
ENEE236 CH4 Homework Problems

- 10. Given the information provided in Fig. 4.123, determine:
 - a. R_C .
 - **b.** R_E .
 - c. R_B .
 - d. V_{CE} .
 - e. V_B .
- 11. Given the information provided in Fig. 4.124, determine:
 - a. β
 - **b.** V_{CC} .
 - c. R_B .

- 18. Given the information appearing in Fig. 4.127, determine:

 - b. V_E . c. V_{CC} . d. V_{CE} . e. V_B . f. R_1 .

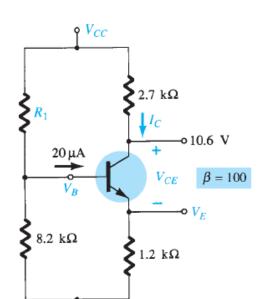


FIG. 4.127

*33. Given $V_B = 4 \text{ V}$ for the network of Fig. 4.133, determine:

- a. V_E .
- b. I_C .
- c. V_C .
- d. V_{CE} .
- e. I_B .
- f. β .

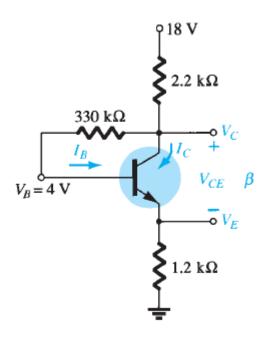
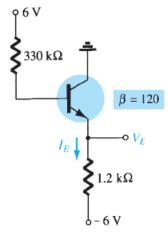
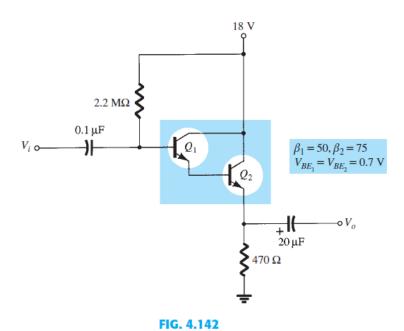
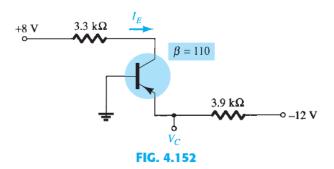


FIG. 4.133

*34. Determine the level of V_E and I_E for the network of Fig. 4.134.


FIG. 4.134

43. Design a voltage-divider bias network using a supply of 24 V, a transistor with a beta of 110, and an operating point of $I_{C_Q} = 4$ mA and $V_{CE_Q} = 8$ V. Choose $V_E = \frac{1}{8}V_{CC}$. Use standard values.

- 46. For the Darlington amplifier of Fig. 4.142 determine
 - **a.** the level of β_D .
 - b. the base current of each transistor.
 - c. the collector current of each transistor.
 - **d.** the voltages V_{C_1} , V_{C_2} , V_{E_1} , and V_{E_2} .

56. Determine I_E and V_C for the network of Fig. 4.152.

