dr. (12)
n ”ﬂ'r.l{._*jl_[a.w'.-.:'.--_u [ nfo

Finally, the solution of the given boundary-value problem is the series (9) with coefficients 4, and B

N

defined in (11) and (12), respectively.
STUDENTS-HUB.com Uploaded By: anonymous



[] Standing Waves Analogous to (11) of Section 13.4, the product solutions (8) are called standing
waves. Forn =1, 2, 3, ..., the standing waves are basically the graph of Jy(a,r) with the time varying

amplitude

4, cos aa,t + B, sinaa.,t.

FIGURE 14.2.2 Standing waves

The standing waves at different values of time are represented by the dashed graphs in FIGURE
14.2.2. The zeros of each standing wave in the interval (0,c) are the roots ofJy(a,r) = 0 and

correspond to the set of points on a standing wave where there is no motion. This set of points is
called a nodal line. If (as in Example 1) the positive roots of Jy(a,c) = 0 are denoted by x,,, thenx, =

a,c implies o, = x,/c and consequently the zeros of the standing waves are determined from
STUDENTS-HUB.com Uploaded By: anonymous



Xa
Jola,r) = Jy ([— r‘j = 0.

Now fromTable 5.3.1, the first three positive zeros of J, are (approximately) x; = 2.4, x, = 5.5, and
x3=8.7. Thus for n = 1, the first positive root of

X 2.4
“r-:]({_lf") =0 is Tf‘ =24 o0 F=6

Since we are seeking zeros of the standing waves in the open interval (0, ¢), the last result means that
the first standing wave has no nodal line. For n = 2, the first two positive roots of

Xs : 5.5 5.5
Ja Tr =0 are determined from Tr' =24 and Tr' = 5.5

Thus the second standing wave has one nodal line defined byr =x;c/x, = 2.4¢/5.5. Note thatr =
0.44c <c. Forn = 3, a similar analysis shows that there are two nodal lines defined by r = x¢/x; =
2.4¢/8.7 and r = x,c/x3 = 5.5¢/8.7. In general, the nth standing wave has n — 1 nodal lines » = xc/x,,, r
= XoC/X,,..., ¥ = X,_1C/X,. Since r = constant 1s an equation of a circle in polar coordinates, we see in
Figure 14.2.2 that the nodal lines of a standing wave are concentric circles.

[J Use of Computers It is possible to see the effect of a single drumbeat for the model solved in
Example 1 by means of the animation capabilities of a computer algebra system. In Problem 20 ir
Exercises 14.2 you are asked to find the solution given in (9) when

—Vo. O=r<2»5h

=1, firy =0, and ) =
( fir) il gir) {ﬂ. P

Some frames of a “movie” of the vibrating drumhead are given in FIGURE 14.2.3.

FIGURE 14.2.3 Frames of a CAS “movie”

[J Laplacian in Cylindrical Coordinates From FIGURE 14.2.4we can see that the relationship
between the cylindrical coordinates of a point in space and its rectangular coordinates is given by

x=rcos@,y=rsinf,z=z.

It follows immediately from the derivation of the Laplacian in polar coordinates (see Section 14.1)

that the Laplacian of a function u in cylindrical coordinates is
STUDENTS-HUB.com Uploaded By: anonymous
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{x, _\', Zhor
(ra.z

i 1 ou i #u u
g -~
ar- roar r- a8 0"

FIGURE 14.2.4 Cylindrical coordinates of a point (x, y, z) are (r, 8, z)

EXAMPLE 2| Steady Temperatures in a Circular Cylinder

Find the steady-state temperature in the circular cylinder shown in FIGURE 14.2.5.

SOLUTION The boundary conditions suggest that the temperature # has radial symmetry.

Accordingly, u(r, z) is determined from

Pu 1o &u
—= ﬂs ﬂ ‘-'-'.- f‘ '-'-'- :J-g ‘:} ‘-'-'.- : 1-:'- —1'

arr " rar  ap
W2,7)=0, 0<z<4

u(r, ) =0, wu(r.4)=u, 0O0<r<2

Using u = R(r)Z(z) and separating variables gives

|

FIGURE 14.2.5 Finite cylinder in Example 2

1
R+ FR'

R = g™ 7
and
rR"+R'"+ ArR=10
Z"—AZ=0.

Forlthi-¥rddeS: HWB>ARR > 0, the general solution of (14) is

(13)

(14)
(15)
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R(r) = ciJy(ar) + e, Yy(ar)

and since a solution of (15) is defined on the finite interval [0, 2], we write its general solution as

Z(z) = c3 cosh az + ¢4 sinh az.

As in Example 1, the assumption that the temperature u is bounded at » = 0 demands that ¢, = 0. The

condition (2, z) = 0 implies R(2) = 0. This equation,
Jo(2a) = 0, (16)

defines the positive eigenvalues A, = a," of the problem. Last, Z(0) = 0 implies c; = 0. Hence we

have R = c{Jy(a,r), Z) = c4 sinh a,z,
u, = R(r)Z(z) = A, sinh o, zJ (0 r)
and

(==}
u(r,7) = > A, sinh azJo(ar).

=]

The remaining boundary condition at z = 4 then yields the Fourier—Bessel series

y = > A, sinh da, J (1),

n=1

so that in view of (16) the coefficients are defined by (16) of Section 12.6,

T | f:f[:.[ﬂ'”f'.} dr.
270 2a) Jo

EH’.]
A, sinh 4e, = :

To evaluate the last integral we first use the substitution ¢ = a, 7, followed by 4 [#Jy(1)]
dt

r2oe,

iy, | iy

i
A sinhde, = ————| —[thin] dt = —————,
" " 20203Qa) )y dt L40)] ¢ e, J 1 2ex,)
we obtain
_ iy
" @, sinh 4, J,(2a,)
Finally, the temperature in the cylinder is
2 sinh e, 7
u(r,7) = g >, : T, r).

=] ﬂ” l:"]:”.J-I. '1'&.? J| ': 2&'”]

= tJy(?). From

Do not conclude from two examples that every boundary-value problem in cylindrical coordinates

gives rise to a Fourier—Bessel series.
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Find the steady-state temperatures u(r, z) in the circular cylinder defined by 0 <r<1,0<z <1 if the
boundary conditions are

u(l,z)=1-z,0<z<1
u(r, 0)=0,u(r,1)=0,0<r<1.

SOLUTION Because of the nonhomogeneous condition specified atr = 1 we do not expect the
eigenvalues of the problem to be defined in terms of zeros of a Bessel function of the first kind. As
we did in Section 14.1 it is convenient in this problem to use A as the separation constant. Thus fromr
(13) of Example 2 we see that separation of variables now gives the two ordinary differential
equations

rR”+ R —ArR=0and 27 +AZ=0.

You should verify that the two cases A = 0 and A = —a? < 0 lead only to the trivial solution z = 0. In
the case A = a> > 0 the DEs are

rR>+R —a’rR=0and 2+ a’Z=0.
P Review pages 275-276 of Section 5.3. See also Figures 5.3.3 and 5.3.4.

The first equation is the parametric form of Bessel’s modified DE of order n = 0. The solution of this
equation 1s R(r) = cly(ar) + c,Ky(ar). We immediately define ¢, = 0 because the modified Bessel

function of the second kind K(ar) 1s unbounded at » = 0. Therefore, R(r) = c{ly(ar).
Now the eigenvalues and eigenfunctions of the Sturm-Liouville problem

7’ +0*Z=0,2(0)=0,2(1)=0

are A, = n’r’,n=1,2,3,... and Z(z) = c3 sin nmz. Thus product solutions that satisfy the PDE and the
homogeneous boundary conditions are

u, = R(r)Z(z) = Al (nmr)sin nzz.

Next we form

e
u(r.7) = > A (nar)sin nag.

rn=1

The remaining condition at » = 1 yields the Fourier sine series

g

u(l,z) = 1 — 7 = > A.lylnw)sin nwg.
I

n

From (5) of Section 12.3 we can write

r 1
7
Adyinm) = 2| (1 — 7)sinnmzdz = s e integration by parts
n i
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narly(nar)

The steady-state temperature 1s then

: 2 = Lynmr)
wr,zy =—
i

sin nwz.
T 4 nly(nr)

14.2 | Exercises Answers to selected odd-numbered problems begin on page ANS-33.

1. Find the displacement u(, ¢) in Example 1 iff () = 0 and the circular membrane is given an
initial unit velocity in the upward direction.

2. A circular membrane of radius 1 is clamped along its circumference. Find the displacement u(7,
t) if the membrane starts from rest from the initial displacement /' () =1 —#2, 0 <r < 1. [Hint:
See Problem 10 in Exercises 12.6.]

3. Find the steady-state temperature u(r, z) in the cylinder in Example 2 if the boundary conditions
are u(2,z)=0,0<z<4, u(r,0) =uy, u(r,4)=0,0 <r<2.

4. If the lateral side of the cylinder in Example 2 is insulated, then

dil
— =0 0=z
- P

<4,

(a) Find the steady-state temperature u(r, z) when u(r, 4) = f(r), 0 <r <2.
(b) Show that the steady-state temperature in part (a) reduces to u(r, z) = uyz/4 when f(r) = u,.
[Hint: Use (12) of Section 12.6.]

In Problems 5-8, find the steady-state temperature u(r, z) in a finite cylinder defined by 0 <r <1, 0 <
z < 1 if the boundary conditions are as given.

S.

STUDENTS-HUB.com

did
: =0, 0<r<1
d:: =1
du

=0, 0<r l
T |-
ul,z)=2z, 0 1
did
- =0, 01 1
2% |z=0
u(l,7) = up, 0 < 1
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du
daz =10

u(r,1)y = uy, 0<<r <1

9. The temperature in a circular plate of radius ¢ is determined from the boundary-value problem

i | =

i 1 du ou _ _ o

Kl —b— o ey it e
are roar at

we.t)y=0, t=0

wr.0)=jf(r), 0<r<c

Solve for u(r, t).
10. Solve Problem 9 if the edge » = ¢ of the plate is insulated.
11. When there is heat transfer from the lateral side of an infinite circular cylinder of radius 1 (see

FIGURE 14.2.§ into a surrounding medium at temperature zero, the temperature inside the
cylinder is determined from

2

au 1 du dil

k(_a i —_) =i—s Qe st Tt =0
ar- roar, di

di

= —hu(l.f), h=0,t=>0
dr

r=1
wir,0)y=fir), 0<r<1.

Solve for u(r, t).

FIGURE 14.2.6 Infinite cylinder in Problem 11

12. Find the steady-state temperature u(r, z) in a semi-infinite cylinder of radius 1 (z > 0) if there is
heat transfer from its lateral side into a surrounding medium at temperature zero and if the
temperature of the base z = 0 1s held at a constant temperature u,.

1oPrdbiEh 35 @4(,:%'@ the substitutionu(r, t) =v(r, t) + y(r) to Hﬁ’lﬂ%acﬁgg%’l %ﬁw%ﬁe
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problem. [Hint: Review Section 13.6.]

13. A circular plate is a composite of two different materials in the form of concentric circles. See
FIGURE 14.2.7 The temperature u(7, ¢) in the plate is determined from the boundary-value
problem

2 -
o 1au  du ap :
P e L B LS S
ore rodr ol

w2, H=100, 1>

0
, 200, 0 <r<1
u(r,0) = 100 l < Fp=2

=100

iy
N

14. ;]T” X :_% i %~,O<r< 1,¢>0, S constant
u(l,1)=0,t>0
u(r,0)=0,0<r<1.

15. The horizontal displacement u(x, ¢) of a heavy chain of length L oscillating in a vertical plane
satisfies the partial differential equation

3 o a*u
g —(,r —) == Pl el L0,

ox af-

FIGURE 14.2.7 Circular plate in Problem 13

See FIGURE 14.2.8.
(a) Using —A as a separation constant, show that the ordinary differential equation in the spatial
variable x is xX” + X* + AX = 0. Solve this equation by means of the substitution x = 1%/4.

(b) Use the result of part (a) to solve the given partial differential equation subject to

WL, n=0, t=0

di
uix, 0y = fix), — =0, 0<<x=<L.

L

[Hint: Assume the oscillations at the free end x = 0 are finite. ]
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FIGURE 14.2.8 Oscillating chain in Problem 15

16. Consider the boundary-value problem

=) o 5

] | du  du _ :

P o e e I L ) g
dire roar di

dit _

— =1, t=0

ar |-

wr,0)=0, 0<r<1.

(a) Use the substitutionu(r, ¢) = v(r, t) + Bt in the preceding problem to show that v(7; 7)
satisfies

v lav  av o _
— sl e e, B30
dre rodr dlf

av ,

. =1 t=0

ar e

1"'[?'~ DJ = 0. Qe

Here B is a constant to be determined.

(b) Now use the substitution v(7, £) = w(r, t) + w(r) to solve the boundary-value problem in part
(a). [Hint: You may need to review Section 3.5.]
(c) What is the solution u(r, ¢) of the first problem?

17. In this problem we consider the general case—that is, with u dependence—of the vibrating
circular membrane of radius c:

o il il

d i 1 du | o7 g u

{?3(- NG _7._«,) =7 o S EZ 0
ar- F oar re a8 at”

wic,@,.H =0, 0<<@<<2m >0
u(r.0.0) = f(r.8), 0<r<c0<0<2rw

dif

it = g‘{f'., H_:h G = e c, {] < E e E'ﬂ'.
d

=0

(a) Assume thatu = R(r)O(u)71(¢) and the separation constants are —A and —v. Show that the
separated differential equations are
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18.

19.

20.

7"2R2” +rR’> + (}LI’Z—V)R: 0

(b) LetL =a?and v =, and solve the separated equations in part (a).

(c¢) Show that the eigenvalues and eigenfunctions of the problem are as follows:

Eigenvalues: v=n,n=0, 1, 2,...
eigenfunctions: 1, cos n 6, sinn 6.
Eigenvalues: A ;=x,/c,i =1, 2, ..., where, for each n, xni are the positive roots of

Jn(kc) = 0; eigenfunctions: J, (A7) = 0.

(d) Use the superposition principle to determine a multiple series solution. Do not attempt to
evaluate the coefficients.

Computer Lab Assignments

(a) Consider Example 1 witha=1, ¢ =10, g(r) =0, and f{r) =1 —r/10, 0 <r < 10. Use a CAS
as an aid in finding the numerical values of the first three eigenvalues A, A,, A; of the

boundary-value problem and the first three coefficients A;, A,, A; of the solution u(r, 7)
given in (9). Write the third partial sum S5(7, ¢) of the series solution.

(b) Use a CAS to plot the graph of S5(7, ?) for t =0, 4, 10, 12, 20.

Solve Problem 9 with boundary conditionsu(c, ) = 200, u(r, 0) = 0. With these imposed
conditions, one would expect intuitively that at any interior point of the plate, u(r, ) — 200 as ¢
— o0, Assume that ¢ = 10 and that the plate 1s cast iron so that k£ = 0.1 (approximately). Use a
CAS as an aid in finding the numerical values of the first five eigenvalues A, A,, A3, A4, A5 of the

boundary-value problem and the five coefficients A, 4,, A3, A4, A5 in the solution u(7, t). Let the
corresponding approximate solution be denoted by Ss(r, 7). PlotSs(5,7) and S5(0,7) on a
sufficiently large time interval [0, 7. Use the plots of S5(5, #) and S5(0, 7) to estimate the times
(in seconds) for which u(5, ) = 100 and u(0, ) = 100. Repeat for u(5, t) = 200 and u(0, 1) =
200.

Consider an idealized drum consisting of a thin membrane stretched over a circular frame of
radius 1. When such a drum is struck at its center, one hears a sound that is frequently described
as a dull thud rather than a melodic tone. We can model a single drumbeat using the boundary-
value problem solved in Example 1.

(a) Find the solution u(r, #) givenin (9) whenc =1, f(r) =0, and

o {—\ 0=r<b
= 0, b=r<1.
(b) Show that the frequency of the standing wave u (7, ¢) isf, = ak/2x, where A, is the nth

positive zero of Jy(x). Unlike the solution of the one-dimensional wave equation in Sectior
13.4, the frequencies are not integer multiples of the fundamental frequency /. Show that f,

STUDENFEM 1 pindif5 5 3-5981;. We say that the drumbeat prodquf)%lgawg?:oaﬁgm&%a



result the displacement functionu(r, ¢) is not periodic, and so our ideal drum cannot
produce a sustained tone.

(¢) Leta=1,b=",and vy=1 in your solution in part (a). Use a CAS to graph the fifth partia
sum Ss(r, ¢) at the times # = 0, 0.1, 0.2, 0.3, ..., 5.9, 6.0 on the interval [-1, 1]. Use the
animation capabilities of your CAS to produce a movie of these vibrations.

(d) For a greater challenge, use the 3D plotting capabilities of your CAS to make a movie o
the motion of the circular drumhead that is shown in cross section in part (c¢). [Hint: There

are several ways of proceeding. For a fixed time, either graph u as a function of x and y
using . _ + /7 ; .2 or use the equivalent of Mathematica’s RevolutionPlot3D. ]

14.3 Problems in Spherical Coordinates

= Introduction In this section we continue our examination of boundary-value problems in different
coordinate systems. This time we are going to consider problems involving the heat, wave, and
Laplace’s equation in spherical coordinates.

FIGURE 14.3.1 Spherical coordinates of a point (x, y, z) are (7, 8, ¢)

[J  Laplacian in Spherical Coordinates As shown in FIGURE 14.3.1 a point in 3-space is
described in terms of rectangular coordinates and in spherical coordinates. The rectangular
coordinates x, y, and z of the point are related to its spherical coordinates », 6, and ¢ through the
equations

X = rsin @ cos d. vy = rsin fsin d. “=rcosf. (1)

By using the equations in (1) it can be shown that the Laplacian V?u in the spherical coordinate
system is

V2 a2y 1 i | _atu _cotf du
W=— e

] T I Y iy 7] ] .
ar Fdi rosin g do rog r- ag

(2)

As you might imagine, problems involving (1) can be quite formidable. Consequently we shall
consider only a few of the simpler problems that are independent of the azimuthal angle ¢.

Our first example is the Dirichlet problem for a sphere.
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EXAMPLE 1| Steady Temperatures in a Sphere

Find the steady-state temperature u(r, 6) in the sphere shown in FIGURE 14.3.2.
SOLUTION The temperature is determined from

2 au 1 a*u  cot@ au

3 E BE T o manii 0,0<r<c0=<8<m
dre Foar r° of” re ol

u(c, 0) =f(0),0<0<r.

If u = R(r)®(0), the partial differential equation separates as

r’R"+2rR"  B"+ cotf8'
R B G B
and so
FR +2rR" — AR=0 (3)
SinB®" +cosf O + Asing @ =0, (4)

atr=¢

FIGURE 14.3.2 Dirichlet problem for a sphere in Example 1

After we substitute x = cos 8, 0 < 8 <z, (4) becomes

. d'0 10
(=5 — — B —+ A0 =0, —-1l=x=1, (5)
dx” dx

The latter equation is a form of Legendre’s equation (see Problems 50 and 51 in Exercises 5.3). Now
the only solutions of (5) that are continuous and have continuous derivatives on the closed interval [—
1, 1] are the Legendre polynomials P,(x) correspondingto A =n(n +1),n =0, 1, 2,.... Thus we take

the solutions of (4) to be
O(0) = P(cos 0).

Furthermore, when A = n(n + 1), the general solution of the Cauchy—Euler equation (3) is
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Since we again expect u(r, 0) to be bounded at » = 0, we define ¢, = 0. Hence u,, = 4, #"P,(cos ), and

Atr=c,

oD
w(r, @) = Eﬂnr”ﬂqms g).
n=i

e = Eﬂﬁ”ﬂ[cm 8).

Therefore 4,c" are the coefficients of the Fourier—Legendre series (23) of Section 12.6:

2n+ 17
A = ’2 —| [(8)P,(cos 8) sin 6 db.
C A

It follows that the solution is

< (n +
uir, 8y = E( :

n=0\ L

- N
| f(8)P,(cos 6) sin 8 de]( Z—) P (cos 8).
A0 S

14.3

Exercises

Answers to selected odd-numbered problems begin on page ANS-33.

1. Solve the problem in Example 1 if

50, 0<8 < «/2
gy = /
1) {11 w2 < 8 <.

Write out the first four nonzero terms of the series solution. [Hint: See Example 3, Section 12.6.]

2. The solution u(r, ) in Example 1 could also be interpreted as the potential inside the sphere due
to a charge distribution () on its surface. Find the potential outside the sphere.

6. Use orthogonality.]
4. Find the solution of the problem in Example 1 if f{#) = 1 — cos 260, 0 < 8 <. [Hint: See Problem
18, Exercises 12.6.]
5. Find the steady-state temperature u(r, ) within a hollow sphere a <r < b if its inner surface r =

a 1s kept at temperature f (0) and its outer surface » = b 1s kept at temperature zero. The sphere in
the first octant is shown in FIGURE 14.3.3.
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FIGURE 14.3.3 Hollow sphere in Problem 5

6. The steady-state temperature in a hemisphere of radius ¢ 1s determined from

9’u 2 du 1 8u cot @ du _ _ _ N
= = T e Sl et 1 1 e SRl e Bl )
ar” roor rooag° - d8

u(r,m/2)=0,0<r<c
u(c, 0)=£(0),0<0<x/2
Solve for u(r, 6). [Hint: P,(0) =0 only if n 1s odd. Also see Problem 20, Exercises 12.6.]

7. Solve Problem 6 when the base of the hemisphere is insulated; that is,

ou
90 {g—ri2

=0, 0<r<c

8. Solve Problem 6 for » > c.
9. The time-dependent temperature within a sphere of radius 1 is determined from
Pu 2 du
—m e —r=ie— Q= 1 S0
art  rar  at
u(l,1)=100,¢>0
u(r,0)=0,0<r<I.

Solve for u(r, t). [Hint: Verify that the left side of the partial differential equation can be written
as = 9 _(ru). Let ru(r, £) = v(r, t) + y(r). Use only functions that are bounded as » — 0.]

rar
10. A uniform solid sphere of radius 1 at an initial constant temperature u, throughout is dropped
into a large container of fluid that is kept at a constant temperature u; (1; > u,) for all time. See

FIGURE 14.3.4. Since there is heat transfer across the boundary » = 1, the temperature u(r, ¢) in
the sphere is determined from the boundary-value problem
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a’u 2 du du
_|_ =

arr  rar at
du |
ar |,=1

wr,0)=u; 0<r<l1.

Solve for u(r, t). [Hint: Proceed as in Problem 9.]

= —h(uw(l.) —wy), 0<h

T Ny
e L
. _,-I—-.. HJ
’i-:':_::"
rfﬁﬁ‘:"::?ﬁx“
.

FIGURE 14.3.4 Container in Problem 10

=— Dm0

= 1

11. Solve the boundary-value problem involving spherical vibrations:

-

2

art 1 oar at

we,H)y=0, =10

) L did
uir, 0y = fir), —

= g(r),
di

=0

,_.(.:}Eu 2 cm) au
a 2 ey Ho—er Sl

0= r=

[Hint: Write the left side of the partial differential equation as ! a_i(ru). Let v(7, t) = ru(r, t).]

rar

12. A conducting sphere of radius ¢ is grounded and placed in a uniform electric field that has
intensity £ in the z-direction. The potential u(r, ) outside the sphere is determined from the

boundary-value problem

*u 2 du 1 o%u | cot® du _
art  rar ot agt rt o
wic.8)=0, 0=0<=

limu(r, 8 = —E7; = —Ercos#.

F—00

Show that

STUDENTS-HUB.com
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3
wir.8)= —Ercos @ + E{—j cos 8.
25
[Hint: Explain why Ji' cos 6 P (cos ) sin 8 df = 0 for all nonnegative integers except n = 1. See

(24) of Section 12.6.]

In Problems 13 and 14, you are asked to find a product solutionu(r, 6, ¢) = R(r)®O(0)DP(d) of
Helmholtz’s partial differential equation V 2u + k%u = 0 where the Laplacian V2u is defined in (2).

13. (a) Proceed as in Example 1 but usingu(r, 6, ¢) = R(r)®O(0)D(¢) and the separation constant
n(n + 1) to show that the radial dependence of the solution u is defined by the equation
,d'R dR

1 —+ 2r— + [k%* — a(n + DH]R = 0.
dr* dr

(b) Now use the second separation constant 71> to show that the remaining separated equations
are

d*®

—+ m*d =0
dep*

d*® cos@ dO m*

— +
a8 sinf d@

+{n[n+1;— -"[3:{}.

sin*@

(c) Use the substitutionx = cos § to show that the second differential equation in part (b)
becomes

I'H: |

-je =0
T R

) = d*0 d0 ) )
|l—x}T—2.rT+ nn + 1) —
- [x

14. (a) Assume that m and n are nonnegative integers. Then find a product solutionu(r, 6, ¢) =
R(r)O(6)D(¢) of Helmholtz’s PDE using the general solution of the ODE in part (a), th
general solution of the first ODE in part (b), and a particular solution of the second ODE 11
part (b) of Problem 13. [Hint: See Problems 41, 42(c), and 52 in Exercises 5.3.]

(b) What product solution in part (a) would be bounded at the origin?

14 Chapter in Review Answers to selected odd-numbered problems begin on page ANS-34.

In Problems 1 and 2, find the steady-state temperature u(r, 8) in a circular plate of radius c if the
temperature on the circumference is as given.
1. {u.;-.. D<86<m
wic, #) =

—uy, w=0<27

2. » 0<8<m2
uic, @) = <0, /2 < 0 << 37w/2

1, 3w/2<0<2m
In Problems 3 and 4, find the steady-state temperature u(r, 6) in a semicircular plate of radius 1 if

boundary conditions are as given.
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3. w(l, 8) = (=@ — BE}HD < @ < 7
air,0) =0, wurm) =0.0<r<1

4., u(l,8) = s5inf.0 <6 <
w(r,0) =0, wuir,m)=00<r<]

5. Find the steady-state temperature u(r, 0) in a semicircular plate of radius ¢ if the boundaries 6 =
0 and 8 = & are insulated and u(c, ) =f(0), 0 <0 <.

6. Find the steady-state temperature u(r, 6) in a semicircular plate of radius c if the boundary 6 = 0
is held at temperature zero, the boundary 6 = x is insulated, and u(c, ) =f(0), 0 <0 <.

In Problems 7 and 8, find the steady-state temperature u(r, 6) in the plate shown in the figure.
7. y i

== insulated
it = tip == atr=1

atr =

b | =

!
=10
atgd =0

FIGURE 14.R.1 Plate in Problem 7

= iy
at @=10

FIGURE 14.R.2 Plate in Problem &

9. If the boundary conditions for an annular plate defined by 1 <r <2 are

: g dil
i(l, #) = sin~f, —
ar

=0,0<8 < 27,

— ]

=i

show that the steady-state temperature is

1 E o o i s
wr,f)=—— (— e ‘) cos 28,
2 17

-

[Hint: See Figure 14.1.4. Also, use the identity sin® 8 = ' (1 — cos 26).]
10. Find the steady-state temperature u(r, 0) in the infinite plate shown in FIGURE 14.R.3.
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FIGURE 14.R.3 Infinite plate in Problem 10

11.

Suppose heat is lost from the flat surfaces of a very thin circular plate of radius 1 into a
surrounding medium at temperature zero. If the linear law of heat transfer applies, the heat

equation assumes the form

-y
d” il
ar?

See FIGURE 14.R.4 Find the temperature u(7, ¢) if the edge » = 1 is kept at temperature zero
and i1f initially the temperature of the plate is unity throughout.

-+ H% -
] ‘13‘1“"”/

I,r= 0.

=0,0<r<

FIGURE 14.R.4 Circular plate in Problem 11

12. Suppose x; 1s a positive zero of J,. Show that a solution of the boundary-value problem
a* (L{f + lﬂj = LL: ¢ BEocit e W e
ar~ rar/ ot
wl,HD =0, t=0
wir, 0) = wpfoingr), — 2 T B T
=0
1s u(r, t) = ug Jo(x ) cos ax;t.
13. Find the steady-state temperature u(r, z) in the cylinder in Figure 14.2.5 if the lateral side is kept
at temperature zero, the top z = 4 is kept at temperature 50, and the base z = 0 1s insulated.
14. Solve the boundary-value problem
Fu 1ou
w—dea—nen ) Qg Bsreg |
dre Far Ja7"
did
e =0, 0<7=<1
dr =1
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15.

16.

17.

18.

Find the steady-state temperature u(r, 6) in a sphere of unit radius if the surface is kept at

_ 100, 08 =< /2
wil, 8 = o I
—100, =/2 <8 < .

[Hint: See Problem 22 in Exercises 12.6.]
Solve the boundary-value problem

au 2 du a%u
_|_ R R

= —=— 0<r<1,t>0

dar* rodr df-

1|

cj_l' =0, t>=0

ar =1
di

u(r,0)y = f(r), — =pr), B=<r<l.
a1 i=0

[Hint: Proceed as in Problems 9 and 10 in Exercises 14.3, but letw(r, £) = ru(r, t). See Sectior
13.7.]

The functionu(x) = Yy(aa)Jy(ox) —Jy(aa)Yy(ox), a > 0 is a solution of the parametric Bessel
equation
. d%u dit .5
rr—=+tx—+axu=0
dx” dx

on the interval [a, b]. If the eigenvalues A, = o, are defined by the positive roots of the equation
Yo(aa)Jy(ox) — Jo(aa)Yy(ax) =0,
show that the functions
U (x) = Yo(ama)Jo( o) — Jo(oma) Yo(aex)
U, (x) = Yo(ana)Jo(ayx) — Jo(ana) Yo(ayr)

are orthogonal with respect to the weight function p(x) = x on the interval [a, b]; that is,

X (xyde =0, m # n.

e

[Hint: Follow the procedure on pages 676 and 677.]

Use the results of Problem 17 to solve the following boundary-value problem for the
temperature u(7, ¢) in an annular plate:

d'u  laou ou
St = gL e bt >0
dir- r ar al

wa,H=0, wbn=0  1t=0

wr,M=f(r), a<r<h
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du  lou  u
st ——+—5=0 0<r<c0<z<L
dr ¥ ar az°

with the boundary conditions given in FIGURE 14.R.5.

u=fir)
atz=1L
atr=¢ Ta
:f’f ___‘-H'"'x |
u=gir
atz=10

FIGURE 14.R.5 Cylinder in Problem 19

20. Carry out your ideas and find u(7, z) in Problem 19. [Hint: Review (11) of Section 13.5.]

In Problems 21-24, solve the given boundary-value problem.
21. 2

d i 1 au a- il

— 4+ —— + —
or” roar az-
g(l,7) =100, 0= z<1

=0 De=ZipeD L O=logp D]

aid
— =0, DLrel

07 |z=0
u(r,1) =200, 0<r<1.
22. Pu 1lau  du
— t——+ —
ar? rar 372

=0, 0

i)
Mg,
[ ¥]
L]
|
A
—

3, =u;, 0<z<I1
wr, M =0, 0=<=r<23
wir,1) =0, 0 <r <3,

23 ol )
* o 1 du g
= ﬂ:[}" O0<r<=1,z>=0
are roar a7~
(1,7) =0, z>=0
wir, 0y = 100, 0 < r =1
24.

1 du  &°u
__+_:[]-’ D‘f—.r"-“--i_.:':'-'{]

=

a? rar o
wl,zy=0, z=0
ufr ) =l =%, Dl 1

*The problem in (18) is Example 2 of Section 3.9 with L = 7.
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