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Preface

This book is intended as a supplement to a first course in undergradu-
ate optics. As is customary in this series, the book takes the form of a
succinet outline of principles with numerous sets of solved and unsolved
problems which elaborate and illustrate those principles.

Most of the treatment is in terms of the wave model of light, although
the photon picture is used when essential to an understanding of the phe-
nomenon. Accordingly, Chapter 1 gives a mathematical description of wave
motion in general, while Chapter 2 relates that description to Maxwell’s
equations, Chapter 3 examines the laws of propagation and Chapter 4
applies them to the practical problems of geometrical optics. Diffraction
theory is developed on the basis of the simple Huygens-Fresnel principle.
The last chapter, Chapter 8, is concerned with an elementary discussion
of Fourier optics. -

The modern jargon of picoseconds, megahertz and nanometers — of co-
herence length, frequency stability and bandwidth —is extensively used,
and the problems run the gamut from candles to lagers. Optics is a broad
subject in the midst of a marvelous renaissance. Even though much of the
material to be dealt with in an introductory treatment is quite traditional,
I have tried to imbue it with the vitality and excitement of the contem-
porary scene.

A proper preface happily serves to extend thanks to those who have
contributed to the effort; and so I do, indeed, thank all my students for
their help and inspiration, particularly Patricia Fazio, John Ryan and
Richard Deem. The entire manuscript was flawlessly typed by Miriam
LaRosa, whose spelling is legend, and the work was meticulously edited by
David Beckwith. Lastly, I extend sincere appreciation to my wife, Carolyn
Eisen Hecht, for her rendition of the little green frog in Fig. 4-42, and
I accordingly dedicate this book to her.

EUGENE HECHT
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Chapter 1

Wave Motion

1.1 INTRODUCTION

Optics is the study of light or, more broadly, the study of the electromagnetic spectrum.
For our purposes the wave aspects of light will be of paramount concern. Although light is
an electromagnetic phenomenon much of optics can be understood without specifying the
nature of the waves we are dealing with. For example, the extensive work of Fresnel
(1788-1827), which is so highly useful even today, was derived within the framework of the
elastic medium model, now long defunct.

12 THE DIFFERENTIAL WAVE EQUATION

A simple wave moving along a string has a great many properties in common with a
light wave. The displacement of the string is perpendicular to the direction of motion of
the disturbance, i.e. the wave propagates along the string while each element of the string
itself merely moves back and forth. Waves of this sort are said to be transverse. Light is
just such a transverse wave, with the electric and magnetic fields varying in directions per-
pendicular to the propagation direction.

The differential wave equation
Fy _ 1y
axz 2o
describes such phenomena (when there is only one space variable). The quantity y(z,t),
known as the wave function, represents the disturbance in space (x) and time (t), be it a
string’s displacement or the magnitude of a field. Here v is the speed of propagation of
the wave.

One solution of the wave equation has the form
(2, %) = flx—ot)

wherein f is an arbitrary twice differentiable function of the variable (z —vt). In other
words, (z — vt) may be squared or cubed or what have you, but it must appear as a unit.
The shape of the disturbance, its profile, can be gotten by “photographing” the wave func-
tion at a given time. Mathematically this is equivalent to setting ¢ equal to a constant;
for example, at £ =10

¢(x,0) = f(x)

is the profile. Thus if f(x) is the shape of a bump on a string, f(x — vt) describes the bump
moving with a speed v in the positive 2-direction. In the same way, g(x + vt) is a solution
of the wave equation corresponding to an arbitrary profile g(x) propagating in the negative
2-direction.
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2 WAVE MOTION [CHAP. 1

SOLVED PROBLEMS

1.1. Show that f(x —vt) is a progressive wave moving in the positive z-direction with an
unchanging profile.

4s Ay

Set up a coordinate system §’ moving to
the right with the disturbance at a speed v,
as in Fig. 1-1. At £ =0, the two systems ¢ v
s and §& overlapped and so 2’ = x — vt. /\ »
In 8’ the wave function is independent of . P
time. Therefore, in §’ the profile is un- o . o ,U : \/
changing and the wave function is given by v 4 #'l

Wz = f@) 2 -
= f(x—t) Fig. 1-1

12. Show that y(x,t) = f(x =2t) is a solution of the one-dimensional differential wave

equation.
Here f is a function of ', where »’ = x == vt is in turn a function of x and ¢t. Thus, using the
chain rule,
 _ of o _ of dp _ 0w _ _ of
o wox o M % Twa T Tw
and so * _ hile * _ 9 —q,i = Zpd of
922 ~ @z % 3tz at\ " ox Y32\ ot
' #y _ _ o f_ o\ _ LB oy
Hence ot = +v£;<+v;,? = v -—ax,z = v 922
8%y 1 o
or W T vow

13. If y,(x,%) and y,(2,%) are both solutions of the differential wave equation, show that
¥,(2, ) + y,(x, 1) is also a solution.

Since both ¢, and y, are solutions,

%y 1 9%, , 2yp 1 8%y,
9z _ 2 o Jat % off

Adding these together yields

922 F

oy OB 1/[3%, 0%,
ECT:

92 _ 1 2
or Wty = 22 a1t vo)

The above result is the superposition principle for the one-dimensional wave equation. It fol-
lows that

vz, t) = f(x—vt) + g(x+ vt)

is the general solution to the equation.

14. Given the profile

3
¥(y,0) = ST

(a) Write an expression for the corresponding progressive wave moving with a speed
of 2 m/s in the increasing y-direction. (b) Sketch the profile at t=0 and t=1s.
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CHAP. 1] WAVE MOTION 3

(a) Simply replace ¥ by ¥ = vi, or, in this particular case, by y —2t. Hence
' 3
) = sy TeE Tl

(d) See Fig. 1-2.

L A

Fig. 1-2

15. (a) Show that the expression y(z,t) = Ae~2=*3" ig 3 progressive wave and (b) verify
that it is a solution of the wave equation.

(@) The expression can be rewritten as
¢y = Ae—4Gz+3/n

which is a function of z+ vt, with v = 8/2. Accordingly, ¢ represents a wave moving with
speed 3/2 in the negative z-direction.

(b) By differentiation:

g_z'ﬁ_ = —8(z + 3t/2)Ae—4(z+8t/2)', ' %— = [—S(z + 3t/2)]2¢ - 8!#
%gt = [-8(z+3t/2)(3/2)]y, %z'_g = [—8(z+ 3t/2)(3/2)]2y — 8(3/2)%

and the wave equation becomes
{[-8(z+ 3] — 8}y = S (8/2%{[-8(s+3t/2))* — 8}y
which is indeed satisfied for v = 3/2.

1.3 SINUSOIDAL WAVES

A wave which has as its profile a sinusoid (Fig. 1-3) is said to be harmonic. These waves
are of particular interest because we can mathematically synthesize more complicated pro-
files out of sums of sine functions by Fourier methods.

If ¢(x,0) = A sin kz, then
y(x,t) = A gink(z = vt)

is a progressive harmonic wave. The argument of a sine function has to be unitless and
to that end we have introduced the positive constant k, called the propagation number.
The maximum value of the magnitude of y(z,t) is A, the amplitude. Now, the wave func-
tion repeats itself after a spatial period or wavelength A, ie. y(z,t) = ¢(x=A,t). For this
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4 WAVE MOTION [CHAP. 1
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Fig. 1-3

to be the case the propagation number must be given by k = 2x/A. Similarly, if the wave
is to repeat itself after a temporal period -, i.e. ¥(x,t) = ¢(x,t=7), it follows that r = A/v.
The period is the number of units of time per wave, the reciprocal of which is the fre-
quency v, or the number of waves per unit of time. Thus

vV = vA
In analogy with mechanics we can introduce the angular frequency o= 2x/r. Although

nothing is actually revolving here, it is convenient to use a quantity such as » having the
units of radians per second. Accordingly, the wave function can be recast as

¢(x,t) = A sin(kx ¥ of)

The above harmonic waves range from —« to +« in both space and time, and they are
therefore mathematical abstractions. Since they contain only a single frequency, the waves
are referred to as monochromatic. No actual physical disturbance has this form, although
ones approaching it to varying degrees exist and are said to be quasimonochromatic.

SOLVED PROBLEMS

1.6. Show that for a harmonic wave the repetitive nature in space, y(x,t) = y¢(x=A,t¢),
requires that &k = 2x/).

We know that the sine function repeats itself when the argument increases or decreases by 27.
Thus f

A sink(x—vt) = Asink{( =) —vt] = A sin{k(z — vt) = 2]
The second equality gives |kA| = 2#, or since both k and A\ are positive, k= 2z/A.
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CHAP. 1] WAVE MOTION 5

1.7.

1.8.

L9.

1.10.

STUDENTS-HUB.com

Sketch the wave ¢(z,t) = A cos (kx —ot) at the times t=0, t=+/4, and t=+/2.
At t =0, ¢(x,0) = A coskz.
At t =1/4 = 1/4» = /20, ¢y(x,7/4) = A cos (kx — =/2).
At t=1/2 = 1/2» = 1o, $(x,7/2) = A cos (kz — 7).
See Fig. 1-4.

N

t=0" t=v/4" t=r27

Fig. 1-4

The wavelength of light is generally measured in units of nanometers (1 nm = 10~ m).
For example, yellow, which is just about midspectrum, has a wavelength of roughly
580 nm. Compare this with the thickness of a human hair (from the head), which is
approximately 4 X 10~ mm.

4X10-5m
580 X10-%m

Sixty-nine wavelengths per thickness of a hair. Light, although minute in wavelength, is still not
that remote from things we’re used to dealing with.

= 69

Light ranges in wavelength roughly from violet at 8390 nm to red at 780 nm. Its speed °
in vacuum is about 3 X 10® m/s, as is the case for all electromagnetic waves. Deter-
mine the corresponding frequency range.

Since v =,
= 3X10%m/s  _ gosioug-t and gy = X 1BM/E _ g3gy 101 gm

Pvio T 390 x10-Pm 780X 10-° m

The units are inverse seconds or cycles per second. Nowadays one uses the units of hertz, abbre-
viated Hz, instead of cps. The frequency range is then from 380 THz to 770 THz (1 terahertz =
1012Hz = 1 THz).

Verify that the harmonic wave function y(x,f) = A sin (kx — ot) is a solution of the
one-dimensional differential wave equation.

The wave equation is given by

P _ 1y
0x2 v2 32
Now M o_ kAcosthr—ot), X = _KAsin(kv—ot) = —k%
9z ob)s 92
while B = —ad cos (ka— ob), %’t-‘,i = —u2A sin(kz—of) = —o?y

The wave equation becomes
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6 WAVE MOTION [CHAP.1

—ky = (-t

Therefore, provided that » = w/k = »A, which we know to be the case, y(x,t) is a solution.

1.11. Prove that a progressive harmonic wave can be described alternatively by:

@ ¢ = Asin2w<§:§>

() ¢ = Asin 21rv<% x t>
() ¢ = Asin2x(xx+vt), where « =1/

(a) Starting with ¢y = A sin k(z = vt), use k = 2z/A to obtain

¢y = Asin 21<%¥ 1—;%)
But v/A=»=1/r.

(b) From the result of (a): ’
v = A sin2rv<x—1;¢ Tt) = 4 sinzﬂ<§: t)
gince Ay =9 and = =1.

(¢) Substitute A = 1/« and = =1/v in the result of (a).

112, Given the wave function (in SI units) for a light wave to be
y(x,t) = 10% gin (3 X 108z — 9 X 1014¢)
Determine (a) the speed, (b) wavelength, (c) frequency, (d) period, and (e) amplitude.
(@) By comparison with y¢(x,t) = A sin k(x —v¢) the given wave function can be written as

vz, t) = 108 gin 3 X 108z(x — 3 X 108¢)

whereupon we immediately have » = 8 X 108 m/s.

() By (a), k=38X 106y m—1. Therefore, A = 2r/k = 666 nm.

3 X 108 m/;
(¢ y = % = rzlmg_s—sﬁ = 4.5 X 1014 Hz
(d) T =1/y = 22X10-15¢

(¢) By (a), A =103 V/m (ie. volts per meter).

14 PHASE AND PHASE VELOCITY

One of the most important concepts we shall deal with is the pkase, ¢, of a harmonic
wave, which is simply defined as the argument of the sine function:
¢ = kx ¥ ot

The wave function as written thus far is actually a special case, sinceat t=0 and =0,
¢(0,0) = 0. There is no reason why the magnitude of a wave couldn’t be anything you like
at t=0, x = 0. This can be accomplished by shifting the sine function, through the intro-
duction of an initial phase ¢ such that

o = kxFol+e

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



CHAP. 1] WAVE MOTION 7

When we envision a harmonic wave sweeping by, we determine its speed by observing the
motion of a point at which the magnitude of the disturbance remains constant. For such
a point the phase must be constant as well. Thus the speed of the wave is the speed at
which the condition of constant phase travels, i.e.

(a_a«:) = _ e/t _
/e (9g/0x): -

The positive quantity v, which is the speed of propagation of a harmonic wave, is also re-
ferred to as the phase velocity.

= =9

> e

SOLVED PROBLEMS
1.13. Sketch the profile of the wave ¢(x,t) = A sin (kx — ot +¢), where the initial phase
is given by each of the following: ¢=0, ¢ =%/2 and ¢ = 7.

Setting t =0, y(x,0) = A sin (kx +¢). Marking off the z-axis at intervals of A/4, we obtain tﬁe
profiles shown in Fig. 1-5.

Fig. 1-5

If we were describing a wave generated along a rope by a hand at z = 0, the displacement
would ipitially (¢ =0) be downward from zero for : = 0 and upward from zero for ¢ = 7.

1.14. What is the magnitude of the wave function y(x,f) = Acos(krx—ot+7) at =0
when t=0, t=+/4, t=4+/2, t=3+/4 and t =7

By substituting directly into y(x, t) we get
¥(0,0) = Acos(0~0+7) = —A
Moreover, since r = 27/0, 7/4 = /20 and therefore

v(0,7/4) = Acos(0—=/2+7) = 0

Similarly, v(0,7/2) = Acos(0—z+x) = +4
v(0,37/4) = Acos(0—8x/2+7) = 0
¥(0,7) = Acos(0—2r+7) = —A

1.15. By examining the phase, determine the direction of motion of the progressive waves
represented by

¢,(¥,t) = Acos 27r<§+ %— €>, ¢(2,1) = A cos 1r1015<t - %-l- e)
Maintenance of the condition of constant phase, i.e.

= tly_ ) =
= 21(1_+>‘ e) constant
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8 WAVE MOTION [CHAP. 1

requires that y be decreaging, since ¢ is pogitive and increasing. In other words, for ¢ to be con-
stant y; must be a wave mpving in the negative y-direction. Similarly, y, is a wave moving in the
increasing or positive z-direction. The sign of e is irrelevant to the direction of motion.

1.16. Using the fact that » = (%at':) , compute the speed of the wave
®

¢(2,t) = 10°sin ~(3 X 10%¢ — 9 X 10'4f)
and compare your answer with that of Problem 1.12, again assuming SI units,

The condition ¢ = constant is equivalent to

_ode _ (s , (se) (m) _ (%) , (e
o—dt—<8t>,+(axtat¢— at ). T \oz)."
(@9/dt), g9 x 101

T @¢lox), ~ T #3x10°
Recall that v is a positive quantity.

Hence v = +3 X 108 m/s

1.17. Write an expression for the profile (£ = 0) of a harmonic wave moving in the +z-direc-
tion suchthatat £ =0, y =10; at 2 = 1/6, y =20; and at z = 5A/12, ¢ = 0.

Since t =0, y¢(x,0) = A sin(kx+¢). Substituting the data, we have
¥(0,0) = Asgine = 10

¥(\/6,0) = Asin(§+e> = 20

J6M/12,0) = Asin(%’!+e> =0

Combining the first and second of these yields

IOSin<-;:+ a> = 20sine
or sin%—cou-{-cos%sine = 2sine

sin /3

: = smz/8 _ 1
from which tane = S— cosz/3 S
Thus ¢ = #/6 radians and A = 20. Hence

¥(z,0) = 20 sin (kx + z/6)

L18. For a wave with an unchanging profile propagating in the positive z-direction with a
speed v, we can expect that y(x, t) = ¢(x + v AL, t + At). (This just says that a point
on the wave having a given phase will move a distance v At in a time At.) Show that
the wave function f(x — vt) satisfies this condition.

Substituting z + v At for x and ¢ + At for ¢, the given wave function becomes
flizx +vat) — vt + AY)] = flx +vAt—vt—v Al = flz — vb)

15 COMPLEX NUMBER REPRESENTATION

The trigonometric expressions we’ll have to deal with can be simplified by use of com-
plex exponentials. Recall that a complex number z has the form
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CHAP. 1] WAVE MOTION 9

z=x+1y

where i=1/—1, and z and y are the real part and ﬁlmazinary
the tmaginary part of z, respectively. Note that both
z and y are themselves real numbers. This can be z+iy
rewritten as

z2 = A(cos ¢ + ising)
using the fact that  =Acosgp and y=Asing,
as is evident in the Argand diagram of Fig. 1-6.
Euler’s formula Real

e = cosgp + t8ing i - >
z=A cosgp

A ging

Yy

then allows us to write
Z2 = Aei? Fig. 1-6

wherein A is the magnitude and ¢ the phase of the complex quantity z. The complex con-
jugate z* is obtained by changing the sign of ¢ wherever it appears in z. Hence

22* = (Ae'P)(Ae~?) = A?
and so the magnitude of z is just

A = (zz*)”z
Multiplication of complex numbers is easy when they are expressed as exponentials.
The product of ;
21 = Ae®  and 2, = Az
is just
Zi%2 = A1A26‘(¢1+¢’)
Notice that if we write

l[l(x, t) = Agitkz—otte)

the real part is 4 cos ¢ and the imaginary part is A sin ¢, where, of course, ¢ = k&t — ot +=.
Consequently, we can manipulate exponentials in any calculation and then get back to either
the cosine or sine form of the wave by taking the real or imaginary part of the answer.

SOLVED PROBLEMS
1.19. Show that the real part of the complex number z is given by
Re(2) = #(z+2%)
Since z = x4+ iy, we can write
Hz+2*) = HE+ti)+(@—%)] = =

which is indeed the real part of 2.

1.20. Derive the expressions
e'r + e t® . eiv — e i?
cosp = ———— ging = ——4+—
¢ 2 ¢ 21

from Euler’s formula )
e = cosgp+ising

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



10

1.21.

1.22,

1.23.

WAVE MOTION {CHAP. 1

In Euler’s formula,

ei? = cosp + tsing
replace ¢ by —o, obtaining
e~ = cosp — ising
gince cos(—¢) = cosp, sin(—¢) = —sing. Adding these two forms yields
P + ¢-i? = 2cose
while subtracting them results in
e — e~ = 2iging

The first result is equivalent to that of Problem 1.19; the second result is equivalent to
Im(2) = (z—2%)/2¢

Writing the wave function as y = A¢'®, show that y is unchanged when its phase is
increased or decreased by 2.

‘When the phase is changed by *+2x, the wave function takes on the value
¢ = AellpE2m = Aeipex2m — yex2m
But by Euler’s formula
e*2m = co8(*27) + isin(F2+) = 1 4+40 = 1

Therefore, ¢’ = y.

Show that multiplying a complex wave function by =t is equivalent to shifting its
phase by *=/2.
If ¢y = Ae'9, then *iy = *idel?. But from Euler’s formula
exim/2 = cog(£x/2) + isin(*rx/2) = =xi

and so
TiAe® = Aexin/24p = Aeipxw/2)

Imagine that we have two waves of the same amplitude, speed and frequency over-
lapping in some region of space such that the resultant disturbance is

¥(y,t) = A cos(ky+ot) + A cos(ky— ot+)
Using complex exponentials show that
v(¥,t) = —2A sin ky sin ot
This is known as a standing wave.
Keeping in mind that we are interested only in the real part, we can recast the wave function as
vy, t) = A[ei(kw-i-wt) + e{(kv—wt-i-'lr)]
= Ae{kll[ei&)t —+ e{ﬂe—ﬁ)t]
Now, from Euler’s formula, e = cos» + isinz = —1; hence
v, t) = Aetkvfeiot — g—int]
It follows from the second result of Problem 1.20 that
Wy,t) = Aelkv 2igin wt
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CHAP. 1] WAVE MOTION 11

and so
vy, t) = A(2icosky sinwt — 2 sin ky sin ot)

The real part of this wave function is y(y,t) = —2A sin ky sin ot.
Had we begun with sine waves, ie.
vy,t) = Asin(ky+ot) + A sin(ky —ot+ 1)

the treatment would have been identical up until the last step, where, this time, the imaginary part
would be taken to give
v(¥,t) = 2A cosky sin ot

One can indicate explicitly the use of the real (Re) or imaginary (Im) part by writing, for
example,
x = Re(2) or vy = Im(2)

In calculations such as that above we shall omit these designations; if you like, you can include them
—it’s a matter of taste as long as there is no ambiguity.

1.6 THREE-DIMENSIONAL WAVES

We can generalize the differential wave equation to three dimensions by noting that the
space variables should appear symmetrically. That is, the equation should not change if
we interchange the space variables, as long as the coordinate system remains right-handed.
In any event

By Py Py _ 1y

a2 9y? 922 ~ o of?
is the appropriate three-dimensional form in Cartesian coordinates. The particular solu-
tions of most concern to us in our study of optics are those associated with plane and
spherical waves.

We now write the equation for a plane passing
through an arbitrary point (o, %o, 2:) and per-
pendicular to a given direction delineated by the
propagation vector k, as in Fig. 1-7. The vector
r — rp will sweep out the desired plane provided that

(r—r)-k =0
or k-r = constant

This is the equation of a plane and so
y(r) = Asin(k-r)

is a function defined on a family of planes all
perpendicular to k. Over each of these k*r = con-
stant, and so y(r) is a constant. As we move from
plane to plane, ¢(r) varies sinusoidally. As before,
to convert this into a progressive harmonic plane
wave, we simply rewrite it as Fig. 1-7

¢(x,t) = Asin(k-r ¥ of)

or l/l(l', t) = Aeik-rFot

The minus sign corresponds to motion in the positive k-direction, the plus sign to motion in
the negative k-direction.
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12 ’ WAVE MOTION [CHAP. 1

The form of the harmonic spherical wave is most easily arrived at by solving the differ-
ential wave equation in spherical coordinates. That procedure leads to

¥(r,t) = -cg- sin k(r = vt)

or 'p(,’., t) — %e{k(rxvt)

where the constant <4 is known as the source strength. Observe that the amplitude <4/r
varies inversely with distance from the origin. This is a requirement of energy conser-
vation. Again, the minus and plus signs in the phase respectively correspond to waves
diverging from and converging toward the origin. The expression at any instant repre-
sents a cluster of concentric spheres, over each of which r is constant and therefore y(r, t)
is constant.

Instead of a harmonic wave we could equally well have considered a spherical or planar
pulse. For example, imagine a point source which, rather than oscillating harmonically,
just turns on, builds up, and then shuts off. The disturbance, although short-lived, would
move out in all directions as a spherical pulse of some sort.

SOLVED PROBLEMS

1.24. We found that k-r = constant is the equation of a plane normal to k and passing
through some point (2o, %o, 20). Determine the form of the constant and write out the
harmonic wave function in Cartesian coordinates.

The equation of the plane is
r—rg)*k =0

In Cartesian coordinates r = [2,¥,2], ¥y = [%p Yo %] and k = [k,, Kk, k,]. Hence
(% — 2o)ky + (¥ — wolky + (2 — 200k, = 0
or xk, + yk, + 2k, = zgk, + Yoky + 2ok,

The left side of this last equation is k *r, while the right side is the constant in question. The har-
monic wave function ¢(r,t) = A sin(k-r F wt) becomes

vz y,z,8) = A sin(wk, + yk, + 2k, = of)

1.25. Because of the spatial repetition in a harmonic plane wave, we can expect that
y(r, 0) = y(r+ rk/k, 0)

In other words, the profile at one location in space is identical to the profile a distance
A farther along in the direction of the unit propagation vector, k/k. Use this and the
exponential form of y(r, 0) to show that k| =k = 2x/a.

In terms of exponentials, y(r,0) = y(r+ Ak/k, 0) becomes
Akt = Aok (rt e/k) — 4 gikergitkek/k

But kk/k = [k[2/k =k and so
Aciker = Aoikergirk

This implies that €™ = 1. Since A is the minimum repetition-distance and since (Problem 1.21)
2™ =1, we must have Ak =2z or k = 2u/A.

1.26. (a) Draw a sketch of a planar wavefront propagating in the positive z-direction.
(b) Write an expression for a harmonic plane wave of this sort moving along the z-axis.
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CHAP. 1) WAVE MOTION 18

(a) See Fig. 1-8.

() The wave function in general is y(r,t) = A sin(k+*r — wf) or in Cartesian coordinates (see
Problem 1.24)
¢(r, t) = A sin (kyx +kyy + K,z — ot)

But here k is along #, so that k, =k, ky =k, =0 and
Y(r,t) = A sin (kz — ot)

PFig. 1-8 Fig. 1-9

1.27. Write the planar harmonic wave function in Cartesian coordinates in terms of direc-
tion cosines ¢, 8, y, where
kz=¢¥k ky=ﬂk kz=‘yk

and o2+ 82+ =1. Then show that the function is a solution of the three-dimen-
sional differential wave equation.

Beginning with
¢, ) = A sin(kyz+kyy+ k2 — wt)

we replace k., ky and k, by the corresponding direction cosine terms. As shown in Fig. 1-9,
ky; = kcose, = ka
ky, = kcose, = kB
k., = kcoseg = ky

where KR+ K+ k2 = IR+ p2+yY) = k2

Hence ¥(r, ) = A sin [k(azx + By + ¥2) — wt]

Now to check that this is a solution of the wave equation take the appropriate derivatives:

i PPy v _ & _ 2
= —alk 3 = _szz,ﬁ 2 _sz
_a____. —_—
and Froi —w2y

Adding the first three equations and making use of o2+ B2+y2 = 1 and k=2z/A =o/v (see
Problem 1.25), we obtain
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14 WAVE MOTION [CHAP.1

ax2 ' 9y ' 922 )

Expressing ¢ on the right side in terms of the second time-derivative yields the wave equation.

1.28. Show that

f) = f(r—ot)

v(r, p

is the solution of the three-dimensional wave equation which corresponds to a spheri-
cal disturbance centered at the origin and moving out from it with a speed v. Here
f(r —vt) is an arbitrary twice differentiable function.

The wave equation in rectangular or Cartesian coordinates is

2y %y %y _ 1 &y

22 " 3y ' 2 T 2 o
By using the coordinates 7, ¢ and ¢ as indicated in Fig. 1-10:
x = rsginé cose¢ ¥y = rsingsing Z = rcosé
the wave equation can be recast as

2.
a_zz+2ez+__1_a<- e.»e>+ 1y _ 1y

a2 T 7 or  risineae Y sin20 9¢2 v 9t

We are looking for the simple solution possessing spherical
symmetry. That is, we require the wave function to be
independent of ¢ and ¢:

¥(r,6,4,t) = ¢(r,t)

Thus, the partial derivatives with respect to ¢ and ¢ will
drop out of the wave equation, leaving only

Py 29 1y
2 " rdr T 0232
This can be restated as
1 2(ry) 1 9% L
r o2 T v2ag2 Fig. 1-10

The independent variable r is not a function of ¢ so that

& __ 0ry)
Tz T a2
and the wave equation becomes
- Rry) _ 1 30y
ar2 v2 912

Now this has the same form as the one-dimensional wave equation, whose general solution was found
to be (Problem 1.3)

Yz, t) = f(x— vt) + g(x+ vt)
Here r rather than z is the space variable, while »y(r, t) is the unknown function rather than y(z, t).
Hence, the general solution is

r(r, t) = flr—ot) + gir+ ot)
and so for an outgoing wave

f@r— i)

r

Yr, t) =
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CHAP. 1) WAVE MOTION 15

1.29. Thus far we have considered scalar wave functions of the form y(z, f) = A sin (kx — ot).
Suppose that you actually tried to set up a transverse wave of this sort; perhaps a dis-
turbance on a string. It would become evident that since you do not know the direc-
tion of the displacement the scalar wave function does not adequately specify the wave.
(2) How can this deficiency be corrected? (b) If the disturbance resides in a plane,
known as the plane of vibration, the wave is said to be plane polarized or linearly
polarized. Write an expression for a linearly polarized harmonic plane wave.

(@) The direction of the displacement in a transverse wave can be fixed by making the amplitude
a vector:

#x,t) = A sin (kx — ot)

where now ¢(z, t) is spoken of as the wave vector. The vectors A and k determine the plane
of vibration at any instant in time.

() For a linearly polarized harmonic plane wave A is constant in time and
f(l‘, ) = AeitkerFat+e)

Figure 1-11 shows several planar wavefronts normal to k. It depicts a harmonic plane wave,
so that ¢(r, £) varies sinusoidally from one plane to the next. Furthermore it’s linearly polarized,
so that at all points on any planar wavefront the amplitude vector is identical and the corre-
sponding planes of vibration are all parallel. If the amplitude vector is a function of time
which varieg sufficiently rapidly and randomly, the wave is said to be unpolarized. In that
case the scalar wave function will generally suffice; hence its interest to us here.

Fig. 1-11

1.7 WAVEFRONTS

Quite generally, a surface over which the phase of a wave ig constant is called a wavefront.
Clearly, for a plane wave the wavefronts are planar surfaces for which k-r = constant.
Similarly, a spherical wave has spherical wavefronts where r = constant. If the wave func-
tion is constant over the wavefront, i.e. if the amplitude is constant, the wave is said to be
homogeneous. This is often the case, but there are many instances of interest (such as in
frustrated total internal reflection or a laser beam in the TEMo mode) where the amplitude
varies over a wavefront and the wave is inhomogeneous. '
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16 WAVE MOTION [CHAP.1

SOLVED PROBLEMS

1.30. The wavefronts of starlight reaching your eye or a telescope are essentially planar.
Similarly, to photograph a distant terrestrial object you would set the camera lens to
focus at o, i.e. to receive incoming plane waves. Discuss the operative phenomenon.

The wavefronts arising from a distant point source are spheres having a very large radius and
therefore very little curvature. Over the relatively tiny area of a remote detector these wavefronts
appear planar, as in Fig. 1-12,

Supplementary Problems

Fig. 1-12

THE WAVE EQUATION

131. Show that y(z,t) = A sin24r(t+2) is a solution of the one-dimensional differential wave equation.

1.32. Which of the following functions describe progressive waves? Here A, B and C are constants.
iz, ) = Az —t)? vs(z, ) = A sin B(z2— Ct2)

vy, t) = Ay +t+B) valz,t) = A/(Bz?—t)
Ans. ¢,

1.33. What is the speed and direction of propagation of each of the following waves?
vily, t) = Ay —t)?
vo(x, t) = A(Bz+ Ct+ D)2
va(z, t) A exp (Bz2 + BC2t2 — 2BCzt)

Here A, B, C and D are constants. [We shall sometimes use the notation expu for ev)

Ans. v; =1 in the positive y-direction, v,:= C/B in the negative z-direction, v5 = C in the
positive z-direction.

1.34. Show that g(x + vt) is a progressive wave moving in the negative z-direction with an unchanging
profile.

135. Is y(x,t) = A(x+ Bt+ D)2 + A exp (Cx2+ B2Ct2 — 2BCxt), where A, B, C and D are constants,
a solution of the one-dimensional differential wave equation? What is the speed of the wave if
¥(z, t) is in fact a wave function?

Ans. y(z,t) has the form g(x + Bt) + f(x — Bt) and so it is a solution for which v = B

1.36. Show that h(t — %), which is an arbitrary twice differentiable function, is a solution of the wave
equation.
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Ans. h(t—%) = h<—x—_v—ﬂ> = flz—vt)

1.37. Prove that the rate of change of the wave function y(z, t) with respect to ¢ equals its rate of change
with respect to z, to within a multiplicative constant.

LI Zg—.i 1
Ans. 3t = +vé‘x
SINUSOIDAL WAVES

1.38. Show that the repetitive nature in time of a harmonic wave, ie. y(x,t) = ¢(x, t=7), requires
that = = A/v.

1.39. What is the wavelength of a harmonic electromagnetic wave having a frequency of 100 Hz? Since
the length of an antenna should be roughly comparable to the wavelength, this calculation immedi-
ately suggests using a high frequency carrier for radio signals. What frequency would provide
1 m waves?

Ans. A = 3x108m, 8 X108 Hz or 800 MHz

140. It is evident from Fig. 1-5 that sin (kx — ot + #/2) = cos (kx — »t). Show that this is actually true
analytically.

141. Given the wave
= L 15
v(z,t) 10 cos 27(2 <10=7 1.5 X 10 t)

determine the speed, wavelength and frequency. Use SI units.
Ans. A = 200nm, » = 15X 1015 Hz, v = 3 X 108 m/s

142. Given a harmonic disturbance of amplitude 10 units which is described by a wave function y(z, f)
such that ¢(0,0) = 0. If the wave has an angular frequency of »/2 and moves with a speed of
10 m/s, determine its magnitude at ¢ = 3 s at a point 20 m from the origin.

Ans. ¢(20,3) = 10 units

1.43. Plot the function (0, t), where
y(z,t) = y, sin (kx + ot + ¢)

and ¥, =38, k=27, o=7/4 and ¢ =—7.

1.44. Imagine that you have a photograph of a wave at ¢t =0 showing its shape to have the mathé—
matical form y(x,0) = 5 sin (z2/25). If the wave is moving in the negative z-direction at a rate
of 2 m/s, write an expression for the disturbance at ¢t =4 s.

Ans. y(z,4) = bgin [5’% (@ + 8):|

145. Envision a wave of the form y(z,t) = 102 sin (272 — 47t) and locate two detectors to measure the
disturbances at points z; =2 and z; = 10. What will be the magnitude of the disturbance at x,
at the instant ¢ when y(x,t’) = 102?

Ans.  y(xg,7/8) = 102

146. In Problem 1.45, suppose that «; = B, y(B,T) =C. Determine the value of y(D,T) at z; =D,
provided that D and B are whole numbers. What is the value of y(D, T + 1)?

Ans. y(D,Ty=0C, since A=1; y(D,T+1)=C, since r=1/2
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147. Is
3 X 108

A sin? 271015 (—L + t)
Vot = TEX 109w + 3 X 100

a solution of the wave equation? Make a sketch of its profile and determine its speed of propagation
if it is a wave.

Ans. It has the form g(x + vt) and is therefore a solution of the wave equation; » =83 X108 in
the negative x-direction.

PHASE AND PHASE VELOCITY

148. Given a sinusoidal wave E(z,t) of amplitude 20 V/m. If E(0,0) = —20 V/m, what is the initial
phase of the wave? (E can be thought of as the electric field component of an electromagnetic wave.)

Ans. ¢ = +37/2

149, A sinusoidal wave at £t = 0 has its maximum magnitude at = 0. What is its initial phase?
Ans. &= 7/2

150. A harmonic wave is moving in the positive z-direction and you set yourself up at some point to
observe the variations in the phase with time. Discuss what results you might anticipate.

a0) _
Ans. (6t>, Fo

151. Imagine that you have a photograph of a harmonic wave on a string stretched along the z-axis.
Discuss how the phase of the wave varies with changing «.

Anas. ("_”) =k
oz t

152. An electromagnetic wave of frequency 8 X 1014 Hz sweeps across the room with a speed essentially
equal to that in vacuum. If the phase angle difference between two points at a given instant is 60°,
what can you say about their separation in space?

Ans. A6, A + A/6, 2\ + A6, etc.; or 166 nm, 1166 nm, 2166 nm, ete.

153. An orange light wave of frequency 500 THz exists in a region of space. (a) By how much would
the phase vary in a billionth of a second? (b) How long would be the wave train corresponding to
that interval in time? (Because of the exceedingly high frequency of light there is no existent
means of measuring the instantaneous values of either the magnitude or phase of a light wave.)

Ans. (a) 5X 105 cycles or » X 108 rad, (b) 0.3m

154. The rate at which the phase of a sinuscidal wave changes in time, at any given point in space, is
127 X 1014 rad/s and the rate at which the phase changes with distance z, at any given time, is
47 X 108 rad/m. Write an expression for the wave function provided that the initial phase is #/8, the
amplitude is 10 and the wave advances in the positive z-direction. What is its speed?

Ans. ylx,t) = 10 sin (47 X 1082 — 127 X 1014¢ + #/8), » = 3 X 108 m/s

COMPLEX NUMBER REPRESENTATION
155. What is the complex conjugate of each of the following?

_1—4

= iwtg —ikx - —— ‘)2 +
21 z 2eiote z 51 (41 7
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1+ 44 . 1 i
*« = T = —iotgiks e (—42 -
Ans. z 57 2¢—integikr, 5 (—47) 1

156. Determine the real part of z = (1 — 4£)/2i and z = 2eiete—ikz,
Ans. —2, 2 cos (wt —kx)

157. Determine the imaginary part of
z = Beikzginteie, 2 — <____
Anse. b sin (kz + ot + &), %sin(wt—kz-i'a), 0
158. Find the magnitudes of the complex quantities
W@, t) = eikzg—iatgie  y(y,t) = 2eikveiot 4 4elkye—ict
Ans. 1, 2[5 + 4 cos 2wt]1/2

159. It’s quite usual in many branches of physics, and certainly in opties, to compute the square of some
sort of harmonic function, e.g. the kinetic energy if » is sinusoidal. When this is done in the com-
plex representation, the greatest of care must be used to avoid an extremely common error, To ex-
amine this point in detail, determine ¢2(x,t), where y(x,t) = A cos (kx — ot), using the complex
representation. Where lies the rub?

Ans. y? = A2 cos?(kx —ot). If y is written as Ael(kz—+t> we must evaluate [Re (¢)}?, which is not
equal to Re (y y*) but rather to [(y + ¢*)/2]2.

THREE-DIMENSIONAL WAVES

1.60. In light of the results of Problem 1.27 show that y(=,,2,t) = f[k(ax + By + 7v2) —wt] is a plane
wave solution of the three-dimensional differential equation, where f is an arbitrary twice differ-
entiable function.

16l. Given a harmonig plane wave of wavelength A, propagating with a speed v in a direction given by
the uﬁitA vector (l+?)/\/§ in Cartesian coordinates. Write an expression for the wave function.
Here i, j and k are the usual unit basis vectors.

Ans.  y(z,y,t) = Asin(—’i-x+—,£-y—@t>, where k:%‘\_’_

V2 V2

1.62. In Problem 1.51 we saw that for one-dimensional harmonic waves <g—¢> = k. For three-dimen-
sional harmonic plane waves, determine the value of ©/t

_ afde Afde afdp
oo = 1), + 3G, (),

i.e. the gradient of the phase holding the time constant.
Ans. (Vo) = k

163. Determine the direction of propagation of the plane wave

\l’(xryyz,t) = A sin <'—k"x+—?£y +'ik—z~—wt>
4

Ans. Along the unit vector ——1 + —2=3 + =&

Vi Vi 14

1.64.  Write the expression in Cartesian coordinates for a harmonic plane wave for which k = 2z/A and k
is directed along a line from the origin through the point (2, 2, 3).

(—2Lx+-2—k—y+-—3i‘—z—wt>
VI V1T V1T

Ans. y(z,9,2,t) = A sin
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Chapter 2

Electromagnetic Waves and Photons

21 MAXWELL’S EQUATIONS AND ELECTROMAGNETIC WAVES

In 1865 Maxwell unified and extended the laws of Faraday, Gauss and Ampére, forming
a set of encompassing expressions which have since become known as Maxwell’'s equations.
They interrelate the spatial and temporal variations of the electric field intensity E and the
magnetic induction B. In free space, and using Cartesian coordinates, Maxwell’s equations
can be written in differential form as follows:

0B, 3B, _ _oB.
Y 9z at
0B. OB, _ _oB,
9z dx at
0B, _oB, _ _oB
dx oy ot
B, _ B, _ _ B
3y o0z oyt
0B: _9B:. _ 0B,
0z ox ~ otoTgg
9B, B _ _ OB
ox oy -~ “oTg¢

aB. 4B, 'aBz
dax oy a2

oE. 0By 0B, _
ox oy 0z

Here the electric and magnetic properties of the medium, in this case vacuum, are repre-
sented by the constants ¢, and p,, the permittivity and permeability, respectively. By ma-
nipulating these expressions, Maxwell was able to show that each component of the electric
and magnetic fields obeys the differential wave equation (Section 1.6). Explicitly,

?E; K. , E; 0*E.

0x? oy? 7 B L T

with identical relations existing for E,, E., B., By and B,. Thus the electric and magnetic
fields can couple together as an electromagnetic wave traveling through space at a speed
v = 1/Vep,, Maxwell, using numerical values of ¢, and u;, determined that v ~ 3 X 10 m/s,
in fine agreement with Fizeau’s measurement of the speed of light. The conclusion was
inescapable —light was an electromagnetic wave.

The customary symbol for the speed of light in vacuum is ¢, and its presently accepted
value is 2.997924562 X 10°m/s = 1.1 m/s or 186,282.3960 miles/s = 3.6 ft/s.

20
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SOLVED PROBLEMS
2.1. A plane electromagnetic wave is one where the electric and magnetic fields are con-
stant on a plane perpendicular to the direction of propagation. Show that such a
wave must have its electric field transverse to the propagation direction.

If the wave propagates in the z-direction, the electric field must be independent of x and y;

that is, E = E(z,t). The last of Maxwell’s equations
oE, OE, OE,
3% -67 Iz

then leads to
IE,

0z

since E is not a function of either # or y. This means that E, = constant and is therefore of no
interest. We are concerned only with the electromagnetic wave, which must vary along z. Thus
the wave can possess only - and y-components, and so E is transverse.

2.2. Suppose that we have a linearly polarized electromagnetlc plane wave (see Fig. 1-11
page 15) whose electric field is of the form E = E.(z, £)i. Show that B = By(z, t)]

The electric field is polarized along the x-axis, as indicated by the presence of only an i-term.
Moreover, the wave propagates in the z-direction. Since Ey,=E,=0 and E, = E,(z,1), the first
three of Maxwell’s equations reduce to

_ @B, o, aB 0 = aB
0=-% 9z 8t - et
This means that B, and B, are constant in time and of no concern to us. Hence B, is the only
time-varying term, and so B = B,(z, t) j is the wave’s magnetic component. Note that E and B are
perpendicular to each other and to the propagation direction as well.

23. Given a harmonic plane electromagnetic wave whose E-field has the form

By,t) = Busin[o (t ——> +e]
determine the corresponding B-field and make a sketch of the wave.

Since E, = E, =0, the first of Maxwell’s equations yields
E, 8B,
ay ~  at

4B
or at’ = %EO, cos[ ( - -) + e]

Integrating both sides with respect to ¢ leads to

B9 = LB, sin[ o ( ——>+e] = 2B,

The electric and magnetic fields are orthogonal, their magnitudes are related by E = ¢B, and both
are normal to the propagation direction (Fig. 2-1, page 22).

24. Quite generally, an electromagnetic wave propagates in a direction given by the cross
product ExB. Prove that this is true for a plane harmonic wave moving in the
positive z-direction, whose E-field is E(z, {) = E(=, t).

Maxwell’s first three component equations lead to
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22 ELECTROMAGNETIC WAVES AND PHOTONS [CHAP. 2

where E,=E,=10. This, upon integration, yields E (z,t) = —cBy(a:, t); the E- and B—ﬁelds are
out of pl}\ase In vector form we have E = E,ﬁ, B=—(E /c)] and EXB = —(Ez/c)kX] Since
—kx3j =1, all is in agreement.

25. Imagine an electromagnetic plane wave in vacuum whose E-field (in SI units) is
given by .
E. = 10%s8in »(3 X 10% — 9 X 10%t) E, =0 E.=0

Determine the speed, frequency, wavelength, period, initial phase, E-field amplitude
and polarization.

The wave function has the basic form
E.(z2,t) = E,, sink(z—vt)
(see Section 1.3). Consequently, it can be reformulated as
E, = 102 sin [3 X 108z(z — 3 X 108¢)]

whereupon we see that ¥ = 83X108z m—1 and v = 3X108m/s. Since k = 2z/A» = 3 X 108,
A = 666 nm. Furthermore,

- v _ _8x108 _ 14

= %X T @ERXios - 4.5 X 1014 Hz

The period r is r = 1/» = 2.2 X 10~15 8, while the initial phase is evidently zero. The field ampli-
tude is just Ey, = 102 V/m. The wave is linearly polarized in the xz-direction and propagates along
the z-axis. This wave corresponds to red light.

14

2.6. Write an expression for the magnetic field associated with the wave of Problem 2.5.

The wave propagates in the z-direction while the E-field oscillates along z. In other words, the
E-field resides in the xz-plane. Accordingly, since B is normal to both E and the }?ropagatlon direc-
tion, it must reside in the yz-plane. Thus, B, =0, B,=0 and B = By(z,#)j. As we saw in
Problem 2.3, E = ¢B, the application of which leads to

By(z, t) = 0.33 X10~® gin #(3 X 108z — 9 X 1014¢)
Here By, = E,/c = 102/(3 X 108), the unit of which is the tesla (T), where 1T = 1kgs~1 C-1L

2.7. A plane electromagnetic harmonic wave of frequency 600 X 102 Hz (green light),
propagating in the positive z-direction in vacuum, has an electric field amplitude of
4242 V/m. The wave is linearly polarized such that the plane of vibration of the
electric field is at 45° to the zz-plane. Write expressions for E and B.
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CHAP. 2] ELECTROMAGNETIC WAVES AND PHOTONS 23

The amplitude of the E-field, E,, is equal to (E&,+E§z)l/2, where, because of the polarization
at 46°, Eg, = E,,. Thus E, = 42.42 = V2 By, and Eg = E;, =30 V/m. Writing the phase in the
form w(t — z/v), the electric field becomes

— _ _ . x
E,. =0 E, = E, = 30sin [27600 X 1012<t—m>:|
where, of course, © = 27v. Inasmuch as E = ¢B,
— — B — 10—T « x
B, =0 B, = —B, = 10~ 7 sin [27600 X 1012<t - m)]

Notice that B, is perpendicular to E,, as is —B, to E,. Check this against Problem 2.4.

22 THE INDEX OF REFRACTION

Maxwell’s theoretical treatment resulted in a predicted propagation velocity of ¢ =1/V/ep,
for electromagnetic waves in vacuum. In contrast, a wave moving through a material medium
travels at a speed v = 1/y/en. Here ¢ and p are the permittivity and permeability of the
medium. The absolute index of refraction n is then defined by

n=2%= 1’&
v €olo

Generally the magnetic properties of the media have little effect on v, since in materials
of concern to us p ~ p,.

An incoming electromagnetic wave applies an electric field to the medium, which as a
result becomes electrically polarized. That, in turn, contributes to ¢, which then determines
n. All of this is dependent on the driving frequency of the incident wave. Figure 2-2
illustrates the frequency dependence of n for various substances of interest.

4
3% 1018 1018 £X1014  5x10M4 sx1014  (Hz)
T l 1

L7 Dense flint

a 1.6

15}

Light flint

Crystal quartz

Borosilicate crown

1.4

(nm)

Fig. 2-2

SOLVED PROBLEMS

28. Light having a free space wavelength of Ao =500 nm passes from vacuum into dia-
mond (na=2.4). Under ordinary circumstances the frequency is unaltered as light
traverses different substances. Assuming this to be the case, compute the wave’s
speed and wavelength in the diamond.
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24 ELECTROMAGNETIC WAVES AND PHOTONS [CHAP. 2

Since 7 = ¢/v, v = ¢/n = 83X 108/24 = 125 X108 m/s. As for the wavelength,

inasmuch as vy =». Hence, A = 500/2.4 = 208 nm.

29. Suppose a light wave propagates from a point A to another point B, and we intro-
duce into its path a glass plate (n, =1.5) of thickness {=1mm. By how much will
that alter the phase of the wave at B if A, = 500 nm?

The refractive index of air (1.000293 at 0 °C and 1 atmosphere) is assumed equal to one, The
number of waves in air over the distance AB is just AB/Ap. The associated phase shift is 27(4B/A).
With the glass inserted there are (AB — {)/A\; waves in air and ¢/\ waves in glass. The phase dif-
ference is then

pp = 2AB—0 2t 20AB _ 2ﬂ<1 1)

Ao A Ao AN

But 1/ = n/Ay and so
2xt

Ap = ’\_o(n -1)
In this particular case

27108

42 = Fox103 Y

= 27103 rad

2.10. A plane harmonic infrared wave traveling through a transparent medium is given by

— ; Y —
E:(ya t) = FEo 8in 21!'(5 < 107 3 X 1014t)

in SI as usual. Determine the refractive index of the medium at that frequency, and
the vacuum wavelength of the disturbance.

The phase is familiar in the form k(y — vt); accordingly, we rewrite the above as

_2r 7
¢ = 5><10—"(” 15 X 107t)

Clearly, A = 6X10~"m and v = 1.6X108m/s. Thus n = ¢/v = 2 and Ay = nA = 1000 nm.

2.11. Light from a sodium lamp (Ao =589 nm) passes through a tank of glycerin (of index
1.47) 20 m long in a time t;,. If it takes a time ¢; to traverse the same tank when
filled with carbon disulfide (of index 1.63), determine the difference t;— .

Since v = ¢/n,

20 _ 20(147 20(1.63
=gy = T ea gy = BER
Accordingly,
tp— t, = -2-3-(1.63—1.47) = 1.07X10-8s

23 IRRADIANCE

A light wave flashing through space at 186,000 miles per second carries electromag-
netic energy and thereby can interact with a detector, be it a film, retina or photocell.
Energy flows in the direction in which the wave advances, i.e. (see Problem 2.4) in the direc-
tion of ExB. Accordingly, the energy per unit area per unit time flowing perpendicularly
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CHAP. 2] ELECTROMAGNETIC WAVES AND PHOTONS 25

into a surface in free space is given by the Poynting vector S, where
) S = c2eoEXB

Energy over time is power, so that the SI units of S are W/m2. At optical frequencies E, B
and S all oscillate at exceedingly rapid rates and it remains impractical to measure an in-
stantaneous value of S directly. Instead, one determines its average value (S) over a con-
venient time interval. This, in turn, is known as the radiant flux density. When energy
emerges from a surface, the flux density is spoken of as exitance; when energy is incident,
the flux density is called irradiance, symbolized by I = (S).

SOLVED PROBLEMS
2.12. A laser emits a 2-mm diameter beam of highly collimated light at a power level, or ra-
diant flux, of 100 mW. Neglecting any divergence of the beam, compute its irradiance.
The cross-sectional area of the beam is ~(10—3)2 and so

100 X 10—3
= —— 3 2
1 ~0=3 31.8 X 108 W/m

2.13. A harmonic electromagnetic wave in free space is described by E = E, cos (kz — ?).
Show that I= (c¢0/2)E:.
The B-field has the form B = By cos (kx — «t) and therefore
S = c2€oExB = 0260EOXB0 cos? (kx—wt)
Hence (S) = c2¢ [Eg X By| (cos? (kx — wt))

Calculating the average over a time interval of length T, we find:
t+T

(cos2 (kx —wt)) = cos? (kx — wt’) dt/

=
=

(S

When T > 7, oT > 1 and (cos? (kx — wt)) = 1/2. Consequently, since Ey = cB,,

060
1= 7E’§
or, if you like,
I = ch(Ez)

2.J4. A plane electromagnetic wave moving through free space has an E-field (also referred
to as the optical field) given by E:=0, E, =0 and

E, = 100 sin [87 x 10“<t - ﬁfﬁﬂ

Calculate the corresponding flux density.

From Problem 2.13, I = (ceo/2)Ef‘;. Then, since ¢, = 8.8642X10"12C2N~-1m~—2 and E, =
100 V/m,

1 = 13.3 W/m2

(3 X 108)(8.85 X 10—12)(100)2
2

2.15. Envision a plane harmonic electromagnetic wave propagating in space along the
y-axis. If the E-field is linearly polarized in the yz-plane and if X = 500nm, write
an expression for the corresponding B-field when the irradiance is 53.2 W/m2.

We can determine E, from the irradiance:
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26 ELECTROMAGNETIC WAVES AND PHOTONS [CHAP. 2

I = ceoEY2
53.2 = (3 X 108)(8.85 X 10~ 12)Eg/2
E, = 200 V/m

Then, from By, = Eg/¢c = 66.7X10-8 T, it follows that

B, = 66.7X10-8 sin 3 X 108t) B, =B, =0

27 W —
500 X 10-9 ¥

216. A 60-W monochromatic point source radiating equally in all directions in vacuum is
being monitored at a distance of 2.0 m. Using the fact that y, = 4= X 10~" N 82 C~?,
determine the amplitude of the E-field at the detector.

If A is the area of a sphere of radius » surrounding the source and I is the irradiance at that
distance, then the power radiated by the source is given by IA = I(4772), or equivalently, (S)(4772).
Thus '

_ (L 2 _ 4gr2 o
60 = (2 E0>4m'2 = 5o

30 1/2 —7 8y 11/2
Hence B, = ( #oc> _ [30(417')(10 )(3 X 108) -

g @) 30 V/m

24 PHOTONS —ENERGY AND MOMENTUM

The photon picture portrays the emission and absorption of radiant energy (€) in the
form of quanta having the value
E =l

In other words, a photon has an energy € which is proportional to its frequency v. The
constant of proportionality k2 = 6.6256 X 10—3* J 8 is known as Planck’s constant. It can
be shown —even classically — that electromagnetic energy and momentum (p) are related by

_ €
P=

Inasmuch as € = kv, we then have A
P ==
A

In vector form: L

p = 7%k where # = 5

Iy
SOLVED PROBLEMS

2.17. Compute the frequency, vacuum wavelength and energy in joules of a photon having
an energy of 2 electron volts (2 eV).

Since 1eV = 1.6021 X10719J, € = 2eV = 32X 10712 J, Knowing that & = hy, we have
32X10-19 = 66Xx10-%4 or » = 4.8X 1014 Hz
Finally, because ¢ = a», A = 3 X 108/(4.8 X 1014) = 625 nm.

2.18. What is the momentum of a single photon of red light (v = 400 X 102 Hz) moving
through free space?

The momentum is given by p = h/A = kv/c. Hence
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CHAP. 2] ELECTROMAGNETIC WAVES AND PHOTONS 27

(6.6 X 10~34)(400 X 1012)
p = 3 X 108

88X 1028 kg ms—1

2.19. A stream of photons slamming normally into a completely absorbing screen exerts
a pressure P in newtons per meter squared. Show that ¢ =1I/¢ when the screen
is in vacuum.

The time rate of change of momentum equals the force, i.e. Ap/At = F. The force per unit

area, /A, is the pressure, and so

_1ap
?_AAt

But € = ¢p in vacuum, which means that A€ = cAp and

1 A&

P = Acat

Since irradiance by definition is energy per unit area per unit time, we obtain P = I/ec.

2.20. A collimated beam of light of flux density 3 X 10* W/m?2 is incident normally on a
1.0-cm? completely absorbing screen. Using the results of Problem 2.19, determine
both the pressure exerted on and the momentum transferred to the screen during a
1000-s interval.

The pressure is simply

~

_ I _ 3X104 _ o,
P = = IxXid 104Nm

[

and Ap = PAAL (10—4)(10—4)(10%) = 10~ 5kgms~—1

(One could actually build an interplanetary sailboat using solar pressure.)

2.21. How many red photons (A = 663 nm) must strike a totally reflecting screen per sec-
ond, at normal incidence, if the exerted force is to be 0.225 1b?

We know that ¥ = Ap/At and, in this case, Ap is twice the incident momentum. Thus, if N
is the number of incoming photons per second,

F=nN2
Happily, 0.2261b = 1 newton, and so
_ A _  663X10~%  _ 2
N = 2% T 2663x10-% b X 1028 photons per second

This quantity is referred to as the phkoton flux.

222, Imagine a source emitting 100 W of green light at a wavelength of 500 nm. How
many photons per second are emerging from the source?

The power multiplied by the given time interval is the emitted energy, i.e. (100 W)(1 s8) = 100 J.
Denoting the photon flux by N, we have

100 _ 100n _ 100(500 X 10—9)

= = = 19
Ty he Gex10-W@x10s . 20%x10

N

25 THE ELECTROMAGNETIC-PHOTON SPECTRUM
The radiant energy spectrum ranges from gigantic radio waves millions of kilometers
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28 ELECTROMAGNETIC WAVES AND PHOTONS [CHAP. 2

long to the minutest y-rays millions of times smaller than a nucleus. The spectrum is gen-
erally divided into somewhat overlapping classifications designated by such familiar terms
as microwaves, ultraviolet, infrared, etc. This is done more for historical than pedagogical
reasons, and one should always bear in mind the single nature of all radiant energy. At the
low-frequency end of the spectrum, wave characteristics predominate; at the high-frequency
end, the corpuscular properties prevail —but it’s all electromagnetic energy.

Radio-frequency waves, which were first generated by Hertz in 1887, range from a few
Hz up to about 10° Hz. This includes radiation from power lines, AM and FM radio, and TV.

Microwaves extend from 10° Hz to approximately 3 x 10" Hz, i.e. from roughly 1/3 m
to 1mm. The region is of interest in communications, radar work and radio astronomy.

Infrared radiant energy corresponds to the frequency band from about 3 X 10" Hz to
5 X 10* Hz. Alternatively, the wavelengths of IR go from 1.0 mm down to 780 nm.

Light is the very small electromagnetic spectral region extending from 780 nm to 390 nm,
as indicated in Table 2-1. This is the band we shall define as light, despite the fact that the
human eye is capable of responding to a somewhat broader range.

Table 2-1
Light
Color Vacuum Wavelength (nm) Frequency (THz)
Red 780—622 384482
Orange 622—597 482503
Yellow 597577 503—520
Green 577—492 520—610
Blue 492455 610—659
Violet 455-390 659—769

1nm = 10-9m, 1 THz = 1012 Hz

Ultraviolet picks up, as its name would imply, at the violet end of the visible region
(=~ 7.7 X 10 Hz) and extends to about 3 X 10" Hz. A UV photon has an energy in the range
from 3.2 eV to 1.2 keV and the corpuscular properties of radiant energy begin to obtrude.

X-rays are the still higher-frequency manifestation of electromagnetic energy. Discov-
ered by Roentgen in 1895, they occupy the band from 3 X 10" Hz to 5 X 10'® Hz.

Gamma rays correspond to photon energies of from 10¢ eV to 10'° eV and beyond.

SOLVED PROBLEMS
2.23. Determine the vacuum wavelength corresponding to a y-ray energy of 10 eV.
Converting to joules (1eV = 1.6 X10-1°J), we have
€ = (1.6 X10-19)}(1019) = 16 J
and since & = hy = he/A, A = he/E. Hence

(6.6 X 10—34)(3 X 108)

A 1.6

12x10-2m

2.24. What is the photon energy in joules corresponding to a 60-Hz wave emitted from a
power line? How does this compare with the energy range for light?

Using the expression & = hy, we have
€ = (6.6 X10734)(60) = 39.6 X103 J
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as the energy of a 60-Hz photon. Light extends from 3.8 X 1014 Hz to 7.7 X 1014 Hz, or, from
251X 10—20 J to 50.8 X 10—20 J, Thus, 60 Hz is less energetic than light by a factor of about 1013,

2.25. What is the largest momentum we can expect for a microwave photon?
Microwave frequencies go up to 3 X 1011 Hz, Therefore, since p = h/A = hs/e,

(6.6 X 10~34)(3 X 1011)
p = 3X 108

6.6 X103 kgm s

Supplementary Problems

MAXWELL'S EQUATIONS AND ELECTROMAGNETIC WAVES
2.26. Given a planar electromagnetic wave in vacuum whose B-field is denoted by
B, =0 B, = 66.7x 1078 gin 4710%(z — 3 X 10%¢) B, =0
Write an expression for the E-field. What are the wavelength, speed and direction of motion of
the disturbance?

Ans. E, =200 sin 4s108(z — 83 X 108t), E, = E, =0; X, = 500 nm; v = 3 X 108 m/s in the positive
z-direction

227. Figure 2-3 depicts the electric field (in the y-direction) of a planar electromagnetic wave traveling
in the positive #-direction in vacuum. Determine the corresponding B-field.

Ans. B, =B, =0, B, = 6.6 X108 cos2x103(x — 3 X 108¢)

@
= Py
T

4?;_»

E (V/m)
[
g 3 =) ; g
T T /
GF
;_
G.
g
AR
B (in units of 10-¢ T)
S e N

N
T\

¢ (in units of 10-14 5)

Fig. 2-3 Fig. 2-4

228. The time-variation of the magnetic field of a planar electromagnetic wave is represented in Fig. 2-4.
The wave propagates in the z-direction in vacuum and the B-field is along the z-axis. Determine
the corresponding E-field.

Ans, = ?600 cos §710%x — 83X 108t). (The little cap on the ? indicates a unit vector; here, of
course, it’s a Cartesian base vector along the y-axis.)

229. Consider a harmonic planar light wave of wavelength 500 nm propagating in vacuum along the posi-
tive y-direction. If its B-field is confined to the zy-plane and the radiant flux density is 1.197 W/m?2,
determine the E-field.

Ans. E = k 30 sin 47106(y — 3 X 10%t), The wave travels along ’j\, E is along k and B is alongt
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30 ELECTROMAGNETIC WAVES AND PHOTONS [CHAP. 2

THE INDEX OF REFRACTION

230. The vacuum wavelength of a light beam is 600 nm. What is its propagation number in a medium
of refractive index 1.57

Ang. 157 X107 rad/m

231. We wish to compare the times of flight of two light beams; one in a tank of carbon tetrachloride
(n=1.46), the other in air (#=1.0). If the path lengths are made identical, how long must the
tank be when a millionth of a second difference in the transit times is required?

Ans. 650 m

232, Light of vacuum wavelength Ay = 589 nm is associated with a refractive index of 2.417 for dia-
mond (C) and 1.923 for zircon (Zr0Q, + Si0,). Compute the ratio of its wavelength in diamond to that
in zircon.

Ans. 0.79

233. What is the index of refraction of a glass if its dielectric constant K, defined to be e/, has the
value 2.317

Ans. 152

IRRADIANCE

234. A collimated light beam of flux density 10 W/em2 impinges normally on a perfectly absorbing planar
surface of area 1 em2. If this occurs for 1000 s, how much energy is imparted to the surface?

Ans. 10¢J

235. A focused CO, laser beam putting out a continuous wave (A, = 10,600 nm) of 3 kW is capable of
burning a hole through a quarter-inch thick stainless steel slab in about 10 seconds. Determine
the irradiance when such a beam has a focused spot area of 10—5 ¢cm2. What is the electric field
amplitude?

Ans. I = 3X102W/m2, E, = 4.8X107V/m

2.36. Show that the flux density for harmonic electromagnetic waves in vacuum is given by

I = (133x10-3 W/V2)E;

237. An isotropic point source radiates equally in all directions. If the electric fleld amplitude at 10
meters from the source is measured to be 10 V/m, determine the radiant flux (power).

Ans. 1676 W

238. With Problem 2.13 in mind, show that the irradiance corresponding to an E-field of the form

E = E;sin(kz— ot)
is given by I = (cep/2)EL.

PHOTONS — ENERGY AND MOMENTUM

239. Show that
- 1239

€ )

where energy is in electron volts (1 eV = 1.6021 X 1012 J) and A is in nanometers. (There will
not be much error if you remember the above number as 1234.)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



CHAP. 2] ELECTROMAGNETIC WAVES AND PHOTONS 31

240. The electromagnetic flux density impinging normally on a surface just outside the earth’s atmo-
sphere is about 2 cal em—2min—1. Assuming perfect reflection, determine the corresponding radi-
ation pressure from the sun. (1 J = 0.239 cal)

Ans. P = 9.32X10-%N/m2 or about 10—10 atm

241. The fact that photons striking a metal will liberate electrons is the quintessence of the photoelectric
effect. If the minimum energy required to free a photoelectron from sodium is 1.8 eV, what is the
longest-wavelength light that should be used?

Ans. 2y = 6883 nm

242. A flashlight emits 1 mW of collimated light. What average thrust is exerted by the flashlight?

Ans. %x 10-11 N, which is about a billionth of the weight of a 1-gram mass

243. Tiny glass spheres have been suspended in midair on a beam of laser light. What is the force on
a perfectly reflecting 9 X 10—2-cm2 surface arising from a 600-W collimated laser beam having a
cross-gectional area of 4 mm2?

Ans. F = 4X10-6¢N

THE ELECTROMAGNETIC-PHOTON SPECTRUM

244. Radiation from interstellar clouds of hydrogen is detected at a 21-em wavelength. What class of
electromagnetic waves are these? Determine their frequency and photon energy.

Ans. Microwaves; » = 14X 109 Hz, & = 9.24 X102 J

245. In an article “The Longest Electromagnetic Waves” (Sci. Am. March 1962, 128) J, R. Heirtzler
describes the detection of waves 18,600,000 miles long. What kind of electromagnetic waves are
these? Determine their period, and their photon energy in eV.

Ans. Radio-frequency waves, = = 100s, 4.1 X 1017 eV

246. Consider radiant energy of wavelengths Ao = 10712 m (y-ray), Ao = 500 nm (green light) and Ao =
1 em (microwave). How many photons of each are needed to carry 1 erg of energy? (1 J — 107 ergs)

Ans. B5X105, 3x1011, 5X 1015

247. Compare the photon energy of 10-em microwaves to that of a He-Ne laser beam (A, = 632.9 nm).
Ans. 198X10~24J and 3.1xX10-12J
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Chapter 3

Reflection and Transmission
31 INTRODUCTION

This chapter deals, for the most part, with reflection at, or transmission through, an
interface separating two different materials. In theory, at least, one could use Maxwell’s
formalism to trace an electromagnetic wave through a system, but there are other, gener-
ally simpler methods. Accordingly, Snell’s law, the law of reflection and Fermat’s prin-
ciple —all of them at least three hundred years old — describe various aspects of the behav-
ior of light with no concern as to its actual nature. Going beyond a simple determination
of the direction of travel, the Fresnel equations make it possible to calculate just how much
light will be reflected and how much transmitted at each interface.

32 THE LAWS OF REFLECTION AND REFRACTION

Figure 3-1(a) depicts an incident plane wave arriving at the interface between two media
of refractive indices 7; and n:. Most generally, a portion of the incoming light is reflected
back into the incident medium, while the remainder propagates into the transmitting
medium. The latter portion is often referred to as the refracted wave. Here the angles
0s, 6- and 6; relate to the incident, reflected and transmitted waves, respectively. Figure 3-1(b)
is the associated ray diagram. A ray is a line in the direction of flow of radiant energy
and in isotropic media it simply corresponds to a normal to the wavefronts. Clearly, in
such media, rays are parallel to the wave’s propagation vector, k.

(a) ()]
Fig. 3-1

The three basic laws of reflection and refraction are as follows:

(1) The incident, reflected and transmitted rays all reside in a plane, known as the plane
of incidence, which is normal to the interface.
(2) The angle of incidence equals the angle of reflection: 8: = ¢..

32
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CHAP. 3] REFLECTION AND TRANSMISSION 33

(8) The incident and transmitted ray directions are related by Snell’s law:

niSin 6y = n¢ sin 6z

~

SOLVED PROBLEMS

3.1. A beam of collimated light (i.e. having parallel rays) traveling in air makes an angle
of 30° to the normal to a glass plate. If the index of the glass is n,=38/2, determine
the direction of the transmitted beam within the plate.

Snell’s law,
n;8ing; = n,siné,
gives us the relationship between the incident and transmitted angles. Here n;=1 for air, §;=30°
and 7n; = 3/2; hence 3
(1) sin30° = 3 sin ¢,

Inasmuch as sin80° =1/2, sing; = 0.333 and so ¢, = 19.56°. This is the angle made with the
normal, as in Fig. 3-1(b).

32. Envision the interface between two regions, one of glass (#,=1.5) and the other of
water (n,=1.33). A ray traveling in the glass impinges on the interface at 456° and
refracts into the water. What is the transmission angle?

We apply Snell’s law
n;8ing; = n,sine,

The incident medium is glass, n; = 1.5, and =», = 1.33. This leads to
1.5 sin46° = 1.33 sin ¢4,

(1.5)1((;.:;707) = sine,
0.794 = sine,

Accordingly, ¢, = 52.6°.

3.3. Describe the relationship between 4; and 6; both when 7n: > 7; and when 7 > 7.

By defining the relative index of refraction as ny = n,/n;, Snell’s law,
. N
ging; = —sine,

(3

becomes
sing; = mn,sineg,

If the transmitting medium is the more optically dense, i.e. n, > n;, then nyz>1 and
ging; > sine,

Since both ¢; and ¢, range from 0 to 90°,
9 > 6

Similarly, when n; > n, 6; < 6,.
Compare these results with the results of Problems 3.1 and 3.2

34. (@) Prove that a ray incident at 6; to a planar glass plate immersed in air will emerge
from the plate at the same angle. (b) Derive an expression for the displacement a
of the ray if the thickness of glass is d.
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Fig. 3-2 Fig. 3-3

(a) We must show that ¢, = ¢; in Fig. 3-2. Accordingly, Snell’s law yields
.' ng 8ing; = m, sine,
where 6, = ¢/ Furthermore, at the second surface
n, 8ine; = n, sin 6}
Comparison of these two expressions leads to
ng sin6; = m,sine; = n, sine;
and so 6; = 6{; the incident and emerging rays are parallel.
() In Fig. 3-2, LCAD = ¢;— 6; and therefore in triangle CAD
a = AC sin (s; — ;)
But AC = d/(cosé,), from which it follows that

d sin (9‘_ 9:)
- oS 6,

3.5. Imagine that we have two media (of indices n; and n;) separated by a planar interface.
An object in the more dense medium (n:) is a distance y below the interface. An ob-
server above the boundary will see the object as if it were at a distance ¢’ below it.
Write an expression for y’ in terms of y and the refractive indices, assuming the line
of sight to be nearly normal to the interface.

The geometry is illustrated in Fig. 8-3. We know that
ny8in 6; = m, sineg;

and from the figure

AB = ytane; = y' tane,
Dividing these equations leads to

Ny COS 6; 74 COS 6
y = v
In this case where 6;, and therefore also 4;, is small, cos§; ~ cos ¢, =1 and
y = yﬁ
ng

The expression is a lot more complicated when 6, is not small.
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3.6. A fish appears to be 2 m below the surface of a pond when viewed from almost directly
above by an angler. What is the actual depth of the fish?
From Problem 8.5, ' = yn,/n,. In this instance ' =2m, n; =1 and n, = 1.38. Substitu-
tion then gives

y = %(2) = 266m

as the actual depth.

8.7. Imagine a stratified system consisting of planar layers of transparent materials of
different thicknesses. Show that the propagation direction of the emerging beam
is determined by only the incident direction and the refractive indices of the initial
and final layers (n; and ).

Referring to Fig. 3-4, we obtain from Snell’s law:
ny 8in §; = Mg Sin 6,
Ny 8in 6y = 73 8in ;3
n,sin 6;; = m;sin 6y
‘Because 8, = 6j9, 8:3 = 8;3, etc., these equations lead to
ny 8iné; = nysinéy = - = nsindy = nysindy
whence ny 8in 6y = ny8in oy

Notice that if 7, =%, as for a stack of plates immersed in air, 6; = 6, and the incoming and
outgoing rays are parallel.

Fig. 3-4 Fig. 3-5

38. A collimated laser beam shines on a tank of water. Part of the beam reflects off the
top surface and part off the bottom surface, as shown in Fig. 3-6. Show that the
two beams heading back into the incident medium are parallel.

We have, by the fact that alternate interior angles of parallel lines are equal,
6 = 6 0,0 = b33
The law of reflection states that
0y = 6n O = by
Hence 6, = 6;3. Snell’s law now gives
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n, 8in 8y = ngsinéy ny 8ind3 = 7, sin by
Substituting 6; = 6;;3, we obtain =, siné;; = %, siné,;, and hence

6y = 0, = O3

3.3 FERMAT’S PRINCIPLE

About two thousand years ago, Hero of Alexandria asserted that a ray of light leaving
a point S, reflecting off a mirror and then arriving at some point P traverses the shortest
possible path in space (Fig. 3-6). Although true for reflection in a homogeneous material,
this would obviously not obtain for a ray leaving S, refracting at an interface, and arriving
at P in the transmitting medium (Fig. 3-7). There the shortest distance is a straight line
from S to P, and that is certainly not the path taken. by light. In 1657 Fermat generalized
Hero’s observation as follows: A ray of light in traversing a route from any one point to
another follows the path which takes the least time to negotiate. Although often correct
as it stands, this statement is not the whole truth and will need some modification.

Suppose a ray in going from S to P traverses distances sy, 83, 83, . . ., Sm in media of in-

dices 71, ng, M, - - +, nm, respectively. The total time of flight is then

m Si 1 m

t = —_ = =

i=21 Vi ¢ izl st
This last summation is referred to as the optical path length, or O.P.L. Fermat’'s principle
can then be reworded as: A ray traverses a route which corresponds to the shortest optical
path length.

To give the modern and most general statement of Fermat’s principle, we recall the
notion of a stationary value of a function. The function f(x) is said to have a stationary
value at x = x if its derivative, df/dx, vanishes at x = x,. A stationary value could corre-
spond to a maximum, a minimum or a point of inflection with a horizontal tangent. In any
case, f(x) varies slowly in the vicinity of a stationary value f(xo), so that f(x)~ f(zo) for
T = Ly.

We may now express Fermat’s principle as: A ray of light in going from any one point
to another follows, regardless of the media involved, a route which corresponds to a station-
ary value of the optical path length. This applies equally well for inhomogeneous media,
for which we have

4
O0.P.L. = J; n(s) ds

The actual path is again the one for which the derivative of the O.P.L. is zero.

Physically, Fermat’s principle can be interpreted as a statement of the effects of con-
structive interference. More about this in Chapter 6.

SOLVED PROBLEMS

3.9. Justify that an alternative statement of Fermat’s principle is: The actual route taken
by a ray of light is the one whose O.P.L. is very nearly equal (i.e. within a first approx-
imation) to the optical path lengths of possible nearby routes.

The validity of the statement follows from the remark that if x, is a point at which a function
f(x) is stationary, then
flxg) = flx)
for values of x such that « ~ x,. Here the function is the O.P.L. Thus the actual route taken by
light has a stationary O.P.L. whose value is nearly equal to the optical path lengths of adjacent routes.
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Another way to think about this is in terms of the Taylor series expansion of f(x). Taken
about x, where

af _
da:_o

the Taylor series yields
f(x) = flzg) for o = =z,

just as expected. The phrase “within a first approximation” arises from the fact that the second-
derivative term in the series need not be zero. Were we to examine a possible but unreal path
(i.e. one not taken by light), adjacent routes would be found to differ greatly in their O.P.L, values.

3.10. Use Fermat’s principle (calculus version) to arrive at the law of reflection.

As shown in Fig. 3-6, a ray leaves S, strikes the interface at an unspecified point B, and reflects
off to P. Assuming the medium to be homogeneous and of index n, we have

0.P.L. = nSB + nBP
= n(h2+ 22)1/2 + n[b2 + (a — x)?]1/2
Here the O.P.L. is a function of the variable z, and light will take only the route for which

d(0.P.L.) _ 0
dx -
ie. nz(h? 4+ 2%)~1/2 — n(a — 2)[b2+ (a — 2)2]"1/2 = 0
But this is equivalent to
nsing; — nsing, = 0

and 80 6; = 4,. Thus, if a ray goes from S to P via reflection at B, Fermat’s principle demands
that B be located such that the angle of incidence equals the angle of reflection.

S
{
P
! h 9 ™
S 1
n
b
h o; '0,.
0 B
x — a—x z a—z
' @ l a
Fig. 3-6 Fig. 3-7

3.11. Apply Fermat’s principle (calculus version) to the case of refraction in order to derive
Snell’s law. .

In Fig. 3-7 a ray goes from S to P via refraction at point B on the interface. The scheme is
to locate B such that the derivative of the O.P.L. is zero. Thus we write

0.P.L. = n,SB + n,BP
= m(h?+ 22172 + n, 82+ (0 — 2)2j1/2
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The variable is # and so
ﬂ()_:dpx'il =0 = n‘x(hz + 32)—1/2 - nt(a - x)[bz +(a— 3)2]—1/2

This has the form 0 = =, sin §; — n, sin ;, which is obviously equivalent to Snell’s law. The value
of xz corresponding to a stationary O.P.L. is the one for which Snell’s law applies. Other locations
of B mean different values of x, none of them corresponding to a stationary value of the O.P.L.

Use the alternative formulation of Fer-
mat’s principle given in Problem 3.9 to
arrive at Snell’s law without calculus. —

Figure 3-8 shows two rays going from S
to P. The optical path lengths along these two
routes for an actual light ray will be nearly
equal if they are adjacent to each other. Accord-
ingly, assuming /BSD and ZCPD to be small,
it follows that SB~SA and PC~PD. If the
optical path lengths

nSB + n BP
and n,8D + n,DP
are to be approximately equal it is necessary that
‘n‘S_B + ntB_C- + ntC_P
~ nSA + n,AD + n,DP

This means that n,BC must nearly equal n,AD.
If we imagine BA and CD to correspond to seg-
ments of planar wavefronts as in Fig. 3-1(a), then
BC ~ BD sine, and AD ~ BD D sin¢, This ap-
proximation is good provided BD is quite small.
Finally, then, Fig. 3-8

nBD sino; = nBD sine,
or n; 8ing; = ngsiné;
The above treatment is perhaps the easiest mathematically, but it verges on being simplistic.
!

A spherical wave diverging from a point S is to enter some arbitrary optical system
from which it is to emerge as a wave converging to a point P (as in Fig. 8-9). What
does Fermat’s principle tell us about the optical path lengths for the various rays
going from S to P?

ARBITRARY
OPTICAL
SYSTEM

———t e e i i . st . e

Fig. 3-9

Rays from S to P will presumably traverse a great many different paths through the system.
Suppose that one such path corresponds to the minimum O.P.L. between S and P. Fermat’s prin-
ciple implies that light would traverse that minimum O.P.L. route and no other. But other routes
must obviously be taken because rays leave S in many directions. It follows that a minimum
(or maximum) O.P.L. cannot be uniquely attained. In other words, all rays from S through the
system to P must traverse identical optical path lemgths. This is true for all sorts of focusing
systems (such as lenges and mirrors).
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3.14. A collimated beam incident parallel to the symmetry axis of a certain concave mirror
is reflected into a converging beam. Use Fermat’s principle to show that the mirror
is paraboloidal.

Figure 3-10 depicts, in cross section, parallel rays corresponding to a plane wave = incident

on mirror M. The reflected rays converge on point F. The optical path lengths of all routes to F
must be the same (compare Problem 3.13, with S =« and P =F); hence

n(AB+BF) = n{(EG+GF) = -+ = n(XY +YF)

Now let the line segments AB, EG, ..., XY be prolonged through the mirror to points C, H, ..., Z,
which are chosen such that

BC =BF, GH =GF, ..., YZ =YF
The two sets of equalities above imply that
AB+BC = EG+GH = -+ = XY+YZ
which tells us that the distance between = and the line 2’ through C, H, ..., Z is constant. We

have thus constructed a straight line 3’ such that the points of M are equidistant from it and from
the point F. By definition, then, M is a parabola (with focus F and directrixz I').

S !

7

Fig. 3-10 Fig. 3-11

3.15. Imagine a ray of light leaving a point S in air and refracting to a point P in water
as shown in Fig. 8-11. Using Fermat’s principle but not Snell’s law, show that ». < v.

It is observed that rays leaving S arrive at P via only one route, SBP. Accordingly the corre-
sponding O.P.L. must be a maximum or a minimum. But it isn’t a maximum, since a ray_traveling
way out to the side and back to P would have a much greater O.P.L. Thus, nSB + n,BP is the
minimum O.P.L. The straight-line path SAP therefore has a larger O.P.L. From the diagram
SB>SA, AP > BP and

SB+BP > SA + AP
Hence SB-SA > AP - BP
both sides of which are positive quantities, Moreover,
n‘g + n,z_ﬁ’. > m§§ + n,ﬁ’
and so n (AP — BP) > n(SB—SA)
which means that n, > n; and v, <,

3.16. Referring back to Fig. 3-6, derive the fact that 6; = 6. using Fermat’s principle, but
this time let 9; itself be the space variable and not 2.
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As in Problem 3.10, O.P.L. = nSB + nBP. Here, however, we note that

SB = COZQ BP = co:’or
Consequently, . )
0.F.L = c:s 0; cot o,
and differentiating,
d(O.P.L) _ mhsing nbsing ds,
do; T cos?y cos?q, do;
Hence %;“_ = _ %;.sl_zn_:rz %;_:_ @

It follows from the geometry that ¢; and ¢, are related via

. htang; + btane, = a
and differentiation with respect to ¢, yields
de,
2 2 — =
h sec29; + b sec o’doi 0
R _ b de,
or cos2e,  cos?e, do, @)

From (1) and (2), sine; = sine,; that is, 6; = ¢,.

34 THE FRESNEL EQUATIONS

Augustin Jean Fresnel, about one hundred and fifty years ago, derived a set of expres-
sions which allow us to calculate the amount of light reflected and transmitted at an interface.
Envision a planar harmonic light wave incident on the interface between two dielectric
media, with the E-field normal to the plane of incidence (Fig. 8-12). The boundary condi-
tions require that we match the phases of the incident, reflected and transmitted waves
[i.e. E(r,t), E(r,?) and E¢(r,?)]. This leads to the laws of reflection and refraction, with
which we are already familiar. There are still other boundary conditions on the E- and
B-fields and these, in turn, yield the Fresnel relationships. Thus, with Eu, Eo and Eu
denoting the amplitudes of Phe incident, reflected and transmitted waves, we find

<E0,> __ M COo8 8 — m:cos b
L

"L = \Ea 7: co8 0; + M COS O
: ( Eo\ _ 21, cos ;i
L Ew/,. ~ micosf + necoso:

as the desired expressions for the amplitude coefficients of reflection and transmission,
respectively. A similar matching of boundary conditions when the E-field is paralle] to the
plane of incidence (Fig. 3-13) results in another set of amplitude coefficients:

A Eor __ Mecos s — micos b
= \E«/n ~ mcosd: + n:cosb

b = <_El’_‘ _ 21 cos
= \Eu/i = micosf: + n:cosb

In addition to these field amplitude ratios, one can define the reflectance, R, as the ratio
of the reflected to the incident flux (or power) and the transmittance, T, as the ratio of the
transmitted to the incident flux. In other words,

R = <E°’)2 = p

By
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Interface

Fig. 3-12

Interface
ny

Fig. 3-13
_ mecos b (Eu\? _ (m CO80t> .
and T = S cosd; (ﬂ) = \icosds)?

are the reflected and transmitted power coefficients. While R is simply the ratio of reflected
to incident irradiance, T is somewhat more involved in its form. This results from the fact
that the cross-sectional area of the transmitted beam differs from that of the other two,
and while power is independent of area, irradiance is not.

SOLVED PROBLEMS

3.17. Rewrite the expressions for the amplitude reflection coefficients as functions of 6;
and 4 only, i.e. get rid of the explicit dependence of r, and 7; on #; and 7.
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Beginning with the amplitude coefficient expression

n; cos 05 - N CO8 ot
L T % cos6; + ngcos o,

divide by n; and use Snell’s law (sin ¢;/sin 6, = n,/n;) to get

cos &; — (sin o; cos #,/sin o;)

"L T Cosé; + (sin 6; cos 0/sin 6y
This can be consolidated into
_ sin (6; — 0,)
.= sin (0; + 0;)

using the identity sin(a=*g) = sin a cos B * cos « sin B.

7, COo8 0‘ — 7; CO8 Ot
73 CO8 8¢ + 7 €O8 §;

Similarly, ™

can be reformulated as
_ 8in 6; cos 6; — 8in ¢, cos 6,
~  siné, cos 6, + sin ¢; cos 6;

T

via Snell’s law. But this last equation is equivalent to

(sin ¢; cos 6, — sin ¢, cos 9;)(cos ¢; cos §; — sin ¢, sin ¢,)
(sin o; cos 8, + sin 8 cos 9;)(cos 9; cos 8; + sin o; sin &)

Ty =

which, in turn, leads to
sin (; — 0,) cos (6; + @)
sin (9; + o) cos (6; — 0,)

7y

and finally
tan (6;— o)

it tan (0‘ + ot)

3.18. Derive expressions for the amplitude coefficients at normal incidence and compute
their numerical values at an air-glass interface where n:=1.5.

The key point here is that ¢; = ¢, = 0. Hence, cosé; =~ cos6; = 1 and

_ N¢ CO8 §; — N CO8 Oy _ ne — Ny
T T micos e+ mecos®, . m+ m
_ 7y COS §; — Ny COS O¢ oMy
L T Micost; F mecost; . m+
In summary,
T — Wy
riJo=0 = [—7]e=
[r1le;=0 (=71 lo=0 gy

For the case of external reflection (n; <n;) at an air-glass interface (n; =1, n,=1.5),
1.5—1 _ 1/2

[rilo=0 = [rile=0 = T3 572

0.2

In much the same way,
2ny
g +

[tilo=0 = [tylo=0 =

which, for air and glass, has the value 0.8.

3.19. Express the amplitude reflection coefficients in terms of 4; and 7.
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Starting with
_ mcoso‘—mcosot
"L T ‘m cos 6 + ng cos o,

divide by n; and substitute ny = ny/n; to get
€08 8; — Ny COS O;
TL T cosd;+ my coss
Snell’s law can be written as (sin ¢;)/ny; = sing,. Since
sin2 ¢;

i

cos26; = 1 — gin%2¢, = 1 —

the amplitude coefficient becomes
_ coso; — my(l — gin2 gy/nd)1/2
L= 08 8; + ny(l — sin2 g/nd)1/2
cos o; — (nf — sin29)1/2
cos o; + (nf — sin? o)1/

More simply, r, =

nf cos9; — (ng — sin? 6)1/2

Similarl y r =
v . ng coso; + (¥ — sin2e)1/2

820. Determine the values of the amplitude reflection coefficients for light incident at 30°
on an air-glass interface, ng = 1.50.

From Problem 3.19
cos o; — (n — sin2e)1/2

€o8 6; + (n?; — gin2 0‘)112

TJ_=

or, since cos 30° = 0.866 and sin 30° = 0.5,

_ 0.866 — (9/4—1/4)1/2 _  0.866 — 1.414
L = 0866+ (9/4—1/4)172 — 0866 + 1414
0.548
~3980 —0.240
Similarly, " = (0/4)(0.866) — 1414 _ 19401414 _ ..o

(9/4)(0.866) + 1.414 1.949 + 1.414

The minus sign on the perpendicular coefficient means that the reflected field points in the
opposite direction to that shown in Fig. 8-12. In other words, the perpendicular component of the
; E-fleld is shifted in phase by 180° upon reflection..

321. Determine the value of ¢, for light incident at 80° on an air-glass interface, ny = 1.50,
and show that ¢, +(—7r,) =1 for this case.

Using Snell’s law, sin ¢; = ng sin 6;, we find

1 _ 8
—2’——28m0t

.whence sin ¢, = 0.333 and therefore cos9; = 0.9428. Thus

¢ = 2ny cos o; 2(0.866)
L 7 mycose, +mcose, — 0.866 + 1.5(0.943)

and, using the results of Problem 3.20,
t, +(—r,) = 0.999

= 0.759

which is close enough to 1 for our purposes.
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The equation ¢, +(—r,) =1 actually holds for all ¢;, whereas ¢, + 7 =1 obtains only when
0 = 0.

3.22. Suppose that a linearly polarized wave impinges on an interface such that the plane
of vibration makes an angle of y, with the plane of incidence. If the reflectance of
the components parallel and perpendicular to the plane of incidence are R and R,
respectively, write an expression for the total reflectance, R.

Since the cross-sectional areas of the incident and reflected beams are equal, we can simply
work with their irradiances. Accordingly R = I,/I;, where I,=1,,+1,,, and so

_ I,-||+Ir_L _ I,-” I"_L
B="1" =1 %7

Inasmuch as the field components are expressible as
[Egl)) = Egcosy; [E o) L = Eysiny
it follows from I = cey(E?) that
Ly = Iicos?y; L, = Lisin®y,;

Substituting back into the reflectance yields

I I
R = —rﬂcossy‘ + -—gsinsy‘
I I,
or R = Rjco?y; + R, sin®y;

The transmittance has the same form:

T = T”cossyi+T_Lsin37i

3.23. Write expressions for (a) the reflectance and (b) the transmittance at near-normal
incidence. (¢) Determine the percentage of light lost in reflection at an air-glass
(n,=1.5) interface.

() From Problem 3.22
R = R” 0082')" + R_L sinSYi

where R = rﬁ and B, = ri. At normal incidence, we know from Problem 3.18 that

ne — n\2
Biles = (55m) = Rilomo

in which case
= — e m\2
[Rlg=o = [Bilo=o = [Bilo=0 = <m>

(b) The transmittance is given by

08 &
r o= 7 €OS e
7; o8 6;
and Problem 3.18 led to
2ny
tule.—0 = [t =
[tule;=0 (t1]o=0 P
Hence, keeping in mind that
T = Tjcos?y; + T, sin?y;
_ o/ 2mg 2
and Tilomo = 2(arm) = Talamo

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



CHAP. 3] REFLECTION AND TRANSMISSION 45

we finally arrive at

4
[Tlo=0 = [Tulo=0 = [T lo=0 = (—n—%:,‘_)_f

(¢) Substitution of 7, =1 and n; = 1.5 into the result of (a) yields a loss of

[Rlo=o = 4%
at a single air-glass interface.

3.24. Natural or unpolarized light is such that the azimuthal angle y, of Problem 8.22 changes
rapidly and randomly, as does the field amplitude. Derive an expression for R, the
reflectance of natural light, in terms of R, and R, bearing in mind that these, in
turn, are both functions of 6; and 6..

Our aim is to rewrite
I+ 1,
I

while feeding in the information that we're dealing with unpolarized light (via I,).

R,

Looking back at Problem 3.22, notice that we found I, and I;, in the usual way by squaring
and time averaging the field components. Now, however, ; is a function of time and (compare Prob-
lem 2.13) 1

{cos?yi(t)) = (sin?y(8)) = 5

Thus for natural light I, = I1,/2, I, L= I,/2 and we can write

IrIII' 1

Iy = 21‘”' =Rl
_L L1

Ly = 3 = gR.

Consequently,
* Y R, = L®,+R,) = L2 +s%)
n g it 1 2 VI 1

3.25. What percentage of the incoming irradiance is reflected at an air-glass (n,=1.5) in-
terface for a beam of natural light incident at 70°?

From Problem 3.24

R, = Zri+r})

DO

while Problem 3.19 led to
cos ; — (nf — sin2 9)1/2

r =
L cosg; + (nd — sin2 g))1/2

nﬁ cos8 6; — (nts; — gin? 0‘)112

o= ng coso; + (nf — sin2 o,)1/2

With ¢; = 70°, cos¢; = 0.34, sin¢; = 0.94 and ny = 1.5, weobtain

. _ 03— (2350882 _
L = 03iF(225=088)177F

2.25(0.34) — (2.25 — 0.88)1/2
2.25(0.34) + (2.25 — 0.88)1/2

Substitution into the expression for the reflectance yields R, = 17%.

—0.56

i —0.21
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35 THE CRITICAL ANGLE

For the most part we have concerned ourselves with the case of external reflection
(ne>mn). The opposite situation, in which 7 > n:, is known as internal reflection and is
also of considerable practical interest. Recall from Problem 8.17 that

_ _8in (6: — 0¢)
o = sin (6: + 6:)

_ tan (0{ — 0t)
T = fan (6:+ 6¢)

When 7; > n: Snell’s law demands that 4: > 6. Therefore r, is positive, rising with in-
creasing 6; from 0.2 to a value of 1.0. On the other hand, 7; ranges from —0.2 to 1.0. Both
coefficients reach a value of 1.0 at an incident angle referred to as 4., the critical angle.
When 6;=40., 6. =90°, beyond this, the amplitude coefficients become complex.

Envision a beam of light impinging on an interface between two transparent media
where #; >n:.. At normal incidence (6:=0) most of the incoming light is transmitted into
the less dense medium. As §; increases, more and more light is reflected back into the denser
medium, while 6 increases. When 6: = 90°, 6; is defined to be 6. and the transmittance be-
comes zero. For 6:;> 6. all of the light is totally internally reflected, remaining in the
incident medium.

SOLVED PROBLEMS
3.26. Use Snell’s law to derive an expression for 6.. Compute the value of 4. for a water-
air interface (n.,—=1.33).
Rewrite n; siné; = n; sine,
as sing; = nysineg,
where ny4 <1. Requiring that ¢, = 90° for ¢, = 6. leads to
sine, = ny

At a water-air interface
6. = 8in—1(1/1.833) = sin—10.762 = 48.8°

3.27. A tank of water is covered with a l-cm !
thick layer of linseed oil (n, = 1.48) above
which is air. What angle must a beam of
light, originating in the tank, make at the
water-oil interface if no light is to escape?

The appropriate geometry is indicated in

Fig. 8-14. Total internal reflection can occur
only at the oil-air interface since n,, <n,. There

6. = sin—1(1/1.48) = 42.5°
Snell’s law applied to the water-oil interface is
1.338ing; = 148 sing, = 1

and ¢; = 48.8° In other words, for incident
angles equal to or greater than 48.8° the beam
will be reflected back into the water. Notice
that this same angle would obtain even without
. the oil layer. Fig. 3-14
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8.28. Imagine yourself lying on the floor of a pool filled with water, looking straight upwards.
How large a plane angle does the field of view beyond the pool apparently subtend?
Rays striking the air-water interface from above at glancing incidence will enter the water at

a transmission angle equal to ¢.. The plane angle subtended at the observer is therefore 2¢.. Here,

sine, = -1—1§§
whence ¢, = 48.8° and 20, = 97.6°. '

3.29. The sparkling appearance of a gem-cut diamond arises from total internal reflection.
Light entering from above is reflected back out toward the viewer, re-emerging
through the top facets. Determine the critical angle (na=2.417) and compare it to
that of glass (n,=1.5).

By Problem 3.26 1

2.417

Hence 0, = 8in—10.4187 = 24.4°

sing, = ny =

This is a good deal smaller than the corresponding value of 41.8° for glass-air.

3.30. Determine the critical angle for a water (n., = 1.88)-glass (%, = 1.50) interface.

We have
sine, = ny
. 1.38 .
or 0, = sm—lm = s8in—10.887 = 62.5°

Supplementary Problems

THE LAWS OF REFLECTION
AND REFRACTION

331. Show that the displacement of a beam on passing
through a parallel plate of index n, (Problem 3.4) can

be expressed as
¢ = d(gin o‘)<1 B o ")
7, co8 ot
332, A ray traverses a prism as in Fig. 3-15. Show that Fig. 8-15

the ray undergoes a deviation 8 given by

8§ = 9‘l+9t2_¢

3.33. Use the law of reflection to show that the deviation §
produced by the two mirrors in Fig. 8-16 is given by

8§ =at+B = 47—2y

3.34. A ray enters the mirrors of Fig. 3-17, page 48, and is
reflected several times, ultimately retracing its path
and emerging. Write an expression for the relation-
ship which must exist between ¢; and «.

Ans. ¢;=3a ' Fig. 3-16
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335. TFigure 8-18 depicts a scheme for graphically
constructing the path of a refracted ray. First
an arc is swept out having a radius equal to n;
and then another equal to n,. The incident ray
is extended to meet the first circular segment,
a perpendicular to the interface is dropped and
its intersection with the second arc locates the
refracted ray. This is a very handy procedure
for ray-tracing — prove that it's correct.

FERMAT'S PRINCIPLE

3.36. Envision a concave ellipsoidal mirror whose axis
of revolution passes through its two foci. Show,
using Fermat’s principle, that the rays diverg-
ing from a point source at one focus converge
to the other focus after reflection from the inner
surface of the ellipsoid. (Here the O.P.L. has
neither a maximum nor a minimum.)

337. Referring back to Fig. 3-7, derive Snell’s law
where 6; is the space variable rather than z.
Remember that htans; + btane, = a, where
where k, b and @ are constants.

338. As shown in Fig. 3-19, two possible adjacent
paths from S to P are SAP and SBP. Show
that the difference in optical path lengths (which
must be vanishingly small if SAP is to be an
actual ray trajectory) is given by

n:h sin 6; . n:b sin 6,
cos2g; ¢ cos? o,

Go on to derive Snell’s law.

339. Use Fermat’s principle to show that the incident
and reflected rays at a planar interface must be
in a common plane, viz, the plane of incidence.

THE FRESNEL EQUATIONS

340. A linearly polarized beam of light whose E-field
is normal to the plane of incidence impinges in
air at 46° on an air-glass interface. Assuming
ng = 1.5, determine the amplitude coefficients of
reflection and transmission.

Ans. 7, =—0.3084, t, = 0.6966

341, Show that the amplitude transmission coefficients
can be reformulated without an explicit depen-
dence on n; or n;, as follows:

¢ 2 sin 9, cos 6,
=
1 Sin (0‘ + ot)

_ 2 sin 6, cos 9;
~ gin (6;+ 8,) cos (8; — 6;)

t
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342, Verify that ¢, +(—r .L) =1 for all values of 6; (It is probably simplest to use the expressions
for the coefficients which depend only on 6; and 6,) Show, as well, that nyt, + (—r) =1.

843. Show that
[Rlo=0 + [T]oy=0 = 1
In fact, R+ T =1 independently of 4;.

344, In Problem 8.18 we calculated the amplitude coefficients at normal incidence for external reflection
at an air-glags interface. Recompute these coefficients with the light incident in the glass.

Ans.  [—7ylo=0 = [} ]o,=0 = 0.2 and [t;)e,=¢ = [t ]o,=0 = 1.2. (This is correct; Ey is greater than

Ey here because the fleld on one side of the boundary must equal its value on the other side;
i.e. E;+E, = E,; and E; and E, are in phase when 6; = 0. Energy is, of course, conserved.)

345. Rewrite the reflectance and transmittance at normal incidence as
_ [ — 1\2 _ An
Blomo = (1)) [lass = o
(using the results of Problem 38.28) and verify several of the points on Fig. 8-20. Solve for the
values of 7y such that [R]e.—¢ = [T]e;=0-
Ans. my =1 corresponds to no interface at all, in which case [T]o‘=o =1, [R]g=9=10; for

n = 1/1.6 = 0.66, [R]g,—o = 0.04, [T]g=¢ = 0.96. The reflectance equals the transmittance
when n;, equals 5.8 and 0.17.

Reflectance (¢; =0)
Transmittance (¢; =0)

THE CRITICAL ANGLE

346. Three transparent materials of indices n4, < ng < n¢ form a layered structure with n, on top and
nc on bottom, If the critical angles at both the A-B and B-C interfaces are 45°, determine n4¢.

Ans. Nac = %

STUDENTS-HUB.com Uploaded By: Jibreel Bornat
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347. Light is to be totally internally reflected by the prism of Fig. 38-21. Determine the corresponding
minimum index of refraction of the prism if it is to be imbedded in air.

Ans. 1414

Fig. 3-21 Fig. 3-22

848. What is the refractive index of the glass block in Fig. 8-22 if an incident angle of ¢; = 45° results
in total internal reflection at the bottom surface? (This setup is the basis for several refractometers.)

Ans. 163

349. Imagine that we have a clear liquid in an open container and we determine that ¢, = 45°. Now
if we shine light from above at varying values of 4; an orientation will be found (4;= 4,) where the
reflected light is linearly polarized, i.e. #; =0. Compute é,, the polarization angle.

Ans. B4.7°

350. Figure 3-23 depicts a thin glass fiber (n;) surrounded by a lower-density cladding layer (n.). There
is a maximum incident angle 6; = 6,,,, such-that any ray impinging on the face at 6; > 6., will
arrive at an internal wall at an angle less than 6, and will not be totally internally reflected.
Show that

. 1,2 2
S Opax = (0] = )1/

Light caught within the cylinder will be multiply reflected down its length. This is the basis for
what has come to be known as fiber optics.

Fig. 3-23
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Chapter 4

Geometrical Optics

41 INTRODUCTION

This chapter concerns itself with the basic techniques used to collect and reshape wave-
fronts, most often with the intent of forming some sort of image. Accordingly, we examine
the configurations of various reflecting and refracting devices (lenses, mirrors, etc.) which
will effect the wavefront alterations needed for specific purposes.

The domain of geometrical optics, as distinct from physical optics, is limited to situa-
tions where diffraction effects arising from the inherent wave nature of light are negligible.
This simplification is tantamount to requiring rectilinear propagation in homogeneous media
—that is, rays are assumed to traverse straight lines.

42 ASPHERICAL REFRACTING SURFACES

We first examine how to reconfigure a wavefront by causing it to propagate through a
curved interface separating two transparent media. Once having done that it is simple to
determine the effect of a series of such surfaces (a lens).

Suppose that we have a segment of a spherical wave diverging from a point source S
and we wish to reshape it into a spherical wave converging to a point P, as in Fig. 4-1 (see

Fig. 4-1

51
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52 GEOMETRICAL OPTICS [CHAP. 4

Problem 3.13). In effect, the central portion of the wavefront must be held back with
respect to its edges. Since the wave travels slower in a medium of higher index, this sug-
gests elongating the interface in the vicinity of the SP-axis. The edges of the wave would
then travel longer in the optically less dense (faster) medium and in so doing overtake and
pass the central region of the wave, thereby inverting the wavefront. This particular inter-
face configuration is known as a Cartesian ovoid. Similarly, if we wanted the waves in
the transmitting medium to be planar, the interface would now have to be a bit flatter so
that the edges of the wavefront overtake, but this time do not pass, the front’s central
region. It turns out that such an interface would have to be hyperboloidal with S at a focus.

Many aspherical surfaces are of practical interest but they all share the common draw-
back of being difficult to fabricate. Even so, precision aspherical elements are being used
where their high cost can be justified (e.g. in reconnaissance cameras).

SOLVED PROBLEMS

41. Derive an expression for the Cartesian ovoid depicted in Fig. 4-2. Use Fermat’s prin-
ciple, being careful to explain its application.

Fig. 4-2

Fermat’s principle states that the optical path length (O.P.L.) along each ray from S to P
must be stationary. Here, a portion of a spherical wave leaves S and is to converge at P, so that
there are many allowed ray paths. No one O.P.L. can be a maximum or minimum, which means
that they are all equal, i.e.

lom + Gy = 8,my + 81y

regardless of the location of 4. Once having chosen the object and image distances, s, and s;, the
expression for the ovoid becomes

{ony + my = constant

42. Write an expression for the particular Cartesian ovoid whose object and image dis-
tances are 8 cm and 10 cm respectively. Assume it to be made of glass (n,=1.5) and
surrounded by air (n.=1). Sketch the interface.

The ovoid is described by
{ony + {iny = constant = s,n; + 8m,
(see Problem 4.1), In this instance
constant. = (8)(1) + (10)(1.6) = 23
and therefore
¢, +15¢ = 238

Keeping ¢, > 8,, let ¢, = 9; then ¢; = 9.33. Similarly, when ¢, = 10, ¢ = 8.66. Figure 4.3 is a
sketch of this ovoid.
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Fig. 4-3

43. Figure 4-4 shows a point source imbedded in a medium (n,>mns). Qualitatively
discuss the shape which the interface must have in order that the wavefronts emerge
planar.

To flatten out the wavefront you’ll want a portion to advance more the farther it is off-axis.
Since %; > np this means that the interface must be convex to the right, as in Fig. 4-5.

Fig. 4-4 Fig. 4-5

44. Show that the desired interface in Problem 4.8 is actually an ellipsoid of revolution
with an eccentricity of e = 7.

Refer to Fig. 4-5. From Fermat’s principle
S, + (Zf))n, = constant

Dividing by =,, this becomes _ __
SA + (AD)ny, = constant

If the curve is assumed to be an ellipse with § and F as the foci, then
S4A + FA = constant

Furthermore if point D is on the directrix of the ellipse then FA = (AD)e. If D is on a wavefront
not corresponding to the directrix, FA = (AD)e+ constant. In either case

S4 + (AD)e = constant

Clearly, then, the interface is elliptical with e = ny; < 1. In contrast, when #; <n, €>1 and
the curve of the boundary is a hyperbola.
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43 SPHERICAL REFRACTING SURFACES

Precise spherical surfaces are particularly easy to fabricate and, therefore, of consider-
able practical interest. Figure 4-6 depicts a spherical boundary surface of radius R centered
at C. We know from Section 4.2 that a broad cone of rays corresponding to a spherical
wave segment diverging from S would converge to P if we were dealing with a Cartesian
ovoid. Even if the interface is spherical, it can be shown, using Fermat’s principle, that
a narrow cone of incident rays will arrive at P. In that case, where A4 is nearby V
(i.e. £o=~ 38, {i~3) we have

Mt om
8o 8 R

Rays of this sort that make shallow angles with the optical axis are referred to as paraxial.

Fig. 4-6

There is a special object distance, s, = f,, known as the object focal length, for which
8i = and the waves in the transmitting medium are planar (Fig. 4-7). Straight substi-
tution yields

ny
= M _p
fo N2 ~— Ny

Similarly, when s, is made infinite, s = f; and the incident waves are planar (Fig. 4-8).
The image focal length is then given by

fi = =" _p

ny
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ny

Fig. 4-8

”

Fig. 4-9

ny

Fig. 4-10

65

An object is said to be real when light diverges from it (Fig. 4-7) and virtual when light

converges toward it (Fig. 4-9).

Similarly, an image is said to be real when light converges

toward it (Fig. 4-8) and virtual when light diverges from it (Fig. 4-10). Table 4-1 summa-
rizes the sign convention we will adhere to-in all cases light is assumed to enter from the
left. Notice that a negative value of s, or s; means a virtual objeet or a virtual image,

respectively.
Table 4-1
Sign Convention for Spherical Surfaces
8or fo + leftof V ‘
8 fi + right of V
R 4+ when C is right of V
Yoo Yi + above optical axis
2, + left of F,
; + right of F;
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SOLVED PROBLEMS

45. Suppose that we have a glass rod (ﬁgz 1.50) surrounded by air with the left end
ground to a convex hemisphere of 2-cm radius. If a point source is located 6 cm to
the left of the hemisphere’s vertex, where will its image appear?

Since n; =1 and n, = 1.5,

156 _ 15-1
o+ 8; - R
In this case s,=6cm and R =2 cm, so that
1.3 _ 05
§+§Z )

and 8 = 18 em. The image is real and lies on the right side of ¥V within the glass.

4.6. If the glass rod of Problem 4.5 is immersed in water (n»,=1.33) determine the new
location of the image of the point source.

This time =n; = 1.83 while n, = 1.50 and so

1.38 + 160 _ 1.50 —1.38
8 8 R
or 1.33 + 1.50 _ 0.17
6 8; 2

Hence s = —10.98 cm; the image is virtual, to the left of the vertex, and light diverges from it.

4.7. Consider the block of glass shown in
Fig. 4-11. If the point source S is 30 ecm
from the vertex of the hemispherical end
and if the latter has a radius of 10 cm,
locate the image seen by the observer.

Here #, = 15, n, =1, 8, = 80 cm and
R = 410 cm. Therefore

15 ,1 _ 1-15 Fig. 4-11
—_ 4= =
8, 8{ R

or —_ = —— - == —_—

Thus & = —10 cm. Accordingly, the image is virtual, i.e. the rays diverge from it, and 10 cm to
the left of the vertex in the glass.

4.8. If the interface in Fig. 4-6, page 54, has a radius of 5 cm and separates air on the
left from glass (n;=1.5) on the right, determine f, and fi. (These are also often
referred to as the first and second focal lengths, respectively.)

By convention light enters from the left; consequently, »; =1, n, =15 and R, which is
positive, equals 5 em. Hence

1.5

fo = 5=7® = 0em fi= 13250

15 -1 = 15em

49. What must be the radius of curvature of the rod’s right end in Fig. 4-12 if the par-
allel bundle of rays is to come to a focus 100 cm from the vertex? The glass rod
(n = 1.46) is immersed in ethyl alcohol (n» = 1.36).
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The image focal length is given by

fi= —2_R
P omy—my
so0 that
B = Filng — ny)
Ny
_ 100(1.36 —1.46) _
=73 = 735 em

The minus sign occurs because the center of cur-
vature is left of the vertex. Fig. 4-12

44 THE THIN LENS EQUATION

A lens is a refracting system consisting of two or more interfaces, at least one of which
is curved. Only lenses of uniform refractive index will be considered in this book. The
rod in Fig. 4-12 qualifies as a stmple lens, i.e. it consists of only one element, which in turn
means that it has just two refracting interfaces. A compound lens is formed of two or
more simple lenses. A thin lens, compound or simple, is one where the thickness of the
elements plays no significant role and as such is negligible. Figure 4-18 illustrates the
nomenclature associated with a thin simple spherical lens. Light can be traced through
both its interfaces; provided that the thickness (7172) is indeed negligible and further that
we are limited to paraxial rays, it can be shown that

1 1 _ 1 _ 1
E;+.8: = (‘nlm 1)(R1 R2>

where, as usual, nm = n¢/nm. This is the so-called thin lens equation, which is also referred
to as the lensmaker’s formula. Notice that if s, = », 1/f; equals the quantity on the right
and the same is true of 1/fo when 8;= », In other words, fo=fi=f, where

1 _ _ i _ 1
7 = te-3(g-g)
The thin lens equation can then be rewritten as the Gaussian lens formula:

1.1 _ 1
%o &  f

Fig. 4-13
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A spherical wave leaving S in Fig. 4-18 impinges on a positive lens, i.e. one which is
thicker at its center than at its edge. The central zone of the wavefront is slowed down
more than its outer regions and the front inverts itself, thereafter converging to P. Quite
reasonably, an element of this sort is said to be a converging lens and light rays are bent
toward the central axis by the lens. As shown in Fig. 4-14 the above description presumes
that the index of the medium, nm, is less than n.. However, if #m > n¢ a converging lens
would certainly be thinner at its center. Generally speaking (nm < %), a lens which is in fact
thinner at its center is variously known as a negative, concave or diverging lens. Light
passing through such a lens tends to bend away from the central axis, at least more so than
when it entered.

SOLVED PROBLEMS

4.10. Derive the thin lens equation using geometrical arguments and the fact that a spher-
ical wave enters and a spherical wave leaves the lens.

Referring to Fig. 4-15(a), bear in mind that the wavefront ABL must be bent into wavefront
EFG. That means that the optical path lengths between corresponding points on the fronts must
be equal, i.e. - .

AD + DE = nBF

Restricting ourselves to paraxial rays, AD =~ -H—O-, DE =~ OI and
HO + O = nBF
or HB + BO + OF + FI = nB0 + n,OF
HB +FI = (n,—1)(BO + OF) (2)

Notice that each length HB, FI, BO and OF is the radial distance from a chord to the circumfer-
ence of a circle (each is often called the sagitta).

Using Fig. 4-15(b), we obtain (JH )(ﬁ) = (ZIT YHC) or, in general,

@CR—z)z = A2
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If z is small,
k2 =~ 2Rx or x =~ h2/2R

Applying this relationship to each\ sagitta = (FO— and OF are small since the lens is assumed thin),
we find from (1):

(AHp , @HZ _ _1)[(17—0)2 4+ (DO (@)

2(SB) 2(FP) 2(BCy)  2(FCyp)
For paraxial rays, AH ~ DO; and since SB = s,, FP =8, BC, = R, and FC; = —R,, we

have from (2):
1,1 _ —_pnfLl_1
8, + 8 (me 1)<R1 Rz>

4.11. A point source S is located on the axis of, and 80 cm from, a plano-convex thin lens.
Suppose that the glass lens is immersed in air (ne =1.5) and that it has a radius of
5cm. Determine the location of the image (@) when the flat surface is toward S
and (b) when the curved surface is toward S. ‘

(a) Since R, = «, Ry, = —5 cm,
1 1 _ _nfl_1
30 + i 1.5 1)<m _5>
and 8; = 15 cm. The image is real and to the right of the lens.
(b) With B; =5cem, Ry = », we have
1 1 _ _f1l_1
30 + 5 15 1)(5 w)
Hence 8; = 15 em, as in (a).

412. What must be the focal length of a positive thin lens if the object and the image dis-
tances are to be 90 cm and 45 cm respectively ?

From the Gaussian lens formula we get

1,1 _ 1
% TEm "7

and so f =80 cm. Note that a positive or converging lens has a positive focal length while a nega-
tive or diverging lens has a negative focal length.

413. Compute the focal length of the bi-concave
thin lens depicted in Fig. 4-16, if it is made
of flint glass (n¢=1.66) and immersed in
water (n»=1.38).

With light incident from the left, B, = —10 cm,
Ry = +20 cm and

1_ <1-£6._1 <_1__L
f 1.33 -10 20

It follows that f = —26.9 cm, and the lens is
negative as expected. Fig. 4-16

4.14. Compute the focal length of the bi-concave thin lens depicted in Fig. 4-16, assuming
it to be made of fluorite (n,=1.43) immersed in carbon disulfide (%~ =1.68).

As in Problem 4.13, Ry = —~10 cm and R; = 420 cm, but now
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1_ (148 N(1 1

f ~ \1.68 -10 20
and f= +4b64.3 em. The lens, surrounded by a higher-index medium, ia now converging, i.e. rays
bend toward the central axis.

4.15. Design an aspherical lens, not necessarily thin, which will convert spherical wave-
fronts from an axial point source into a collimated beam (plane waves).

Going back to Fig. 4-5, page 53, slice off the ellipsoidal end and grind in a hemispherical sur-
face as in Fig. 4-17. If the point S is both the center of the sphere and a focus of the ellipsoid,
the waves will be undeflected at the first interface and emerge planar.

Similarly, the solution to Problem 4.4 suggests using a hyperbolic plano-convex lens as shown
in Fig, 4-18. Here S is at a focus of the hyperboloidal surface.

-] L

Fig. 4-17 Fig. 4-18

4.16. A bi-convex thin lens of index 1.5 is known to have a focal length of 50 cm in air.
When immersed in a transparent liquid the focal length is measured to be 250 cm.
Determine the refractive index, », of the liquid medium.

Since the focal length of a thin lens is given by

1 1 1
7= M 1’(& - R—)
the ratio of the focal lengths in the different media

1/60 _ 15-1
1/250 — (1.6/n) — 1

5<.1'_5_1) = 05
n

756 = 5bn
n = 136

is independent of the radii. Hence

4.17. Point S and its real image point P in Fig. 4-13 are said to be conjugate: a source
at P would be imaged at S, and vice versa. It can be shown that the shortest distance
between conjugate points for a thin positive lens is 4f and this occurs when s, = 8.
Make a plot of 8, + 8 versus s,, where the latter is varied in multiples of some fixed f.

First make a table of values using the Gaussian lens formula in the form s; = 8,f/(s, — f).

8, 6f 5f 4f 3f 25f of 161 125 f 1f
8 1.20f 125 f 138f 1.50f 166f of 3f 5f ®
8,+ 8 720f 6.25 f 5.83 f 4.50 f 416 f 4f 4.60 f 6.25 f b
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Note that for values of 8, < f, 8; < 0; i.e. the image
is virtual. The tabulation is graphed in Fig. 4-19.

4.18. What is the ratio of the focal length of a thin ‘
plano-convex lens to the focal length of a thin
bi-convex lens, presuming that the indices are
the same and all the spherical surfaces have TE
the same curvature? of

<
Letting f,. be the focal length of the plano-convex +°
lens and f,. that of the bi-convex, we have ®

1 1 1\ _ 1 .
T (nlm—1)<§—;> = 5 0m—1

P

2f 8 & B 6f

and = (nlm—1)<-,15—:1,—3) = 2 tm—1)

~

Thus, fpo/foe = 2. Fig. 4-19

45 SIMPLE THIN LENS IMAGERY

We saw in Fig. 4-14 that an axial parallel bundle of rays will be focused to a single point
by a positive lens. Indeed, any parallel ray bundle will be brought to a focus on a surface
o passing through F, as in Fig. 4-20. Within the paraxial approximation, ¢ is planar and
called the second or back focal plane. Similarly, there is a first or front focal plane perpen-
dicular to the optical axis at F.

Fig. 4-20

We now examine — first graphically and then analytically —the image of a finite object
formed by a thin lens.

There are three rays emerging from each object point which are especially simple to
follow through the lens (Fig. 4-21). A ray (#1) traversing O, the center of the lens, will
be undeviated, i.e. a straight line. A ray (#2) entering the lens parallel to the optical axis
will pass through F;. Similarly, a ray (#3) passing through F. will emerge parallel to the
axis. Accordingly, one need only construct any two of these rays for each point on the
object; their corresponding point of intersection locates the image.

Of use in the analytical approach is yet another version of the thin lens equation. This
Newtonian formulation reads:

%, = f*

The various distances involved are illustrated in Fig. 4-22 and the concomitant sign con-
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Fig. 4-21
Se
Yo A Fy P,y
Sl [/
Py
Zo f f - i} -
8o > 8; ]
>
Fig. 4-22

vention is as shown in Table 4-1, page 55. Observe that since the lenses dealt with here
have negligible thicknesses, one can measure distance from a center plane through point O.
Moreover, the rays can be drawn as if they underwent a single refraction at that plane
rather than at both surfaces.

The size of the image (y:) is of obvious importance and so we define the lateral or trans-
verse magnification (M,) as

Ui
M ==
T yo
From the similar triangles S1S:0 and P,P:0, it follows that
M, =-2

. . s
or in Newtonian form °
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When the image is right-side up, y: is positive, M, is positive and the image is said to
be erect. Table 4-2 summarizes the physical significance of the signs of the various quanti-
ties, while Table 4-3 lists image properties for both convex and concave thin lenses. XKeep
in mind that a real image can be projected directly on a screen, while a virtual image (the
kind you see in a planar mirror) cannot be.

Table 4-2. The Physical Significance of the Signs of Thin Lens
and Spherical Interface Parameters

Sign
Quantity + -
8, real object virtual object
8 real image virtual image
f converging lens diverging lens
Yo erect object inverted object
Y erect image inverted image
My erect image inverted image

Table 4-3. Thin Lens Image Characteristics for Real Objects

Convex
OBJECT IMAGE
Location Type Location Orientation Relative Size
o > g, > 2f ¢ real F<s8<2f inverted minified
8, = 2f real 8 = 2f inverted same size
f<s,<2f real o > g; > 2f inverted magnified
8=1 *w
8, <f virtual la > 8, erect magnified
Concave
OBJECT IMAGE
Location Type Location Orientation Relative Size
anywhere virtual la} < If) erect minified

SOLVED PROBLEMS

4.19. Compute the object and image distances for a thin bi-convex lens if the image is to

be projected life-sized directly onto a screen. The lens has equal radii of 60 cm and
Nem = 1-5.

The focal length is simply
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4.20.

421.

422,

STUDENTS-HUB.com

or f =R =60 cm. (This result is one to remember; it gives a good feel for the relationship between
f and R even if it is a special case.) Table 4-8 makes it apparent that a real life-sized image occurs
when 8, =8 = 2f =120 cm. Note that My = —1, ie. the image is inverted.

A 3-cm high wine-bottle cork is sitting 75 cm from a thin positive lens of 25-cm focal
length. Describe the resulting image completely, using the Gaussian formulation.
Check your answers with Table 4-3.

Given that 8, = 76 cm and f = 26 cm, it follows from the thin lens equation that

1,1 _ 1

75+;; T 2

and therefore 8; = 37.5 cm. This is positive, which means that the image is real and located beyond
the lens. The size of the image can be determined from the expression

8; Yi

M = —_—— = =

T 8 Yo

376 _

Hence My %0 3

The magnification is —1/2 and 8o y; = —1.5 cm. The image is minified and inverted (My<0).

Redo Problem 4.20, this time using the Newtonian formulation exclusively.
Since 8, =76 = f+x, and f= 26 em, x, =450 cm (see Table 4-1). Accordingly,

2
= & _ j125em

2%, = Jf2 and *; 50
But, of course, 8 = x;+ f = 12.5+ 25 = 87.56 cm, as in Problem 4,20. As for the size of the image,
% f
M. = —_—— = =
T f %o
and either of these forms will do. Hence
= 1256 _ _ - _2 _ _
MT = 25 = 0.6 or MT = 50~ 0.6

It is required that a real image twice the size of the object be formed by a thin plano-
convex lens. If the lens has a radius of curvature of 50 cm and a refractive index
of nem = 1.5, determine the locations of the object and image with respect to the lens
(@) by use of the Newtonian expression, (b) by use of the Gaussian expression.

(z) From Table 4-8 it is evident that a real magnified image would occur when f <8, <2f and
that it would be inverted and located such that « > g; > 2f. In this case

1 _ (-1
3= own(g, Rz)
: 1_ 05
yields )
that is, f = 100 cm. Thus, since My = —2,
—_— = = = -2
f %o
With f =100 cm, «; = +200cm and x,= 50 cm, and therefore s, = 150 cm, s; = 300 cm.
(b) The Gaussian formula
[ 8 f
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4.23.

4.24.
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together with the fact that

gives

and, as in (a), 8, = 150 cm.

Suppose that an object positioned 10 inches to the left of a positive lens is imaged
30 inches to the right of the lens. Where will the image appear if the object is now
moved so that it is 2.5 inches from the lens? Completely describe the image in

both instances.
The focal length of the lens can be gotten from the thin lens equation:
1,1 _ 1
0t =7
or f = +417.5 inches. Furthermore
— 8‘ —_— —_
~ M T - - 80 -_— 3

and so this image is real, inverted and magnified (as expected from Table 4-83 when f < 8, < 2f).
In the second case, 8, = 2.5 inches and

1,1 _ 1
2'5+8i - 7.5

yielding 8; = —8.75 inches. This time the image is virtual, erect (M= +1.5), magnified and located
8.75 inches in front of the lens.

Imagine that you’d like to look through a lens at your pet parakeet and see it stand-
ing right-side up but shrunk to one-third its normal height. Degignating the focal
length as f, determine the kind of lens needed, as well as the object and image dis-
tances in terms of f. Construct a ray diagram.

If the image is to be both minified and erect, the lens will have to be diverging, according
to Table 4-3. Since My = +1/3,

1 % _ f

3 - 7T T =
and so x; = —f/3 and =z, = —3f, where you should keep in mind that f < 0. Both %; and xz, are
therefore positive quantities although F, is to the right of the lens and F; is to the left of it.
Since they are positive, x, is measured to the left of F, and x; to the right of F;. Consequently,
8, = —8f — (—f) = —2f, while 8 = f— f/3 =2f/3. All this can be seen in Fig. 4-28.
Alternatively,
8

-1 _
MT_§_30

and therefore

1 1 _ 1
Wi Emy TF

A thin bi-convex glass (n; = 1.5) lens has radii of curvature of 80 cm and 60 cm. If it
is to cast a half-sized image of a ceiling lamp on a paper screen, what must be the
lens-lamp and lens-screen distances? Construct an appropriate ray diagram.

First, to determine the focal length we use
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-
F, =" —————
f
N 8, g
s (3 - 1 f
xo
Fig. 4-23
1 _ _pfL_1\ _ 1 _ 1
7 = (nm 1’(31 R2> = °'5(3o —so)

and find that f = 40 cm. The magnitude of the transverse magnification is given as 1/2, but if
the image is to be real it must be inverted, hence

1
MT=_§=

Substituting back into the thin lens equation, we have

1,1
8, 8,/2

40

1

40

and 8, =120 cm, while 8, = 60 cm. A ray diagram is shown in Fig. 4-24.

120 !

Fig. 4-24

4.26. A thin positive lens of focal length f is to cast a real image N-times larger than the
object. Show that the lens-screen distance is equal to (N + 1)f.

We know from Table 4-3 that the image must be inverted, i.e.

The lens equation then yields

1 1
8 * 8{/N

f

or 8= (N+1)f. Compare this with the results of Problems 4.19, 4.22 and 4.25.
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46 COMPOUND THIN LENSES

We now examine the formation of images arising from combinations of simple thin
lenses. The first approach is a graphical one and for that refer to Fig. 4-25. Observe that
both fi and f. in this case are greater than d. The rays labeled 1 and 2 intersect at P to
form a minified, inverted, real image. Ray 2 is obvious enough since it passes through the
two foci F'o; and Fio. Ray 1 is a bit more problematic — it goes through O: but at an unknown
angle. Note, however, that if lens L, were removed ray 1 would be unaffected. Thus imagine
that L. vanished, as in Fig. 4-26. All rays entering lens L, from point S: will intersect at Ps.
We need only locate P; with any two convenient rays and then construct ray 1 running
backwards from P; through O; to S..

Ll L2
Sy
1
F,i Fg ix E; Fy
S, ; N
2 2 \
f1 - d fz

Iw -

8 8 -

Fig. 4-25

Fig. 4-26

To arrive at an analytical statement, we merely presume that the image formed by the
first lens serves as the object for the second lens and so on through the system. In the case
of any two thin lenses one finds that

_ f2d = [f1£280/(80 — f1)]
R ey sy N[N A
where s, and s; are the object and image distances, as measured in Fig. 4-25. If the magni-

fications of the individual lenses are Mr, and Mr,, it should be evident that the total mag-
nification is

M'r = MTIMT2

In other words, the first lens produces an intermediate image of magnification Mz, which
in turn is magnified by an amount Mr, by the second lens. Explicitly,

- fls
Mr = Gz —of;
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If we let s; go to », s, takes on the value designated by the abbreviation f.f.l. (front
focal length), namely
fi(d—72)
d—(fi+ 1)

Similarly, when s, goes to infinity the corresponding image distance is called the back focal
length, or b.fl., where

ffl =

_ _fxd—1f)
Restating matters, if collimated light enters the compound lens from the left, it will be
focused to the right of the last lens element at a distance b.f]. If it enters from the right,
it will be focused a distance f.fl. in front of the first lens element.

Note that when the lenses are in contact (d=0), b.fl. =f.fl; the common value is
called the effective focal length f, where

1 1 .1

F=hTR

It has become usual practice to define a quantity called the dioptric power D of a lens;
it is just the reciprocal of the focal length. When f is measured in meters, & has the units
of m~1! or diopters. For the case of two thin lenses in contact

D =D+ D,
yields the combined power of the individual elements.

More on compound lenses will be found in Section 4.8.

SOLVED PROBLEMS

4.27. A compound lens consists of two thin bi-convex lenses L; and L; of focal lengths 10 cm
and 20 cm, separated by a distance of 80 cm. Describe the image corresponding to
a b-cm tall object 15 cm from the first lens.

The image distance is given by
_ fad = [f1f280/(8,— il
T T s )]

wherein f;, =10 cm, f, =20 cm, d =80 cm and 8, = 15 em. Accordingly,

_ (2060) — [10)20)(18/(15-10] _ 100 _ oo
& = Tgo—20—[@o))y/(i6—10) 8 _ °em

The image is real and located 33.3 cm beyond the last lens. Its lateral magnification is

fi8 _ (10)(83.3)
ds,— 1) — 8,f; ~— 80(15—~10) — (15)(10)

ie. the image is magnified slightly and erect.

MT = = 13

4.28. Construct a ray diagram to scale for Problem 4.27. Calculate the location of the
intermediate image and see that it checks with your drawing.

The intermediate image, i.e. the one formed by the first lens, can be located using the thin lens
equation 1 1 1

Bt = 10
Thus s; = 30 cm, which is 30 em to the right of L,.
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Rays 1 and 2 in Fig. 4-27 easily locate the intermediate image. Any two rays from the tip of
the intermediate image in turn will fix the position of the final image; rays 2 and 8 are the most
convenient.

Fig. 4-27

4.29. Imagine a compound lens consisting of a thin positive lens followed at an interval
of 20 cm by a thin negative lens. If these have focal lengths of +40 cm and —40 cm
respectively, determine the f.f.1. and b.f.l.

Here f; =40 cm, fo=—40cm and d =20 cm. Hence

40]20 — (—40)]

££1. 20 — [40 + (—40)]

= 120 em

—40(20 — 40)
20 — (40 + (—40)]

Thus the image of a very distant object like the sun would be formed 40 em behind the second lens.

b.f.l. = 40cm

4.30. A bi-concave lens of focal length —60 mm is mounted in a cardboard cylinder 120 mm
in front of a plano-convex lens of radius 60 mm and index 1.5. Determine completely
the image which would result from a 8-mm ant located 180 mm in front of the device.

The focal length of the positive lens is arrived at from

1 _ _pfl-1
7 = s 1)<so °°)

that is, fo = +120 mm. Hence, with f; = —~60 mm, d =120 mm and s, = 180 mm, we find
(120)(120) — {(~60)(120)(180)/[180 — (—60)]}

% = 120 — 120 — {(—60)(180)/[180 — (—60)]}
12 + [6(180)/(240)]
9/240 = 440mm

The image is real and to the right of the last lens. As for the lateral magnification,

Mo = (—60)(440) - _2
T = 120180 — (—60)] — (180)(—60) 3

and the image is inverted and minified; the ant appears 2 mm long.

431. A homemade microscope has a thin positive front lens L, of 2-cm focal length, 10 cm
behind which is another positive lens L., with a 5-cm focal length. (a) Locate the
image of an object 3 cm from the front lens and compute the magnification. (b) Con-
struct a ray diagram for a single axial object point.
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(@) The image will be found a distance 8; measured from L,, where f; = 2cm, f; = 5 em,
d =10cm and 8, = 3em. Accordingly,

(6)(10) — [(2)(5)(3)/(8 — 2)]

“ = p-s-Eee-2 - 2
The image is in front of Ly, that is, it’s virtual. The lateral magnification is then

08-21- @@
and the image is inverted and 10 times larger than the object.
(b) See Fig. 4-28.

Fig. 4-28

4.32. A positive meniscus (covexo-concave) thin lens (n =1.5) whose radii of curvature are
5cm and 10 cm is positioned in contact with a plano-concave thin lens (n=1.6) of
radius 6 cm. What is the effective focal length of the lens system? Compute its
power as well.

The first step is to calculate the two focal lengths, namely

L _ as-p(i-1 L - ge-pn(i-t
7 = s 1)(5 10) 7 = e 1)(°° 6>

These lead to f; =20 em and f3 = ~10 em. The combined focal length f is simply
i _ 1,1 _ 1,1
F SRt R Tt

or f=—20cm and P = —b dptr.

4.33. A negative meniscus thin lens of radii 60 cm and 30 cm and having an index of 1.5 is
held horizontally with its concave side facing upwards. The concavity is then filled
with a transparent oil of index 1.6. Determine the dioptric power of the compound
thin lens assuming it to be immersed in air. Deseribe the image of an object 100 cm
in front of the lens.

Inasmuch as 2; = 1/f;, and here Ry =0.6m, R, =08m and % = 1.5,

_ _plL_1) - _
Dy = (16 1)<0.6 0.3) = —0.83 dptr
This is the power of the glass meniscus lens. As for the oil lens,

— 1 1y _
Dy = (16— 1)(63 - ;) = 42 dptr
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The combined power of these two elements in contact is

D = D)+ D, = +117 dptr
The effective focal length is then 2~ = f and the expression

1 1 1
_— + —_— = =
8 8 f
will provide the needed image distance. Hence
Lo m-a

8

8, =588 m and M, =5.88, so that the image is real, erect and magnified.

47 THICK LENSES

Imagine that we position a point source S on the axis of a thick lens so that the emerg-
ing rays are parallel, as in Fig. 4-29(a). Evidently the distance from S to the vertex V,
corresponds to what we have called the front focal length (f.f1). Similarly, an incident

parallel bundle of rays will converge to a point a distance beyond V; equal to the back focal
length (b.f.l.), as in Fig. 4-29(b).

Fig. 4-29

If the incoming and outgoing rays are extended (as shown by the dotted lines) each
pair will intersect on a surface. In the paraxial approximation these surfaces reduce to
planes known as the first and second principal planes; their points of intersection with the
central axis, H. and H,, being the first and second principal points, respectively. As a rule
of thumb, for glass lenses in air the distance H:1H; is roughly equal to one-third the thick-
ness (d = V1V3) of the lens. Note that principal planes need not lie within the lens itself.

The simplest and most common case is that of a lens of index n; immersed in air, 7.~ 1.
The Gaussian lens formula
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i.1_1
8o 8i - f
is again applicable provided that the object and image distances are measured from H, .
and H:, respectively. The focal length, which is also referenced from the principal planes,
is now given by
L op[l_ 1 (u=1d
f (1) I-—-Rl R, + neR1R:
which, of course, reduces to the thin lens expression when the thickness is made negligible
(d—>0). The principal planes, in turn, can be located with respect to the vertices using
the equations

T = __fn—1)d

ViHy, = b = ——m—

ViH, = hy = -~1e=1d
Rm;

Both ks and hs will be positive when the principal planes are to the right of their respective
vertices, V1 and V.. The relationships between the various distances are illustrated in
Fig. 4-30. Notice that a ray headed for any point on the first principal plane will leave the
lens as if it originated at a point, the same height above or below the axis, on the second
principal plane.

A
Yo
V, Fy P
s 2 v, .
]
S b w
t 1'
Y
- %o £.L1. . G
—| by j—
A b.t.l.
— 2 el -
| d
f f %;
_ 8 8;
Fig. 4-30

SOLVED PROBLEMS
434, Show that the Newtonian lens equation once again obtains in the case of thick lenses.

Using the distances as defined in Fig. 4-30, we have s, = z,+ f and 8 = «;+ f. The Gaussian
equation can, therefore, be rewritten as
f = 8,8 (xo+ N+ 1)
80+8‘ (xo+f)+(x‘+f)

yielding =z, = f2

435. Derive an expression for the transverse magnification of a thick lens.

By definition the magnification is
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Yi
M —_—
T Yo
In' Fig. 4-30 triangles ASF, and F,H,;D are similar, as are triangles GPF; and F;H,C. Thus
Yo _ DH, ¥ _ CH,
%o f % f

Remember that y; measured below the axis is a negative quantity. Since DH, = —y; and CH, = y,,

Yo _ W % _ Yo
%o f i f
Each of these relations yields an expression for the ratio y/y,. Accordingly,
=f —%
M —_ =
T %, f

which is identical to the thin lens formulation.

436. What kind of glass lens immersed in air will have a focal length which is indepen-
dent of its thickness?

Since 1 _ (n,—1)d
7 - 1’[3 -7t neRIRz]

the dependence on d vanishes when either By = » or Ry, = ». Hence, either a plano-convex or a
plano-concave lens fills the requirement.

4.37. Show that one of the principal planes will always be tangent to the curved surface
if the thick lens is either plano-concave or plano-conve(x.

Envision a parallel bundle of rays entering the planar surface perpendicularly. All of the
bending of the rays occurs at the second face, whether it is concave or convex. The points of inter-
section of the rays thus all lie on the second surface of the lens. Only in the paraxial approxima-
tion does this curved surface reduce to the principal plane, which is then tangent at the vertex.
Alternatively, in this instance, R, = » and so

fine—1)d

hy = — (=Yme

independently of the value of R,.

4.38. Suppose that an object is located at the first principal plane of a thick meniscus lens.
Determine the location and magnification of the image.

An object at the first principal plane is at a distance f from F; that is, z, = —f. Since
g, = f?

this means that z; = —f. In other words, the image is located on the second principal plane.
The magnification (M, = —f/z,) is clearly 1. This is why the principal planes are also spoken of
as unit planes.

439. Figure 4-31 depicts the principal and focal planes of a thick lens. Graphically deter-
mine the conjugate image point corresponding to the object point S.

First, draw any ray from S to the first principal plane (SA in Fig. 4-32). We know the ray
emerges from point B; but at what angle? To answer that, draw a ray passing through F, par-
allel to SA. This one arrives at C, emerges at D and intersects the back focal plane at E. Since
SA and F,C are parallel they must converge to the same point on the focal plane; viz., E. Extending
the line BE locates the image point at P.
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S
A B
\\~~ E R
/ c b \\‘\ o
S F, H, H, F, P =
Fig. 4-32

440. (a) Write an expression for the focal length of a gypsy’s crystal ball in terms of its
radius R and refractive index n. (b) Determine the location of its principal points.
(¢) Where will sunlight be focused by a 4-inch diameter ball of index 1.5?

(a) Since R, =R, R, =—R and d = 2R, substitution into the focal length equation yields

= ooo[hepe sy
(b) The principal points are to be found at
o= [y = R

That is, H, is a distance R to the right of V, while H, is R to the left of V,. Obviously the
principal planes coincide and pass through the center of the sphere.

(¢) For a 4-inch sphere, we have from (a):

_ {8 2 _ .
f = <§>_2(1 ) = 8 inches

and the focal point appears 1 inch from the vertex,

441. A 10-cm diameter glass (n, =1.5) sphere is to be used to cast a real image of a win-
dow onto a screen. If the window is 8 meters from the center of the sphere, where
must the screen be put? What will the magnification be?

From Problem 4.40
— \2/2(1/2) 2

The Gaussian equation then becomes
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4.42.

4.8

GEOMETRICAL OPTICS (CHAP. 4
1 1 _ 2
300 T s 15

and 8 = 7.69 cm measured from the second principal plane (i.e. from the center of the sphere).
We saw in Problem 4.35 that the magnification is the same as for a thin lens:

8 169

My = s, 800

—0.026

The image is real, minified and inverted.

A double convex lens has radii of 5 cm and 20 ¢cm, a thickness of 2 cm and an index
of 3/2. (a) Locate both the principal and focal points and compute the image dis-
tance for an object 16.4 cm in front of Vi. (b) Determine the values of the f.f.l.
and b.f.l

(a) Substituting into the focal length expression leads to

1 1

1 1[’_.___ L __Qe2e
FTozlsTT®

(3/2)5(—20)
orf=82cm. Also,

_ __8.2(1/2)2
h = -- = .27
! (-20)372 e
_ 8.2(1/2)2 __
h. = -- = —~1,
2 35 1lcm
The Gaussian lens equation yields ‘
1,1 .1
16.7 s; 8.2
ors; = 16.1 cm from H,
(b) From the values found in (a) where h, is negative:
bfl = f~h, = Tlem
ffl., = f-h = 79cm

LENS COMBINATIONS

Two or more thick lenses can be combined to form a compound lens as typified in
Fig. 4-33. Here the effective focal length f of the composite system is given by
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in terms of the individual focal lengths (f1 and f:) and the lens separation d. Each constit-
uent lens has its own pair of principal points (Hii, Hi2 and Haz, Hz), a8 does the compound
lens itself (H; and H.). Thus, if a beam of collimated light were to enter the compound
lens, it would be brought to a focus at F; a distance f from H.. 'The expressions

fd ~fd

HyuH, = A HxH, = i

specify the positions of H, and H,.

For a system of thin lenses the individual principal planes coalesce and d simply becomes
the center-to-center lens separation as in Fig. 4-25, page 68. Such a system behaves as a
thick lens whose focal length and principal points are given by the above expressions.

In effect the procedure given above combines two lenses (thick or thin) into one. Thus,
if you had five or six lenses in a centered system, you could go down the line replacing them
two at a time until you had one equivalent lens representing the entire system.

SOLVED PROBLEMS

4.43. Two identical bi-convex thick lenses are placed in line with a separation of 25.7 mm,
as in Fig. 4-33. Each lens has radii of 60 mm and 40 mm, a thickness of 20 mm and
an index of 1.5. Calculate the focal length of each and locate the points Hy, Hiz, Ha
and Hjz. Determine the effective focal length of the system immersed in air.

The focal length of each lens is computable as follows:

1 : 1 1 ("’l_l)d]

P eo[g g
_ _pfL_1 , _@b-1)20
= (15-1) [so —40 t {T5)(60)(—40)
S [ o U .
= 2\.360 "360 3600 _ 360

and finally f, = f; = 61.4 mm. The principal points of the individual lenses are positioned at
(61.4)(1/2)20 _ 2b.7

M= T i@y — s B6mm
_ GLOW220 _ L4 _
b = - Teo@r) . - e o oTmm

Since the lenses are identical, these values fix the positions of the principal planes with respect to
the vertices for both lenses. The compound lens has a focal length of

1 _ 1,1 d

4 i fo hifs
_ 1 .1 _ 21 _ 3
~ bl4 bl.4 (61.4)(p1.4) ~ 102.8

and f = 84.3 mm.

4.44. Suppose that the lenses in Problem 4.43 are arranged with their flatter sides facing
each other. Make a sketch of the system and locate its principal planes (H, and Hj).
Trace a ray entering parallel to the axis through the system.

The only things we need calculate are

pm— d 34.3)(26.7
HllHl = sz' = (——_5‘%(._4“'—) = 172 mm
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HgH, = -1¢ - _(343)26.7)

A 514 = —17.2 mm

Remember that positive values of these quantities are measured to the right, as in Fig. 4-34. Two

rays are traced through the lens; the upper ray deflects at the principal planes of the constituent
lenses, while the lower is drawn using H; and H, only. The two schemes are equivalent.

. fi =514

[‘ d =257
N e ‘._ l.LJ 86 _‘ 57 e
- , 20

8.5 |20

17.2

Fig. 4-34

4.45. Imagine a compound lens consisting of a thin positive lens followed at an interval of
20 cm by a thin negative lens. If these have focal lengths of +40 cm and —40 cm,
respectively, determine the value of f, f.£.1. and b.f.l. (take a look at Problem 4.29).

The equation

f fi fa fife
now applies, wherein f; =40 em, f; = —40 cm and d =20 em. Hence
1 _ 1 + 1 20

7 T 20 T "40 ~ @0)(—40)

and so f=80cm. The principal plane for each lens passes through its center, from which are
measured H, and H,. Thus

HllHl

Hyy

|

{

4

b.fl = 40

f.fl. = 120

f=80 f=80

Fig. 4-35
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H11H1 = (8-(1)%2)’ = —40 cm szHz =

—————(80‘1320) = —40 cm

The situation is shown in Fig. 4.85. Clearly, since f.f.l. and b.f.l. are measured from the centers of the
thin lenses to the focal points (F, and F), their values are just 120 cm and 40 cm, respectively.

3

446. A bi-concave lens of focal length —60 mm is mounted in a cardboard cylinder 120 mm
in front of a plano-convex lens of radius 60 mm and index 1.5. Find the effective
focal length of the system and determine the image which would result from a 8-mm
ant located 180 mm in front of the device (look at Problem 4.30).

The positive lens has a focal length

f2 = (1-5*1)(-616 - l) = 120 mm

©

Hence, the effective focal length of the combination is
1 _ 1 1 120

7 = 6ot 120 ~ =e0)(120)
or f =120 mm. Moreover,
0,H = ——(122)2%20) = 120 mm H,H, = -—————(122)&20) = 240 mm

Measured from H,, the object distance is 8, = 300 mm and so

1,1 _ 1 _
%64'8‘ = 1320 or 8¢—200mm

The image is 200 mm to the right of H, as in Fig. 4.36. The magnification is then

8
My = % = _200

5 300 = —066

and the ant is inverted and minified.

180

8, = 300

Fig. 4-36

49 PLANAR, ASPHERICAL AND SPHERICAL MIRRORS

The plane mirror is an extremely common and relatively simple device. A source point S,
a8 in Fig. 4-37, emits diverging rays which bounce off the mirror and continue to diverge.
An eye or camera lens can collect and focus these rays to form a real image of S, but the
image generated by the mirror itself at P is virtual; it lies behind the mirror, cannot be
projected and the rays appear to diverge from it.
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Concave Parabolic

Convex Elliptical Concave Elliptical
Fig.4-38. Aspherical Mirrors
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In Fig. 4-37 right triangles ASB and APB are congruent, since side AB is common and
LASB = ¢, = 6, = LAPB

Therefore, |so| = |s. Unlike a lens, this virtual image appears on the right side of the
interface. Accordingly, we shall adopt the convention that s, and s; are both measured
negative to the right of the reflecting interface.

Each source point in the object space corresponds to a point, an equal distance behind
the interface, in the image space. Consequently, for a planar mirror, M, (the transverse
magnification) equals +1; the image is life-size, virtual and erect (right-side up).

Curved mirrors are conveniently categorized as either spherical or aspherical. Several
aspherical configurations are illustrated in Fig. 4-38. The fact that a paraboloidal mirror
will reflect an incident plane wave into a perfectly converging spherical wave (see Prob-
lem 3.14) accounts for its use as the main light-collecting element in the 200-inch Palomar
telescope. For the same reason, the antenna dish at Jodrell Bank is a huge 250-foot
paraboloid.

The rays in Fig. 4-38 appear to converge toward or diverge from axial points which are
the geometrical foci of the curved surfaces.

A comparison of the parabolic and spherical configurations (Fig. 4-39) shows that the
two are almost indistinguishable in the vicinity of the central axis when the radius of the
sphere is made equal to twice the focal length of the parabola. Accordingly, we can expect,
at least in the paraxial approximation, that F will serve as the focal point of a spherical
mirror centered on C. For such a device the object and image distances are related by the
mirror equation: 1 1 2 1

% 'ss R F

Observe that this has the same form as the lens equation, provided we adhere to the sign
convention in Table 4-4, page 82. As a result, a concave spherical mirror has much the
same imaging characteristics as a converging thin lens, while a convex spherical mirror be-
haves like a diverging lens. Indeed, Table 4-3 (page 64) is applicable to spherical mirrors
or lenses. This implies that under appropriate conditions the spherical mirror has at-
tributes of both the parabolic and elliptical configurations: like the former it can form images
of distant objects and like the latter it can form images of nearby objects.

\
\
\
|4 F ¢ 1.
1
R /
/
\l’//
o .fI s
Fig. 4-39
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Table 4-4. Sign Convention for Spherical Reflecting Surfaces

85 f + leftof V

8 + leftof V

R + when C is right of V
Yor ¥i + above optical axis

Table 4-5. Physical Significance of the Signs of Spherical
Mirror Parameters

Sign
Quantity + -

8, real object virtual object
8 real image virtual image
f concave mirror convex mirror
Yo erect object inverted object
N erect image inverted image

My erect image inverted image
R convex mirror concave mirror

SOLVED PROBLEMS

447.

448.

4.49.

STUDENTS-HUB.com

A pencil is held so that it is tilted away
from a plane mirror. Construct a ray
diagram locating the image.

Since each point on the object results in an
image point an equal distance behind the mirror
(as in Fig. 4-37), we need only locate the ends
of the pencil’s image. Any two rays from an
object point will determine the corresponding
image point, but perhaps the simplest choice is
one perpendicular ray. Figure 4-40 should be
self-explanatory.

What is the length of the smallest verti-
cal planar mirror in which you can see
your entire body, and how should it be
positioned? (A classic problem.)

Whatever the geometry, the mirror plane L_,
3 will be halfway between object and image
(8,=28). If your toe is to be seen, a ray from Fig. 4-40

it must enter your eye as in Fig. 4-41. We don’t

know the height of point H, but /DHC must equal (CHB. This means that triangles BHC and
DHC are congruent and so GH=HI= BD/2 Similarly, if you are to see the top of your head,
EF = FG = AB/2. Thus a mirror of length FH should do the job, where

ﬁ:fa+@'=é§+£’2=“—£

In other words, a mirror half your height, with its top edge lowered by half the distance between
your eye and the top of your head, will serve the purpose.

Two front-surfaced plane mirrors at right angles to each other are set upon a table in
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Fig. 4-41

front of a little green frog. How many images of itself will the frog see?

Three (see Fig. 4-42). Two images each result from reflections off only one of the two mirrors;
the third image arises when light is reflected from both mirrors.

\ L— -
Fig. 4-42

4.50. Show that the spherical mirror equation is applicable to a planar reflecting surface.

The mirror equation is 1
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For a planar surface the radius of curvature hecomes infinite, hence

l . l = 0
\ 8, 8;
or s, = —8; as required. (Since the object distance is positive, s; must be a negative number;

the image is to the right of the interface.)

451. Envision a ray in a plane perpendicular to the two mirrors of Fig. 4-43. Prove that
the ray will be deviated through an angle 26 regardless of its incident angle.

The angle of deviation, call it y, is an exterior angle of triangle ADC and therefore equal to
the sum of the opposite interior angles; i.e., v = 2«+28. In triangle ABC we have

LCAB + (ACB + 6 = 180°
which leads to ¢ = 180° — (90°—8) — (90° —a) = a+ 8. But y=2(a+p8) andso y=26.

284

Fig. 4-43 Fig. 4-44

4.52. It is quite common to find a small planar mirror attached to the suspension system
of such devices as torsion pendulums and galvanometers. Show that if the mirror
rotates through an angle 8, the beam will be deflected by an additional angle of 28.

The setup is that of Fig. 4-44. When the mirror is rotated, the new incident angle is ¢;+ 8,

which also equals the angle of reflection. The total deflection is then 26; + 28, as compared with 2¢;
before rotation.

4.53. Figure 4-45 depicts an ellipsoidal reflector
whose foci are at F; and F.. The positive
thin lens has a focal length f and a tungsten
filament is positioned at F';. Trace the prog-
ress of rays emitted from the filament.

Most rays emanating from F,; strike the ellip-
soid and are reflected toward the second focus F,,
as in Fig. 4-38, page 80. The rays pass through F,
and move on, much as if the point source were
there rather than at F',. Since F, is the object focus
of the lens, these rays will emerge from the device
as a collimated beam parallel to the central axis. Of
course some rays will escape directly without reflec-
tion, while others will be multiply reflected before
reaching the lens. Fig. 4-45
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4.54. The Gregorian reflecting telescope is a centered system consisting of a large para-
bolic primary mirror which collects incident light, bringing it to bear on a small con-
cave ellipsoidal secondary mirror. The rays reflect off the secondary and converge
back through a hole in the primary. Draw a ray diagram and discuss the locations
of the various foci.

Fig. 4-46

The point F; in Fig. 4-46 is clearly the focal point of the parabolic mirror, the mathematical
focus of the paraboloid. Figure 4-38, page 80, indicates that light diverging from one focus of an
ellipsoid will converge toward the other focus. Hence F, and F, are the foci of the ellipsoidal mirror.
Thus F'; is the common focus of both the primary and secondary mirrors.

4.55. In the Kitt Peak solar telescope a planar mirror 80 inches across tracks the sun,
reflecting collimated light down a 500-foot shaft to a 60-inch parabolic mirror. This
primary mirror, in turn, focuses the beam 800 feet back up the shaft where the image
can be photographed. If the diameter of the sun is 864,000 miles and its distance
from the earth is 93,000,000 miles, how large will its image be at the focus of the
telescope?

image
f =300 ft

93,000,000 mi

7

Fig. 4-47

Each point on the sun emits a spherical wave which increases in radius until it arrives and
fills the aperture of a distant telescope with an almost planar wave. The nearly parallel bundle of
rays is focused essentially to a point image a distance f from the mirror. Thus, point by point,
parallel bundles of rays entering at slightly different directions build up a complete inverted image
of the sun. Of course, only the axial point on the sun will be perfectly imaged by a parabolic
mirror, but the subtented angle () is small and 8o there will be very little deterioration in the image
over the entire disc. It follows from Fig. 4-47 that

864,000 mi
93,000,000 mi

The diameter of the image disc is evidently given by
d = fa = 800(0.0093) = 28 ft

= 0.0093 rad

a =
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4.56. A concave spherical mirror has a radius of magnitude |R| and is centered at C. A real
erect object |R|/6 tall is located a distance 1.5 |R| from the mirror’s vertex. Draw a
ray diagram showing the formation of the image.

B

Fig. 4-48

It will take at least two rays to locate the image of the topmost object point. The simplest rays
to use are those passing through C and the focal point F, where f= —R/2. A ray through C
propagates down a radius of the sphere and is reflected back along itself. A ray entering parallel
to the central axis will be reflected through F. The image of the top of the object is positioned at
the intersection of these two rays. A ray from the bottom of the object along the axis passes
through C and returns on itself. Thus the image of the object’s base resides on the axis just above
the point of intersection of the rays through C and F.

Another convenient ray is the one going through F before striking the mirror (see Fig. 4-48).

4.57. Compute the magnification and image location for Problem 4.56.

Because the radius R is actually a negative quantity here, we write it in terms of its absolute

value as B = —|R|. The mirror equation
1,1 _ 2
8, + & R
1,1 _ 2
becomes m + 8 = | Rl

or s; = 8|R|/4. The image is real and to the left of the vertex (see Tables 4-4 and 4-5, page 82).

As for the magnification,
M. = % _ _38R/M _ _1
T s,  3R/Z T 2

The image is inverted and half-sized. Take another look at Fig. 4-48 and compare these results
with Table 4-8 (« > 8, > 2f) on page 64.

4.58. A one-inch tall candle is set three inches in front of a concave spherical mirror having
a one-foot radius. Describe the resulting image.

The mirror equation
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. 1
yields 3 + 5% T
or 8; = —6 inches. The image is virtual because s; is negative. (Refer to Table 4-3, page 64; the con-
cave mirror behaves like a converging lens, hence, since f = —R/2 = 46 inches and s, = +3 inches,
we see immediately that |s; > 8, and the image should be virtual, erect and magnified.) Proceeding,
= % _ _=6 _
My = -~ = —5 = +2

8o that the image is erect and twice the size of the object.

4.59. Draw a ray diagram for Problem 4.58.

Fig. 4-49

The first thing to draw is a ray (#1) from the top of the candle parallel to the axis. It reflects
off the mirror and returns through F. We should know from Table 4-3, page 64, that an object this
close in (s, < f) will form a virtual image, but let us just see how it turns out. A ray (#2) arriving
along a radius will strike the mirror, return on itself and pass through C. It is clear that #1 and
#2 will never intersect on the left side of V, but they do appear to diverge from a point 6 inches
behind the mirror. Another ray (#38) is easily drawn; it is the one incident at V. (A ray along the
line from F to the top of the object might also be used. It would reflect back parallel to the axis.)

4.60. A concave spherical mirror of 20-cm radius is to be used to project an image of a
candle onto a wall 110 cm away. Where will the candle have to be placed and what
will the image look like?

The object distance is to the left of V if the image is to be real, hence 8 = +110 cm and

1 1 _ 2
wtie = ==

so that s, = +11 em. This is slightly greater than f = 10 em and less than 2f, in agreement with
Table 4-3. Moreover, & 110

8, 11 —10

MT=

which means that the image is inverted and magnified 10 times.

4.61. Design a spherical mirror which will form an erect half-sized image of an object
if that object is 100 cm from the vertex. Where will the image be located?

We can determine the image distance from the magnification as follows:
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- &% _ .1
MT - P - + 2
_A 1
or 00 ~ 2
whence 8 = —50 cm. The mirror equation now yields the radius:
1 1 _ 2 _
W-’-—_—B—o- = -5 or R = 4200 em

The mirror is convex (see Table 4-5, page 82) and the image is virtual (see Table 4-3, page 64).
Note that only a convex mirror generates an erect minified image.

Supplementary Problems

ASPHERICAL REFRACTING SURFACES

462. Return to the Cartesian ovoid depicted in Fig. 4-2, page 52, and construct a set of coordinate axes
with the origin at the vertex V. Locate the z-axis along the SP line and the y-axis perpendicular
to it. Now derive an equation for the ovoid in terms of s, 8;, n;, 7o, z and y.

Ans.  mg8; — 8, = [(z— 8,2+ y2]V2ny + [(z — 8)2 + yZ]V/2n,

4.63. Suppose we have a horizontal and vertical z-y coordinate system whose origin is at the vertex
of the curved interface between two media (see Fig. 4-2). If plane waves entering from the left
are to be focused at P, show that the boundary curve is given by

n3 g 2amg(ng—my) a:

p—— R
T 2T ™

By completing the square, prove that the interface is an ellipsoid of revolution when n, > n,.
Determine the semimajor and semiminor axes, a and b, as well as the eccentricity e.

=0

Mgy _ [ng —my\1/2 _m (z—a)? ¥ _
Ans. a_'n2+n1’ b_<nz+n1> 8;, e—n2 and p +b2_1
//
//
—
& —
P

Fig. 4-50 ’
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4.64. A parallel axial bundle of rays entering from the left in Fig. 4-50 will appear to diverge from P
provided 7m; > n;. Remembering that here 3; is a negative quantity, show that the interface curve
has the same equation as that in Problem 4.63, Prove that the configuration is a hyperboloid of revo-
lution. Hint: Use the fact that n,AB = n,VC, where C is on the arc swept out by PB. Point P
is the first focus of the hyperboloid of two sheets.

\

SPHERICAL REFRACTING SURFACES

465. A diamond (n4=2.42) rod with one end ground into a convex hemisphere contains a small black
flaw. If the radius of curvature is 20 em and the flaw lies on the central axis 20 cm from the
vertex, where will its image appear when the rod is imbedded in water (n,,=1.33)?

Ans. Object at C; therefore 3; = —20 cm, regardless of surrounding medium.

466. A long glass rod (n, =1.5) is 10 cm in diameter and is immersed in air. It has a convex hemi-
spherical surface as its left end, and a concave hyperboloidal surface as its right end. The hyper-
boloid has an eccentricity of 1.5 and its vertex is 6 em to the right of its first focus ;. Where must
an axial point source be located if the rod is to form a virtual image of it at F';?

Ans. For the spherical surface f, =10 em and therefore s, = 10 cm to the left.

4.67. A borosilicate crown glass sphere (n, = 1.5) of radius 4 em is surrounded by ethyl aleohol (n, =1.36).
An ant drifting in the alcohol is 6 cm from the sphere’s center; describe its image.

Ans. g = —2.32cm (virtual image to the left of vertex)

4.68. A convex interface separates two media of refractive indices 1 and 2. An axial point source in
the air a distance 40 cm from the vertex is imaged in the second medium 80 cm from the vertex.
Determine the radius of curvature of the interface.

Ans. R=+420cm

THE THIN LENS EQUATION
469. The radii of curvature of a double convex thin glass lens (n =1.5) are in the ratio of 2 to 1. Write
an expression for B, the smaller of the two radii, in terms of the focal length.

Ans. R =3f/4

4.70. A thin positive lens of focal length f is placed between a point source S and a screen, which are
themselves separated by a distance L. Write an expression for the two locations of the lens
(measured from S) which will yield real images on the screen.

L = VI{L—4f)]

Ans. 8, =

N

471, An equiconvex thin lens of flint glass (n,=1.65) has a focal length of 62 cm when immersed in air.
Determine its radii of curvature.

Ans. R, =80.6 cm, B, =—80.6 cm

4.72. Figure 4-51 depicts a bundle of converging rays
entering a diverging thin lens. Describe what’s
happening and then use the thin lens equation
to verify your conclusions. (Note that s, <0.)

Ans. Point A locates the top of a virtual ob-
ject, while B is the corresponding image
point. Since |8,| < f, the image is real,
erect and magnified, and s; > |3, Fig. 4-51
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SIMPLE THIN LENS IMAGERY

473. A positive thin lens is used to project the enlarged image of a slide onto a wall 10 m away. If the
slide is 20 X 30 mm, and if its image is to be 2 X 3 m, what must be the focal length of the lens and
. the distance from it to the slide?

Ans. 8,=01m, Mp=—100, f=0.099 m

474, A thin positive lens generates an 8-cm tall erect image of a 5-cm tall object located 90 em from
the lens. Compute the focal length of the lens and locate the image.

Ans. 8 =—144 cm, f =240 cm

475. A simple camera consists of a thin positive lens which casts a real image on the film plane. Suppose
that the lens has a 50-mm focal length. How far from a 1-m tall object must the camera be if the
image is to appear 26 mm high? How far will the lens be from the film plane?

Ans. 8,=204m, 8 =51.3 mm

4.76. Envision a thin lens for which the object and image are separated by a distance L. Show that
—f(Mp—1)?
L = —3—

COMPOUND THIN LENSES

4.77. Telephoto camera lenses most often resemble the Galilean telescope, i.e. they consist of a positive
lens L, followed by a negative lens L,. If the focal length of L, is 20 cm, that of L, is —40 ecm
and the separation is 10 em, determine the f.£.1. and the b.f.l.

Ans, f£f]. = 33.33 cm, i.e. the object focal point is to the left of L,; b.fl = 13.33 em, ie. the
image focal point is to the right of L,

4.78. Three thin lenses of focal lengths f, =10 cem, fo =20 cm and f; = —40 em are in contact, form-
ing a single unit. If an object is located 16 cm in front of the lens, describe the resulting image.

Ans. f=8cm, 3 =+16cm

4.79. Two thin positive lenses are in contact, forming a compound lens of foecal length 30 cm. If the
power of one of the component lenses is twice that of the other, what are their two focal lengths?

Ans. 45 cm, 90 em

480. An object sits on a table 12 em from a positive thin lens of focal length 9 em, which in turn is 21 em
in front of a negative thin lens of focal length —18 ecm. Locate the image formed by the system.

Ans. 8, = 490 cm (image is 90 cm to the right of the negative lens)

THICK LENSES

481. Envision a thick lens with a refractive index of 2, whose radii of curvature are equal and negative.
If the centers of curvature are separated by a distance d and if the lens is surrounded by air,
describe its properties.

Ans. The lens is positive since f = 2R2/d; h; = hy = —R (R <0), so that the principal planes are
off to the right and separated by d.

482. A thick glass double convex lens (n, =1.5) has radii of 2cm and 4 em and a thickness of 2 em.
Locate the principal and focal points with respect to the vertices V; and V.
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Ans. f=8em, hy =+05cm, hy = —1.0cm

4.83. A hemispherical converging lens of radius +12 cm and refractive index of 2.0 is 36 cm from an axial
point object. Locate the principal and focal planes and describe the image.

Ans. f=12cm; h, =0 (first principal plane at V,); hy, = —6cm (i.e. to the left of V,);
8; =18 cm to the right of H,, image is real

484. A thick lens with a refractive index of 2 obeys the special condition that both its surfaces have
a common center of curvature outside of the lens. Describe its properties if the thickness is desig-
nated as d.

Ans. f= —2|R|(|R|+d)/d (negative lens); h, = —|R|, hy = —(|B|+d). Note that H, and H, co-
incide with the center of curvature.

485. What is the focal length in air of a spherical droplet of benzene (7, = 1.501) having a radius of 2 mm?
Describe the image resulting from a 0.5-mm tall object 5.8 cm from the center of the droplet.

Ans. f=3mm; s =318 mm from the sphere’s center, My = —0.06, y; = —0.03 mm (image is
real, minified and inverted)

LENS COMBINATIONS

486. The Huygens ocular is a combination of two thin plano-convex lenses. The first is known as the field
lens and the second, nearest the observer’s eye, is the eye lens. Suppose that the field lens has a focal
length of 3f; and the eye lens has a focal length of f,. Both have their curved surfaces to the left
and they are separated by 2f,. A bundle of rays converging toward the first focal plane of the
ocular emerges as a parallel beam. Locate that focal plane.

Ans. f=38f,/2, H, H, = 3f,. The first focal plane resides between the lenses, f,/2 to the left of
the eye lens.

487. Two thin positive lenses of focal lengths 40 cm and 60 em are separated by 20 cm. Where must an
object be positioned if its image is to reside on a screen 45 cm behind the second lens?

Ans. f=380cm, HjH, =10 em, HyH, = —15 cm; object 50 ecm left of first lens or 60 cm from H,

488. Imagine that you have three thin lenses, two converging and one diverging, of focal lengths
fi=4cem, fa=-—8cm and fs. The first two lenses are separated by 6 cm and the last two by
1.4 em. What must be the focal length f3 of the last lens if the system is to be afocal, i.e. rays that
enter parallel emerge parallel?

Ans. Combining the first two lenses yields f;o = +3.2cm and HyHs = —4.8 em.  The third lens
is a distance d = 6.2 em from this combination, and for the resultant power to be zero,
fa = 3.0 cm.

489. A Ramsden ocular consists of two thin plano-convex lenses, each of focal length f,, separated by
2f,/3, with the curved surfaces facing each other. Locate the object plane (2,) in front of the
ocular such that light diverging from any point on =, emerges as a collimated beam. In practice,
an objective lens would form a real image on =, (where there might also be a pair of cross hairs),
which is then converted into parallel light by the ocular so that the eye can view it in a relaxed
(unaccommodated) fashion.

Ans. 3, must be a distance away equal to the effective focal length f = 8f,/4.

490. A thin converging lens having a power of 3.33 diopters is £ m in front of a thin diverging lens
of —20 diopters. What is the focal length of the combination?

Ans. The system is afocal; when parallel rays enter they emerge parallel.

\ .
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PLANAR, ASPHERICAL AND SPHERICAL MIRRORS

491. An object positioned 300 ecm from a spherical concave mirror generates a real image 160 cm from
the mirror’s vertex. To where must the object be moved if the new image is to reside in the object’s
original position?

Ans. 8,=150 cm, f =100 cm

492. Suppose that the compound lens of Problem 4.80 is placed so that its negative back lens is 60 cm
from the vertex of a convex spherical mirror having a 15-cm radius. Locate the image formed by
the mirror of an object 12 ecm from the first lens.

Ans. 8 = —10 cm; image is virtual, inverted and 10 cm to the right of the mirror’s vertex

493. A cone of rays converges toward an axial point S a distance d behind a convex mirror of focal
length f > d. In other words, S is a virtual object and d = |g,| < f. Use the mirror equation to
arrive at a description of the resulting image. (Remember that s, <0.)

Ans. The image is real, erect, magnified and farther from the mirror than the object is (|8,| < s)).

494. A 1-cm high object is positioned 12 em in front of a spherical concave mirror having a radius of
curvature of 8 cm. Completely describe the resulting image.

Ans. 8;=6cm, My=—1/2 (image inverted, real and 4 cm tall)

495. An object 4 em high sits 200 em in front of a convex mirror having a focal length of —400 em.
Describe the image.

Ans. 8;= —133.83 cm, My = 4+0.66 (image virtual, erect and minified)

496. A 3-cm tall object is located 180 cm from a spherical convex mirror having a radius of curvature of
90 em. Describe the resultant image.

Ans. 8 =—386cm, My =+1/6 (image virtual, erect and § em tall)
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Chapter 5

Polarization

51 INTRODUCTION

Light is a transverse electromagnetic wave and thus far we have considered only cases
where the electric field vector resided in a fixed plane. This plane is referred to as the
plane of vibration and the light is said to be plane polarized. This chapter deals, for the
most part, with the superposition of two orthogonal plane polarized light waves of the same
frequency. The resultant electric field need not reside in a fixed plane; indeed, the field
vector might even rotate in time. The amplitudes and relative phase of the interacting
waves will determine the state of polarization of the composite disturbance. By compar-
ison, the interaction of coplanar waves is the usual domain of interference theory (Chapter 6).

52 PLANE POLARIZATION
Consider two perpendicular harmonic optical fields given by

E(z,t) = 1Eo: cos (kz — ot)
Ey(2,t) = By cos (kz — ot + ¢)

Fig. 5-1

93
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94 POLARIZATION [CHAP. 5

The waves move in the positive z-direction and have a relative phase e. The plane of vibra-
tion of E.(z, t) corresponds to the xzz-plane, while E,(z, t) resides in the yz-plane. The result-
ing disturbance

E(z,t) = Eiz,t) + Eyz,t)
varies with . In the specific instance when = 0 or an integral multiple of +2x the com-
ponent fields are in phase and
E(z,t) = (?Eoz + 3 Ew) cos (kz — of)
The amplitude, 1B + ?Eoy, is constant and so the resultant wave itself is plane or linearly

polarized, as shown in Fig. 5-1(a). Similarly, when ¢ is an odd integral multiple of += the
component fields are out of phase and

Eizt) = (1B - ?Ew) co8s (kz — ot)
Again the resultant has a constant amplitude and the wave is linearly polarized, as depicted
in Fig. 5-1(b).

An optical disturbance which is plane polarized is often simply referred to as P-state light.

SOLVED PROBLEMS
5.1. The waves

E@zt) = (1Eu +3Eq) cos (kz — ut)
E'(z,t) = (1Eq: - §ES,) cos (kz — of)

both represent P-state light. Show that in general such waves are not orthogonal.
Under what circumstances will their planes of vibration be normal to each other?
Letting E, and E; be the amplitude vectors of E and E' respectively, their dot product is
Ey+Ey = E.E;cose
where 6 is the angle between E, and E{. But
E-E, = (1B, +7Ey (1B, —TE;) = E.Ei — EyEj,
Thus cosé = ﬂgﬁé;_(%gwfég

and ¢ is generally not 90°, since the right side of this expression is generally nonzero. If, however,
EoE¢, = EoyEq,, the right side vanishes and the waves are orthogonal. Perhaps the simplest case
of this arises when E,, = E¢, and Eq, = Eg,.

5.2. Write an expression for a linearly polarized wave of angular frequency o propaga-
ting in the positive z-direction with its plane of vibration at 80° to the za-plane.

Suppose that the scalar amplitilde of the wave is Ey. Then its z- and y-components are
Eoz = E,co830° = 0.866 E,
Eyy, Eysin30° = 05 E,
Hence E(z,t) = (0.866 Eo1+ 0.5 Ey7) cos (kz — wt +a)

where the unknown constant o depends on the initial conditions.

5.3. Write an expression for a plane polarized disturbance of angular frequency » propa-
gating in the positive z-direction such that the E-field makes an angle of 120° with
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the positive z-direction at ¢t =0 and z=0. Verify that this wave is orthogonal to
the wave of Problem 5.2,

With E, as the scalar amplitude,

EOz = Eo cos 120° = _Eo cos 60° = —0.5 Eo
EOy = Eo sin 120° = Eo sin 60° = 0.866 Eo
Thus E(z,t) = (—0.5E,1+ 0.866 E,3) cos (kz — wt)

To verify that this wave is orthogonal to the wave of Problem 5.2, form the dot product of
the amplitudes, i.e.

(0.866 E,T + 0.5 E,3) « (—0.5 E,T+ 0.866 E3)

Inasmuch as this is zero, the planes of vibration are normal.

54. Describe the wave given by the expression

E = ?Eosin(—z-’;—x—wt>

- ﬁEo sin<—2§£ - a)t)

where 'f and k are unit basis vectors in
Cartesian coordinates.

- Y

The wave can be reformulated as
E = (§E,-%E) sin(&;—x— - ut)

It travels in the positive z-direction with a con-
stant amplitude of ?Eo —ﬁEo and is therefore
linearly polarized. The plane of polarization, as
shown in Fig. 5-2, is tilted at 185° to xy-plane.
Note that the scalar amplitude of E is V2 E, Fig. 5-2

55. Describe the wave E(y, t) which results from the superposition of the disturbances
E(y,t) = 1Eo cos k(y — vt) E.(y,t) = —kEo cos k(y — vt)

Make a sketch of E(0, t) att= 0, t =1/4, t =1/2, t = 8+/4 and { =+ (Where, of course,
r is the period).

Inasmuch as cos(§ +7) = —cos9, we can rewrite E, as
E.5,t) = XE, cos [k(y —vt) + 1]

wherein the relative phase, ¢, is just #. Hence the resultant is linearly polarized. The phase of E,
can be written as ky — (2zt/r), while that of E, is ky — @zt/r) +~. Thus, at y =0,

EW0,0) = ?Eo + ’l;Eo cosw
E(0,7/4) = TE,cos(—r/2) + kEycos(x/2) = 0
E0,/2) = ?Eo cos (—x) + ’l;Eo cos 0
E(0,37/4) = TEcos(—8x/2) + kEycos(—x/2) = 0
EQ0,7) = 1E,cos(—2x) + kE, cos(—r)

Figure 5-8, page 96, depicts the corresponding disturbances.
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56. Two linearly polarized waves having the forms
Ei(z,t) = 1B cos (ot — k2) + ?E‘w cos (ot — k2) zh
Ex(2,t) = 1Ef cos (ot —kz) + 3 Edy cos (ut — kz)

overlap in space. Show that the resultant is also linearly E
polarized. io >z
|
]
E

The resultant E = E,+ E, is given by
E = (B +E;,) cos (ot — k2)
+ 5By, + By cos (ut — kz)
= [1(Bo+ Eg) + T (Boy + Ef)] cos (ot — k2)

z
1t is seen that the vector amplitude of E is independent of z and ¢, T
i.e. it’s constant. Accordingly, E is linearly polarized. t

5.7. Write an expression for a linearly polarized harmonic
plane wave of scalar amplitude E, propagating along
a line in the zy-plane at 45° to the z-axis and having
the zy-plane as its plane of vibration.
The vector amplitude E; makes an angle of 135° with the z
z-axis., If it is to have a scalar value of E,, then ?
g, = _Fop Eoy o N
R R

A harmonic plane wave has the general form

|

|

!
E = Ejcos(k*r— ot) —Eo

In the present case the propagation vector is

(%)
V2 V2 z ?
where |k| =k = 2z/A, and the position vector is

r = 21+ 7+ ok t=

(this ’l; is a unit vector along the z-axis). Substituting into the
wave function yields —> X

E = -\-/%(—Eﬁ+ E,y3) cos I:‘/f" (+y) — ut]

5.3 CIRCULAR POLARIZATION ‘?

Suppose now that the two orthogonal P-states of Section 5.2
have a relative phase e = —#/2 +2m= (m = 0, 1, %2, .. .), i.e, t=r
e = —n/2, 4+3%x/2, —b5x/2, +T=/2, .. . . Then, if their scalar ampli-
tudes are equal, that is, E.. = Eoy = E,, the two disturbances —
are expressible as |

Ex(z,t) = 1B cos (kz — ot) !
Ey(z,t) = Eosin(kz — ot)

(the specific values of ¢ simply shift the cosine function to a
sine function). The resultant wave E = E.+E, is Fig. 5-3
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E = 1Ecos(kz—ot) + §Eosin (kz — ot)
= Eoficos(kz~ot) + § sin (kz — ot)]

The magnitude of E is E, and is constant, but the direction of E is a function of z and {.
As in Fig. 5-4(a), the electric field vector rotates clockwise (looking toward the source).
Because the amplitude is constant, the endpoint of E sweeps out a circle (to be precise, a
circular helix) with a frequency equal to that of the constituent waves. Such a field is said
to be right circularly polarized, corresponding to an R-state.

In much the same way, when ¢=#/2—2mr (m=0,x1,22, . .), the cosine is shifted
into the negative sine, giving

E:z,t) = 1E cos (kz — ot)
Eiz,t) = —3Eosin(kz—ot)
E(z,t) = Eo[’f cos (kz — ol) —? sin (kz — ot)]

Once again E has a constant magnitude, but now it rotates counterclockwise (looking toward
the source), as in Fig. 5-4(b). The field is. left circularly polarized, corresponding to an
L-state.

Fig. 5-4

R- and .C-states are of particular significance in the quantum description, where they
are associated with the spin angular momentum of the photons. All polarization states can

be synthesized out of R- and C-states (see Problems 5.11 and 5.21), a feature which is a
necessity in the photon model.

SOLVED PROBLEMS

5.8. Describe the difference between the ®-state wave
E = Eiicos(kz—ot) + § sin (kz — wt)]
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and a wave of the form
E = Eoisin(kz—ot) + 3 cos(kz—ot)]

The wave E'(z,t) has a constant magnitude of F, and is circularly polarized. The two dis-
turbances can easily be compared by examining their behavior at some fixed point in space, say

2=0. At t =0,7/4,7/2,37/4 and ~, E(0,t) has values of Eo'i\, —Eo'j\, —Eo'i\, Eo'j\ and Eo'i\, respec-
A A A A A

tively. In contrast, at these same values of ¢, E'(0,t) is equal to Eyj, —Egi, —E, ), Ey1 and E,j,

respectively. Thus E'(z, t) is an .C-state which is along the positive y-axis at z=0 and ¢ =0.

5.9. Determine the state of polarization of the wave
E(z,t) = Eo[’i\ sin (kz — ot) — 'j\cos (kz — ot)]

The magnitude of E, i.e. (E<E)!/2, is again constant at E,, so the wave is circular. Fixing z
A A
at 0 we examine E(0,t) at t =0, 7/4, 7/2, 37/4 and =, and find that E(0, t) has values of —Ej, —E,i,

Eo'j\, Eo’i\ and —Eo'j\, respectively. The wave is evidently right circularly polarized, since the E-field
rotates clockwise in time.

5.10. Write an expression for a right circularly polarized wave propagating in the positive
z-direction such that its E-field points in the negative z-direction at z=0 and t=0.

As we saw in Problem 5.8,
E = Eoicos(kz—wt) + 3 sin(kz — at)]

is an R-state which is directed along the positive z-axis at 2z =0 and t =0. That suggests that
the wave we are looking for has the form

Eg = Eo[—'i cos (kz —wt) — ';i\ sin (kz — wt)]

As a check, examine it at 2=0 and t = 0, 7/4,7/2, 3r/4 and 7. At these values Ez(0,t) equals

——?Eo, 'j\Eo,?Eo, —']}Eo and —?Eo, respectively. 1t is right circularly polarized and does have an
initial negative x-component.

5.11. Show that the superposition of an ®- and an (-state yields a P-state provided that
the scalar amplitudes of the constituent waves are equal.

Writing the two circular waves as

Eq = EoglTcos(kz—ot) + 7 sin (kz — ot)]
E, = Ey[Tcos(kz—ut) — sin (kz —ut)]
their sum becomes
E = (Epg +Eo)Tcos(kz—ot) + (Bog —Byp) T sin (kz — ot)

Note that at z=0 and t =0, E = (Eog +Ey,)1, whileat z=0 and t=1/4, E = (Epq —E,.) 7.
Since both the magnitude and direction of E vary with z and ¢, the resultant is neither linearly nor
circularly polarized. However, if Eocn =E, o = E,, then

E = 2E,1 cos (kz — wi)
which is a P-state.

5.12. Write expressions for an R- and an .C-state which combine to yield the P-state
E, = Eolsin(kz— ot)
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Bearing in mind the preceding three problems, along with the requirement that the cosine terms
cancel, we consider the functions

AL A
Eg = Eog[isin(kz—awt) — j cos(kz—awt)]
E, = Eg [Tsin(kz—ut) + 3 cos (kz—ot))
We know from Problem 5.11 that a P-state will arise when E, R = =E, e and so
E;, = Eqg+E, = 2E0¢Rism(kz—wt)
which is the required function provided that qu( = Ey/2.

5.13. Write expressions for an K- and an .£-state which when superimposed will yield a
P-state propagating along the z-axis with the yz-plane as its plane of vibration.

The component waves evidently must travel in the z-direction. Moreover, we require that E

be in the yz-plane for all z and t. In other words, E must have only a'i\-component. From Problem
5.11, we also require that EO‘R = Ey;, which we set equal to E,. If we add an R-state initially

along x [ie. E¢(0,0) = Eoi] to an (-state initially along —z [ie. E;(0,0) = —Eo'i\] the resulting
P-state would begin on a downward cycle. Accordingly, using

E, (s t) = Eo[—i cos (kz — ot) + ] sin (kz — wt)]
Eg(z,t) = Eoficos(kz—ot) + § sin (kz — ot)]

we get Ep(z,t) = 2Eo'j\ sin (kz — wt)
The opposite choice (i.e. the R-state initially along —z and the C-state initially along x) would
give a P-state
Ep(z,t) = —2E,] sin (kz — ot)

that began on an upward swing. This is obviously just the negative of the previous solution.

5.14. Describe the state of polarization of the wave
E = iEocos (ot — kz +=/2) + FEo cos (ot — k2)

Making use of the fact that cos(a+ B) = cosacos 8 — sina sin 8, the wave function can be
recast as “
E = -AE,sin(ot—kz) + 3 E, cos (ot — k2)

At z=10 and t = 0, /4, 7/2, 3-/4 and =, E(0, t) equals  Eo, <1 Eo, —) Eo, 1E, and  E,, respectively.
Since the field vector is constant in length at E, and rotates counterclockwise, the wave is left
circularly polarized.

Another approach uses the fact that sin (—e) = —sine, while cos(—a) = cosa. Accordingly,
E = TE,sin(kz —wt) + JE, cos (kz — wt)
which was seen in Problem 5.8 to be an .C-state.

54 ELLIPTICAL POLARIZATION

Linear and circular light are rather special cases. Both require specific values of the
relative phase ¢, and the latter demands equal component amplitudes as well. A more
general superposition of orthogonal P-states yields elliptical or E-state light. Here the end-
point of the field vector sweeps out an ellipse (or, more accurately, an elliptical helix)
as E changes in magnitude and direction.

We again write the P-state components, this time in scalar form, as
E: = Eo cos (kz — of) E, = Egpcos(kz—ot+e)
The expression for E, can be expanded to separate  from the phase, and then, after some
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manipulation to remove the explicit dependence on kz — of, one arrives at

Ey 2 E:c 2 E €z E!l —_ 3
(m) + <E—> - 2(2%:) (EE) cose = sinte

This is the equation of an ellipse tilted at an angle «
to the E.-axis, as shown in Fig. 5-5. The value of E,
« can be computed from the equation Eyy 4

E
2E03E0y
e 12 CO08 ¢

Eozz - EW /
a -5,

SOLVED PROBLEMS Eo

5.15. Verify that linear light is a special case of
elliptical light.

We know (Section 5.2) that linearly polarized light /

occurs when ¢ = (2m + 1)r and when & = 2mr, where

m=20,%*1,*2,.... In the former case, cose = —1,
sine =0 and Fig. 5-5

E, \2 E_ \? <EI> (Ey )
L)+ (=) +2(z=){z>) = 0
<E0y> <E0:c> Eoz/ \Eoy
Factoring this yields

E, Ex><E,, E, Eq,
a2V L ZE) =0 or By = —2E
(EOy E 0z Eoy Eo:c /) y EOz x

tan 2«

This is the equation of a straight line (where the coordinates are E, and E,) passing through the
point E, =0, E, =0 and having a slope of —F,/E,,. Similarly, ¢ equal to zero or an even mul-
tiple of = yields cose =1, sin: =0 and

() ) - (R6E) -

or Ey o= Ez

This is again a straight line, but now the slope is positive.

5.16. Show that the equation

2E OzE Oy
tan 2« —5————5 €08 ¢
Egz - E gy
obtains for linear light.
We can express the tangent as
_ 2 tan o
tan2a« = 1 —tan’a

If the ellipse of Fig. 5-6 degenerates to its axis in the first and third quadrants, then

E,,
tana =
Eo:c
and therefore ,
2(E,/E 2E,. E
tan% = ( Oy 0::)2 — 20:c Oyz
1- (EOQIEO::) Eo:c - E(m
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This, of course, corresponds to the case where ¢ is zero or an even multiple of z. In the other case
(e an odd multiple of 7) the ellipse degenerates to its axis in the second and fourth quadrants.

5.17. Verify that circular light is a special case of elliptical light.

Recall from Section 5.3 that circularly polarized light occurs when &= %z/2, +37/2, £5/2... .
In that circumstance, cos: =0, sine = =1 and

E, )z E.\?
fnnt R = 1
<E'0v * (EM)
which describes an ellipse whose axes are the coordinate axes («a=0). When E,, = E,, = E;, then
E}+ EX= E}, which is the sought-after equation of a circle.

5.18. Determine the state of polarization of the wave whose orthogonal P-state compo-
nents are

1B cos (kz — ol)
§ Eo cos (kz — ot + 7/2)

Ei(z,1)
Ey(z, 1)

The amplitudes E,, and Ey, are not equal, so that even though e = 7z/2, the resultant is not
circular light. Inasmuch as cose =0, «a = 0 and we have an &-state whose symmetry axes are the
E,~ and E’,-axes Exammmg' the resultant wave E(z,t) at z= 0 as it unfolds in tlme we have
E(©,0) =1E,, E0,1/4)=3E,, E0,/2)= -iE,, E0,3r/4)=-3E,, and EO,r) =1E,. The
wave is left-handed and elliptically polarized.

Notice that because the time term is preceded by a minus sign a positive = will cause cos (kz — wt)
to reach any value prior to cos (kz — wt + ¢). Accordingly, for ¢ >0, E is said to lead E,,

Figure 5-6 generalizes the result to other values of ¢ where Eg, # E,

L /0 0\ ()

€ 0 z/4 /2 3x/4 T 5v/4 3x/2 Tz/4 27
E;leads E, by «

Fig. 5-6

5.19. Describe the state of polarization of the wave
E(z,t) = 1Eocos(kz—wt) + JEo cos (kz — ot + x/4)
giving its orientation as well.

The wave is neither linear nor circular, since ¢ = z/4, and so it must be elliptical. Watching
it at z=0, we have

E0,0) = TE, +FEN2
E0,7/8) = 1EyV2 +1E,
EQ0,7/4) = 0+ TENZ
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E(0,3:/8) = AEJ/V2+0
EQ©,7/2) = 1E, —-TE/NZ
E©,5:/8) = 1EJ/V2 - E,
E(0,37/4) = 0 —TE/V2
E(0,7r/8) = 1Ey+0
EQ,7) = TE,+3E/VZ
The E-field rotates counterclockwise and as such is left-handed. To find the tilt of the ellipse use

2E;
B} - E}

tan2a = coOS—+ = © or a = 45°

Wy

520. In Problem 5.19, we dealt with an &-state tilted at 45°. When actually analyzing such
light, it would be of practical interest to know the maximum and minimum field

values. Accordingly, determine both the semimajor and semiminor axes for the wave
of Problem 5.19.

The semimajor axis occurs in time halfway between 0 and 7/8, i.e. at t = 7/16. Consequently,
. EQ0,7/16) = 1E, cos(—=/8) + JE, cos (x/8)
and (E-EV2 = VZE,cosx/8 = 0924V2E, = 131E,
The semiminor axis occurs one quarter of a cycle later, i.e. at ¢ = 7/16 + 7/4 = 5+/16. Hence
E@©,57/16) = 1E, cos(—5x/8) + JE, cos (—3x/8)
and (E-E)2 = 2E cos(37/8) = 0.383V2E, = 0542E,

5.21. Elliptical light can be synthesized via the super-
position of an ®- and an .C-state. Write expressions
for the waves E; and E, propagating along the
z-axis which, when combined, result in an &-state
rotating clockwise with its semimajor axis in the
y-direction.

We evidently need an ®R- and an .C-state which have

only 'i\-components at 2=0 and ¢=0. Furthermore, if
Eyg > E,, the resultant will rotate clockwise along with
the R-state. Hence

Eg(z,t) = Eyq [—'1\ gin (kz — wt) + ? cos (kz — wt))
Ec(zt) = Eou[1sin(kz—ot) + 7 cos (ke — wt)]
so that
E(st) = (By,— Eog)1 sin(kz— )

+ (Bqe + Eyg) T cos (kz — ut)

The process is illustrated in Fig. 5-7. Fig. 5-7

55 NATURAL AND PARTIALLY POLARIZED LIGHT
An ordinary light source consists of an exceedingly large number of randomly oriented
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atomic emitters. Each microscopic source radiates a polarized wave train extending in
time for about 10-8s. The superposition of such waves, having the same frequency but
enjoying no particular phase relationship, generates a resultant wave of a given polariza-
tion which is sustained for a time less than 10-8s. As new uncorrelated wave trains are
continuously emitted, the overall polarization state varies quite unpredictably. Light of
this sort, where the state of polarization persists for a period too brief to perceive, is
referred to as natural or unpolarized light. We can regard such a wave as if it were ellip-
tically polarized, with both the shape and orientation varying rapidly and randomly. Or,
equivalently, we can envisage the wave as the superposition of two orthogonal, incoherent
P-gtates of equal amplitude. In other words, « changes rapidly and completely randomly.

Usually light is neither totally polarized nor unpolarized but a mixture of the two types.
Thus the two orthogonal P-states representing the wave will have unequal amplitudes or,
if you like, a non-randomly varying . In such cases we say that the light is partially
polarized. A measure of this condition is the degree of polarization V, defined as

L
L+1,
Here I, and I, are the constituent flux densities of polarized and unpolarized light, respec-

tively. Clearly, Iy + I. is the total irradiance and V is then simply the fractional polarized
component.

V =

SOLVED PROBLEMS

5.22. A partially polarized beam is composed of 3 W/m? of polarized light and 7 W/m? of
natural light. Determine the degree of polarization of the beam.

By definition
I,

vV = ¥ _
L+,

where now I, =3 W/m? and I, =7 W/m2 On substitution

- 3 _
V—3+7—30%

Notice that the limits of V are 0 (when I, =0) and 1 (when I, =0) and so partial polarization cor-
responds to 0 <V <1,

5.23. Imagine that we have a detector which admits linear light polarized in a given direc-
tion and measures its irradiance. Suppose a partially polarized linear wave impinges
on the device. If the detector is then rotated about the propagation axis a maximum
value of the irradiance, Imsx, will occur at some orientation and a minimum, Imm, per-
pendicular to it. Derive an expression for the degree of polarization in terms of
I max and Imln .

Let us resolve the natural light into two incoherent, orthogonal P-states. Their directions are
arbitrary and so set one parallel to the linear light and the other perpendicular to it. The component

field amplitudes of the unpolarized wave are equal, as are their flux densities. Thus, if the total
unpolarized irradiance is I, each component has an irradiance of I,/2. The polarized irradiance is

I,, = Ipex — Imln
where I, = I1,/2. Thus

vV = I, = Irnay — Imin — Imax — Imin
Ip + 1, (Imax — Imtn) + 2Imin Linax + Inin

As derived, this relationship obtains only for a mixture of linear and natural light.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



STUDENTS-HUB.com

104 POLARIZATION [CHAP. b

5.24. When a beam of natural light impinges on a transparent dielectric, a portion of it
is reflected while the rest is transmitted. Because r,, and r,, the amplitude reflection
coefficients, are generally unequal, the refracted beam will usually be partially polar-
ized. Write a formula for the degree of polarization of that beam in terms of the
transmitted irradiance components parallel and perpendicular to the incident plane,
ie. Iy and 1;,. For what values of ¢; will V=07

The incident beam can be resolved into two orthogonal, incoherent P-states, one in the plane
of incidence (with irradiance I;)) and one perpendicular to it (with irradiance I;| ). Thus while the
total incident flux density is Iy, + I; | , the total transmitted flux density is I+ I;,. From Section
3.4 we see that at 6; = 0° and 90°, |r)|| == |r |, the reflectances, B; and R, are equal and the
transmitted light is unpolarized (V =0). At any other angle R, > R, which means that Iy > I, .
Since these two components are incoherent, the polarized irradiance is I, =I,;—1I;, and

Ip Itll —1I 1

vV = =
Ip +1I, Iy + It_L

5.25. A beam of natural light is incident on an air-glass interface (n:=1.54) at an angle

of 57°, such that R; =0 and R, = 0.165. Determine the degree of polarization of
the transmitted wave.

Since R, =1I,/I,, =0, the corresponding transmittance

r _ Mg co8 0 It“
| = eee—ee e =
' cosg; I

inasmuch as Ry + T, =1. Similarly, T, =1—R, and

_ nﬁcosotlt_!_ _
T, = Sema Lo = 086

Because the incident light is natural, I;, == I;;; and we can write
L

Itll = C It.L = 083 C
I )
where C = Ly co86;
nti cos at
Hence, from Problem b5.24,
_ C—083%C _
V = CTossmc — 89%

56 DICHROISM AND POLAROID

In the very broadest sense dichroism corresponds to the selective absorption of one of
the two orthogonal P-states comprising an incident beam. The earliest usage applied to
naturally occurring dichroic crystals such as fourmaline. Light whose E-field is parallel to

the crystal’s optic axis is transmitted with little absorption, while a field component normal
to that axis is strongly absorbed.

Of more practical concern nowadays are the man-made dichroic devices, the simplest of
which is the wire grid polarizer, depicted in Fig. 5-8. Here an unpolarized beam of, say,
microwaves is shown impinging on a set of closely spaced, fine conducting wires. The con-
stituent P-state parallel to the wires drives electrons within them, thereby generating an
alternating current. In addition to joule heating, which corresponds to the removal of
energy from the vertical field component, the electrons reradiate a wave which tends to
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Fig. 5-8

further weaken this P-state. By contrast, the horizontal field is affected little by the re-
stricted motion of electrons transverse to the wires. Therefore the transmitted beam is
strongly linearly polarized perpendicular to the wires.

Modern H-sheet polaroid is a molecular analog of the wire grid. Here a clear piece of
polyvinyl alcohol has its long-chain molecules aligned in a particular direction by heating
and stretching it. The sheet is then dyed with an iodine solution and the iodine, in turn,
lines up along the straight polyvinyl aleshol molecules. Conduction electrons associated
with the iodine can then circulate up and down the molecules as if they were microscopic
wires. The result is a linear polarizer, that is, a device which passes only light whose
E-field is parallel to a given direction (the transmission axis).

SOLVED PROBLEMS

5.26. Figure 5-9 shows two polaroid linear polarizers oriented with an angle ¢ between
their transmission axes. Derive an expression for the irradiance of the emerging
beam as a function of 4.

Fig. 5-9
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Let the electric field amplitude emerging from the first polaroid (the polarizer) be E, It is
tilted at an angle ¢ to the vertical transmission axis of the second polaroid (the analyzer) and so
has a component along that transmission axis of E, cos . From Problem 2.13 we know that I varies
with the square of the field amplitude:

cgy
o) = ?(Eo cos §)2

This has a maximum value of I(0) = ceoE%/2 when ¢ =0. Hence

I(8) = I(0) cos®¢

which is known as Malus’s law.

5.27. An unpolarized light beam of irradiance I; is made to pass through a sequence of two
perfect linear polarizers. What must be their relative orientation if the exiting
beam is to have an irradiance of (@) Ii/2, (b) I/4?

(a) Imagine the incident beam to be resolved into two orthogonal, incoherent P-states, each of flux
density I,/2. Since there are no losses for the components parallel to the transmission axes
(perfect polarizers), one polarizer alone will pass I;/2. Clearly, both polarizers aligned with
their transmission axes parallel will also pass I,/2.

(b) Malus’s law is I() = I(0) cos? 9, wherein, from (a), I(0) = I,/2. We require that I(s) = I;/4;
_ in other words, I I
i i

= = 2
1 2(5080

Hence, cos8 = V1/2 = 1//2 and ¢ = 45°.

5.28. What must be the relative orientation of two perfect linear polarizers if under natural
illumination the emerging beam is to be reduced to half its maximum transmitted
value?

The maximum transmitted irradiance occurs at ¢ = 0. Thus we want ¢ such that I(s) = I(0)/2.
Malus’s law becomes
@ = I(0) cos? 4

Hence, coss = 1/y/2 and ¢ = 45°.

5.29. Imagine two crossed linear polarizers with transmission axes vertical and horizontal.
Now insert a third linear polarizer between them with its transmission axis at 45°
to the vertical. Determine the emerging irradiance before and after insertion of the
third polarizer in terms of I, the flux density of a beam of incident natural light.

Clearly, no light will emerge from a pair of perfect linear polarizers crossed at 90°.

With the middle polarizer in place, light exiting from the first polarizer is linearly polarized in
the vertical direction and has an irradiance of I;/2. From Malus’s law, with I(0) = I;/2, a flux
density of

I(46°) = ﬁ 0s246° = 5
= 2 CO8: 1 '
leaves the middle polarizer heading toward the last. The angle between these two is again 45° and
80 the final irradiance is given by
I;

I = 502450 =
g o8 8

Light leaving the three polarizers is a horizontal P-state.
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5.30. Three perfect linear polarizers are stacked normal to a central axis along which is
incident a beam of natural light of irradiance I:.. If the first and last polarizers are
crossed and if the middle one rotates at a rate » about the axis, write an expression
for the irradiance I of the emerging beam as a function of . '

The beam leaving the first polarizer is assumed to be vertically polarized with a flux density
of I, =I;/2. By Malus’s law, the irradiance leaving the second polarizer (when it makes an angle ¢
with the first) is I, = I; cos29, where 6 = wt. The angle between the transmission axes of the
second and third polarizers is 90° —¢. Neglecting any effects due to the finite value of ¢, the
irradiance emerging from the third polarizer must be

I
I = I,cos2(90°—9) = (I, cos26)sinZ¢ = -2isin2 8 cos? ¢

Applying the identity cos4¢ = 1 — 2sin220 = 1 — 8 sin2¢ cos2¢, we obtain

I L 1) = 21— cos ut
16( cosd49) = ﬁ( cos 4wt)

Interestingly enough, the emerging irradiance oscillates at four times the rotation rate.

5.31. An elliptically polarized light beam given by
E(z,t) = 1Eosin(kz—ot) + Eosin (kz — ot +=/4)

passes normally through an ideal linear polarizer whose transmission axis is tilted
at 45° in the zy-plane. Write an expression for the emerging beam and describe its
state of polarization.

To find the transmitted component of E form a unit vector along the transmission axis of the
polarizer, i.e. .
% = ﬁ A+9

The dot product E+® equals the required scalar component:

E'(z,t) = %[sin (kz— wt) + sin (kz — ot + %)]

These two sine terms can be combined into a single sine function oscillating in the plane of z and
the transmission axis; of course, the beam is linearly polarized. In fact, any two harmonic functions
of the same frequency )

A = Aysin(wt+a) B = Bjsin(ot+B)
combine to yield
C = Cysin(ut+7y)
where C: = A} + Bl + 24,B,cos(8—a)

Aysina + Bysing
Ay cosa + Bycos B

tany

In our case Ay, =By=1, «a =0, B8 =z/4, and we shall replace vt by kz—wt. Thus

2 \12 1N2 1
Cy = (2 + —> tany = =
° V2 1+anZ) 2414
172
and E'z,t) = (1 + 1—) E, sin (kz—wt +7y)
; V2
The emerging irradiance is therefore
ceggy 1 2 ceg '2
! -_— —_— — -_— —
r = 2 (1 + ﬁ)Eo = 3 QT0NE,

We can check this result rather quickly by sketching the two sine functions. Evidently the
resultant reaches a peak where the two cross, which by symmetry is at 67.5°. This maximum
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value of E’ is its amplitude, equal to 2(sin 67.5°)Eo/\/§ or 1.848 Eo/\/§. Squaring this yields 1.707 Eﬁ,
in agreement with the above.

5.32. Two ideal linear polarizers with horizontal transmission axes are illuminated by
natural light. If a third such polarizer is placed between them with its transmission
axis at 60° to the horizontal, find the emerging irradiance in terms of its value I’

before insertion.

Let the field amplitude leaving the first polarizer be E,. The field emerging from the second
one is then E;cos60° or Eg/2. The field leaving the last polarizer is (Ey/2)(cos 60°) = E /4.
The corresponding irradiance is then
(223} Eo 2
2\4

The exiting irradiance without the middle polarizer is just

[
r = -—2£—°E§

Hence, I =1I'/16.

5.7 POLARIZATION BY REFLECTION
In Section 3.4 we found that
<E0r> .
Eu/, —

_ (1_’7_0: B
o= \Ea)y T

are the amplitude coefficients of reflection
perpendicular and parallel to the plane of
incidence. The corresponding irradiance 1.0
ratios, which are called the reflectances,
are simply R, =r} and Ry =rf. Thus "

N; COS 0; — M¢ COS B
i CO8 0; + M cos O

r, =

N¢ COS B; — 7; COS B
7; COS O + 7¢ co8 §;

I,
R, = r::

I,
R.L = Il_.jj:

tan? (6: — ;)
tan? (6; + 9¢)

sin? (8: — 6:)
sinZ (6: + 0¢)

n, =15
Figure 5-10 is a plot of these reflectances '

for external reflection at various values of
the incident angle 6; for an air-glass inter- -
face. The figure also contains a graph of
the corresponding reflectance of natural ™
light which, as we saw in Problem 3.24, 0z > ;\"’
is given by '

Reflectance

T
I’
%

1 0.1
R. = —2'(RH+R_|_)
1 | 1 !

0 20 40 L 80°

Observe that R;; =0 when its denomin-
ator equals «; that is, when 4;+ 6. = 90°.

The special value of the incident angle for Fig. 5-10
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which this is true (6;:=6;) is spoken of as the polarization angle because for that angle the
reflected light is completely polarized normal to the plane of incidence.

SOLVED PROBLEMS
5.33. Show that the polarization angle, 4,, can be determined from the formula

n
tan 0p = =
n
This is known as Brewster’s law.
Beginning with Snell’s law,
n;8ing; = mysineé,

we require that when ¢; =9,, 0;+0, = 90°, ie. 6,+6,=90° Thus

n;siné, = n,sin(90°—a,)

or n;8in 6, = =, coséd,
ne

or tang, = —
n

5.34. Determine the polarization angle for external reflection at an air-glass interface
(ns = 1.5). Describe the state of polarization of the reflected beam for unpolarized
light incident at 4.

Brewster’s law can be written as tané, = n,;. Here n; =1.5 and so
6, = tan—115 = b56.3°

A beam of natural light incident in air at 56.8° will be partially reflected and partially transmitted.
Inasmuch as the incoming beam can be imagined to be composed of two orthogonal, incoherent
P-states we conclude that the reflected wave is a P-state parallel to the interface (R, =0). This
suggests an easy way to determine the transmission axis of an unmarked piece of polaroid. When
it passes the glare on a horizontal surface the transmission axis is horizontal.

5.35. Show that the polarization angles (6, and 6;) for external and internal reflection at
the interface between the same media are complements of each other.

Suppose that we have an interface between two media of indices n, and n,, where ng > n,.
For external reflection (n; > n;)

ne g
tang, = — = —
n; n
while for internal reflection (n, <mny) 7 n
tang, = — = —
L ng
Accordingly,
sing,  coséd,
coss,  sine,
or siné, siné; — cosé,cos8, = 0

This is equivalent to cos (¢, 6;) =0 which means that 6,+ 6, = 90°,

5.36. A planar sheet of glass is immersed in water. Show that a beam of natural light
which strikes the first surface at the polarization angle will, in part, be transmitted
to the second surface, where it is again incident at the polarization angle.
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Figure 5-11 depicts the situation in question wherein 4;; =6, and we are to prove that 6, = 6,.
By Snell’s law,

n, 8ind, = m,sine,
= mysind;,
It follows that oy
sin 6; = P sine,
g
Ny
But tane, = —
? Ny
and so sing;; = cosé,

From Problem 5.35, 6, = 90° —4,. Therefore
sing, = sineg,

or 8 = 0,{

Fig. 5-11

5.37. As the sun rises over a still pond, an angle will be reached where its image seen on
the water’s surface (n. = 1.33) will be completely linearly polarized in a plane parallel
to the surface. Compute the appropriate incident angle. At what angle will the
transmitted beam propagate through the water?

Brewster’s law, tan e, = n,/n,;, yields

o, = tan132 = p310

This, then, is the angle the sun makes with the vertical. As in Problem 5.36 we find that
6, = 90° — g, = 36.9°

5.38. A beam of natural light is incident on an air-glass interface (ns =1.5) at 30°. Deter-
mine the degree of polarization of the reflected beam.
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Values of r, and | can be computed from the Fresnel equations as was done in Problem 3.20.
There we found that ) =0.15 and r, = —0.24. Consequently, R =r} =2.256%, R, =r% =5.76%.
The degree of polarization

can be gotten by realizing that
L =R L —Ry

since the orthogonal ?-states are incoherent. In much the same way it should be clear that the
total reflected wave has an irradiance of

Ip+Iu = R_LII'_L+R||I‘||

All of this means that
R, I, — R,

v o= il il
R I;) + R,

But we know, in addition, that I, =I;; =I;/2, and so

R, —R
v = L Il
R, + R,
In this specific case
_ 5T6—225
V = Sier2z - 88%

58 BIREFRINGENCE

An optieally isotropic material is one in which the index of refraction or, if you will,
the phase velocity of a wave is the same in all directions. This obtains for cubic crystals
like NaCl, as well as for noncrystalline substances such as unstressed glass and plastic,
water and air.

Generally, however, crystals are anisotropic; the atomic binding forces on the electron
clouds are different in different directions and as a result so are the refractive indices. We
shall concern ourselves here only with uniaxial birefringent crystals (which encompass the
trigonal, hexagonal and tetragonal systems). Such a crystal contains a single symmetry
axis (actually a direction) known as the optic axis and displays two distinct principal indices
of refraction. The latter correspond to light field oscillations parallel and perpendicular to
the optic axis. Calcite, CaCOs, is a good example. Here the carbonate (COs) groupings all
lie in paralle] planes which are normal to an axis of three-fold symmetry, the optic axis.
The distribution of atoms is clearly anisotropic as is its response to light.

We can trace the progress of a wavefront through some medium by applying Huygens’
principle which states that in a homogeneous, isotropic substance every point on a wave-
front can be envistoned as a source of secondary wavelets whose envelope at some later time
corresponds to the primary wave at that time. The secondary wavelets are spherical,
moving out in all directions with the same velocity and frequency as the primary wave,
In a material medium we can think of the primary wave stimulating atoms into re-emitting
the secondary wavelets which, in turn, advance to the next layer of atoms.

To see how this applies to a uniaxial birefringent material, examine Fig. 5-12, page 112,
which shows an edge view of a calcite plate cut so that the optic axis is in the plane of the
drawing. In Fig. 5-12(a) a plane wave, linearly polarized normal to the page, impinges on
the crystal. The electric field is everywhere perpendicular to the optic axis, the wavelets
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CRYSTAL

CRYSTAL CRYSTAL

(@) (® (c)

Fig. 5-12

are spherical, and the disturbance passes through the plate (with a speed v,) in the usual
way —this is the ordinary or o-wave. In Fig. 5-12(b) the electric field of the incoming
P-gtate is in the plane of the drawing and therefore has components parallel and perpen-
dicular to the optic axis, which propagate at speeds of v, and v,, respectively. In calcite
vy > v, and the wavelets can be thought of as elongating into ellipsoids of revolution about
the optic axis. The envelope of the ellipsoids is a planar wavefront moving upward across
the crystal as the extraordinary or e-wave. Notice that the E-field is not in the planar
wavefronts within the anisotropic medium. Figure 5-12(c) shows how the crystal splits
an incident unpolarized beam into its constituent “P-states, thereby forming two distinct
emerging beams.

The crystal actually has to be cut in a special
way if the optic axis, the e- and the o-ray are
to be in a common plane (the o-ray always
resides in the plane of incidence). Calcite will
split naturally to form smooth cleavage planes.
A CaCOj crystal whose six faces are all cleavage
planes is said to be a cleavage form, which here
corresponds to a rhombohedron. A plane con-
taining the optic axis is known as a principal
plane. A particular principal plane which is
perpendicular to a pair of opposite faces of the
cleavage form is a principal section, as depicted
in Fig, 5-13. The principal planes containing
the o- and e-rays coincide with the principal
section as in Fig. 5-12. Notice that the E-fields
of the o- and e-waves are normal and parallel
to the principal section, respectively.

It is customary to define the two principal
indices of refraction for a uniaxial crystal as
no=c¢/v; and n.=c/v,. Values of these for Fig. 5-13

Calcite
cleavage form

axis
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Keep in mind that while v, is always the

speed of the o-wave, v is the speed of the e-wave only when that wave travels at 90° to the
optic axis. When propagating along the optic axis, the o- and e-waves both have fields
normal to that axis and both advance with the same speed, v;. Accordingly, the effective
index for an e-wave moving in some intermediate direction lies between 7, and =..

Table 5-1, Principal Refractive Indices of Some Uniaxial
Birefringent Crystals (A, = 589.3 nm)

Crystal Ny e
Calcite 1.6584 1.4864
Ice 1.309 1.313
Quartz 1.5443 1.5534
Rutile 2.616 2.903

SOLVED PROBLEMS

5.39. The quantity An = n.—n, is often referred to as the birefringence. A material is
denoted as either positive or negative uniaxially birefringent depending on the sign
of An. Assuming a point source to be imbedded in either such material, draw wave-

fronts for the o- and e-waves.

{} - o-wave
L i AN A
optic axis N // \ |4
{} i
(b)
Fig. 5-14

We know that in calcite, which is negative uniaxial, 1.486v, =1.668v, =¢, ie. v, >v;.
Moreover both waves, e and o, move at the same speed along the optic axis. The spherical o-wave
and the ellipsoidal e-wave are therefore tangent at the optic axis, as in Fig, 5-14(a). The maximum
velocity of the e-wave, i.e. v|, occurs in a direction perpendicular to the optic axis., Figure 5-14(b)
corresponds to a positive uniaxial crystal such as quartz. Here n, > n,, which means that v, <v .
This time v, is the minimum velocity of the e-wave and once more it occurs in a direction perpen-

dicular to the optic axis.

540. Two calcite parallel plates are cut so that the optic axis in one plate is normal to
the front face, while in the other it is parallel to the front face. Make an edge-view
sketch of the o- and e-waves in both plates and discuss what is happening.
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Fig. 5-15

In the plate of Fig. 5-15(a) the spherical and ellipsoidal wavelets both move through the crystal
with a speed v,. Thus the o- and e-wavefronts are coincident: in effect, only one wave traverses
the plate. By contrast, in Fig. 5-15(b) we see the ellipsoidal e-fronts advancing at v, and the
spherical o-fronts moving more slowly at v,. Thus two separate waves traverse the crystal. At any
point in space beyond the back surface both disturbances overlap to form a single resultant whose
form depends on the relative phase difference introduced on traversing the plate,

5.41. Figure 5-16 depicts a Wollaston polar-
1zing beamsplitter, consisting of two
quartz segments cemented together
with glycerine. Discuss how a beam
of natural light incident on the prism
is split into o- and e-waves.

Imagine the incident beam to consist
of two orthogonal, incoherent P-states, one
parallel to the optic axis and one normal
to it, as in Fig. 5-17. Because the beam
strikes the first face of the prism perpen-
dicularly, there is no refraction, although
there is a phase difference as in Fig. 5-15(b).
On crossing the diagonal interface the e-wave
enters the second segment, where, its field Fig. 5-16
being normal to the optic axis, it becomes
an o-wave. Since n, = 1.54 and =, = 1.55,
n, > n, and Snell’s law implies that the
o-ray in the second segment bends away
from the normal to the interface. Similarly,
the o-wave in the first segment is trans-
formed into an e-wave on traversing the di-
agonal interface, where it then bends toward
the normal.

Our use of Snell’s law relies on the
fact that in the second segment of the prism
the optic axis is normal to the plane of
incidence. Consequently, both the o- and
e-wavelets have circular cross sections in
the second segment. Generally an e-wavelet
has an elliptical cross section and, therefore,
Snell’s law does not apply. Fig. 5-17
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542. A uniaxial birefringent crystal is cut to form a parallel plate with its optic axis par-
allel to the front face, as in Fig. 5-15(b). Such a device is known as a retarder or
retardation plate. Assuming it to have a thickness d, write an expression for the
relative phase difference, introduced by the plate, between the o- and e-waves tra-
versing it.

The optical path lengths traversed by the e- and o-waves within the plate are n.d and n,d,
respectively. The optical path difference is then

A = |n,—n,ld

where the absolute value sign is merely to keep A positive. The number of wavelengths that the
two waves are shifted by is simply 1

-7; = 'A—olno—neld
Each wavelength corresponds to an angular phase shift of 2r radians, and so the relative phase

shift, A, is given by 9
T

A'p=7\o

lno - neld

In a negative uniaxial crystal v, >v,, and the direction of the optic axis of the retarder is
denoted as the fast axis. The opposite is true in the case of a positive crystal, where the optic axis
is the gslow axis.

543. A collimated beam of sodium light (A, = 589.3 nm) is incident normally on a parallel
calcite plate whose optic axis is perpendicular to the beam. Determine the frequencies
and wavelengths of the o- and e-waves within the calcite.

Provided that the response of the medium is linear, as it generally is for all but gigantic fields,
the frequency is unchanged when a beam enters the medium. Accordingly,

e _ 3X 108 m/s _ 14
¥ T N T TR93x10%m  OlXx10MHz
is the frequency of both waves, in and out of the plate. For the ordinary wave
_ M 589.3Xx10—% _
Roa = 7 = 1.66 = 3566 nm
and for the extraordinary wave )
_ A 589.83X10-9 _
Aext = e W R 896 nm

5.44. Compute the angle « between the o- and e-rays
emerging from a calcite Wollaston prism whose
wedge angle is 15°.

As in Problem 5.41, we can apply Snell’s law at the
diagonal interface. For the emerging e-ray we have

n, 8in 16° = m, 8in@g
or sin g, = i—-gg sin 15° = 0.288

where ¢,, is, of course, between the local normal and the
e-ray in the second segment. Similarly, for the o-ray,

ne 8in 16° = n, 8in 6,
or sing,; = %—:—g sin 15° = 0.232 Fig. 5-18

\
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Hence 6, = 16°46’, 6,; = 13°26’ and the angle between the two rays within the prism is
0e1 — 051 = 3°20". The e- and o-rays are incident on the back face at angles of 1°46’ and 1°34/,
respectively. Thus they emerge at angles 6., and ¢,, with respect to the normal to the back face,
where

N, 8in1°34' = sing,, n, 8in 1°46’ = sin g,
Thus, 6, = 2°34’ and 6, = 2°39’. Accordingly,
@ = (05— 8g1) + (2°84' —1°84") + (2°39' —1°46') = 5°13’

5.45. Given incident 590-nm light, compute the minimum thickness which a quartz retarder
must have if it is to be a quarter-wave plate, i.e. if the relative phase shift between
the e- and o-waves is to be Ag = =/2.

From Problem 5.42 we know that

a9 = Zin,—mn,d
Ao
Since Ag is to equal an odd multiple of /2,
ro_ 2w
(2m + I)E = [n,— neld
with m =0,1,2,3,.... The minimum thickness for such a quarter-wave plate occurs when m =0,
whereupon
Ao
T = o nlld
_ B90OX10-9 _s _
Thus d = ————411.54_ 158 1.48X10-5m = 0.0156 mm

5.46. As indicated in Fig. 5-6, page 101, a linearly polarized beam whose plane of vibration
is at 45° can be converted into circular light by causing E. to either lead or lag E,
by 90°. Accordingly, design a right circular polarizer, i.e. a device which will convert
natural light into an R-state.

The first step is to get the appropriate P-state. Thus, start with a polaroid or other linear
polarizer with its transmission axis at 45°. This yields equal, in-phase, orthogonal field components.

To get an R-state, £, must lag E, by »/2 radians. That calls for a quarter-wave plate oriented
with its fast axis parallel to E,,.

A common arrangement is a polaroid linear polarizer bonded to a quarter-wave plate made of
polyvinyl alcohol.

Note that circular polarizers have distinct input and output faces.

547. A beam of quasi-monochromatic light linearly polarized in the y-direction is incident
on a half-wave plate (i.e. Ap==). The plate is rotated so that its fast axis makes an
angle of 30° with the y-axis. What are the amplitudes of the emerging z- and y- field
components in terms of the amplitude, E,, of the incident P-state?

As we saw in Fig. 5-6, page 101, a phase shift of = radians will flip the “P-state as if mirrored
in the axis of the retarder. As shown in Fig. 5-19, page 117, since the field is initially at 30°,
it flips over to 30° on the opposite side of the fast axis. Thus, the emerging P-state is at 60° to
the y-axis. The amplitudes of the z- and y-components are then

V3E,

E,sin 60° = 3 = 0.866FE,

B,
5 = 0500E,

E, cos 60°
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Fig. 5-19

Supplementary Problems

PLANE POLARIZATION

5.48. Write an expression describing a harmonic P-state, of amplitude E,, propagating in the y-direction
with a speed v, and having a plane of vibration at 45° to the z-axis.

E
Ans. E@,t) = —T+k) cosa(%— t)

Ve

(Any equivalent expression for the phase will do.)

549. A beam of linear light polarized in the z-direction propagates in the x-direction through a quarter-
wave plate whose fast axis is along the y-direction. Assuming an incident amplitude of E,, write
an expression for the emerging harmonic wave.

Ans. E(x,t) = Egk cos (ke — of)

550, Write an expression for a P-state, of amplitude E;, moving in the y-direction, whose plane of vibra-
tion corresponds to the xy-plane, and whose magnitude at ¥y =0 and t =0 is zero.

Ans. E@,t) = EJ sin (ky — ot)

551. Describe the main characteristics and state of polarization of the wave
A
E(y,t) = —Eck cos (ky + ot) — VB Eqi cos (ky + wf)
Ans, A P-state, at 60° to the yz-plane, of amplitude 2F, propagating in the minus y-direction.

552. Arrive at an equation representing a harmonie, linearly polarized wave propagating along the z-axis,
of amplitude £, and having a plane of vibration tilted up from the xy-plane by 17.5°.

Ans. E@,t) = Eo0.95377 + 0.3007k) cos (kz — ot)
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CIRCULAR POLARIZATION

553. Two .-states having the same wavelength, of amplitudes 2E, and E,, and propagating in the same
direction, overlap in space. Assuming the waves to be in phase, describe the resultant.

Ans. An -state of amplitude 3E,.

5.54. Describe a means for determining whether a beam of light is right or left circular.

Ans. If an R-state is incident on the output side of a right circular polarizer it will emerge as
a P-state, while no light will emerge when the incident beam is an .C-state. The opposite is
true for a beam impinging on the output side of a left circular polarizer. Take another
look at Problem 5.46.

555, Write an equation for an R-state wave moving along the positive z-axis, of amplitude E, for which
E(0,0) is at —45° measured from the z-axis.

Ans. E(z,t) = Eg[1cos(kz— ot —z/4) +7 sin (kz — ot — 7/4)]

556, Formulate a mathematical representation of a right circularly polarized wave, of amplitude E,,
moving in the positive z-direction, such that at t=0 and z=0,

EO,0 = 2(i+V3Y)

Ans. Ez,t) = Eo[7cos (kz— wt+ 7/3) + 3 sin (kz — wt + 7/3)]

557. Give an expression for an .C-state, of amplitude E, propagating in the positive z-direction, for
which the E-fieldat 2 =0 and ¢t =0 is at +30° to the z-axis.

Ans. E(z,t) = Eq[T cos (kz — ot — 7/6) — § sin (kz — wt — /6)]

ELLIPTICAL POLARIZATION

558. Write an expression for a right-handed, harmonic &-state tilted at 45° to the y-axis and propa-
gating along the x-axis.

Ans. E(x,t) = ?Eo cos (kx — wt) + f;Eo cos (kx — wt — 7/4)

559. Write an expression for a left-handed harmonic &-state propagating along the z-axis with its major
axis at 135° to the x-axis.

Ans. E(z,t) = TE, cos(kz — wt) + 3 Eq cos (kz — ot + 37/4)
5.60. Determine the state of polarization of the wave whose orthogonal P-state components are
E.(2,t) = ?E(, cos w(t - %) .

E/z,t) = ?EO cos[«:(t—%) - %’i:l

Ans. Because of the way the phase is written, E, leads E, by 5v/4. The resultant is a right-
handed ellipse tilted at 135° with respect to the x-axis.

5.61. Formulate an expression for an elliptically polarized harmonic wave propagating along the z-axis.
It must be right-handed and have its major axis, which is to be twice its minor axis, along the
2-direction.

Ans. One possible form is E(z,t) = 2Eo’f cos (vt — kz) — Eo?sin (ot — kz)
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5.62. Show analytically that elliptical light
Ey(2,t) = Eo ] sin (kz — ot) + Ew? cos (kz — wt)

can be envisioned as the superposition of linear and circular light.

NATURAL AND PARTIALLY POLARIZED LIGHT
5.63. Is it accurate to maintain that a monochromatic wave is, by necessity, polarized?

Ans. Yes, a perfectly monochromatic wave must be polarized.

564. How might one distinguish between partially linearly-polarized light (i.e. a mixture of P-state and
natural light) and partially elliptically-polarized light?

Ans. With a linear polarizer determine the orientation corresponding to either the maximum or
minimum irradiance. Align the axis of a quarter-wave plate in that direction and use the
linear polarizer to examine the light emerging from it. If the light were a partial P-state,
ingertion of the retarder would have no effect and the irradiance extrema would not be
shifted. By contrast, if the light were a partial &-state, both the maximum and minimum trans-
mitted irradiance would be found, on rotating the polarizer, to have changed in orientation.

565. Imagine that you have a beam of light which might either be natural, circular, or a mixture of
the two. How might you determine its actual nature?

Ans. Insert a quarter-wave plate followed by a linear polarizer. If the light were circular, it
would emerge from the plate linear and a zero irradiance minimum would appear on rotating
the polarizer. Natural light would be unaffected by the plate and so no maximum or mini-
mum would result. And partially circularly-polarized light would show a nonzero minimum
as the polarizer was rotated.

5.66. A beam of partially linearly-polarized light propagating horizontally is being examined through a
perfect linear polarizer. It is found that the maximum irradiance transmitted by the polarizer is
43 W/m2 when oriented with its transmission axis at 80° to the right of vertical. The polarizer
is rotated and it transmits an irradiance of 22 W/m2 at an orientation of 60° left of vertical.
Compute the degree of polarization of the beam.

Ans. V =323%

DICHROISM AND POLAROID

5.67. A planar, unpolarized light wave of irradiance I; impinges, along the z-axis, on a perfect linear
polarizer whose transmission axis is at 45° to both the y- and z-axes. Write an expression for
the emerging wave function in terms of I;, assuming it to have a wavelength A.

E T,
Ans. E = 2G+%) sin(ZE—ut) where E, = 4|
ﬂ A Ceqg

5.68. Two polaroid linear polarizers are aligned with their transmission axes parallel. One of the pola-
rizers is rotated to 30° and then to 60°. What is the ratio of the transmitted irradiances at these
two positions?

Ans.  I1(30°)/1(60°) = 3.00

5.69. Three perfect linear polarizers are aligned in a row at angles, measured from the vertical, of 0°,
36° and 76°. What is the emerging irradiance in terms of I;, the incident irradiance?

Ans.  0.19201,

s

5.70. Ten perfect linear polarizers, arranged one behind the next, are oriented with 45° between the
transmission axes of consecutive filters. Write an expression for the exiting irradiance in terms of
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the incident unpolarized irradiance, I;, What would the emerging irradiance be for N such filters?
A'ns. 9.77 X 10"'4 Ii; Ii(1/2)N

5.71. Four perfect linear polarizers are stacked such that the transmission axes of consecutive polarizers
are separated by 30°. What is the irradiance of the emerging beam in terms of the incident un-
polarized irradiance, I;? What would it be if the two middle polarizers were removed?

Ans, 0.2109 I;, zero

5.72. Imagine three perfect linear polarizers arranged one behind the other and denoted as 1, 2 and 3.
Describe the emerging beam when 2 is 45° to the right of 1, while 3 is 45° to the left of 1. Compare
this with Problem 5.29, wherein 1 is positioned between 2 and 3.

Ans. No light emerges.

POLARIZATION BY REFLECTION

5.78. Unpolarized mercury light (546.072 nm) is made to fall on a glass plate at precigsely 58°01’, where-
upon the reflected beam is found to be totally linearly polarized in the plane of the interface.
Compute the index of refraction of the glass.

Ans. m, = 16014

5.74. Determine the polarization angle for external reflection at the surface of a borosilicate crown glass
plate (n, =1.5170) immersed in air. At what angle will the transmitted beam traverse the plate
when light is incident at the polarization angle?

Ans. e, = 56°36/, g, = 33°24'

5.75. Figure 5-20 depicts a ray of light reflecting off two parallel
dielectric plates at the polarization angle 6,. Rotate the
upper plate about the 0,0, line through an angle 8 so that
the reflected ray comes out of the plane of the paper. Describe
the irradiance of the emerging beam as a function of 4.

Ans. The irradiance varies as cos2¢. This is Malus’s
experiment, which leads, as you might guess, to
Malus’s law.

5.76. Natural light is incident on an air-glass interface at the po-
- larization angle. It is found that the reflectance of the per-
pendicular component, B 1 equals 0.15. Calculate the degree

of polarization of both the reflected and transmitted light.

Ans. V,=100%, V,=81% Fig. 5-20

5.77. A plate of extra dense flint glass (n,=1.673) is immersed in water (n,=1.833). Determine the
polarization angles for both internal and external reflection at an interface.

Ans. 6, =51°27, ¢, = 38°3%

BIREFRINGENCE

5.78. A beam of right circular light propagating along the z-axis passes through a quarter-wave plate
with a vertical (y-direction) fast axis. Describe the state of polarization of the emerging light.

Ans. A P-state at 135° to the horizontal (x-axis), i.e. in the second and fourth quadrants.

5.79. A beam of left circular light propagating along the z-axis passes through a quarter-wave plate with
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a vertical (y-direction) fast axis. Describe the state of polarization of the emerging light.
Ans. A P-state at 45° to the horizontal (x-axis).

580, Figure 5-21 shows the formation of an o- and e-wave within a calcite principal section (see Fig. 5-12).
Determine the angles « and 8, where the former corresponds to the direction of the e-ray and the
latter to the orientation of the optic axis with respect to the cleavage face.

Ans. B =45°24' and e = 6°14’. The small value of » means that the ellipticity of the e-wave
in Fig. 5-21 is much exaggerated.

Fig. 5-21

581. We have a source of left circular light (A, = 656 nm) which we wish to convert to right circular by
passing it through a quartz retarder (n, =1561, n,=1.542). Compute the minimum thickness of the
retarder and describe the necessary orientation.

Ans. d=2864X10-3cm for a half-wave plate; the fast axis can be at any orientation normal to
the beam

582. A half-wave plate for red light (A, = 780 nm) is positioned between two crossed linear polarizers
with its fast axis at 46° to the transmission axis of the polarizers. Describe the effect of such an
arrangement on an incident beam of unpolarized red light.

Ans. Red light will exit linearly polarized parallel to the analyzer’s transmission axis.

5.83. Neglecting the frequency dependence of the refractive indices in the Problem 65.82, what will hap-
pen to a beam of violet light (A, = 390 nm) traversing the arrangement?

Ang. The retarder is a full-wave plate for A, and therefore no violet will emerge.

584, Remove the analyzer in Problem 5.82 and determine which visible wavelengths, if any, will then be
transmitted as circular light.

Ans. yellow-green (A,, = 520 nm)

5.85. A calcite retarder is positioned between two parallel linear polarizers. Determine the minimum
thickness of the plate and its necessary orientation if no light (A, = 589.3 nm) is to emerge from the
arrangement when the incident beam is unpolarized.
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Ans. A half-wave plate at 45° with d = 1.7183 X 10—4 em.

5.86. A crystalline negative uniaxial prism, as depicted in Fig. 5-22, generates minimum angles of devia-

tion for o- and e-rays of 46° and 40°, respectively. Determine the principal indices of refraction,
n, and n,. ’

Ans. m, = 1582, n,=1.597

Fig. 5-22
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Chapter 6

Interference and Coherence

6.1 INTRODUCTION

In Chapter 6 we dealt with the superposition of orthogonal ?-states. By contrast, inter-
ference theory treats, for the most part, with the superposition of coplanar electric fields.

As we saw in Chapter 1, wave phenomena are described by a second-order linear differ-
ential equation and so the principle of superposition obtains. Thus, at a point where two or
more optical fields overlap, the resultant electric field intensity E is the vector sum of the
constituent disturbances. Much like ripples on a pond, the fields in some regions will par-
tially or completely cancel each other, while in still other locations the troughs and crests
will be accentuated in the resultant. An irradiance distribution will often arise which
differs from the simple algebraic sum of the irradiances of the contributing waves.

62 INTERFERENCE OF TWO WAVES

Imagine that we have two linearly polarized plane waves of the same wavelength,
given by
E(r,t) = E,cos (k,'r — ot + 2,)

E,(r,t) = E,cos (k,°r — ot +¢,)

which overlap at point P as in Fig. 6-1. Here, of course, k,, k,, », ¢, and ¢, are all constant.
These waves may arise, for example, from two, very distant, point sources. The resultant
field is simply

E=E+E,
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But since at optical frequencies the fields oscillate at in excess of 10'* Hz the irradiance
becomes the quantity of practical concern, it being directly measurable. Neglecting a con-
stant factor, we can write the irradiance as just the time average of the total field:

I = (B
where E2 = E-E. Accordingly,
E* = (E:+E)- (E1+E) = Ei + E; + 2E:-E,
Taking the average we obtain \
I =15L+1I+1e

where I, = (Ef), I, = (E3) and Iz = 2(E;-E,), the last being known as the interference term.
It is by virtue of this last term that I differs from a simple sum of the irradiances of the
component waves, i.e. I+ I..

The time average of some function f(t) is given by
1 t+T
oy = 5§ fear

Here the detection interval T is much greater than the period of oscillation of the waves, .
Thus if we carried out the indicated calculation for the above plane waves (see Problem 2.13),
the interference term would become

I, = 2(E1 ‘Ep) = Eor* E¢2 cOs 8
where the phase difference § is given by
8§ = (kyor) — (k') + ¢, — ¢,

All of this means that as one moves from point to point in space, r varies, as does 8, and
therefore I, and I both vary as well.

The (k;-r) — (k2* r) contribution to the phase difference arises from a path-length differ-
ence sustained by the waves in going from the source points to P. The ¢, — ¢, contribution
is due to an initial phase difference at the emitters, and if it is constant, as we have
assumed, the sources are said to be coherent. We examine the more general condition of
partial coherence in Section 6.6. For now, a simple rule will suffice: If the overlapping
waves are coherent, their electric fields can combine with each other in a sustained fashion
and will be added first and then squared to yield the irradiance. If the waves are inco-
herent, the individual fields, which are effectively independent, will be squared first and
then these component irradiances added.

SOLVED PROBLEMS

6.1. Assume that the electric fields of the two waves in Fig. 6-1 are parallel. Derive a
symbolic statement of I in terms of I, I, and 3.

For the superposition of coherent waves,
I = Il +I2 +E01'E02CO36

but now the fields are parallel and Ey «Ey = E,;E,. Bearing in mind the results of Problem 2.13,
the component irradiances can be written as
E} E}
Ix=(E§)=—'2—1 Iz=(E§)=%
Thus E -E, = V2I,V2I, and
I = Il + Iz + 2\/1112 co8 8
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To find the distribution of light in space one need only go to each point, determine § there,
and then compute I knowing I; and I,.

6.2. Describe the resultant irradiance distribution which would occur in Problem 6.1 if
the two waves were incoherent, i.e. if their phase angles were to vary randomly and
rapidly as compared to the measuring time.

The interference term
I = 2(E;*Ep)
can be written as
Iis = 2(Eg; Eg cos [ky*r — ot + £1(t)] cos [ky*r — ot + e5(t)])
= 2EuEo(cos (ky°r — wt) cos (kg *r — wt) cos e; cos &y
— cos(k;°r — ot) sin (ky* T — wt) cos ¢, sin e,
— sin(k; *r — wt) cos (ky*r — o) 8ine; cos ey
+ sin (k; e r — wt) sin (kg * T — of) sin ¢; sin &)

Since #,(f) and e3(¢) fluctuate irregularly and rapidly, as compared to the measuring interval, the
average value of each term taken over that interval must be zero, hence I;, = 0. Alternatively,
notice that the relative phase & —e; = ¢ is also rapidly varying and random, and if you let ¢ =0
and ¢ =¢, then I;, =0, as expected. In effect, the interference pattern changes so rapidly that
what is observed is just

I = Il + Iz

This is why we can simply square the individual fields and then add irradiances when dealing with
incoherent sources.

63. Suppose that two identical waves of natural light were made to overlap. Would
interference result? (That is, would I:» be nonzero?)

Each of the unpolarized waves can be envisioned as composed of two orthogonal, mutually in-
coherent P-states. These, in turn, can be labeled with respect to any convenient plane (e.g. the
one containing k, and ky) as E; = E;;+E;;, and E; =E;;+E;,. Since the waves are identical,
E;) and Ey are coherent, as are E; | and E, . Consequently two independent, precisely overlapping
interference patterns,

(B + Eg))?) and (By ) +Bg )%

would result. The equation for the irradiance distribution therefore applies whether the waves are
polarized or not, provided they are identical. ‘

6.4. Reconsider the waves of Problem 6.1 and examine the conditions under which I assumes
maximum and minimum values. ’

Inasmuch as
I = Il + Iz+ 2VIlIz cos §

I...x occurs when cosd =1, i.e. when & =0, *27, =45,.... Thus
Imax = Il + Iz + 2VIlIz

The two waves are in phase, trough overlaps trough and crest overlaps crest, as in Fig. 6-2(a),
page 126. Similarly, when cosé = —1, i.e. when § = %7, =3r,..., I =1, and

Imin = Il + Iz - 2VIII2

Here the troughs of one wave overlie the crests of the other, thereby tending to cancel each other,
as in Fig. 6-2(b).

Whenever I;+ I, <I the situation is referred to as constructive interference, and whenever
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I, 4+ I, > I, it is spoken of as destructive interference.

6.5. Write an expression for the irradiance at point P in Fig. 6-1, assuming the field
amplitudes to be both equal and parallel,

Since the fields are parallel, we know from Problem 6.1 that
I = Il + Iz + 2VIlIz cos8 §

Furthermore, E, = E,;, which means that I; = I,, and we set both of these equal to I,. This
leads to

I = 2I,(1 4+ cosd) = 4I, cos2%

The interference pattern varies as the cosine squared.

6.6. The vistbility of the fringes in an interference pattern was defined by Michelson to be
‘ I max — I min
I max + I min

(a) Derive an expression for the visibility of the pattern resulting from the two
coherent waves in Fig. 6-1, assuming their fields to be parallel. (b) What is the visi-
bility when the two field amplitudes are equal?

VUV =

(@) Direct substitution of the expressions for I,,; and I,;, from Problem 6.4 leads to

T L+ 1,
(b) ‘When EOI = Eoz, Il = Iz = Io and so 2 /I:
v -EIO— 1

Alternatively, from Problem 6.5, I,;, =0 and again UV =1,

6.7. Suppose that point P in Fig. 6-1 is moved nearer to the source points S: and S; so
that the overlapping waves are spherical. Assume that the field amplitudes are equal
and parallel at P and discuss the form of the interference pattern.

The spherical waves at P can be expressed by
Ei(r;, t) = Egy(ry) cos (kry— ot +¢y)
Ey(ry, t) = Eqgy(ry) cos (kry — ot + &)
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Fig. 6-3

with the appropriate geometry depicted in Fig. 6-3. Here
§ = k(rl—rz) + e] — &g

and neglecting a constant factor, (Ef) = (EZ) = I;. Thus, by Problem 6.5,
I = 4, cosz-;- [y — 75) + 23— &g

and its maxima and minima occur when § = 2zm and & = #(2m+1), respectively, m being
0, 1, =2, ... . Accordingly, maxima in I correspond to the situation where

2z7m + eg — &y
oty = ————
and minima where

7@m+1) + e — 2
T r = %

These are both equations of families of surfaces in space; namely, concentric hyperboloids of revo-
lution. Figure 6-3 shows several such surfaces over which I =1I,,, in the cage e = e,

The region in which the two sources
are immersed is filled with an interference
pattern that would be evidenced by a series
of bright and dark fringes on a viewing
screen. Py

6.8. Describe the distant radiation pat-
tern arising from two equal-strength
point sources, S: and S;, which are
in phase (¢, =¢,), where now their .,=“2_°
separation, a, equals Ao/2.

In most cases of optical interference
the separation between the sources is large,
a > )\, but instances where a = )\, are of
congiderable interest as well. Examining
Fig. 6-4, we see that the distances S; P, and
S;P, are equal (and, although not drawn
that way, are many wavelengths long). Fig. 6-4
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The waves traverse equal optical path lengths and arrive at P, nearly parallel and in phase, in-
terfering constructively. If I, is the irradiance of either source, the resultant at P, is 4l

At P,, which is again far from the sources, the two fields will be assumed to be nearly equal
in amplitude. The path difference S;P,— S3P, is approximetely a sine. Consequently, the dif-
ference in the number of waves spanning the two paths is (@ sin 8)/A¢. Since each whole wave corre-
sponds to a phase shift of 2 radians, the phase difference between the disturbances arriving at P, is

27

= —a8i
3 " sin ¢

Hence, from Problem 6.7,
I(6) = 4I,cos? (-;:—a sin 0>
0

and for this particular situation wherein a = Ay/2,

I(6) = 4I,cos? (-% sin 0>

Notice that at P,, ¢ = 0 and I(0) does
indeed equal 4I,. At P; the disturbances
would be 2y/2 or = radians out of phase,
completely canceling each other. In that
case ¢ = 90° sing =1, cosx/2 =0 and
I(90°) = 0 as anticipated.

Figure 6-5 is a polar plot of I versus
¢ showing the two-lobe pattern consisting
of radiation predominantly at ¢ =0 and
¢ = 180°. Fig. 6-5

6.3 WAVEFRONT-SPLITTING INTERFEROMETERS

As we saw in Section 5.5, an ordinary light source can be envisioned as emitting a
large number of uncorrelated, nearly sinusoidal wave trains each lasting for roughly 108 s.
The resultant light wave maintains a constant phase for a time somewhat less than this
coherence time, At. The waves from two such sources could interfere but the pattern would
be sustained for a time less than At. As the waves varied in phase rapidly and randomly
the pattern would shift erratically, washing out over the comparatively long detection inter-
val. Although two phase-locked lasers can generate a detectable interference pattern, the
more usual approach is simply to split a single wave into two coherent pieces.

In the broadest sense, a device which generates interference fringes is referred to as an
interferometer. The subclass of wavefront-splitting interferometers are all characterized
by the fact that two separate segments of a wave are brought into superposition after hav-
ing been made to traverse different paths.

Wavefront-splitting interferometers, and there are many of them, are perhaps best typ-
ified by the setup depicted in Fig. 6-6, which is known as Young’s experiment. The sources
S, S1 and S: are either small holes or long narrow slits perpendicular to the plane of the
drawing. The wave spreading out from S impinges on S; and S: which, in turn, serve as
a pair of in-phase coherent emitters. For any distant point P not far from the central
axis, the optical path length difference (n~ 1) is S\P—S,P = r1— .. This is approximately
equal to SiA = asing or, more simply, ad. Since tanéd ~ ¢ = y/s, when y is small com-
pared to s,

™ — T =2
1 2 sy

The two waves arriving at P are in phase and interfere constructively whenever r1—r: = ma,,
where m =0, x1,+2,.... Thus, interference maxima occur whenever

I4

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



CHAP. 6] INTERFERENCE AND COHERENCE 129

smao
a

and the plane of observation is covered with alternately bright and dark parallel bands run-
ning perpendicular to the plane of the figure. Indeed, the region of space between 2, and
3, is filled with the interference pattern.

m =

Fig. 6-6

SOLVED PROBLEMS

6.9. Write an expression for the irradiance distribution over the plane of observation in
Young’s experiment and plot I as a function of .

Inasmuch as the waves are emitted at S; and S, in phase, the phase angle difference at P is simply
8 = ko(ry—ry)

From Problem 6.5 it follows that

ko(ry — 7o)
I = d4lI,cos? %
2
and since 7, —1r; = ay/s and ko = 2z/\;, We have
= 2 Yon
I 410 o8 g

The resulting pattern is plotted in Fig. 6-7.

Flé

2a o 28

Fig. 6-7
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6.10. Derive an expression for the separation Ay between alternate pairs of fringes (i.e.
the distance between consecutive maxima or minima) in Young’s experiment.

The mth and (m + 1)th maxima are located at

amg s(m + 1)),

Ym = — Yme1r = =@
. 8\
Accordingly, &Y = Ym+1 — Ym T

which can be easily verified from Fig. 6-7.

6.11. Use the plane wave formalism to verify that the two waves arriving at point P near
the central axis in Young’s experiment are out of phase by k.ay/s.

A

S,
a
Sy

Fig. 6-8

Figure 6-8 shows the two unit propagation vectors ﬁ, =ky/k; and '122 = ky/k;, as well as the
position vector r locating P relative to an origin on the central axis. The two disturbances arriving
at P can be written as

E,(r,t) = Ejcos(k;*r — wt)
Ex(r,t) = Egcos(ky*r — wt)
assuming Ey = Eoy = E; and ¢; = e;. Consequently,
8§ = (ky°r) — (kg*r) = (ky—ky)°r
Now to find k; —k,. Since k; = k; = k, and B is a small angle,
[ky — ko] ~ ko8

Moreover, tany = y and tana =~ a; hence

SlA SzA a
B=rY—a =~ -5 =3
kqa
Therefore : k —k ~ §
k
and 5= (y-kp)er = —F3-Rz+Tw)

koay
8

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



CHAP. 6] INTERFERENCE AND COHERENCE 131

6.12. A quasi-monochromatic beam of wavelength A, illuminates Young’s experiment, gen-
erating a fringe pattern having a 5.6-mm separation between consecutive dark bands.
If the distance between the plane containing the apertures, =;, and the plane of obser-
vation, Z,, is 10 m, and if the two sources S; and S: are separated by 1.0 mm, what is
the wavelength of the light?

It follows from Problem 6.10 that the fringe separation is Ay = s\p/a. Hence

_ ady _  (1X10-%)(5.6 X 10-3)
o = s 10

56X10-"m = 560nm

6.13. A glass chamber 25 mm long filled with air is positioned in front of one of the second-
ary sources in Young’s experiment. The air is removed from the chamber and a test
gas is entered in its stead. On comparing the fringe system corresponding to air with
that of the test gas, it is found that the entire interference pattern on =, was displaced
by 21 bright bands toward the side containing the chamber. Given that the illumina-
tion was the red Fraunhofer C line (Ao = 656.2816 nm), for which the refractive index
of air is 7, = 1.000276, determine the index of the gas (n,).

The optical path length of the chambered region when occupied by air is 7,(25 X 10—3); when
occupied by the gas it is 7,(26 X 10=3). Thus the optical path-length difference (0.P.D.) is given by

0.P.D. = (n; —n,)(25 X 10-3)
But this must correspond to the shift of 21 wavelengths; that is, O0.P.D. = 21)\,. Consequently,

Mg = (1, — n)25 X 10-9)
-—9 \
or g 21(65::?&5:" )+ '1.000276
= 55128 X 10-6 + 1.000276 = 1.000827

6.14. Fresnel’s double mirror consists of two specularly reflecting surfaces making a small
angle o« with respect to each other. The arrangement is shown in Fig. 6-9. Discuss
how the system works and derive an expression for « in terms of R, X, the fringe
separation Ay and the distance d.

Shield

Fig. 6-9

Different portions of the primary wave from S are reflected off the two mirrors, thereafter
overlapping and interfering in the region in front of 2,. We can imagine that these coherent waves
originate at the two virtual sources shown in Fig. 6-10. Notice that the arrangement is then identi-
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Fig. 6-10

cal to that of Young’s experiment and so o
o=

where now s = BP,, the perpendicular distance from 5,5, to 3, Here s =BA +d and, assum-
ing a €8, BA = R. Therefore we can write
(R+d)n

Ay P

The lines S;A and S;A can be taken as the images of the incident ray SA by the two mirrors.
Then, by Problem 4.62, /S;AS; = 2«, and so

a = 2Rsinae = 2Ra

(R+dn (R+d)n
o _

Hence Ay = SRa r a = m—y——

6.15. Compute the angle a« between the reflecting surfaces of a Fresnel double mirror when
the source is 1 m from the intersection of the mirrors, the screen 2, is 2 m from that
intersection, Ao = 500 nm and the fringe separation is found to be 1 mm.

Wearegiventhat R=1m, d=2m, A =500%X10"*m and Ay =10~3m. Hence

(BR+d)e (14 2)(500 X 10-9)
2Ray 2(1)10-3

= 75%X10~4%rad

a

or 0,043°.

6.16. Obtain an expression for the irradiance distribution over the plane of observation for
a Fresnel double mirror, in terms of 1(0) (the irradiance on the central axis), ¥ meas-
ured from that axis, R, d and .

‘We found in connection with Young’s experiment (see Problem 6.9) that

kolry —19)

I(y) = I(0) cos? )
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Moreover,
_ Yo
T — Ty = _8__
and a = 2Ra, s = R+d. Hence

_  2yRa
n-n o= 75

koﬂRa
2 07
I(0) cos’ E+d

and I(y)

6.17. Fresnel devised yet another wavefront-splitting system (Fig. 6-11) known as a biprism.
Describe how it works and derive an equation for the fringe separation Ay in terms
of R, d, «, n and Ao, provided that the prisms are very thin (a~ 1°).

The minimum deviation 3,, of a prism
of index x in air is given implicitly by 3,
sin [(8,, + a)/2]
sin a/2
Since the biprism is thin, both §,, and «
are quite small and s
(3 +a)/2
al2
8yt a

a

‘We can drop the subscript m, because the
thin prisms function at or near minimum
deviation, whereupon » s

n—1a = 8

(Do not confuse this 8 with the phase angle
difference.) As can be seen in Fig. 6-12, the Fig. 6-11

Fig. 6-12
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primary wave is split in two by the biprism, in effect replacing the source S by two coherent virtual
sources S; and S,. Angle S;AS, =23 and so ¢ ~ 2R3. The formula for the fringe separation,

8o
=

from Young’s experiment again applies, and becomes

R+dp, _  (R+d),
2Rs ~ 2Rm—1Dea

6.18. A collimated laser beam (Ao=632.8 nm) impinges normally on a Fresnel biprism.
Unlike Young’s experiment, where the fringe separation Ay increased with increas-
ing distance from the source, show that here it is independent of the location of =..
Determine Ay when n = 1.520 and « == 1°30".

From Problem 6.17

(R +d)xg
Ay 2R — Da
but now R > d andso R+d~R. Hence
A .
Y 2(n—Da
For the given values,
_ 6328X10-0  _
&Y = 30520)00267 _ 0028 mm

Notice that even a value of « as small as 1°30° does not produce conveniently wide fringes.

6.19. Figure 6-13 depicts a segmented light wave; one portion of it travels directly to the
plane of observation, while the other arrives there after undergoing specular reflec-
tion from a smooth surface. This wavefront-splitting arrangement is known as Lloyd’s
mirror. Discuss the manner in which it generates interference fringes, paying par-
ticular attention to the reflection process. Derive an expression for I(y).

Fig. 6-13

The reflected beam appears to come from a virtual source S,, as shown in Fig. 6-14. Once again
we have a situation similar to Young’s experiment in most respects. The crucial distinction is that
the reflected beam undergoes a 180° phase shift at the interface. Recall the Fresnel equations of
Section 3.4 which describe the reflection process via the amplitude coefficients »,; and » | . At glancing
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Fig. 6-14

incidence (#; = 90°) these are both equal to —1, which means that the incident and reflected electric
field vectors are antiparallel at the boundary. Thus, at any point P,

§ = ko("'l—r) =¥ 4

koiry—7) = =#

and ! I = 41, cos? 3
Alternatively,
kolr; — 7
I = 4l, sin? °(‘2 )

and since, as in Young’s setup, r, — 7 = ay/s, we get
Iy) = 4, sinz%

Now there is a black band at y = 0 instead of a maximum.

6.20. Referring to Lloyd’s mirror (Fig. 6-14), suppose that the source is 2 mm above the
plane of the mirrored surface and 1 m from the plane of observation. If Ao = 460 nm,
determine the location of the first maximum.

The separation between fringes is given, as before, by Ay = sh\¢/a. Here a =4mm, s =1m,
and so

_ 1(460X10-9) - e —
Ay = X 10-3 = 115X10"4m = 0.115mm

The center of the dark central fringe falls at the level of the reflecting surface. The next dark
fringe is 0.115 mm up from this surface and the first maximum is midway between these two at
¥ = 0.0676 mm.

64 AMPLITUDE SPLITTING BY THIN FILMS

In all the examples of the previous section, the two interfering waves had just about the
same electric field amplitude as the primary wave from which they were derived. We now
show how to shear the entire primary wavefront into two segments, each with a diminished
amplitude.

In Fig. 6-15 light from a quasi-monochromatic point source impinges on a thin trans-
parent plate. Because the reflection coefficients are generally small, we shall limit the dis-~
cussion to the two rays shown, each of which undergoes a single reflection, and omit the
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far weaker, multiply reflected rays. These
waves, E1» and E., have nearly the same
amplitudes and can be thought to have
originated at two virtual coherent point

" gources. The optical path-length difference
(O.P.D. or A) from S to P for these rays
is given by

A = ni{AB+BC) — n(AD)
or, since AB = BC = d/cos 6,

2n;d s
cosf: MAD)
By Snell’s law,
AD = AC sin g,
= ACYgine,
n

Moreover, AC =2d tang.;. Consequently,

2’nfd
cos 4t

(1 —sin26y) = 2nd cosf:

There is an additional relative phase shift of » radians between the waves, since one is
internally reflected while the other is externally reflected. Accordingly,

8§ = kAxxr = %—(—)ﬂnid cosfs =
or, in terms of 4, 4rd _
8 = —;{;—(n,z —n?sin? 6;)"/2 x 7

There is once again a double-beam interference pattern. Because  is constant for all
values of ¢, which are the same, these fringes are spoken of as fringes of equal inclination.
Again, approximating the two fields to be equal, we have

I = 4l coszg

and wherever 6; is such that 8§ = (2m+1)r a minimum will exist. On the other hand,
when & = 2mx, the irradiance will be a maximum. The number m (m = 0,%=1,%2,...) is
called the order number of the dark or bright fringe. It should be noted that the fringe of
order m need not correspond to the mth fringe as counted on the observing screen (see
Problem 6.39).

As a consequence of the fact that § is dependent on ¢; and not on the location of S, other
source points would contribute to the pattern without obscuring it and, indeed, an extended
or broad source could be used as well.

SOLVED PROBLEMS

6.21. Blue light (Ao = 487.99 nm) falls perpendicularly on a film of thickness 1.648 X 10~¢m
which has a refractive index of 1.5556 immersed in air. The beam is split as in
Fig. 6-15. Compute the O.P.D. introduced in traversing the film. What is the phase
angle difference between the two disturbances after they leave the film?

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



CHAP. 6] INTERFERENCE AND COHERENCE 137

The O.P.D. is given by
A = 2n4 cos 6,

which can be expressed more usefully via Snell’s law as
A = 2d(n2 — n? sin® 6)1/2
Because =1 and ¢, =0,
A = 2dn; = 2(1.648 X10~6)(1.5665) = b5.126X10—¢m

This corresponds to a difference in the two paths of A/A, = 10.5 wavelengths, and each wavelength
gives rise to a 27 phase difference. Clearly, then,

8§ =2z xgx

including the phase shift of = due to the reflection. This means that the two waves, one reflected
from each of the film’s surfaces, are back in phase (§ is an integral multiple of 2r).

6.22. A ray of green light (Ao = 565.69 nm) impinges at 30° on a thin planar film of index
1.500 immersed in air. (a) What is the smallest film thickness for which the point of
reflection appears on a maximum fringe? (b) What would that point look like if the
film were 1500 nm thick?

(@) An irradiance maximum will occur when

5 = éﬁ('rﬂ — n28in29)1/2 * o
N Y

is an integral multiple of 27. This, in turn, will result for the smallest d when
92— m2sinza)/2 = L
™ (nf n? gin2 9;) 1

or d = —49(1.52—sinzso°)-uz = 100 nm

(b) If d were 1500 nm, we would have & = 15 =, which again would correspond to a maximum.

6.28. Figure 6-16 is an arrangement for *20
viewing a thin-film interference ‘

pattern at near-normal incidence. E_— N

Describe the shape of the resulting s =" Beam splitter

bands of light on 3, (which are
called Haidinger fringes).

Because these are fringes of equal
inclination, all pairs of rays at a given
angle to the normal will arrive at 2, with
the same value of §. The waves in each
such pair are mutually coherent, but the
various pairs arise from different source
points and so are incoherent., The result
is a large number of overlapping, identi-
cal, noninteracting contributions to I at
any point on 2, Figure 6-17 shows two
such pairs of rays reaching P, each with
the same 8. Of course, rays not in the
plane of 3y can enter the lens at a par- . o G i
ticular 4;. These will arrive with the same Black background
phase difference at some other point P’.

Thus if there is a bright spot at P there Fig. 6-16

] Extended
[| source

Planar thin film
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Fig. 6-17

will be an identical one at P’. In fact, if we rotate 2 about the central axis of the lens, the locus
of P ig a circular fringe. If L and =, compose the viewer’s eyeball, the pattern will be a series of
concentric circles centered on the lens and moving along with it as the observer moves.

Whenever § = 0, =27, 47, ..., a maximum appears, i.e. whenever
Ao
2nid cos 0, = 3 = M
where m =0,1,2,.... Thus a given circular fringe has a particular value of 4;, and therefore

of @;, as well as a specific order m.

Notice that the circular interference pattern appears on a plane normal to STS,, as in Fig. 6-3.

6.24. Compute the smallest thickness which a transparent film of index 1.455 may have if
it is to generate a minimum in reflected light under normal illumination at 500 nm
surrounded by air.

A minimum occurs for § equal to an odd multiple of =, and the smallest appropriate value
of d corresponds to 8 =7, Thus, with 6; = 0, .

_ 4nd _
§ = To—'nf -7 = 7
Ao 500 X 10—9
whence —2-1Tf = —'Ea—[s—s)— 171.8 nm

All of this means that such a fllm will be a very poor reflector of 500-nm light and therefore a good
transmitter at that wavelength.

6.25. Suppose that a thin transparent coating of index n; is layered on a glass substrate
of index 7, and the whole business is immersed in air of index n,. It can be shown
. that the reflection coefficients at the two interfaces are equal when
Ny = VNols
How can this be used to produce an antireflection coating, as for example, on a
camera lens? Degign a single-layer antireflection coating for glass in air at 500 nm.
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Consider the case where 7y < #; <n, Here there would be no relative phase shift for the two
waves since both are reflected externally (m; <n). Consequently, a film A;/4 thick (where A; = A¢/ny)
would introduce a phase shift of 180° in the wave that traverses it perpendicularly twice. Thus,
complete destructive interference results for the waves of that particular wavelength reflected at the
two surfaces. Bear in mind that since that wavelength is effectively not reflected at all it must be
transmitted quite efficiently.

In the above situation 7, =1, n, = 1.6 and
ny = VII5) = 1.225

Furthermore, since A; = Ao/n;,

>

M _ M
d—-4—4nf—-102nm

What we need, then, is a single layer 102 nm thick of a transparent material of index 1.226.

6.26. Envision a thin transparent film in

the form of a wedge, as in Fig. @'

6-18. Describe the resulting fringe

pattern, locating both maxima and - Beam splitter
minima, and find the corresponding : ,

film thickness and fringe separation.
Incidentally, these are known as
fringes of equal thickness.

e
7

The thickness at any point in the film,
d, is approximated by d = xa. Again the
reflection of the wave at the top of the
wedge is internal, while that at the bot-
tom is external (assuming »n; < n); therefore
there is a relative phase shift of » ra-
dians. Maxima in the irradiance occur
when these two disturbances leave the
wedge in phase, i.e. when

§ = 2mm = —dm x 7
Ao
where, under near-normal illumination Fig. 6-18

(0;~6,~0), coso, ~1. Hence

(m F '}))‘0 = 2"’fdm
Choosing the plus sign (we could otherwise replace m by m-+1), substituting d, = 2,a and
As = Ao/ny, we obtain
m+ %
Xy = o
The fringe separation Ax is then given by

Af

A

Az = Bmy1 T Im = 5o

The thickness of the film at the mth maximum is simply
_ 1\ 2o
I = (’” t3 > 2n

It is clear that the interference pattern is a series of alternately bright and dark straight bands
running parallel to the wedge’s apex edge.

6.27. Two sheets of flat plate glass 25 cm long are separated at one end by a spacer $ mm
thick, thereby forming a thin wedge-shaped air film. How many fringes per centi-
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meter will be observed under normal illumination with red light (Ao = 694.3 nm) from
a ruby laser?
We can determine « using x = 25 X102, d = 0.25 X10~3 and the fact that a = d/x. Thus

_ 025x10-8 _ o .
a = W = 10 rad

Making use of the formula (see Problem 6.26)

A N
Az ZI- - 2‘nfa
we get for the fringe separation
_ 6943 X 10-% _ e
Ax = 3(1)10-3 = 34715X10"¢m

The number of fringes per centimeter is (1/Ax)10—2 or 28.8.

A metal ring is dipped into a soap solution (7;=1.340) and held in a vertical plane so
that a wedge-shaped film forms under the influence of gravity. At near-normal illu-
mination with green light (Ao = 514.53 nm) from an argon laser, one can see 12 fringes
per centimeter. Determine the wedge angle of the soap film.

The number of fringes per cm is given by

10-2
el 12
and so Ax = 8.333 X 10~4m. Accordingly,
Ao 514.68 X 109
= = = .30 X 104
@ 2n; Ax 2(1.340)(8.333 x 10— %) 2.30X107% rad

(a) How does a spherical lens resting
on an optical flat produce interfer-
ence fringes? Describe the resulting
pattern. (b) Write an expression for
the fringe radii in terms of the radius
of curvature of the lens, assuming
near-normal illumination. (c) Show
that the radii of the dark bands are
proportional to the square roots of
the integers. (d) How does this pat-
tern differ from the Haidinger sys-
tem of Problem 6.237

(@) The setup in question is illustrated in
Fig. 6-19. Once again, only two reflect-
ed beams will be considered, although
multiple reflection does generate many
more faint contributing waves. The
two beams reflecting off the top and
bottom of the circular wedge interfere
constructively or destructively depend-
ing on the phase angle difference and,
hence, on the O.P.D. Because of the
circular symmetry of the film’s thick-
ness, the fringes in turn are sym-
metric about the central axis. These
fringes of equal thickness are the fa-
mous Newton’s rings. Fig. 6-19
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(b) The relationship between the radius x of any one fringe and the radius of curvature of the
lens R is simply
22 = R2—~ (R—d)2 = 2Rd — &2

For R > d this is expressible as 2 = 2Rd,

(¢) There is again a phase difference of » radians due to reflection and, as in Problem 6.26, maxima

occur when
(m + %)xo = Zndy

The mth bright ring therefore has a radius of

_ 1 Ao 1/2
Ly = [<m+§>ER]

Minima occur when § = (2m+1)z. Hence, since 6; =~ 0,

4z
= )‘dmnf Ty = @Cm+1)z
0
_ Ao
or 2d,, = m;t;

(d) As the order m increases, the radius of the fringe increases. This is just the opposite of what
happens in the Haidinger pattern, where the central fringe has the highest order.

6.30. A positive lens with a radius of curvature of 20 cm rests on an optical flat and is
illuminated normally with sodium D light, Ao = 589.29 nm. The gap between the two
surfaces is then filled with carbon tetrachloride (» =1.461). What is the ratio of the
radius of the 28rd dark band before introducing the liquid to the radius after intro-
ducing the liquid?

The radius of the mth dark fringe is, by Problem 6.29,

o 1/2
By = <m ;lf—R)

Thus if we subscript «,, so that it reads x,,, and x,, for air and liquid, respectively, and similarly .
for ny, ie. 1y, and ny, we can write
Zma m)\oR/nf,,)l/z

Tt moR/ns

nﬂ>1/2

N (ﬁ

and since 7y, =1, the ratio quite generally equals Vny regardless of the order m. The fringes
shrink in towards the center as n; increases.

Just out of curiosity let’s determine z53 with the carbon tetrachloride in place:

-9 1/2
tn = 23(589.219 x 110 )0.2] — 1.36 mm

- 6.31. Some dust separates the vertex of the lens from the optical flat in a Newton’s rings
setup. If that separation, A, is unknown, show that the radius of curvature of the
lens can still be determined from directly observable quantities.

Following the development of Problem 6.29(¢) dealing with the mth dark fringe, we now

require that
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Hence, with 2d,, = x2/R,
2 = (mM—28)R

Similarly, for the ¢th dark fringe,
x7 = (Oy—20)R

By subtracting these we arrive at
%2 — a7 = (m— ONR

which is independent of A. One need only count the orders and then measure the radii of any two
fringes to determine R via
(%3, — “?)’nf

B = Tm—on

6.32. Describe the Newton’s rings system seen in transmitted light as compared to the
reflected pattern. Assume near-normal illumination.

The transmitted and reflected patterns are complementary in that a dark band in one corre-
sponds to a bright band in the other. Where the surfaces are in contact and the film thickness goes
to zero, a minimum exists in reflected light and a maximum in transmitted light. The two inter-
fering waves in the case of reflection have fairly similar electric field amplitudes, yielding a well-
deflned fringe system of high visibility. Remember that each of these waves is reflected once at
nearly the same angle.

In contradistinction, one of the two interfering transmitted beams is about twenty times weaker
than the other, since it passes through the system after undergoing two reflections, while the
stronger wave is not reflected at all in its sojourn. Because most of the light incident on the fillm
passes through it the transmitted pattern has very low visibility, particularly at normal incidence.

6.33. Light having two constituent vacuum wavelengths of 650 nm and 520 nm shines at
near-normal incidence on a positive spherical lens which rests horizontally on an optical
flat. The radius of curvature of the lens is 85 cm and air pervades the gap between it
and the flat. If the mth dark band at 650 nm is coincident with the (m + 1)th dark
band at 520 nm, determine the band’s diameter.

We are given that z,, for A\, equals %, for A,, or,

myuR\V2 [C(m+1)ART)V2
which simplifies down to

mAy = (m+ 1)\, or mes50 = (m+ 1)620

from which m = 4. The radius of the fringe in question is then

_ ,:4(650x 10-9)(0.85) ]2

1 = 1.49 mm

and the diameter is 2.97 mm.

6.5 AMPLITUDE-SPLITTING INTERFEROMETERS

In the several thin-film arrangements examined thus far, the two beams were coincident
for most of the way from S to P. This present section treats amplitude-splitting interfero-
metric devices which, through the use of additional mirrors, separate the two beams so that
they may be manipulated individually prior to being recombined.

The Michelson interferometer (1881) of Fig. 6-20 is representative of this fairly large
group of devices and is at the same time one of the most important optical instruments,

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

\



CHAP. 6] INTERFERENCE AND COHERENCE 143

Fig. 6-20

certainly historically. As illustrated, light from a broad source strikes the beam splitter
and is amplitude-sheared into two waves. One wave reflects off mirror M,, passes through
the beam splitter B and on to the detector. The other wave reflects first off mirror M, and
then off the beam splitter and on toward the detector. The compensator plate is identical
in thickness and orientation to the beam splitter. Its function is to equalize the optical path
lengths when M, and M, are the same distance from B. In other words, each beam tra-
verses the same total thickness of glass as indicated in Fig. 6-21.

In effect, the region between M, and M1, s,
the image of M, in the beam splitter, acts '
as an air film much like those of Section 6.4. Tsz

Consequently, when M, and M, are pre-
cisely perpendicular, the enclosed air film
is planar and of thickness d. The pattern
consists of a series of concentric circular
fringes of equal inclination, as in Fig. 6-17.
We can imagine two virtual sources, which
are images of S, located on the central axis
through M; and M;. These generate circu-
lar fringes just as in Fig. 6-3. Further-
more, when M, and M; are close together
and inclined with respect to each other, the
contained air film is a thin wedge and the
parallel straight-line fringes of Fig. 6-18
result.

Keep in mind that a phase angle differ-
ence between the two waves is introduced
as a result of internal and external reflec- Fig. 6-21
tions at the beam splitter. The magnitude
of the phase shift depends on the nature of the interfaces. We shall assume the beam
splitter to be a sheet of glass, in which case the phase shift is » rad.
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SOLVED PROBLEMS

6.34. The mirrors in a Michelson interferometer are arranged so that by looking into the
beam splitter one sees a 3 cm by 3 em illuminated field corresponding to the area of
overlap of the view of the two mirrors, M, and M.. The field displays 24 vertical
bright fringes under 600 nm illumination. Compute the angle by which the planes
of M, and M, deviate from perpendicularity.

By Problem 6.26 the fringe spacing for a thin wedge can be written as Ax = A\;/2a. But from
the data we have

_ 3x10-2 _
Ax = o = 125 mm
This means that
A 600 X 10—¢
= — — 4 _ o
* 2 Ax 2(1.25 X 10-9) 24X 10~*rad 0.0138

6.35. One of the two mirrors in a Michelson interferometer, say M,, is generally movable.
Assume then that the device is set up to display circular fringes and M, is slowly
shifted so that M; approaches M., i.e. d is gradually decreased. The fringes sweep in
toward the center of the field and, in particular, suppose 850 bright bands pass by
when M, is displaced through 3.142 X 10~*m. Assuming quasi-monochromatic illu-
mination, determine the wavelength.

Going back to Problem 6.23 we can show, and logic would attest, that as the planar film in-
creages in thickness by an amount As/2, the order m increases by one. In other words, an increase
in O.P.D. of \; results from an increase in d of \;/2, since the beam traverses the film twice. Thus,
850 bright bands correspond to a motion of the mirror through a distance of Ad = 850()\;/2). Hence,

850\
2

Ad = = 3142X10~4m

and so A; = 739.3 nm.

6.36. Suppose that a Michelson interferometer is illuminated by a source emitting a doublet
of vacuum wavelengths, A, and A;. As one of the mirrors is moved, the fringes peri-
odically disappear and then reappear. If a displacement Ad of the mirror causes a
one-cycle variation in the visibility, write an expression for Ad in terms of AXA = A1 — As,
M and Aq.

The fringe visibility will be high when the bright bands of A, nearly overlie those of A, and,
of course, it will be poor when the bright bands of \; coincide with the dark fringes of A,. The lat-
ter situation obtains when the O.P.D. at once equals a whole number of wavelengths of A, and an
odd number of half-wavelengths of A,. Thus,

0.P.D. = 2d = m)\ = <m2 + %>>\2
is the condition for a minimum in visibility. Hence

2d 1 _ 2d
m = T me+ = = —
1 >‘l 2 2 )\2

and, subtracting, we can form 1 2dm

mg —m +35 =
2 AAg

where AN = Ay — ;. The integer my — m, increases by 1 as d goes to d + Ad, i.e. at the next occur-
rence of minimum visibility. We then have

3 2(d + Ad) Ax
mz—ml+§ = —(——>\l—>\2)-—
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Subtracting the last two equations gives

_ 2adax MM
1= =55 or Ad =g

6.37. A thin transparent sheet of index n and thickness L is inserted perpendicular to the
beam axis in one arm of a Michelson interferometer. If the plate is withdrawn,
determine the distance through which the mirror in that arm must be moved in
order to duplicate the fringes observed prior to removal.

By inserting the sheet we change the optical path length in that local region from 1L for air
to =L, and so the change in the O.P.D. introduced for two traversals of the plate is just 2(n —1)L.
If the mirror’s motion, Ad, is to compensate for this shift it must introduce an identical 0.P.D = 2 Ad.
Therefore,
2ad = 2(n—1)L or Ad = (m—1)L

6.38. A thin sheet of fluorite (CaF:) of index 1.434 is inserted normally in one arm of a
Michelson interferometer. At Xo = 589 nm, 35 fringes are seen to be displaced. What
is the thickness of the sheet?

As we found in Problem 6.37, Ad = (n—1)L, and, in this case, 2Ad = 35\;. Accordingly,

Ao _
85 = (n—1L
_ 35N 35(580 X109 _ —s
or L = Tm—1) - 20434i-1) 23.75 X106 m

6.39. Looking into a Michelson interferometer one sees a dark central dise surrounded by
concentric bright and dark rings. One arm of the device is 2 em longer than the
other and Ao =500 nm. Determine (a) the order of the central disc, (b) the order
of the sixth dark ring.

(a) As in Section 6.4 we find that for fringes of equal inclination with a phase shift from reflections
of = radians
47d cos 9

8:_—>\0_+”

The minima correspond to those angles ¢,, which make 8 = 2m <+ 1)7; i.e.
2d co8 6,, = MAg

In this formula m is the order of the dark fringe that subtends the half angle ¢,,. This may
or may not be the same as the fringe’s counting order. To distinguish the two we shall write m;
for the order of the dark fringe whose counting order is j. Thus, the central disc has order m,
and Omy = 0, whereupon the above formula simplifies to

2d = mg)y
od _ 22X10-%) _
or N _ B00x10-® . B80,000

(b) The pth dark ring (not counting the zeroth) has order m, = my—p, since each consecutive
minimum means an O.P.D. decreased by one wavelength. Specifically this tells us that the
order of the sixth ring, mg, is

mg = my—6 = 79,994

6.40. The Jamin interferometer (1856), as illustrated in Fig. 6-22, consists of two identical
thick (~2.5cm) planar glass plates, opaquely silvered on one side. Illumination is
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Fig. 6-22

from a broad source and is incident at about 45°. (a) Discuss the patfern resulting
when the plates are perfectly parallel to each other. Are the interfering beams
nearly equal or widely different in amplitude? (b) Describe the fringes that arise

when the plates are tilted, in effect forming a narrow wedge whose apex edge is
parallel to the dashed line o.

(a) With the two plates set parallel, consider the incident ray arriving at A. The wave is amplitude-
split with the weaker portion reflected off to point . But the reflection at D is also weak and
the two beams, having followed the routes SAFED and SABCD respectively, emerge with equal
amplitudes. They are in phase, having undergone equivalent paths and reflections, and overlap

and interfere constructively. This obtains for all rays; consequently, the field of view is uni-
“formly bright.

(b) When the plates are tilted to form a wedge, we can consider Fig. 6-22 as being a cross-sectional
view in any horizontal plane. All rays parallel to SA, in any and all such horizontal planes,
will arrive at the same central point, there to form a bright spot on the image plane of the lens.
For any other horizontal ray entering at some other angle, constructive interference again
results, and all such rays in all horizontal planes arrive at a string of points forming a hori-
zontal bright line — the zeroth-order maximum. For rays not in horizontal planes, the two
sheared segments undergo a relative phase shift. The final result is a series of horizontal,
equally-spaced, bright and dark fringes.

-

3
Telescope

Fig. 6-23
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6.41. Suppose that two identical transparent chambers are introduced within a Jamin inter-
ferometer, as in Fig. 6-28. The chambers, bounded by optical plates, have inner
lengths of 23 em and both contain argon with a refractive index of 1.000281. Under
sodium illumination (Ao = 589 nm) a fringe system appears and as the gas is pumped
out of one chamber the pattern changes. How many bright fringes will sweep by a
cross hair in the telescope?

One fringe will move past a fixed reference line whenever the O.P.D. changes by one wave-
length. For a chamber of length L the change in 0.P.D, is

AA = (m—1)L
" and the number of fringes N which this corresponds to is
_ (m—=1L _ (0.281 x10—-3)(0.23) _
N =757 7 T omeaxies o 1097

6.42. The Twyman-Green interferometer (1916) of Fig. 6-24 has become an extremely valu-
able tool in the testing of optical elements. The game is played by replacing mirror
M, with the element being examined and an additional mirror, such that the combina-
tion, if perfect, would be equivalent to Ma. With quasi-monochromatic light describe
how the interferometer works and how it differs from Michelson’s device. Show how
it can be used to test a lens, a prism or an optical flat.

Fig. 6-24

The distinguishing characteristic of the Twyman-Green system is the use of collimated light.
When the Michelson interferometer is set up with a planar air film between M; and M, in Fig. 6-21,
page 143, a concentric ring pattern appears because light from the broad source contributes at all
angles via the cos¢ dependence. Contrarily, the collimated light of the Twyman-Green system
generates a uniformly illuminated field under similar conditions (¢ = 0).

Suppose now that M, is replaced by a test lens L, and a perfect spherical mirror My, with the
latter centered on the focal point of the former as shown in Fig. 6-25(a). Plane waves enter the
lens, reflect off the mirror, and emerge as plane waves, provided the lens under test is perfect.
Any deviation from planar wavefronts is indicative of seme isnperfection in the element and is quite
discernable in the fringe pattern,

A prism can be studied in the manner indicated in Fig. 6-25(3), and an optical flat need only be
ingerted in either arm in order for its imperfections to be observable.
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Fig. 6-25

6.6 COHERENCE

The concept of a monochromatic point source is a mathematical idealization. The very
best source emits a finite range of wavelengths, albeit a narrow one. Indeed, as will be
seen in Chapter 8, the mere fact that an emitter has not been turned on forever means that
its signal must be polychromatic. Equivalently, we can picture the emission as composed
of finite wave trains rather than an infinitely long, single-frequency sinusoid. Figure 6-26(b)
is a representation of the field of a real wave. The time interval over which the phase is
fairly constant is the coherence time At, a concept already introduced. The corresponding
spatial interval A¢=cAt is known as the coherence length. Notice that for a monochro-
matic wave At is infinite but Av is zero. While At decreases the frequency bandwidth Av
increases, and we can write as an order of magnitude relationship:

11
—t0 G \E D +e
L i 4
vo
monochromatic frequency spectrum
wave
()
\E
\ | .
- P
At frequency spectrum

random finite sinusoids

(®)

Fig. 6-26
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Ay ~ _A—t
When the frequency spectrum broadens, the length of the wave train in space decreases, as
does the coherence time, and one speaks of this as a decrease in longitudinal or temporal
coherence.

Imagine that we have a point source of quasi-mono-
chromatic light S in Fig. 6-27. The electric fields at P,
and P, will evidently be related when a¢> PP, i.e.
when a single wave train easily spans the gap between
the points. In the same way, it is clear that the two fields
must be totally unrelated when P,P;> A¢, since different
independent wave irains would be at P, and P; at any
instant. For a given source the degree to which the
time-varying fields are correlated is indicative of the
degree of temporal coherence.

With a perfect point source the fields at P, and Ps
would be identical, i.e. totally correlated. But as the
source is extended this correlation diminishes and one
speaks of a decrease in lateral spatial coherence. Fig. 6-27

Quite generally, the fringe visibility < in an interferometric system (see Problem 6.6)
is a measure of the degree of coherence. Accordingly, by moving the mirror in a Michelson
interferometer we can examine temporal coherence, and by varying the hole separation in
Young’s experiment we can measure spatial coherence. For example, consider P, and P;s
in Fig. 6-27 to correspond to the two pinholes S: and S: in Young’s setup of Fig. 6-6,
page 129. Since any real source would have a finite extent, suppose S is disc-shaped with
a diameter D and at a distance R from the aperture plane it subtends an angle ¢. By vary-
ing the separation a between S: and S;, it can be shown that the fringes will disappear (this
is the first zero value of <) when a = a,, where

ay = 1.22 ﬂ
[

o being the mean wavelength of the quasi-monochromatic source. And “good coherence”
with a visibility of 0.88 or better results when

@ = 0.32%
Actualljr the visibility drops from its maximum peak value to zero and then continues to
oscillate between very small, ever diminishing secondary maxima and zero.
The irradiance distribution for Young’s experiment can be shown to be
I =1,+1,+2VII, Re¥,(r)

very much like the result of Section 6.2. Here ¥ ,(r) is the complex degree of coherence,
whose magnitude specifies the coherence at P as follows:

¥l =1 coherent limit
[l = O incoherent limit
0<|7,<1 partial coherence

The variable » is the difference in time between S;P/¢ and S:P/c. The irradiance can be
recast in a form even more like that of Section 6.2:
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I = I, + I, + 211, |%,()| cos 8()

Note that in that earlier discussion we assumed S to be a monochromatic point source,
which implies the coherent limit, |¥,,(s)] = 1.

SOLVED PROBLEMS

643. Determine the frequency bandwidth of white light. Compute the associated coher-
ence length and coherence time.

According to Table 2-1, page 28, white light ranges from 384 THz to 769 THz, so the frequency
bandwidth is

Ay = 769X 1012 — 384 X 1012 = 385X 1012 Hz
The relationship between A» and At,
1
Ar At

then indicates a coherence time of At = 2.597 X 10-15g and a coherence length cAt = 779 nm.
Observe that the wave trains of white light are roughly one wavelength long.

6.44. The spectral purity of a source can be appreciated via the quantity (Av)/7, the frequency
stability. For example, a Hg'®® low-pressure isotope lamp (Ao = 546.078 nm) has a
bandwidth of Av = 1000 MHz. Compute the coherence length and coherence time of
the light, as well as the frequency stability.

The coherence time is At = 1/A» = 10—9s. The coherence length, A¢ = cAt, equals 29.9 ecm.
The mean wavelength was provided; hence, since A\ is small,

e _ 29979X108  _ 14
7~ X T Bleosxio—s . OBX10WHz
Finally, the frequency stability is
Ay 109 — -
> = EExiow -~ 182X10

or about 2 parts per million.

6.45. Derive an expression for the coherence length of a wave in terms of the linewidth
A)o corresponding to a frequency bandwidth of Av.

The speed of the wave in vacuum is ¢ = »A,. Hence, Ay = ¢/» and differentiation yields

2
_cAy _ Ao Ay

Ako = "’?‘ = -

4

The minus sign merely shows that the change in Av is opposite to the change in A\,. Dropping the
sign and using Ar ~ 1/A%,

A3
Ao ~ Tt
or, inasmuch as A¢ = cA¢, A2
Al ~ 2
Ay

6.46. A Michelson interferometer is illuminated by red cadmium light with a mean wave-
length of 643.847 nm and a linewidth of 0.0018 nm. The initial setting is for zero

1
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O.P.D,, i.e. d=0. One mirror is then slowly moved until the fringes disappear —
by how much must it be ghifted? How many wavelengths does this correspond to?

The needed mirror displacement d is related to the coherence length and thence to the line-
width. Consequently, we first compute A¢ from A\, = 0.0013 nm:

a ~ N (643847 x10-9p

AN T 0.0013 X 109 = 8L89cm

Once the 0.P.D., which equals 2d, exceeds A¢ the fringes must vanish; hence

d ~ 1594 ecm
This is equivalent to 24.76 X 10* waves.

6.47. Suppose the experiment described in Problem 6.46 were repeated with light
(Ao = 632.8 nm) from a He-Ne laser having a frequency stability of 2 parts per 10°,
What mirror displacement would now be needed to cause the fringes to vanish?

We are given that

A?y = l—gﬁ or Ay = 2X10—105
by
_ - ¢ _ 0
Hence Al = cAt IX10-105 — ZX10-1

Substituting the value of X,, we obtain A¢~ 3164 m. Consequently, 2d = A¢ and d ~ 1582 m.
(That’s a long interferometer!)

6.48. Suppose that a quasimonochromatic source S (X = 589.83 nm) consisting of a dis-
charge lamp behind a 0.1-mm diameter circular hole in a screen illuminates Young’s
experiment. With a distance of 2 m between S and the plane of the two apertures,
what is the separation ao of the apertures at which the fringes first vanish?

The visibility arising from a circular source becomes zero when

= 12220
%o = LAY

where ¢ is the angle subtended by the extended source. This angle is approximately equal to the
ratio of the source diameter to its distance from 3, i.e.

-3
¢ = %: 041—3(2—10-— = 5x10-5rad
_ 589.3 X 109 _
Hence, ay = 1.22(-———-—-—5x10_5 > = 14.38 mm

Note that if 3, is moved farther from S, i.e. R is increased, @, increases. This implies that if
you go far enough from even the largest source (e.g. a star) ag will be a measurable quantity.

6.49. If the sun’s diameter subtends an angle of 3° at the earth’s surface, determine the
area of coherence, i.e. the circular area into which one could introduce a set of aper-
tures and obtain good clear fringes. Assume a mean wavelength of 550 nm.

The area of “good coherence” A, is evidently expressible as

2 0.327%,\2
aQ 0
4 = "(5> - "( 2 >
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A, "[o .32(550 X 10—

)
= -10 ;2
2(0.0087) :l 3.2x10 m

6.50. Figure 6-28 depicts a quasimonochromatic line source S illuminating Young’s ap-
paratus. Write an expression for ao, the aperture separation which first results in
U =0 (i.e. for which the fringes first vanish).

Fig. 6-28

Let us examine the waves emanating from the independent points S; and S, at either end of S.
The cosine fringes arising independently from S, and S, are centered at 6, and 6,5, on 2, respec-
tively. These angles are approximately given by 6,3 = L/2d and 6,; = —L/2d, provided that d > L.
The fringe system first disappears when the first minimum of one pattern overlies the central maxi-
mum of the other. As we saw in Fig. 6-7, the first pair of minima occur at distances from the

center of N Aot
v 2a

or since y/8 = 0, they are found for S, at angles
Ao
b1 = E

The separation between fringes is very large when « is very small and as @ increases, the first mini-
mum of S, moves toward the zeroth maximum of S, until they meet when @ = a;, whereupon

Ao
02 = 651 + 2a
L _ L Ag Aod
Henee, 2d = "2dTZa O % T 3L

6.51. Compose an expression giving the visibility of Young’s experiment in terms of the
degree of coherence [,,|, i.e. the magnitude of the complex degree of coherence ¥,,.
(The little squiggle on top of the y,, is just to remind us that it’s complex.)

The visibility
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Imax -1 min

1 max + Imin

can be evaluated by using
1 = L + I + 2V, | %15(r)] cos 8(r)
Thus Luww = I + I + 2VL1, |27
ILyw = L+ I, — 2VLI | i)

and v = VLI | Tig(r)}

- 2(I, + 1)
Observe that when I, =I,, we have U = |¥s], so that the visibility of the fringes is a direct
measgure of the coherence of the waves.

Supplementary Problems

INTERFERENCE OF TWO WAVES

652, Two point sources, S; and S,, emitting 3-m radiowaves in phase are separated by 3 m. How far must one
move away directly in front of either source along a perpendicular to S,S; before encountering a minimum
in the irradiance? @ Ans. 2.25m

6.53. Two equal-amplitude point sources radiating P-states at the same wavelength are locked in phase.
Under what circumstances will the irradiance measured on a distant screen equal the sum of the
constituent irradiances?

Ans. When Ej *Eyp =0, ie. when the two planes of vibration are normal.

654. Two point sources of microwaves, each having a frequency of 10% Hz, are separated by 60 em and
transmit in phase. Describe the radiation pattern.

Ans. Lobes occur at o = 0, 30°, 90°, 150°, 180°, 210°, 270° and 330° measured from the normal
to the line of centers.

6.55. Show that even though a fringe pattern exists for two coherent point sources of equal wavelength,
energy is conserved. In other words, verify that when the source separation a > )\, I,, averaged
over a large region of space is zero. How do things change when a < ),?

Ans. cos$ spatially averages to zero when a > \;. When a <\, the two sources behave much
like a single source of double the strength of either one.

656. Write an expression for the radiation pattern of two equal-strength point sources, i.e. the irradiance
as a function of ¢, if the sources are separated by a distance a, have the same frequency, and are
—  initially out of phase (e; — &5 7 0).

Ans. I(6) = 4l cos? <La sing + 2 82)
™ 2

657. What would happen to the forward lobe (¢ = 0) of Problem 6.54 if a relative phase difference of 30°
were introduced between the two sources?

Ans, It would rotate through 2°23’. This, incidentally, is a means of steering an antenna array
without actually rotating it.
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6.58. What phase angle difference should be introduced between S; and S, of Problem 6.8 in order to
rotate the lobe pattern by 20°?

Ans. e — g — 61.56°

WAVEFRONT-SPLITTING INTERFEROMETERS

6.59. If B8 is the angular separation of the sources S; and S, as seen from a point P on the plane of
observation in Young’s experiment, show that the fringe separation is Ay = )\¢/8.

6.60. Two narrow parallel slits illuminated by yellow helium light (A, = 5875.618 A; 1A =10-1 m) are
found to produce fringes with a separation of 0.50 mm on a screen 2.25 m away. What is the dis-
tance between the slits?

Ans. a = 2,64 mm

6.61. Write an expression for the angular separation (£S;P,S;) of the two virtual sources as seen from
P in Fig. 6-10, page 1382, in terms of R, d, and «.

Ans. (L8:P,S;) = 2Ra/(R+ d)

6.62. A Fresnel double mirror having an angle o = 0.667° has its line of intersection 0.1 m from the
source and 1 m from the plane of observation. For light of wavelength 600 nm locate the seventh
bright fringe with respect to the central axis.

Ans. y; = 1.98 mm

6.63. A point source of wavelength 500 nm is one meter away from a Fresnel biprism which, in turn, is
5 meters from an observing screen. If the prism index is 1.5 and the resulting fringe separation
is 0.5 mm, determine the prism angle.

Ans. a = 0.343°

6.64. Obtain an expression for the fringe separation generated by a Fresnel biprism of index n, im-
mersed in a liquid of index n,. Begin with the fact that

ng sin 4(8,, + a)
n sin 1o

and assume monochromatic point source illumination.

nR + d)N,

Ans. 8% = oR(m,—mda

6.65. Suppose that a thin transparent plate of index = is inserted in the direct beam of a Lloyd’s mirror
setup. (a) Describe what would happen to the central dark band. (b) How might you actually
locate this central fringe?

Ans. (a) An O.P.D. of zero corresponds to the central band and it would move upward by
(n— 1)d/\, fringes, where d is the plate thickness. (b) Use white light: the central fringe
will show no coloration.

6.66. A line source of quasi-monochromatic light (A\y == 500 nm) generates a fringe system on a screen 2 m
away when the source is just above and parallel to a polished glass plate. If the bright fringes
have a peak-to-peak separation of 0.667 mm, how high is the source above the plate?

Ans. a/2 = 0.75 mm

6.67. Figure 6-29 shows a point source in front of a convex lens which has been cut in half and sepa-
rated slightly (Billet's split lens). Discuss how it produces interference fringes.
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Fig. 6-29

Ans. The two real images of S serve as coherent in-phase emitters and the whole region where
the beams overlap is occupied by fringes.

AMPLITUDE SPLITTING BY THIN FILMS

6.68. A ray of light of wavelength 500 nm is incident at 30° on a film of thickness 0.002 mm and index 1.5
immersed in air. Determine the phase angle difference for the two reflected rays.

Ans, 8§ — 2268 r = 7z, which is equivalent to 1.63 =

6.69. Show that for equal-inclination fringes maximum irradiance corresponds to

As

decoso, = (2m+ 1)2—
and minimum irradiance to \
dcossy = 2m 71!

where m =0,1,2,....

6.70. A parallel glass plate of index 1.5, 2.5 mm thick, generates a concentric ring system of fringes
under normal illumination at a vacuum wavelength of 750 nm. Determine the order of the central
fringe. Is it & maximum, minimum or neither?

Ans. m = 10,000; a minimum (d =2mx/4)

6.71. Design a single-layer antireflection coating for a Fabulite (SrTiOg) plate (n, = 2.409) in air at
A¢ = 589 nm. Assume normal incidence.

Ans. ny;=1.562, d = 94.88 nm

6.72. Magnesium fluoride (n; = 1.38) is a common material used for single-layer antireflection coatings on
glass. How thick should the thinnest coating be for light of vacuum wavelength 589 nm assuming
near-normal incidence?

Ans. d = 106.7 nm

6.73. A thin wedge-shaped film of methyl alecohol (n; = 1.3290) is formed between two flat plates of glass.
Yellow sodium light of vacuum wavelength 589 nm falls nearly normally on the film, generating
fringes separated by 0.2 mm. Determine the wedge angle in degrees.

Ans. o = 0.0635°

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



156 INTERFER\ENCE AND COHERENCE [CHAP. 6

6.74. How thick is the alcohol film of Problem 6.73 at the location of the fourth maximum counting from
the apex side of the wedge? How far from the apex is it?

Ans., dg="7.76X10""m, 3= 0.7 mm. (The apex marks the middle of a dark fringe.)

6.75. Imagine that you have a Newton’s rings arrangement and a bottle of unknown clear liquid. Measure
the diameter of any ring, for example the fourth bright one. Now pour the liquid into the gap and
remeasure the diameter. If it goes from 2.52 cm to 2.21 em, calculate the liquid’s index.

Ans. 1.30

6.76. A Newton’s rings apparatus under tjuasi—monochromatic, normal illumination at 550 nm displays a
bright central fringe. If the radius of the fifth dark band is 1.414 em and that of the eighty-fifth
dark band is 1.871 em, determine the radius of curvature of the convex lens.

Ans. R = 341m

6.77. Suppose the optical flat in Newton’s apparatus is replaced by a concave spherical surface with a
radius of curvature R,. If a positive lens with a radius of curvature R, is placed in contact with it
(Ry > R,), write an expression for the radius of the mth dark fringe, assuming normally incident,
quasi-monochromatic illumination.

Ans. x, = [Rlemkf/(Rz - Rl)] 1/2

AMPLITUDE-SPLITTING INTERFEROMETERS
6.78. . A Michelson interferometer displays fringes of equal inclination for which
2d cos 8,, = m)\g

describes a dark band of order m whose radius subtends an angle ¢,,. Prove that as the two arm
lengths approach each other, a given fringe will collapse into the center.

6.79. A Michelson interferometer is illuminated by the sodium doublet with vacuum wavelengths of
5895.923 A and 5889.953 A. One mirror is moved continuously and the fringe pattern fades in and
out periodically. Compute the mirror travel corresponding to a shift in visibility from maximum
to minimum.

Ans. Ad/2 = 0.1454 mm

6.80. By how much must one of the mirrors in 8 Michelson interferometer be moved if a photocell detector
is to count off 10,000 bright bands as they sweep by? The light source is the well-investigated
orange-red line of the krypton 86 isotope at a vacuum wavelength of 605.7802105 nm.

Ans, Ad = 3.0289 mm

6.81. A Michelson interferometer is adjusted to display a circular pattern. Assuming the central or
zeroth fringe to be a minimum, show that the half angle subtended by the pth dark fringe, i.e.
Om,,» cAD be computed from the expression

2d(1 — cos o,,,p) = PAg
Arrive at a small-angle approximation of o,,,p.

Ans. 6, ~ (Pr/d)2

6.82. Compute the half angle subtended by the 15th dark ring surrounding a dark central disc as viewed
in a Michelson interferometer. The two mirror-supporting arms differ in length by 1 em and
Ao = 400 nm.

Ans. 1°24/
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6.83.

6.84.
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A Jamin interferometer arranged to ex-
amine gases has a test chamber 85 ¢cm long M, B,
in each arm. One of these cells is left evac-

uated while the other is gradually filled >

with the sample gas, If, with Ay = 650 nm,
75 bright fringes pass a given point on the
field of view as the cell is filled, what is the
refractive index of the gas? A

Ans. = = 1.000139

The Mack-Zehnder interferometer (1891)
pictured in Fig. 6-30 is yet another ampli-
tude-splitting device. It is formed of two B, M,
mirrors and two beam splitters. How does
it work? Is it similar to any previously
examined system? To what purpose might

it be applied? Fig. 6-30

Ans. M, is tilted slightly with respect to M, B; and B, to cause a wedge pattern. The setup
is very much like the Jamin interferometer. It is quite useful for determining large-volume
nonuniformities, as for example in a wind tunnel.

COHERENCE

6.85.

6.86.

6.87.

STUDENTS-HUB.com

In 1963 Jaseija, Javan and Townes attained a short-term frequency stability of roughly 8 parts per
104 with a He-Ne gas laser at Ay = 1158 nm. Compute the coherence time and coherence length.

Ans, At = 48X10-28, Al = 144X108m

Roughly what is the linewidth of a hypothetical source if it has an uninterrupted transition time of
10-8 g (i.e. assume At = 10-8 g)? Compute the coherence length as well. The vacuum wavelength
equals 650 nm.

Ans, ANy = 1.41X10-13m, A¢ = 299m

Red light (A; = 6560 nm) emerging from an ordinary fllter is comprised of wave trains about 501,
in length. What is the linewidth, A\, passed by the filter? ‘Determine the maximum range over
which the mirror in a Michelson interferometer can be moved before the fringes in this case become
unobservable,

A)xg = 13 nm, 0.016256 mm

’}’K‘A(‘l

Ans.,

S,

P
ny
3 & P
M,
/ 5

Fig. 6-31
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688. Show that the inverse of the frequency stability of a source is of the order of magnitude of the
number of wavelengths in an emitted wave train.

6.89. A mythical optical filter has a passband of only 1.5 nm centered at 5560 nm. With white light inci-

dent, compute the coherence length of the emerging beam and the number of wavelengths in the
wave train.

Ans. Al = 202X10-4m, Al/A, = 366.7

6.90. Figure 6-31, page 157, shows a device known as a Michelson stellar interferometer. The mirrors
M, and M, are movable, thereby varying h. The apparatus is directed toward a star and k is ad-
justed until at some value k, the fringes vanish. When Michelson did this for the star Betelgeuse
he found h, to be 121 inches at Ay = 570 nm. What is the angular diameter of the star?

Ans. ¢ = 2.26X10-7rad = 1.296 X 10~5 deg

691. V. P. Chebotayev reported (1978) that the frequency of a methane-stabilized He-Ne laser had been
maintained to 6 parts in 1016 for a duration of 100 seconds. Assuming the same wavelength as in
Problem 6.85, what progress occurred in extending the coherence time during the ten-year period?

Ans. At(1973) = 6.4 8, At(1963) = 48X 1025
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Chapter 7

Diffraction

7.1 INTRODUCTION

The essential feature of diffraction is a deviation from rectilinear propagation arising
when a wave is obstructed in some way. Roughly speaking, the wave will bend around an
obstacle, thereby forming fringe patterns in what might otherwise be assumed to be the
region of uniform geometrical shadow. There is little or no real distinetion between this
phenomenon and the phenomenon of interference; both are the product of the superposi-
tion of several wavelets.

The simplest technique for analyzing diffraction problems, and the one we shall adopt,
is based on the Huygens-Fresnel principle (see Section 5.8), which we restate as follows:
Every point on a wavefront serves as a source of spherical secondary wavelets of the same
frequency as the primary wave. The optical field at any point beyond an obstruction is the
superposition of all such wavelets reaching that point. This principle can be mathemati-
cally obtained from the differential wave equation.

Envision an aperture in an opaque screen being illuminated by normally incident plane
waves from a He-Ne laser and suppose that the resulting shadow pattern is examined on
a piece of white paper. Quite near the screen a bright spot matching the configuration of
the aperture will appear on the paper. Moving it farther away will cause a fine fringe
pattern surrounding the edges of the spot to become evident. With the paper still farther
from the aperture, an extensive system of fringes evolves which is roughly restricted to the
geometrical projection of the hole. The pattern
continues to vary and spread out as the observing
screen moves away from the aperture. This is
spoken of as Fresnel or near-field diffraction.
Ultimately the irradiance distribution will meta-
morphose into a symmetric, vastly extended fringe
system bearing practically no resemblance to the
aperture. Beyond a certain distance any pattern
changes will become imperceptible and, except for
a continuing increase in size, the fringe system
will appear unaltered. This is Fraunhofer or
far-field diffraction and, being a limiting case, is
somewhat simpler to deal with mathematically
than is near-field diffraction.

72 RADIATION FROM A \
COHERENT LINE SOURCE

Consider an array of N coherent identical
oscillators, as in Fig. 7-1. Assume that the plane
of observation is so far away that the rays meet-
ing on it at some point P are essentially parallel.
All the waves haye nearly the same amplitude
at P, so the resultant field is the real part of Fig. 7-1

159
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Er = BEo(r)ein—ov + By(r)eitn—ot 4 ... 4 Eo(r)eikrn—on

= Eo(r)e%te®n[l + ek 4 gilra=rd 4 ... 4 glklry—r]

From the figure we see that the phase differences are given by & = kasiné = k(r:—m),
28 = k(rs—r1), etec. Hence,

Ep = Ey(r)e~“ten[l + (e¥) + (e%)? + (¢¥)® + - - - + (e¥)VN ]
But the geometric series in brackets is known to equal

sin (N§/2)

ei(N—- 1)6/2 [
sin (8/2)

the use of which leads to

= —tat gilkt, + (N—1)8/2] sin (N§/2)
Epr = Ey(r)e ‘e [__—sin o)
One further simplification is possible if we define R as the distance from the center of the

array to P: 1
R = -2-(N—1)asin0 +n

and that yields
sin (N8/2)

Ep = Eyr)eor-on [_——_-sin a5

This is a wave from the center of the line of emitters whose amplitude is modulated by the
bracketed function of 9. The corresponding irradiance, which is proportional to EE*/2,
is just

sin2 (N8/2)

I'= Lgp (372)

We can think of this situation as relating to a linear array of antennas either transmitting
or receiving. Practically, we shall make extensive use of this result when we examine dif-
fraction at a narrow slit.

Suppose now that we let N become exceed-
ingly large and the separation between neigh-
boring point sources vanishingly small. With
&o as the individual source strength, each emit-
ted wave is expressible as

E = -iisin (ot — Fr)

A segment of the array, Ay, as shown in Fig.
7-2, will contain Ay; (N/D) emitters and there
are assumed to be M such segments. Then the
ith segment contributes a field at P of

E; = ({Yj)é%)% sin (mt - k’l‘g)

If we let N approach infinity and & approach
zero, we can define a source strength per unit
length as

1
& = D lim (&N) Fig. 7-2
Nero
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whereupon the total field at P becomes
Mg
E, = Y —=sin (ot —kr:)ay:
i=1 Ti
For a continuous line source Ay; is infinitesimal, M goes to infinity and
*P’2 gin (ot — kr)
= Sllet = AY)
E, = & .f—n/z r dy
in which 7 is a function of y.

We now have descriptions of linear coherent arrays which are either constituted of a
finite number of discrete emitters or are continuous in nature.

SOLVED PROBLEMS

7.1. (a) Write an expression for the irradiance as an explicit function of # very far from
a line source consisting of N identical emitters. (b) For what angles 6, will maxima
appear? (c) Compute Imax in terms of the irradiance of a single emitter Io.

(a) Since & = ka sin s,
sin? (N§/2) _ sin? [(Nka/2) sin 6]
sin2 (8/2) ~  sin2[(ka/2) sin ]

I = Io

() The pattern consists of strong principal maxima which are separated by series of weak sub-
sidiary maxima. The principal peaks occur in directions for which the waves in Fig. 7-1 are
all in phase. In other words, & = 2mr where m = 0,*1,*2,etc. Knowing that § = ka sin 4,
and of course k = 27/\, maxima must occur at angular directions 4,, satisfying

a sing,, = mx

(¢) To find I, or equivalently I(6,) we must evaluate

sin (N8/2)
sin (8/2)
when & = 2mr. From L’Hospital’s rule this ratio is equal to N for these values of §, and
consequently
I = N3

This is not surprising, for the waves are all in phase at these orientations and the resultant
amplitude must then be NE|.

7.2. Atoms are separated from each other by roughly 1 A, i.e. 10~ m, and radiate in the
visible at around 5000 A. What can be expected of a line source of this sort, insofar
as I(9) is concerned? How is this result related to specular reflection?

By Problem 7.1, the equation
a sing,, = mx

specifies the angular orientations of the principal maxima. For visible atomic radiation A is five
thousand times greater than a. Moreover, sing,, =1, which means that

a sin g, < mx

for all m other than m = 0. In other words, there is only the possibility of a zeroth-order principal
maximum (at 6, = 0 and =) whenever A > a.

This explains why the angle of incidence equals the angle of reflection. A wave arriving at an
interface at ¢; ¥ 0 stimulates one surface atom after the next as it sweeps by, with the effect that
each atomic emitter lags the preceding one by a fixed phase. This shifts the reradiated wave, i.e.
the central lobe, by an angle ¢, away from the normal to the line source, where, of course, ¢; = 6,.
(See Problem 7.57.)
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73. (a) Locate the zeros of irradiance for a coherent linear array of N emitters. (b) For
the case of N = 20, explain the result of (a¢) from the standpoint of how the individ-
ual waves interact, assuming a distant point of observation.

(e) Fixing the orientations of the minima is easily done from the relation

sin2 (Ns/2)
0 "gin? (5/2)
Evidently, sin (N8/2) =0 whenever N§/2 = g, 27, *37, etc. Another way to say this is
that the minima obtain when

I

(N/2)ka sin 8, = m'z

where m’ = =*1, +2, *+3, and so on, omitting integer multiples of N which would correspond to
the principal maxima.
() For the first minimum, m’ = =1 and
10ka sin 8, = =*rx
But from Fig. 7-1 we can see that 10ka sin 9, is precisely the difference in phase between the
1st and 11th waves. Consequently these two disturbances, being out of phase by = rad at P,
must cancel each other. Moreover, the 2nd and 12th waves also differ by =, as do the 3rd and

13th, etc., all the way down to the 10th and 20th. Obviously each such pair contributes nothing
and I (01) =0.

Similarly, the second minimum on either side of ¢ = 0 occurs when m' = *2 and
bka sin g, = =r

Here the 1st and 6th waves cancel, as do the 11th and 16th. Thus waves 1—5 cancel 6-10,
and 11-15 cancel 16-—20.

Notice that the process would not have been nearly so obvious if N were an odd integer.

74. Assuming that the separation a between each of four identical emitters in a coherent
line source is greater than A, make a rough plot of 7(9). Compare this with an array

of eight equally spaced sources. In both cases we require that the plane of observa-
tion be very far away.

The locations of the principal maxima are giw;'en by
a sin §,, = m\
quite independently of N. The zeros of irradiance are determined by way of
Na sing,,, = m/\
as discussed in Problem 7.3.

Thus, for N = 4, principal maxima correspond to (¢/\) sin ¢ equal to 0, =1, *2, etc., while minima
occur where (a/}) sin ¢ equals *1/4, *+1/2, +3/4, +5/4, etc. Between any two consecutive irradiance
zeros there must be a maximum. Figure 7-3 shows the pattern (with little concern for the heights
of the subsidiary maxima). When N = 8 the positions of the main maxima are unchanged. There
are again N —1 minima between pairs of major peaks, where (a/)\) sin ¢ equals *1/8, +1/4, +3/8,
+1/2, +5/8, +8/4, +1/8, +9/8, ete.

75. Make a rough polar sketch of the radiation pattern at a great distance from four
coherent emitters spaced a = A/2 apart. Compare your results with Fig. 6-5,
page 128.

For N =4, a =)/2, we have
8§ = kasing = wsing

_ sin? (2~ sin ¢)
and Ie) = I, m
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4 ¥ ()]

-2 -1 ) 1 2 (a/)) sin g

()

-2 -1 0 1 2 (a/)\) sine
Fig. 7-8

Principal maxima occur only when m =0, i.. when # = 0 and 180°, Minima arise when

. m’

8in 6y = —5-
that is, ¢, = =30° and ¢, = *=90°. Figure 7-4 is a sketch summarizing all of this. Keep in
mind that the pattern is three-dimensional; the lobes shown are just a cross-sectional view in any
plane containing the array. :

o = 150° ¢ = 120° ¢ =90° ¢ = 60° o = 80°
L
30°
[
o =180° \ =0
7N
)
'IE
Fig. 7-4
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73 FRAUNHOFER DIFFRACTION BY
ONE AND TWO NARROW SLITS

One of the most practical arrangements for observing Fraunhofer diffraction is illus-
trated in Fig. 7-5. Light from a monochromatic point source S is collimated by lens L,
diffracted at =; and brought to a focus on =, by lens L.. In effect the light entering and
leaving the aperture can be thought of as consisting of plane waves. The lenses allow S
and Z, to both be fairly nearby 3, and still generate the same far-field pattern which would
prevail were they both very far removed from the aperture.

Fig. 7-5

The diagram shows a long narrow slit in
2. which appears in somewhat more detail in
Fig. 7-6. The Huygens-Fresnel principle sug-
gests that a normally incident plane wave effec-
tively fills the aperture with in-phase point
sources. The differential strip (dz by ¢) can
therefore be envisioned as a coherent line
source. According to Section 7.2, each segment
dy of this line source makes a contribution
to the far field of

eL .
dE, = & Sin (ot — k7)) dy
where 7 in the amplitude has been approxi-
mated by R, the latter being assumed constant.
However, the sine function is far more sen-
sitive than the amplitude to variations in dis-
tance; therefore, since Fig. 7-6

= R — ysi Y ostl 4 -
r = R ysm0+2Rcoso+
we retain the first two terms in the expansion when dealing with the phase. This linear

dependence of r on y constitutes the Fraunhofer approximation. The total field at P due
to the differential strip is then
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GL +¢/2
E, = -ff sin [of — k(R — y s8in 6)] dy

[7}]

-’gsino

E ! 3 Y7
or E, = %(%&) gin(ot—kR)  where pB”

The function (sinu)/u is known as sinc u; values of it are tabulated in the Appendix.

Because 1(0) = ce,(E?) the far-field irradiance distribution from a coherent line source is
I(9) = I(0) sinc?p”

Y 2

where I0) = > _R—>

When (3> ), as it is here, I(¢) drops off very rapidly as § moves away from zero, and the
line source emits predominantly in the xz-plane. Moreover, E, has the form of the field of
a point source a distance R from P. In other words, a differential strip (dz by ¢) behaves
as if it were a point emitter on the central z-axis. All such strips spanning the width of
the aperture (from —b/2 to +b/2) correspond to a linear array of point sources lying along
the z-axis. This line source, in turn, generates a pattern equivalent to that of the entire
aperture, which is given by

~ I(6) = I(0) sinc*B
provided that now g = (kb/2)singd. Thus the Fraunhofer pattern for a single narrow slit
has the form of the sinc function squared, as shown in Fig. 7-7. The pattern consists of a

broad central bright band accompanied by a series of narrow fringes all parallel to the slit
itself. The corresponding result for two slits is obtained in Problem 7.11.

A

Lo

3477

Fig. 7-7
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SOLVED PROBLEMS

. s (8
7.6. Locate via g both the minima and sub- A
gidiary maxima in the far-field diffraction v
pattern for a narrow slit. /
Extrema of I = I(0) sinc28 correspond to
values of 8 for which
dar _ 2sinB(Bcosf —sinB) _
% = 10 & 0
Minima occur when sin8 =0 and 8 % 0; that = =75 S o7z o Tz P
is, when
B = *myr with m = 1,2,83, ... /
Contrastingly, the subsidiary maxima exist for
nonzero B satisfying
BcosB —sinfg = 0
or tang = B8 Fig. 7-8

This last equation is most simply solved graphically by superimposing the straight line f,(8) =8
on the curves for f;(8) =tan 8. The points of intersection other than the origin (Fig. 7-8) locate
the subsidiary maxima at 8 = *1.43038 », +2.4590 , =3.4707 », etc. Notice that these peaks are
not quite midway between irradiance zeros.

7.7. Determine the irradiances of the first three subsidiary maxima in terms of I1(0), the
principal peak value, for the far-field pattern of a single slit.

From Problem 7.6, we know that the secondary peaks occur at 8, =143, B8, =246z and
B3z = 8,477, Furthermore,

I(6) = I(0) sinc2 B
and so we need only look up the sinc function in the Appendix to find
sincZ B; = (—0.217)2 = 0.047
sincZ 8, = (0.128)2 = 0.016
sinc? By = (—0.091)2 = 0.008

The desired irradiances are then 0.047 I(0), 0.016 I(0) and 0.008 I(0).

78. Show that the irradiance, I, of the mth subsidiary peak, as discussed in Problem 7.6,
can be well approximated by

2
b = 10y ]
If we assume for simplicity that the peaks occur dead center between minima, then
B1 =15z, By =257, ..., Bm=m+Pr,
It follows that sin 8,, = =1 for all values of m, and so

sin B,

2 2
In = I<o>< o ) = 1055 = 10 [m]
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As a check, let us compute I

1
I, = I(0) [m]z = 0,0162 I(0)
whieh isn’t too bad —the actual value is 0.0169 I(0).

7.9. The slit in Fig. 7-5 is 0.5 mm wide and 8 cm long. Both lenses have focal lengths of
50 cm and A = 650 nm. Compute the locations of the first minimum and the first sub-
sidiary maximum in terms of their linear displacements from the central axis on =,.

We saw in Problem 7.6 that minima occur when

B = *mr m=123,...
that is, when
bsing = =m
The first dark fringe (m =1) is located by
_ A _ .650x10% _
gsing = x5 = :—-——0.5 <X10=% = *0.0013

or 6= =45’ = +0,0013 rad (as you might expect, sin 4 =~ ¢). For so small an angle the focal
length times # closely approximates the displacement Z. Thus

Z =~ fo = =*0.5(0.0013) = *+0.66 mm
The first subsidiary bright band was found in Problem 7.6 to be at 8 = +1.43 7. In other words

%b-sino = 148«

sing = =%—5 = =1.859 X 10-2

Hence ¢ = *1.86 X 10~3 rad and so the first maxima on either side of center are at
Z =~ fo = 0.5(x1.86x10~3) = *0.983 mm

7.10. Derive an approximate expression for the angular width at half-maximum irradiance,
Aby72, of the central peak in the diffraction pattern of a single slit.

We must determine the value of ¢ for which

-;-((%;- = sinc2 g =%

i.e. sincg = 0.7071

From the sinc table in the Appendix we see that the central peak (which runs from « =0 to =)
has its half-maximum value at B;,, = 1.89 rad. Since B = (zb/2) sin 6 = (zb/A)6, for small angles,

we have
A

139 =~ ’r—:"ollz or 8179 = 0.442b

The total angular width, Ad;,o, is 26;,,; hence
A01/2 lad 0.885%
This is generally just rounded off to N
Aol /2 ad 7"

Observe that the width of the diffraction peak varies inversely with the width of the slit.
As discussed in Section 6.6, the same kind of relationship exists between the temporal signal width
and the frequency bandwidth.
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7.11. Use the geometry of Fig. 7-9 to arrive at an expression for the irradiance distribu-
tion in the far-field pattern of a double slit. How does this result relate to Young’s
experiment?

Following our earlier procedure for the single slit, we write the field as
& T2 & (ot
Ep = ¥} 8in [0t — k(R — 2z sing)] dz + 3 sin [wt — k(R — z sin 6)] dz
—b/2 a~(b/2)
Integration of this leads to

&
Ep = b —Rﬁ(sinc B){sin (ot — kR) + sin (ot — kR + 24)]

where 8 as before equals (kb/2) sin # and now

a == k—za-sin [
A simpler form of the field equation is
& . ,
Ep, = 2b F sine B o8 & 8in (vt — kR 4 a)

and so
I(6) = 4Iy(sinc2 B)(cos? a)

The irradiance I, is that of either slit at 4 ==
and I1(0) = 41,.

What we now have is evidently Young’s co-
sine-squared fringes modulated by the single-slit
sinc-squared diffraction envelope (Fig. 7-10). When
the slits are very narrow, b is very small and the
central diffraction peak is quite broad. As b is
made to go to zero, sinc2 8 approaches one and
I(8) - 41, cos? a, which is identical to our findings
in Chapter 6 for Young’s arrangement.

7.12. The bright band of order m in the inter-
ference pattern for two slits is said to be
suppressed or missing when it is coincident
with a null in the diffraction envelope.
(a) Write an expression for the above con-
dition and apply it to Fig. 7-10. (b) .How
many fringes will exist under the central
diffraction maximum in such cases? Fig. 7-9

(¢) Maxima in the interference pattern occur when
asging = mx

where m =0, =1, =2,... . As we saw in Problem 7.9, minima in the single-slit diffraction
pattern result when

bsine = m'x

where this time m’ = =1,+2, ..., When both of these equations are satisfied,
e .. m _
b wm M

In Fig. 7-10 the first missing order corresponds to m =3, where m’' =1 and, accordingly,
a = 8b. The second missing order results when m =6 and m’' = 2; again M =3.

(b) If we include the two “half-fringes” at the missing orders, there are 2M bright bands within
the central diffraction peak.
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7.13.

7.14.

STUDENTS-HUB.com

sin ¢

Fig. 7-10

The Fraunhofer pattern of a double slit under A = 650 nm illumination appears in
the back focal plane of a lens having an 80-cm focal length. The center-to-center
separation between bright fringes is observed to be 1.04 mm and the fifth maximum
is missing. Determine the width of each slit and the distance between them.

Problem 6.10 gives the fringe separation in Young’s experiment as Ay = s)\e; and here
8 = f=80cm. Thus
_ 8 _  (80X10-2)(650 X 10~9)

Ay 1.04 X 103

The missing fifth maximum means that m =5, m’ =1 (see Problem 7.12). Therefore M =m/m’ =5,
whence ¢ =56 and b = 0.1 mm.

= 0.5mm

Sketch the far-field irradiance distribution for a double slit where each aperture is
0.1 mm wide and the separation between them is 0.6 mm.

ATN N AL

1 >
7 8 9 10 11 12 -

Fig. 7-11
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Here a = 6b, so that M = 6 and the 6th, 12th, 18th, etc., orders are missing. Figure 7-11
illustrates the pattern of sinc2-modulated, equally spaced fringes.

74 MULTIPLE NARROW SLITS — THE DIFFRACTION GRATING

The same analysis as was used in the preceding sections for far-field diffraction can be
applied to an array of N slits. For the geometrical layout indicated in Fig. 7-12 and nor-
mally incident plane waves, the field at some distant point P is

€L +b/2 . .
E, = Ff—m sin [of — k(R — z sing)] dz

6 a+(b/2)
+ FL-‘;-W sin ot — ©(R — 2 sin8)] dz + - - -

& (N—1)a + (b/2)
+ FLJ: sin (ot — k(R — 2z sin 6)] dz

N~1)a — (b/2)

6 .
b sinc p(S;’i‘nN “) sin ot — kR + (N — 1)a]
a

where again

B = %b-sino
_ ka .
a = —2-sm0

Consequently, the far-field irradiance dis-
tribution for N slits is

_ . o o/8inNa\?
I(6) = Ivsinc B(—Eﬁ—a—)
The flux density for any one slit at P,
ie. 8=0=p8=a, is I, and, as we saw in
Problem 7.1 for the linear array of N
emitters, I(0) equals N2I,. The present
irradiance distribution differs from the
earlier one only in the (sinc? g)-modulation
due to the now-finite slit widths.

Any periodic array of diffracting el-
ements, be they apertures or obstacles, Fig. 7-12
which alters the amplitude, phase, or both,
of an incident wave is known as a diffraction grating. Clearly, the multiple-slit configu-
ration of Fig. 7-12 is a diffraction grating, although a more common arrangement consists
of several thousand parallel grooves cut into the surface of a glass plate.

SOLVED PROBLEMS

7.15, Locate the principal and subsidiary maxima, as well as the minima, in the far-field
pattern for an array of N slits under normal monochromatic illumination.

Principal maxima occur whenever
sin Na

z =N
sin «
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that is, whenever a = 0, 7, =21, ..., or equivalently,
a sing,, = mx m = 0,1, *2, ...

Flux density minima exist where
sin Na —
sin «

or when 20 LIN=1r _(N+Dr

N’ - N ' N '

a = =T, %

ZI"

The omitted a-values of 0, Nz/N, 2N=/N, etc., yield peak values rather than nulls. Between con-
secutive principal maxima there are N — 1 minima and therefore N — 2 subsidiary maxima. The
latter are located approximately midway between nulls at

+ 37 _ b7
2N’ _2N’

a

Actually they are very slightly closer to the nearest principal maximum.

7.16. Approximate the relative irradiances of the first three subsidiary maxima in the
monochromatic Fraunhofer pattern of a large array of N slits.

By Problem 7.15 the secondary maxima are positioned where, very nearly,

8z _ br Tz
2N’ 2N’—2N’

Since I(0) = N2I,,
o = I(O)mczﬁ<smNa>

SIn

At the points of interest |sin Na| = 1. Moreover, since N is taken to be large, the values of « for
the first several subsidiary maxima will be small, whence sin2a ~ o?. Again, 8 will be small and
sinc 8 will vary little from 1. Thus, at the first secondary peak,

I, ~ 1(0)(%)2 ~ 0.045 1(0)

or I,/I(0) =~ 1/22. The irradiance of the second peak is

2\2
I, = I(O)<5—;> =~ 0,016 I1(0)

or I,/I(0) ~ 1/62. And for the third secondary maximum,

2 \2
I, ~ I(O)(i;) =~ 0,008 1(0)

or I/I(0) ~ 1/121.

7.17. Make a rough sketch of the far-field diffraction pattern for an array of 6 parallel
slits separated by a distance equal to 4 times the individual slit width. Compute the
irradiance of the second subsidiary peak adjacent to the first principal maximum.

Inasmuch as @ = 4b, we can expect the 4th, 8th, 12th, etc., principal peaks to be suppressed by
a null in the diffraction envelope. Furthermore, there will be N —2 = 4 subsidiary maxima be-
tween each pair of principal maxima and these will be quite small; how small can be found from

Ie) = 'I'l(\;)_ﬁ_) 2B(smNaz)

sin

The second subsidiary peak corresponds approximately to
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S _ b
2N T 12

a ==

But a = 4b, which means that « = 48 and s0

= 5
B=18

Consequently, the irradiance in question becomes
_ o)/ . ,5z\[sinbr/2\* _ I0) _
I{ey) = 36 <smc 18 )\ sin5./12 36 (0.965)(1.072) = 0.029 I(0)
Figure 7-13 is the appropriate plot of the diffraction pattern.

AI/I(O)

-~
~

| ~N
0.9 )
08 ¥ ~
o7h T
0.6 \
0.5 \
0.4
0.3 \

0.2 \
01 \

Fig. 7-13

7.18. Usually the source illuminating a grating in a spectroscopic device is configured as
a narrow slit and so the principal maxima appear as thin bright bands (hence the
name spectral lines). Show that the angular width of such a line, A8, with normally
incident monochromatic light is inversely proportional to the width of the grating.

Assume a principal peak to extend from one adjacent minimum to the other, i.e. from a = —z/N
to a = +=z/N, as in Problem 7.16. Accordingly, the peak width corresponds to

But a = (ka/2) sing, so that
de = —’fzf(cos o) = =

Therefore, the angular width of the mth-order spectral line is

2)\

A = ————
Na cos 6y,

which varies inversely with Na, the width of the grating. This dependence is known as instru-
mental broadening. The greater the number of grooves and the larger their separation, the sharper
will be the spectral lines. Since N is large, the subsidiary maxima have vanishingly small irradiance
and one “sees” only the principal peaks.

7.19. (a) Find an expression describing the angular spread for a small range of wavelengths,
AB/AN, i.e. the angular dispersion or dispersive power D. (b) Compute the dispersive
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power in the first and second orders for a grating with 1500 grooves per inch opera-
ting in the visible.

(@) We know (Problem 7.16) that principal maxima occur when
@ sing, = mx m = 0,*1, %2, ...

and this has come to be known as the grating equation for normal incidence. Under white
light illumination each wavelength component will evidently have a maximum of a given order
at a slightly different value of 9. This gives rise to a broad band of colors, or spectrum, for
each value of m (see Fig. 7-14).

On differentiating the grating equation, we get

_ A6 _ m
D = AN T acosép,

(b) The groove separation or grating constant is given in centimeters as

2.64
= — = -3
a 1500 1.69 X 10
which is quite large as compared to A =~ 5X10-5cm. It is clear from the grating equation
that in the first and second orders, since a > A\, cosé, ~1. Therefore, dispersive powers are
m(6.91 X 102), or 5.91 X102 rad/em and 11.8 X 102 rad/cm, respectively.

Grating

light waves

Fig. 7-14
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7.20. What is the angular separation between the sodium D lines (589.592 nm and 588.995 nm)
in the first-order spectrum generated by a plane transmission grating having 10,000
lines per inch at normal incidence?

The wavelength spread A\ = 0.597 nm is small enough to allow use of the equation

— m — Ae

D =3 cos 8, A\
derived in Problem 7.19. This time

2.54 X 102 s

10,000 2.64 X106 m
and so from the grating equation with m =1,
. A _ 589.294x10-% _
singy = — = 554X 10-6 = 0.232

Hence, ¢; = 13°25' and cos ¢; = 0.9727. Finally,

_ _mAx  _ 0.597 X 109 - —a
A0 = Teess, — ZBaxi0-egrem ~ 242x107irad

721. Find the angular extent of the first-order spectrum for white light (390 nm to 780 nm)
normally incident on a transmission grating having 17,000 grooves per inch.

Obviously the wavelength spread is too large to allow use of the equation for . Instead we
calculate the angles directly using the grating equation with m =1, i.e.

. _ 890Xx10-° ., _ T80 X10—°
sing; = —_—- singy = —————
Computing a we get ,
2.64 X 10—2
. = ]
17,000 149 X10-6m
Accordingly,
sing; = 0.261 sing; = 0.523

from which ¢, = 156°8’, ¢7 = 31°32’ and A¢ = 16°24’.

7.22. The chromatic resolving power R of a spectroscopic device is

A
(A)\)mln

wherein A is the mean wavelength and (AX)mia corresponds to the least resolvable wave-
length difference between two adjacent lines. For this condition we will use Rayleigh’s
criterion which states that two fringes are just resolvable when the principal maxi-
mum of one coincides with the first minimum of the other. Derive an expression for
the resolving power of a grating.

R

From Rayleigh’s criterion we can say that the minimum angular separation between just resolv-
able peaks corresponds to half the width of a principal maximum, From Problem 7.18, (A6),, = A6/2

and so
A
(86)min Na cos 6,
But from Problem 7.19,
_ _ (A)‘)mlnm
R T

By combining these two expressions we obtain
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— A —
‘Rm B (A)‘)mln = mN

for the resolving power in the mth order.

7.23. How many lines must be ruled on a transmission grating so that it will just resolve
the sodium doublet (589.592 nm and 588.995 nm) in the first-order spectrum?

According to Problem 7.22, the resolving power of a grating in the first order is

A
A = N
(A)‘)min
In this case,
A = 589.692 -12— 588.995 _ 589.294
(AN min = 589.592 — 588,996 = 0.597
Hence
589.2904 _ \
N 0.697 = 987.09

and so 988 grooves are needed.

724. To get most of the energy out of the zeroth Grating
order, where it’s wasted from a spectroscopic plane
viewpoint since the constituent wavelengths
overlap, modern gratings have shaped or blazed
grooves. Figure 7-15 shows a blazed refiection
grating which shifts the strong specularly re-
flected peak from the zeroth to some higher.
order. (a) For plane waves incident normal to
the grating plane, derive an expression for
that reinforced order in terms of the blaze
angle y. (b) Compute the necessary angle y in
order that normally incident radiant energy at
a wavelength of 200 nm be strongly channeled
into the second order by a grating having
2000 lines/mm.

(a) Had the facets in Fig. 7-15 not been tilted, spec- \
ular reflection would have carried most of the .
energy off into the zeroth order at 6, instead it y\z
now goes out at 6. Notice that here

6, = y+(y+o) = 2y -+, Fig. 7-15

zeroth order

where 6, is a negative number since it is on the same side of the grating normal as is ¢, At
normal incidence, 6; = 0, the zeroth order (m =0) is at 6y = 0, i.e. straight out the normal
to the grating plane. Most of the diffracted radiation is now concentrated at ¢, = —2y and
this will correspond to the mth order when

asin2y = mA

In this case the mth-order interference peak will reside at the central maximum of the single-
slit diffraction pattern.
(b) Since 10-3

= —6
2000 0.5X10-6m

a =

we have from (a):
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2(200 X10~9)

~o0BxX10-% | = 53°8’ or y = 26.6°

= gin—1

75 RECTANGULAR AND CIRCULAR APERTURES
— FRAUNHOFER DIFFRACTION

The far-field diffraction pattern associated with a single rectangular aperture can be cal-
culated with the assistance of Fig. 7-16. Each area element dS = dy dz serves as a mono-
chromatic point source of Huygens wavelets whose complex representation is

6A
dEP - _r_ei(m—kr) dS

Fig. 7-16

with €, denoting the source strength per unit area. The Fraunhofer condition carries »
from its precise value of
[22 + (Y —9)? + (Z —2)?]1/2

to the approximation

r o R<1~Y_?fiﬁ>

R2
Accordingly, the total field at point P becomes

6 el((dt"kR)
E = fj’ e (Yy+22)/R 4G

aperture

i(wt—kR)
A& e o
— B sinco’ sinc 8
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where A is the area of the hole, o = IcaZ/ZR and B’ = kbY/2R. Since I « ((Re E)?),
1(Y,Z) = I(0) sinc®«’ sine? g’ \

a result which could have been anticipated from the discussion of the single slit. Figure 7-17
illustrates the irradiance distribution as a function of «’ and g’, or equivalently of Z and Y.

Fig. 7-17

The source strength per unit area of the point emitters, £,, is related to the electric field

of the incident primary wave via B
= 20

é, X

E being the primary field amplitude over the aperture.

The above expression for E, as a double integral is quite general and can be applied as
well to the case of a circular aperture like the one illustrated in Fig. 7-18. After a com-
plicated calculation in polar coordinates the irradiance distribution is found to be

2J: (kaq/R)7?

Ko = 1O =%,z

Here Ji(u) is a first-order Bessel function defined by the series

~ _u 1 [u\? 1 /u\* 1 /u\®
5 = 5[1 - 7als) + o) ~aai(s) *

It roughly resembles a decaying sine wave. Because sin § = ¢/R, an alternative expression
for the flux density is

2J1(ka sin 6)?
ka sin ¢

106) = 1(0)[
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Fig. 7-18

This is the well-known Airy pattern, named after the famous British astronomer who first
derived the formula. It consists of a central bright disk surrounded by a system of con-
centric alternately dark and bright rings. As shown in Fig. 7-19, the first zero occurs at
ka sin 6 = 3.83, and if we take g, as the distance from P, to that null, we can think of it as
the radius of the Airy disk, viz. R

2a

q, = 122

1/1(0)

1.0

ka sin ¢

-5
* 3
?T

—~8.42
—7.02

Fig. 7-19
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This discussion is of great practical significance in that the image of a point source formed
by an ideal optical system consisting of circular lenses or mirrors is not a point but rather
an Airy pattern.

SOLVED PROBLEMS

7.25. Prove that a horizontal rectangular opening will generate a Fraunhofer diffraction
pattern having a vertical rectangular bright area at its center. How does increasing
the wavelength affect the size of the fringe system?

The central maximum is bounded by four nodal lines along which I = 0; these occur at o' = *¢
and B’ = *+x, as in Fig. 7-17. Consequently, the half-dimensions of the central maximum, Z, and

Yo, satisfy , 2u-azo 2‘ﬂ’bY0
o = —op = +z B = SR +z
. S S

For a horizontal aperture ¢ > b and so Z; < Y, i.e. the rectangular bright region is vertical.

When A increases, both Z, and Y, increase and the entire pattern enlarges. A like effect is
produced by an increase in R,

7.26. Determine, at least approximately, the relative irradiances of the four diagonal off-
axis subsidiary maxima nearest the central peak of a rectangular-aperture Fraunhofer
pattern. How do these compare with the sixth axial secondary peaks?

Again assuming that the secondary maxima occur midway between consecutive minima, the peaks
of present concern correspond to

,,_ﬁ%,/_3r3r'_37_3ﬂ"§1__3_?_
(a:ﬁ) - (2’?>) \ “2—"2_>)< '2_’ ?)’(2’ 2)

‘We wish, therefore, to evaluate
I(Y,Z) = I(0) sinc2 o’ sine? g’

at these points and for that we return to the approximation developed in Problem 7.8. Accordingly,

with m =1,
1 1 r 1 2
i ~ [u+1}>w] [(1+1}>7J ~ 00020

for each of the first diagonal peaks. The sixth axial peaks at

' gy = 187, _187). (187 .\, [_13r
(a’B) = <0: 2), <0’ 2))<2’0>)< 2‘1’0)

all have irradiance ratios of

T({T) ~ 1[@]2 ~ 0.0024

Evidently, the bright spots along the coordinate axes are considerably more pronounced than the
off-axis peaks. In effect, the straight edges of the aperture produce long perpendicular flares in
the fringe pattern,

727. A rectangular horizontal hole 0.25 mm X 0.75 mm in an opaque screen is illuminated
normally by plane waves of blue light from an argon ion laser at A =488 nm. The
diffraction pattern is cast on a screen in the focal plane of a nearby positive lens
(f =2.6m). Describe the resulting central maximum.
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As in Problem 7.25, the central rectangular region of the pattern is bounded by the first null
lines, such that AR AR
z, = — Y, = 5
a
In this instance ¢ = 0.75 mm, b =026 mm, R =f and so

(488 X 10—9)(2.5)

Zo = ’—OTI—S—X' 10-3 = 1.63 mm
_ (488 X 10—9(2.5) _
Yo = Togsxio-e - 488mm

The central region is a vertical rectangle 9.76 mm X 3.26 mm.

7.28. A monochromatic plane wave at A =500 nm is normally incident on a rectangular
horizontal hole 1 mm X 5 mm in an opaque screen. Centered in the aperture is a
0.1 mm X 0.5 mm horizontal opaque rectangle. Express the irradiance distribution
appearing on the focal plane of a nearby converging lens having a 1-m focal length.

We can imagine that the 1 mm X 5 mm hole would contribute a field at P of Ep, were it
unobstructed. Furthermore, the 0.1 mm X 0.5 mm rectangle can be thought of as obscuring an
array of Huygens-Fresnel emitters which might otherwise contribute a field Ep,. The total field

at P is then
Ep = Ep, — Epy
AlgAeL(wt—kR) . . ,
where Ep, = B sine of 8inc 8
A€ jeiwt—kR)
Ep, = ——5 sinc o} sine 85

The terms A, and A, are the corresponding aperture areas. Hence,

& yei(wt—kR)
Ep = —p— [A; sinc ] sine B — A, sine o} sine 8]

and the flux density is

Ip = ?Z;{Q)Z;)_z [A, sinc e} sine 8] — A, sinc o sine B5)2

where 1(0) corresponds to o] = o = 81 = B85 =0. In the particular case at hand A, =5 X 108,
A, =5X10"8 and
, _ 2r(5x10-9Z

*1 500 % 10%@1 270
B = go‘%((.l—f(% 2V 103
i = B
o= TOL g

7.29. Formulate a rough estimate of the extent of the Airy disk in the visible spectrum
for a lens, in terms of its f-number (ratio of focal length to diameter).

Beginning with the radius of the Airy disk,

Y}
q, = 122 %0

we first make use of the fact that R =~ f, ie.
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_ I
q = 1225

Then, since 2¢ = D, the diameter of the lens, the disk diameter is

2¢, = 2(122 "ifi) = 244N(/#)

where f/# is the f-number. In the visible we can roughly take 2.44 ) to equal 1000 nm. Hence
2q, = f/# in millionths of a meter or microns. My camera lens, with an f/# of 1.4, forms an image
of a distant point 1.4 X 10~ m (or 1.4 #) in diameter on the film plane.

7.30. A collimated monochromatic beam (A = 600 nm) is incident normally on a 1.2-cm di-
ameter converging lens of focal length 50 cm. Compute both the angular and linear
extent of the central disk of the diffraction pattern appearing on the focal plane.

The Airy disk has a radius of

- J 2N
q 1.22 %

where now R = f = 0.5, and so its diameter is just

2 (0.5)600 X 109

20 = 12250 0-2

= 61X10-5m
The “angular radius” is generally denoted as 6, where ¢ = ¢;/R = q,/f. Consequently, the angular
diameter of the disk is

2¢ = — = 122Xx10-4rad

or 6.99 X 10—3 degrees.

7.31. The second-largest refracting telescope is the 36-inch, 56-foot focal length instrument
at the Lick Observatory. Compute the radius of the second bright ring in the Airy
pattern of a star formed on the focal plane of the objective.

From Fig. 7-19 we see that the second subsidiary maximum occurs at ke sin¢ = 8.42. Hence

kaq

——R—-—842

and with B = f and a mean wavelength of 550 nm,

_ 842f 8.42(56 X 12 inch)
1 ak (18 inch)2z/(550 X 10—° m)

= 0.0275X10~3m

732. Apply Rayleigh’s criterion as stated in Problem 7.22 to the case of a circular aper-
ture and thereby arrive at an expression for (A¢)mm, the minimum resolvable angular
separation between two distant object points.

According to Rayleigh’s criterion, two Airy systems will just be resolvable when the central
peak of one coincides with the first minimum of the other. But that just corresponds to a separa-
tion eéquivalent to the angular radius of the Airy disk, and-so

q A
(0 = 3 = 122}

D being the diameter of the aperture.
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7.33. Determine the smallest angular separation between two equally bright stars that can
~ be resolved (in the sense of the Rayleigh criterion) by the 200-inch Hale telescope on
Mount Palomar. What linear separation results if the prime focal length is 666 inches?

From Problem 7.32 A

(Ap)min = 1225

and assuming A = 550 nm

550 X 10—9 _
A¢)min = 122 300 X 2.54 X 10—2 = 1.82X 10~ 7rad

or 0.027 second of arc (as compared, say, with the roughly 18-second maximum angular diameter of
Mars as seen from Earth). The corresponding linear distance on the image plane, or limit of
regolution, is

AOpin = flAP)pin = 1.22%

here equal to 2.2 X 10— ¢ m.

76 FRESNEL DIFFRACTION — CIRCULAR SYSTEMS

At this point the simple Huygens-Fresnel theory needs to be sharpened up a bit — some-
thing that wasn’t necessary when working at small angles in the far field. Consider the
fact that if the secondary wavelets were really spherically symmetric, a primary wavefront
would give rise to two disturbances, one propagating forward and one backward, and this,
of course, is not the case. The solution to the dilemma, as Fresnel recognized, is to pre-
sume that the wavelets drop in amplitude as one moves away from the propagation direction . °
of the primary wave. Each wavelet in the Fraunhofer limit of the previous sections con-
tributed mainly in the forward direction, so this difficulty was of no concern. Now, how-
ever, we must multiply the amplitude of any spherical secondary wavelet by an obliquity
or inclination factor, which turns out to have the form

K@) = 3(1+cost)

as pictured in Fig. 7-20.

Secondary wavelet

Primary wave

Fig. 7-20

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



© CHAP. 7’] DIFFRACTION 183

Fig. 7-21 '

Fig. 7-22

Consider the unobstructed wave emitted from S in Fig. 7-21. Each area element dS
on the primary spherical wavefront of radius p emits secondary wavelets of the form

&
dE = K—ricos[m(t—%)—kr ds

The primary wavefront is divided into annular regions known as Fresnel or half-period
zones. By integrating dE over the Ith zone (1=1,2,8,...) (Fig. 7-22) its contribution to
the field at point P is found to be

K. &, pA
= (-1 )m = A” sin [ot — k(p +7,)]
Depending on whether [ is odd or even, the sign of the contribution will be positive or neg-
ative; which means that contributions from adjacent zones are out of phase and tend to

cancel. Such cancellation could not be complete, however, since the obliquity factor weak-
ens successive zones. Adding the field amplitudes for all m zones, i.e.
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Eh=FEn—Euw+Es— -+ *Em
and assuming adjacent zones to have almost equal amplitudes, since K changes slowly with
m, it can be shown that
o 2 2
when m is odd, and
EOI EOm
Bo ~ 5 -2

when m is even. In either event, the contribution from the mth zone, which surrounds O’,
goes to zero since Km = K(x) =0. Therefore

E,

i.e., the optical disturbance at P generated by the entire unobstructed wave approximates
half the contribution from just the first zone.
Imagine that we divide that first zone into N regions bounded by distances to P of

12 2 A N
7‘0+ﬁ§, 7‘0+ﬁ§, ceey 7‘0+—N-§

/10

Fig. 7-23 Fig. 7-24

The field contributions from each of these subzones can be added vectorally as in the phasor
diagram of Fig. 7-23, where N = 10. The obliquity factor causes a slight gradual diminution
in the constituent amplitudes, which therefore combine to form something of a spiral. Letting
N - » generates a smooth, tight spiral known as the vibration curve (Fig. 7-24), which
swings through half a turn with the inclusion of each successive zone. Note that the points
0, 2y, Zy, ..., O (see Fig. 7-21) on the wavefront correspond to points Os, Zs1, Zss, ..., Os
on the curve, which spirals around and finally ends on O;. The field amplitude of the unob-
structed wave, E,, is equal to the length of the vector from O, to O;. Similarly, the vector
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from O, to Z,: gives the contribution from the first zone, E¢;, and clearly Eq,~ En/2.

Now suppose we insert an opaque screen with a circular hole of radius R perpendicular
to SP at O in Fig. 7-21. The area of each zone is shown in Problem 7.34 to be very nearly
equal to
7T,

A= ptT,

and so the number of zones m within the aperture as seen from P is approximately
' _ R _ TR

A pr)
If m is an even integer,
Eo = (En—FEo) + (Es—Eow) + -+ + (Eo,m—1—Eom) ~ 0
and P resides at a dark spot. If m is an odd integer,
Ey = Eu— (Eoz—Eos) — e = (Eo,m—l_EOm) ~ En

which corresponds to a bright spot. In either case, m is relatively small compared to the
number of zones in the unobstructed wave and K»+ 0. The vibration curve shows the
effect rather nicely since the field for the first zone corresponds to 0.,Z,;, while for the first
two zones the field is down to only 0,Z,,. Obviously the aperture could partially uncover a
zone, as well, thereby yielding a gray spot at P. Similar arguments apply off-axis, and
because of the symmetry the diffraction pattern on a plane at P is a series of concentric
rings of varying flux density.

If a small opaque disk or sphere were placed at O in Fig. 7-21 rather than an aperture,
it would obstruct the first ! zones such that

Eo = Eois1— Eoi42+ ++ + Eom

As with the freely propagating wave m is very large, Km > 0 and Eo, ~ Eo,1+1/2. The disk
might cover only a portion of the Ith zone but, in any event, there will be a spot of light
everywhere along the axis except immediately behind the obstacle. In other words, there
will be an illuminated region right at the center of the shadow, known as Poisson’s spot
after the famous French scientist who insisted that such a result was ludicrous. As for
the vibration curve, the periphery of the obstacle would locate a point B, somewhere on the
spiral. The length B,O; corresponds to the field at P on the axis and evidently it will be
nonzero regardless of where B; is.

SOLVED PROBLEMS

7.34 Use Fig. 7-22 to derive an expression for the area of the Ith Fresnel zone on a spher-
ical wavefront. Show that the ratio of this area to its mean distance from P is inde-
pendent of [, i.e. the same for all zones. Discuss the physical significance of this fact.

The surface element can be formulated as
= (2wp sin ¢)p dg
yielding an area A for the end cap of

[
A= 2ﬂp2f sing dg = 20p%(1 — cos ¢)
0

From the law of cosines applied to the lth zone
i = o2+ (p+10)2 — 2(p+ 1) cos ¢

2
moreover, n=r+t3
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P2+ (p+ 1rg)2 — (rg+ IN/2)2
20(p + 1)
The area of the Ith zone is the area of the cap consisting of the first [ zones,
27p2[p% + (o + 79)2 — (ro + IN/2)?]
20(p + 7o)
minus the area of the cap consisting of the first I —1 zones,
27p2{p2 + (p + 7g)2 — [ro + (I — 1)2/2]2}
2p(p + 79)

_ a [ (21— 1))
Thlls, Al - o ¥ o L‘ro + 1 ]

Hence, cos¢ =

1
S A = 2% -
=1

-1
2 A = 2 —
=1

The second term is generally neglected, yielding an expression independent of I/, which means that
the zones all have approximately equal areas.

The mean distance from the Ith zone to P is denoted as 7;. The distances to the edges of the )
zone are 7, = 79+ I\/2 and 7, = 15+ (I— 1)A/2, hence

_ rt+r_y (21— )a
rl = '—'T_ = ro + ———4_"
Consequently,
A _
Fl - p + To

which is certainly independent of I. We can expect that the field amplitude contributed by the Ith
zone would depend on K;4,/7, and so |E}|/K; should be independent of [, as indeed it is (see page 183).

7.35. Derive an expression for the area of the ith Fresnel zone as seen from some point P,
where now the incoming waves are planar. Compute the area of the first zone when
A =600nm and the point of observation is 0.5 m from the wavefront. What error
results in the area if the A%-term is omitted?

From Problem 7.34

_ [ 20— 1 :'
Al = p+ToLr0+ 1 A

for a spherical wavefront of radius p. In the situatiori at hand the waves are planar, that is,
p—> =, Hence, p+7ry~p and

A, = Mr[‘ro + 2l4_ 1)\]
In particular, when A =600 nm, r,=05m and I1=1,
-9
A, = 600X10—9w|:0.5 + -‘ﬂ—:l-o——] = 942 X 10-8 em?

The approximate area, dropping the second term, is
Ay =~ Ay =~ 942 X108 em?

The difference between the two is 2.83 X 109 em2, or about 0.00008 percent.

7.36. Derive an expression for the outer radius of the /th Fresnel zone on a planar wave-
front as viewed from a distance of 7.

From Fig. 7-25 the distance to the periphery of the Ith zone is evidently

T = 7 + l";'
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Fig. 7-25

Consequently, B . 22
R% = 1%—7'0 = lro>\+4—

Generally the last term is negligible and R, is taken to be simply
Rl =V l‘rok

wherein 1 =1,2,8,....

737. A He-Ne laser beam (A = 632.8 nm) is expanded and collimated by sending it into
the back end of a telescope focused at infinity. Compute the radius of the first half-
period zone both exactly and approximately, when the wave is viewed axially from
a distance of 1.58 m.

The approximate radius B, is given in Problem 7.36 as

B, = V/(1)(1.58)(632.8 X109 = V/9.998 X 10—7 = 9.999 X 10~4m

or, if you like, B; = 1 mm. More accurately,

2
B} = 9998X10~7 + 1 = 9.908x10-7 + 1x10-1s

7.38. A 3-mm diameter hole in an opaque screen is illuminated normally by plane waves
of wavelength 550 nm. A small probe is moved along the central axis recording flux
density. Compute the locations of the first three maxima and minima.

Maxima occur when the aperture uncovers cdd numbers of zones. Accordingly, since R; = Vlrg:,

R, = 1.5X10~% = /(T)ry(550 X 10-9)

which leads to
_ (1.5 x10—8)2
"o = “E50Ox 10-9

and only the first zone is uncovered at a distance of 7y = 4.09 m, thereby producing a maximum.
The next maximum occurs when three zones fill the aperture, i.e.
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7.39.

7.40.

741
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(15 x10-3)2 _ 4.09

"o = 3EEOX10-9 3

and 7y = 1.86 m. It should be clear that the next several maxima occur at distances of 0.82 m, 0.58 m
and 0.45 m.

Similarly, minima correspond to even numbers of uncovered zones and we need only divide
409 m by 2,4,6, ..., to locate them. Thus the first minimum resides at 2.05 m.

Plane waves (A = 624 nm) ii‘mpinge normally on a circular aperture 2.09 mm in radius.

A screen 1 m from the hole intercepts the diffraction pattern. Describe the appear-
ance of the pattern at the central point Po.

Let us first find the number of Fresnel zones uncovered by the aperture of radius B. The area
of each zone is, from Problem 7.35,
Al = Aﬂ"ro

while the area of the hole is 7R2. Hence the number of zones N is just

_ R _ R?
- A7TTo - Arg

In this specific case
(209X 10-3)2 _

N = ®aixioo =

7

and the central point is a bright spot.

Imagine that we again have plane waves perpendicularly incident on a circular hole.
If at some axial point P the aperture reveals 1 of the first Fresnel zone, what will
the irradiance at P be in terms of I, the value with the screen removed?

The vibration curve is drawn in Fig. 7-26. Bear in mind that it is actually very tightly
wound, so that we can approximate it over a small region as being circular. The chord 0,4, cor-
responds to the amplitude in question, where A4, is
located at one-quarter of the arc length from O, to
Zg, i.e. 1 of the first zone. Evidently

0.2,
0,0; ~ 04, ~ — ‘ : 7
and so 53 /9 6—,—A—
8in 225° = ——— = ===
osos oszsl
where sin 22.5° = 0.883. But this is the ratio of the o

field amplitudes and its square would then be the de-

sired irradiance ratio. 45°

Récalling that 0,2, is twice the unobstructed A,
amplitude, we have
o!
I _
m = 0.147
and so I =0.587I;,. Keep in mind that I, is also the
incident irradiance, since the waves are planar. ‘ Fig. 7-26

A plane monochromatic wave (A = 450 nm) is incident normally on an opaque screen
containing an aperture in the form of an annulus of radii 1.000 mm and 1.414 mm.
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Calculate the electric field amplitude at an axial point 2.222 m away, in terms of the
incident field amplitude Eo.

A hole of radius 1.414 mm contains N zones, where
R? (1414 X 10-8)2

Mo (460 X 10-9)(2.222)

Similarly, the disk of radius 1 mm excludes only the first zone — hence only the second contributes.
The resulting field amplitude is (see Fig. 7-27)

Z,Z,, ~ 20,0; = 2E,

2

a— i
Notice that the two vectors Z,,Z,, and 0,0} are oppositely directed, i.e. = rad out of phase.

Zys

0,

Fig. 7-27 Fig. 7-28

742. Plane waves (A =500nm) of irradiance Jo arrive perpendicularly on an opaque screen
having an aperture as indicated in Fig. 7-28. Compute the irradiance at an axial
point 4 m from the screen.

The initial approach in all aperture problems is to find out which zones are contributing.

Accordingly, for a hole of radius 2 mm
N = R _ (2 X10—3)2 - 9
Ay (500 X10-9)(4)

whereas for B = 1.414mm, N = 1. Evidently, we must determine the field for the combination of the
1st and half of the 2nd zones. This is.quite different from the case of a single circular hole uncovering
the first one and one-half zones. In the latter circumstance, if point B were on the periphery of
the aperture, then B,, three-quarters of a turn around the spiral, would be the associated point and
Dﬁ; the corresponding field. By contrast, imagine the second zone, a segment of which is seen in
the aperture, to be divided into, say, ten subzones in the manner relating to Fig. 7-22. The fields
from the ten annular subzones would add to yield the equivalent of one-half turn of the spiral.
Now for the case at hand, we add the ten segments of these subzones uncovered by the outer por-
tion of the hole. Each one of these field vectors is one-half as long as in the previous case, and
we get a spiral just as before but now reduced to half size. Rather than a field contribution of

a— ———
Z,Z,5 for a complete 2nd zone, we get Z,,Z,,/2 for half that zone.
The entire field is then given by the vector sum

1

a—
2 chzcz

—

0z, +

which has an amplitude, in terms of the incident field amplitude E,, of
28, — 2(2E) = E,

The irradiance at P is then equal to the incident irradiance I
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7.7 FRESNEL DIFFRACTION — STRAIGHT EDGES

We now turn our attention to Fresnel diffraction arising from systems bounded by
straight edges, such as rectangular holes, slits, wires, etc. Figure 7-29 depicts a typical
arrangement. To find the field at P we once again integrate over all the differential con-
tributions within the aperture, assuming each area element to emit a secondary wavelet.

Fig. 7-28

The obliquity factor is taken as one, since the aperture is assumed small compared with
p and 7,. The term p+7 in the phase is approximated as

[
ptr =~ + 1, + (P +2Y) 55—
Po ° ( ) 2Po'ro

which is quadratic in the aperture variables. And the (1/pr)-dependence of the amplitudes
of the wavelets is taken as 1/p,7,. The dimensionless quantities

[2(Po + 'ro) v v =z [2(Po + 'ro) 2

U =
ApyT, Apy T,

are introduced and the field at P turns out to be

6 Uz vy
EP = 0 eilk(py+re) —wt] f ™2 dy f eimvr/2 dy
2(P 0 + 'ro) U v

The term multiplying the integrals is one-half the unobstructed disturbance at P; call it /2.
The integrals themselves can be evaluated in terms of the Fresnel integrals

w 2
. TW
f sin o~ dw’
° 2

Clw) = fo " cos ”—g’fdw ()

inasmuch as ”
J, emraw = cw) + i)
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where w is either u or v.

EP

DIFFRACTION

Finally, then,

E

S C) + u(u)j: [cw) +iow ]

191

Table 7-1. Values of the Fresnel Integrals

w C(w) of (w) w C(w) of(w)
0.00 0.0000 0.0000 . 450 0.5261 0.4342
0.10 0.1000 0.0005 4.60 0.5673 0.5162
0.20 0.1999 0.0042 4.70 0.4914 0.5672
0.30 0.2994 0.0141 4.80 0.4338 0.4968
0.40 0.3975 0.0334 4.90 0.5002 0.4350
0.50 0.4923 0.0647 5.00 0.5637 0.4992
0.60 0.5811 0.1105 5.05 0.5450 0.5442
0.70 0.6597 0.1721 5.10 0.4998 0.5624
0.80 0.7230 0.2493 5.15 0.45563 0.5427
0.90 0.7648 0.3398 5.20 0.4389 0.4969
1.00 0.7799 0.4383 5.25 0.4610 0.4536
1.10 0.7638 0.5365 5.30 0.5078 0.4405
1.20 0.7154 0.6234 5.35 0.5490 0.4662
1.30 0.6386 0.6863 5.40 0.5573 0.5140
1.40 0.5431 0.7135 5.45 0.5269 0.5519
1.50 0.4453 0.6975 5.50 0.4784 0.5537
1.60 0.3655 0.6389 5.55 0.4456 0.5181
1.70 0.3238 0.5492 5.60 0.4517 0.4700
1.80 0.3336 0.4508 5.65 0.4926 0.4441
1.90 0.3944 0.3734 5.70 0.5385 0.4595
2.00 0.4882 0.3434 5.75 0.5551 0.5049
2,10 0.5815 0.3743 5.80 0.5298 0.5461
2.20 0.6363 0.4557 5.85 0.4819 0.5513
2.80 0.6266 0.5531 5.90 0.4486 0.5163
2.40 0.5550 0.6197 5.95 0.4566 0.4688
2.50 0.4574 0.6192 6.00 0.4995 0.4470
2.60 0.3890 0.5500 6.05 0.5424 0.4689
2.70 0.3925 0.4529 6.10 0.5495 0.5165
2.80 0.4675 0.3915 6.15 0.5146 0.5496
2.90 0.5624 0.4101 6.20 0.4676 0.5398
3.00 0.6058 0.4963 6.25 0.4493 0.4954
3.10 0.5616 0.5818 6.30 0.4760 0.4555 .
3.20 0.4664 0.5933 6.35 0.5240 0.4560
3.30 0.4058 0.5192 6.40 0.5496 0.4965
3.40 0.4385 0.4296 6.45 0.5292 0.5398
3.50 0.5326 0.4152 6.50 0.4816 0.5454
3.60 0.5880 0.4923 6.55 0.4520 0.5078
3.70 0.5420 0.5750 6.60 0.4690 0.4631
3.80 0.4481 0.5656 6.65 0.5161 0.4549
3.90 0.4223 0.4752 6.70 0.5467 0.4915
4,00 0.4984 0.4204 6.75 0.5302 0.5362
410 0.5738 0.4758 6.80 0.4831 0.5436
4.20 0.5418 0.5633 6.85 0.4539 0.5060
4,30 0.4494 0.5540 6.90 0.4732 0.4624
4.40 0.4383 0.4622 6.95 0.5207 0.4591
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We could divide the wavefront into strip zones and then add the field components (as
done for Fig. 7-22) to again form a spiral. That same curve, known as the Cornu spiral
and depicted in Fig. 7-80, can be generated by plotting the points

B(w) = C(w) + id(w)
in the complex plane for all w from —« to +«. For specific values of u, say, u: and s,

there will be corresponding points on the spiral, B(u:) and B(us). The vector, or more
accurately the phasor, Bi: drawn from B(ui) to B(u») is the complex number B(us) — B(u), i.e.

us
B = u) + icf(u
n = [ +igw)]”
The electric field in complex form for the specific case of a rectangular aperture is, therefore,
E
E, = —5{B(u)— B(w)][B(:)~ B(oy)]

Because the element of arc length on the spiral is given by d€ = d(?+dd?, it follows
from the definitions of the Fresnel integrals that

2 2
e = <cosz—"’§— + sinz—"’zﬂ—) duw?

Therefore d{=dw and w corresponds to arc length measured along the curve.

+0.7 15 vz
/\'
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/ \
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Fig. 7-30
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Recall that for simplicity the obliquity factor was taken as one and the amplitudes of
the secondary wavelets were made independent of p and . Had this not been done, the
resulting vibration curve would have been somewhat more tightly wound than the Cornu
spiral. Provided that p, > A and 7, > A, the effect is quite negligible.

~

SOLVED PROBLEMS

7.48. Derive an expression for the irradiance in the near-field pattern of the rectangular
aperture of Fig. 7-29, where, this time, the incident waves are planar.

With incoming plane waves pg = ®, py+ 75 = po and so
0 o T o = po

v = _2_ 1/2 v = 2 _2_ 1/2
=¥ )\7'0 - )\’ro

in the expression for Ep. The latter can be reformulated more explicitly as
Ey .
Ep = S{[Clup) — Cup)] + il () ~ Sy}

- X {[C(vg) — C(v))] + i[f(v2) — S(va)]}

Since I « EpEp/2, I,
I = —{[Clup) — C(u)]? + [Sua) — S(u)]?}

X {[C(ve) — Clv)]? + [f(ve) — S (w)]%}

where, for the unobstructed wave, I, « EyEp/2.

744. A plane wave (A = 500 nm) of irradiance 20 W/m? impinges normally on an opaque
screen containing a square hole 4 mm on each side. Calculate the irradiance at a
point on the central axis 4 m from the center of the hole.

With reference to Fig. 7-29, the edges of the aperture are located at ¥, = —2 mm, y, =2 mm,
z;=—2mm and 2, =2 mm, with the origin on the SP line at the very center of the hole.

Thus, since
2 \12 2 1/2
a— — e = 3
<>\ro) [(500 X 10"9)(4)] 10

0 =-2, uy=+2, vy =—2 and v, = +2. The Fresnel integrals are odd functions; that is,
Cw) = —((—w) Jw) = —f(—w)
Consequently, from Problem 7.43,
10) = %{[ZC(Z)]2 + [20(2)]%}2

Table 7-1 provides us with ((2) = 0.4882 and f(2) = 0.3434; thus
1
10) = 7“’(0.9534 +04717)2 = 05081,

or 10.2 W/m2,

745. A plane wave (A = 500 nm) of irradiance /o is normally incident on a square aperture
2 mm on a side. A small probe is placed at a perpendicular distance of 4 m from the
screen and 0.1 mm to the left (—y-direction) of dead center. (a) What irradiance will
it measure? (b) Show that the same result obtains 0.1 mm to the right of the center line.

(a) The line from S to P is now 0.1 mm left of center on the y-axis. Measuring from the intersection
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point O of SP and the aperature plane, we have y; =—09mm, z,=—1mm, y;=11mm
and 2z, =1 mm. Inasmuch as

1/2 1/2
AT (600 X 10—9)(4)
u; =—09, v,=-10, u, =11 and v, =10. From Problem 7.48,
I
I = Z{CAD+CO92 + [JLD +S0.9)3
X {[€1.0) + C(1.0)]2 + [of(1.0) + <f(1.0)]2}
or, using Table 7-1,
I
I = —7{[0.7638 +0.7648]2 + [0.5365 + 0.3398]2}
X {[2(0.7799)]2 + [2(0.4383)]2} = 2481,
(b) To the right of center, y; = —1.1 mm, 2z; = —1.0 mm, y;, = 0.9 mm and z; = 1.0 mm, Therefore

u; = -11, v; =10, u, =09 and v, =1.0, and s0

I
I = {09+ A+ [JO09) +JSAD]

X {[C1.0)+ C(1.0)]2 + [of(1.0) + <f(1.0)]2}

which is identical to the result in (a).

7.46. Apply the Cornu spiral representation

(a) to Problem 7.44, (b) to Problem 17.45.

(a) In Problem 7.44 there were the usual two
sets of variables, u; = —2, u, =+2 and
v; = —2, vy, = +2. Because the two sets are
equal in this instance, B,5(z) = B;2(v). Quite
generally, though,

Iy
Ip = Il"lz(“)l2 |Byo(v)]2

for a rectangular aperture. To evaluate
B,,(u) one need only locate B(u,) and B(uy)
and connect them with a line of length
|By2(%)|, as in Fig. 7-31. Measure the extent
of |B,y| with any convenient scale and then
read off the corresponding value on either
the (- or of-axis; in this case it’s just about
1.2 units. A more precise calculation of

* -
(B15B1)1/2 = [By
proceeds from
By

whereupon |Byg|

Because of the symmetry,

10) = 1_0(1'2)2 1.2)2

(b) We locate u,

—0.9 and u; =11 and then again v

Fig. 7-31

= [Cluo) — Clu)] + ilflug) — f(uy)]
= 2{(0.4882)% + (0.3434)% /2 = 1.19

051,

1.0 and v,=1.0 in the manner

shown in Fig. 7-32. The length of Bj,(x) is about 1.75, while that of B,y(v) is roughly 1.78.

Hence

I,
I = (1752 (L78)
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Fig. 7-32

747. A monochromatic point source S of vacuum wavelength Ao = 400 nm resides at a
perpendicular distance of 1 m from an opaque planar screen in which there is a long
narrow horizontal slit of width Az =0.2 mm. Calculate the irradiance at a point P
on the center line SP of the slit and 4 m from it, using the Cornu spiral.

For a rectangular aperture I,
Ip = '4_||312(“)|2 |Byo(v)|2

In the case of a long slit, y; > —», yy—> +=, and so u; > —~ and u; > +=. The limiting val-
ues of B(») and B(—«) are Bt and B—, respectively (see Fig. 7-80). Thus in the y-direction we
have |B,y(u)] = B—B+, which is equal, from the Cornu spiral, to V2. In other words, the line from
B~ through O, to B+, i.e. from point (—0.5, —0.5) to (0.5, 0.5), is V2 units long. Hence the above
expression applied to a narrow slit becomes

Iy
Ip = ?lBlz(v)P

For the data,
[2(p0 + 7'0) 1/2
v = z| ———
ApgTo
2144 1/2
becomes v = z[myi—l-g:-g(—lﬁ] = 2(2.56 X 108)

For P opposite the middle of the slit, z; = —0.1 mm, 2z, = +0.1 mm, and therefore v, = —0.25,
vy = +0.25. The arc length from B(v,) to B(v,) is Av = vy — v; = 0.5; therefore, the chord |By,| is
very slightly less than 0.5, and I,
I1(0) ~ §(0.5)2 ~ 01251,

748. In Problem 7.47, the slit was quite small and the fringe system resembled the Fraun-
hofer case. Supposing the slit now has a width of 1.6 mm, make a plot of Z, leaving
everything else unaltered.

Once again v = z(2.5 X 10%), but now, opposite dead center, z, = —0.8 mm, 2z, = +0.8 mm,
hence vy = +2, v; = ~2 and Av = 4. The quantity Av is independent of the location of P, pro-
vided P stays a constant distance behind the screen. It can be thought of as a length of string
lying atop the spiral. Moving P vertically merely causes the string to slide up or down the spiral,
thereby changing the straight-line distance |B;,] between its endpoints. Rather than plotting I
against 2, let us graph |B;,(v)|2 versus (v, + v5)/2, which is the midpoint location of the string.
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Table 7-2
(vy +vy)/2 B, IByo)2
0 1.19 1.42
0.1 1.23 1.51
0.2 1.33 1.77
0.3 1.44 2.07
0.4 1.56 2.43
0.5 1.59 2,53
0.6 1.57 2.46
0.7 1.54 2.37
0.8 1.55 2.40
0.9 1.63 2.66
1.0 1.67 2,79 '
11 1.65 2.72
1.2 1.45 2.10
1.3 1.27 1.61
14 1.15 1.32
1.5 113 1.28
1.6 111 1.23
17 1.02 1.04
1.8 0.87 0.76
1.9 0.70 0.49
2.0 0.65 0.42
Byof?

—e
—t —+ | '
-2 -1 ? 1 2
('vl + '02)/2
Fig. 7-33
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7.49.

7.50.

STUDENTS-HUB.com

The results, which are applicable to any slit for which Av = 4, are indicated in Table 7-2 and
Fig. 7-88. This is the pattern as it would be measured by a small probe moving vertically across
the slit, What would actually be seen is a gray central horizontal band followed symmetrically on
either side by bright and dark regions.

Write an expression for the irradiance at a point beyond a semi-infinite planar
opaque screen and discuss the near-field pattern.

First, envision a narrow horizontal slit in a vertical screen, for which (see Problem 7.47)

1y
Ip = '§|Blz("’)|2

1
F-{C2) — C@D]2 + [of (v9) ~ F(wp)]2}

Now suppose the upper opaque portion of the screen is removed leaving one straight edge. Clearly
2y — », ag does vy and so ((vy) > 1/2, as does f(vy). Hence

I = %"{[-;— ~con] +[3- efm)]z}

The spiral of Fig. 7-34 displays B,, for five different vertical locations of P, ranging from (1)
below the edge to (5) well above the edge. Figure 7-35 is the corresponding irradiance as might be
measured by a probe moving vertically. Of course, the fringes are horizontal bands.

AIP/Io
-~
4)

1.5

i i 5
g 1 6 -1 -2 -3 —4 =5 q

Fig. 7-34 Fig. 7-3

A large opaque sheet of cardboard is held vertically so that its top edge is horizontal.
Plane waves (o = 640 nm) impinge on it normally. Calculate the irradiance at a
point 2 m behind the screen and 0.8 mm below its edge.

From Problem 7.49
I
Ir = ‘23{[% ~co] +[3- @ﬂvo:],}

o 12
where v, = 2 [m \
\ l: 2 1/2
Here v, = 08X10 m] = 10
1
and so Ip = ?0 [(0.5 — 0.7799)2 + (0.5 — 0.4883)2)]
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This yields I
Ip = 3000783+0.0038] = 0.041],

7.51. A He-Ne laser beam (Ao = 632.8 nm)
passes through a positive lens of
focal length 25 em. A 0.4-mm diam-
eter straight wire is held in the
beam vertically 225 em from the lens
and the near-field diffraction pattern
is examined on a screen 3 m from
the wire. Use the Cornu spiral to
calculate the irradiance at a central
point, 1(0).

As viewed from a central point, y, =
—0.2mm and y, = 0.2 mm. Hence, since

_ 2(pg + 70)71/2
“ = y[ ApgTy :]

and A =6328X10-*m, py=2m, and
ro = 3 m, we get

+0.325

Uy =

u, = —0.325 up = +0.325

Thus, Au = 0.660 and the spiral of Fig.
7-36 shows the two contributions to the

field,
——. ——
B-B(u,) + B(uy)B+
both to equal about 0.51 in length. Hence, Fig. 7-36

1
10) = ?"(1.02)2 = 0521,

Supplementary Problems

RADIATION FROM A COHERENT LINE SOURCE
752. Verify that I(6) for Young’s experiment is a special case of the linear array where N = 2,

7.58. ' A coherent linear array contains N elements. Prove that there will be N —1 minima between each
pair of principal maxima. How many secondary maxima exist in that region?

Ans. N-2

754. A radio-frequency interferometer at the University of Sydney consists of thirty-two, 2-m diameter
parabolic antennas spaced 7 m apart. It operates at a wavelength of 21 cm. Compute the angular
separation between principal maxima, as well as the width of the zeroth-order central peak.

Ans. 1°43’; ¢

755. Suppose that an intrinsic phase difference of : exists between adjacent emitters in a coherent line
source. Write an expression for the angular orientation of the zeroth-order principal maximum.

A
Ans. @y = sin—1-—
ne 0 2ra
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756. Use the result of Problem 7.56 to determine the angular displacement which would occur in the
orientation of the zeroth-order lobe with the introduction of a 80° phase shift between successive
emitters in a linear coherent array. Assume there to be 20 point sources with a frequency of
109 Hz, the spacing being 60 cm.

Ang. See Problem 6.57.

757. Imagine a plane light wave impinging on a planar smooth interface at an angle 6;, Consider the
row of atoms lying along the intersection of the surface and the plane of incidence to constitute
a coherent line source. Show that the single principal maximum reradiated by the atoms will be
at an angle 6, = 6;; this is, of course, the law of reflection.

Ans. The key consideration is that e, the induced phase shift between successive atoms, is equal to
(2ra sin 6;)/\.

FRAUNHOFER DIFFRACTION BY ONE AND TWO NARROW SLITS

758. Use the geometry of Fig. 7-87 to show that the loeation Z,, of the mth irradiance minimum is
independent of the position of lens L, in Fig. 7-5. In other words, the irradiance pattern is un-
altered by displacements of the lens (assuming the latter to be very large in diameter).

Fig. 7-37

Ans. Z, = mrf/(a2—m2\2)1/2 and therefore independent of ¢.

7.59. How is the far-field single-slit pattern altered if the incident plane waves arrive at an angle of 30°?
Ans. Central fringe shifted to ¢ = 30°, fringes widened by a factor of 1.15.

760. Consider the far-field diffraction pattern of a single slit under polychromatic illumination. If the
first minimum with A, is found to be coincident with the third minimum at A;, determine the rela-
tionship between these two wavelengths.

Ang. N\ = 3)\2 )

7.61. Plane waves from a He-Ne laser at 632.8 nm impinge normally on a narrow slit 1 mm wide. What
is the width W of the central peak at half-maximum irradiance on a screen 1 kilometer away?

Ans. W = 6328 mm
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7.62. Plane waves at 550 nm are incident normally on a narrow slit having a 0.26 mm width. The
Fraunhofer diffraction pattern resides in the focal plane of a large, 60-cm focal length lens. Compute
the distance between the first minima on either side of the central axis.

Ang. 2.64 mm

7.63. Plane waves (A = 550 nm) impinge normally on a 0.25-mm wide slit, thereby generating a Fraun-
hofer pattern in the focal plane of a collecting lens. If the separation between the two fourth-order
minima is measured to be 1.25 mm, compute the focal length of the lens.

Ans. f = Tl cem

7.64. Show that there will be 2M bright fringes within the central diffraction peak in the far-field pattern
of two slits each of width b and separated by a, provided that a« = Mb.

7.65. Consider the far-field pattern of a double-slit arrangement. Fifteen bright fringes appear within
the central diffraction peak. If each slit is 0.25 mm wide, by how much are they separated?

Ans. a =1.88 mm.

7.66. Two narrow slits separated by 0.4 mm are illuminated normally by plane waves of wavelength
550 nm. Nine bright fringes are observed on a screen 3 m away. On either side of these bright
bands, several very weak fringes are visible. Determine the distance separating consecutive maxima.
Calculate the width of each slit.

Ang. AZ = 4125 mm, b = 0.089 mm

MULTIPLE NARROW SLITS — THE DIFFRACTION GRATING

7.67. Show that the formula for N slits,

. in Na \ 2
I(e) = Iy(sinc? ﬁ)(%ﬁ)

reduces to the previously studied equations for one and two slits when N =1 and 2, respectively.

7.68. Is there any limit to the number of principal maxima in the far-field pattern of an N-slit array?

Ans. Yes, m = a/A,

7.69. Imagine that you have an array of N slits, where N is an odd number. Show that the irradiance
of the subsidiary maximum residing midway between a pair of consecutive principal peaks equals
1(0)/N2, provided ¢ is small enough so that sinc2g ~ 1.

Ans. (sin No/sin «)2 = 1, since a is odd multiple of #/2, as is Na.

7.70. . A beam of polychromatic light ranging in wavelength from 450 nm to 650 nm impinges normally
on a 12,000-line-per-inch transmission grating. The pattern appears in the focal plane of a collect-
ing lens which follows the grating. What focal length must the lens have if the second-order spec-
trum is to be 1.25 cm in extent?

Ans. f = b.63cm

7.71.  Prove that the resolving power of a grating cannot be greater than aN/A.
Ans. See Problem 7.68.

7.72. A transmission grating having 16,000 lines per inch is 2.5 inches wide. Operating in the green
at about 550 nm, what is the resolving power in the third order? Calculate the minimum resolvable
wavelength difference in the second order.

Ans. Ry = 120,000, (AN)pp = 6.88 X 10-3 nm
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7.78. A one-meter long He-Ne laser operating at a mean wavelength of 632.8 nm has longitudinal cavity
modes separated by 150 MHz. How large must a 2000 line/mm grating be if it is blazed to operate
in the second order, where it must resolve the laser’s mode structure?

Ang. aN = T9 em

7.74. Can the first and second orders of a diffraction grating under visible illumination ever substantially
overlap? Can the second and third orders overlap?

Ans. The 1st and 2nd just about miss (depending on your definition of visible), but the 2nd and
3rd certainly can overlap. '

7.95. A diffraction grating has its third- and fourth-order spectra overlapping. What wavelength in the
third order coincides with the 490 nm line in the fourth order?

Ans. A = 6533 nm

RECTANGULAR AND CIRCULAR APERTURES — FRAUNHOFER DIFFRACTION

7.76. Suppose that a point source S of wavelength A lies along the central axis a perpendicular distance L
from an aperture whose maximum extent is d. Show that Fraunhofer diffraction will obtain on a
distant screen when

dz

L>§

(As a rule of thumb L > d2/n is generally used to define the far field both in this instance and
in the reverse, where the incident waves are planar and the observation screen is a distance L from
the aperture.)

7.77. A circular hole of radius 1.256 mm in an opaque screen is illuminated perpendicularly by plane waves
from a He-Ne laser (A = 632.8 nm). Roughly how far away must a viewing screen be in order to
see a Fraunhofer diffraction pattern without using any lenses?

Ans. L greater than about 10 m (see Problem 7.76)

7.78. In the far-field pattern of a square aperture, determine the peak irradiance of the third bright spot
lying along a diagonal (o’ = 8’) as compared to 1(0).

Ans. I/I(0) ~ 0.000068

7.79. How does the central peak in the far-field irradiance pattern of a rectangular aperture depend on
the wavelength and hole area?

Ans. I1(0) o« A26% and therefore I(0) o« A2/2.

7.80. A telescope objective is 12 cm in diameter and has a focal length of 150 cm. Light of mean wave-
length 550 nm from a distant star enters the scope as a nearly collimated beam. Compute the
radius of the central disk of light forming the image of the star on the focal plane of the lens.

Ans. gq; = 8.39X10-3 mm

7.81. A laser beam can be so well collimated that it spreads out only as a result of diffraction. Suppose
that we have just such a diffraction-limited He-Ne laser emitting a 2-mm diameter beam at 632.8 nm.
Determine the beam diameter at a distance of 1 kilometer from the laser.

Ang. = Tl cm
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7.82. Light from a very distant point is filtered so that only 450 nm enters a perfect collecting lens of
focal length 225 mm. How large must the lens be if the image is to consist of a central spot 1,
(i.e., 1 micron = 10—¢ m) in diameter?

Ans. D = 24.7Tcm

783. The 140-ft diameter parabolic disk of the National Radio Astronomy Observatory in Green Bank is
the largest fully steerable radio telescope. Compute its angular resolution for the 1420 MHz line
emitted by interstellar hydrogen

Ang. 6X10-3rad or 0.344 degrees

784. The expression for (A¢)yi,, the minimum angular source separation derived in Problem 7.32, applies
to the eye as well, although because of the vitreous humor the angular separation on the retina is
(A®)min/n. In any event, assuming the eye to be diffraction-limited and having a pupil diameter
of 2.5 mm, determine (A¢)y, for a mean wavelength of 550 nm. How far apart must two small
balls be if they are to be just resolvable at 1 kilometer?

Ans. (A¢)pim = 2.68 X10—%rad, 26.8 cm

7.85. The two headlights on my ’69 Toyota are about 48 inches apart. How far away must I stand if the
lights are to be just resolvable as two separate sources? Assume A = 550 nm and a nighttime
pupil diameter of 4 mm.

Ans. 65km

FRESNEL DIFFRACTION — CIRCULAR SYSTEMS
786. A plane wave (A = 500 nm) impinges normally on an opaque screen containing a 1-cm diameter hole.
How many Fresnel zones will be uncovered b_y the aperture when viewed on-axis from 0.5 m away?
R2

Ans. -’;‘;X = 100

787. A small irradiance probe sits on the central axis 2.25 m from an opaque screen containing a circu-
lar hole. Under normally incident plane wave illumination at A = 500 nm, what hole radii will
generate readings which are maxima and minima?

Ans. maxima: R = 1,06 mm, 1.84 mm, 2.37 mm

minima: R = 1.50 mm, 2.12 mm, 2.60 mm

7.88. Collimated He-Ne laser light (A = 632.8 nm) impinges normally on a circular aperture of radius
0.7956 mm. What is the irradiance at an axial point 2 m from the hole in terms of the incident
irradiance?

Ans. I =2I,

789. A collimated beam of wavelength 500 nm and an irradiance of 40 W/m? is incident normally on a
screen having an aperture as indicated in Fig. 7-38. Determine the irradiance at an axial point
4 m away.

Ans. I = 90 W/m?
790. As viewed from an axial point P, a circular aperture uncovers the first one and one-half Fresnel

zones. What is the irradiance at P as compared to the unobstructed value of I;? Assume incident
monochromatic plane waves.

Ans. From the vibration curve, I =2I,,.

791. Light from a very distant point source (A = 500 nm) arrives normally on the aperture shown in

Fig. 7-39. Compute the irradiance at an axial point 4 m from the hole if the incident irradiance
is 256 W/m2.

Ans. I = 100 W/m?2
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Fig. 7-38 Fig. 7-39

7.92. The obstruction shown in Fig. 7-40 is illuminated by
normally incident plane waves (A = 500 nm). Discuss
how the vibration curve can be used to compute the
flux density at point P, 4 m away on the central axis.

—
Ans. Field for obstruction by central disk only, Z,,0;;

for two-zone opaque disk, Z,,0,. Therefore sec-
—

ond-zone obstruction contributes 2 Z,,0;. Hence
field here is Z,0] — 2Z,,0//2 and I =~ 0.

793. One form of zone plate is a sheet of clear material with
alternately opaque and transparent concentric rings
painted on it. The arrangement is such that when
placed a distance py from a point source S and viewed
at P a distance r, away, it will obscure alternate Fres-
nel zones on the wavefront. Show that

R12n Fig. 7-40

J =

mn
is the equivalent focal length of the device inasmuch as
1 + 1 1

o T 1

Compute the radius of the first zone of the plate when py =7 =5m and A = 500 nm.
Ans, R1 = 0.11 cm

7.94. Compute the irradiance at the focus of a zone plate in terms of the unobstructed value I, when all
the zones with the exception of the first are obscured.
Am. I = 4Io

795. What is the foeal length of a zone plate for light of wavelength 650 nm if the radius of the 8th
ring is 4.5 mm? Compute the image distance for a point source 7.788 m from the plate.

Ans. f=389m, 7, = 7.788m

FRESNEL DIFFRACTION — STRAIGHT EDGES

796. Show that the near-field irradiance I(0) at a point opposite the center of a wide slit approaches I,
the unobstructed value.
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7.97. The angle g8 formed by a tangent to the Cornu spiral and the (-axis through O, is the relative
phase. Show that the slope of the spiral is tan (zw2/2) and from that, B8 = rw?/2. Locate the
points on the spiral corresponding to the boundaries of the Fresnel strip zones, i.e. find the hori-
zontal tangent points. Locate the vertical tangents as well.

Ans. horizontal: w = \/E, \/71_, \/?5-, cen
Vi, V8, V5, ...

i

vertical: w

798. A horizontal line source of vacuum wavelength 600 nm is positioned 2 m from and parallel to a
long narrow horizontal slit 0.25 mm wide. What is the irradiance at a point on the central axis
8 m from the aperture? Compute the arc length on the Cornu spiral corresponding to Az,

Ans. I(0) = 0.091, Av = 0417

799. A p}ane wave (A = 640 nm) impinges normally on a horizontal, narrow slit of width 0.4 mm. Cal-
culate the irradiance on a screen 2 m away at a point 1 mm below the center line, in terms of the
unobstructed value of I

Ans. I = 0.08961,

7.100. Determine the greatest possible value of irradiance which will be measured by a small probe directly
opposite the center of a long narrow slit whose width is variable.

Ans. I = 18I,

7.101. Using the Cornu spiral, explain how a very narrow slit generates a pattern approaching the
Fraunhofer situation.

Ans. Uncovering a fraction of a zone corresponds to Fraunhofer diffraction and a small Av.
Only after many turns around either B~ or B+ will the endpoints of the arc Av approach
each other, yielding a near-zero minimum. Look at B, = 0 for Av = 0.5 extending from
7" = 3.8 to Vg = 4.3,

7.102. A horizontal line source of A = 500nm, 1 m from a parallel narrow slit, produces a near-field pat-
tern on a screen 4 m from the aperture. Roughly what must the slit width be if the irradiance
at an axial point is to be a maximum?

Ans. Az =~ 113 mm, Av = 2.563

7.103. Prove that the irradiance for a semi-infinite screen (Fig. 7-835) has a value of 1,/4 opposite the edge
of the obstruction.

7104. A plane wave (A; = 400 nm) is incident normally on an opaque half-plane with a horizontal upper
edge. Locate the positions of the first maximum and minimum on a screen 10 m away.

Ans. 1st min,, z = 2.66 mm; 1st max., z = 1.78 mm

7.105. A narrow opaque strip 1.766 mm wide is under plane 1
wave illumination from a ruby laser at 693.4 nm. The
diffraction pattern appears on a screen 1 m from the
strip. Calculate the irradiance at a central point and av = 3.0
sketeh I/1,. . ,
Ans.  1(0) = 0.081, ‘ —5 0 1 L
(See Fig. 7-41.) Fig. 7-41
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Chapter 8

Introduction to Fourier Optics

81 PERIODIC WAVES AND FOURIER SERIES
An interesting thing happens when you add two sinusoidal waves of different fre-
quencies, such as those of Fig. 8-1. The resultant is itself not sinusoidal; which rather sug-

I’ “N\E +E,

Fig. 8-1

gests that complicated waveforms can be generated by the judicious selection of harmonic
contributions of different frequencies, amplitudes and phases. Indeed Fourier's theorem
states that a function f(x), of spatial period A, can be synthesized as a sum of harmonic
functions whose wavelengths are integral submultiples of A (t.e. A, A/2, A/3, etc.). In other
words, if f(x) is a periodic function of wavelength A, it can be represented by a Fourier
series of the form

2 2
fl®) = Co + Cl COS(')—:‘.-:B-Fsl) + C,cos(-XT;-x.*.ez) + -

wherein the C-terms aré constants specifying the amplitudes of the various contributions.
Notice that changing = to x —ot creates a traveling wave out of the profile and we can
think of anharmonic disturbances as sums of sinusoidal waves.

An equivalent restatement of the above series is the more common representation fabri-
cated of both sines and cosines, namely

flx) = -42-'3 + Y Amcosmkx + 3, Bmsinmkz
m=1 m=1
The amplitude cofficients are computed from the following integral expressions:

2 A
An = XJ; f(x) cosmkzdz  (m=0,12,...)

Bm

A
-f—f f@)sinmkzde  (m=1,28,...)
0
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The integrals could also be evaluated over any other one-period interval.

If the function being synthesized is even, it is mirror-symmetrical about the = = 0 axis,

ie. f(z) = f(—=).

functions, that is, only cosine terms, and so B = 0 for all

In that instance the Fourier series representation contains only even

m. On the other hand, should

the function be odd, i.e. f(x) = —f(—x), the Fourier series contains only the odd sine functions;
An=0 for all m. To be sure, f(x) does not have to be either odd or even, in which case

the series consists of both sines and cosines.

Keep in mind that for now we are dealing only with periodic waves of infinite extent.

SOLVED PROBLEMS
8.1

Compute the Fourier series representation of f@) A
the periodic function
+1
_ (41 when 0<z<)/2, etc.
fz) = —1 when A/2 <z <A, etc.
as depicted in Fig. 8-2. =y =Y o vz I vz %
Evidently f(x) is odd and therefore all cosine
terms are absent; A,, = 0. The coefficients B,, are -
computed from
2 (*
Bnmn = N f f(x) sin mkz dz Fig, 8-2
°
which upon substitution of the actual value of f(x) becomes
9 (M2 9
B, = Kf (+1) sin mkx dx + -):f (—1) sin mkx dz
° A2
= L — cos mkx . + 1 cosmkx])‘ = l(l — cos mw)
mr 0 mx N2 Mmar
In other words, 4 4
Bl = ;, B2 = 0, B3 = 5;', B4 = 0, ete.
and the desired series is
f@) = i(sinkx + Lsinske + Lsinbka + )
T 3 , b
Incidentally, when a function looks the same above and below the axis, its series representation
will contain only odd harmonics, i.e. only odd multiples of k, the fundamental angular spatial
frequency. If the curve of Fig. 8-2 is rotated 180° about the z-axis and advanced A/2, it is un-
changed, and this sort of behavior is sometimes spoken of as screw symmetry.
82. Graphically add the first three contributions to'the Fourier series for the square

wave of Problem 8.1.

We call the sum of the first N terms of a Fourier series its Nth partial sum. For the square

wave the first partial sum, =2,, is just

-:— sinkx = 13 sinkx
as plotted in Fig. 8-8(a). The second partial sum,
_ 4
3, 3, + 3, sin 3k

is plotted in Fig. 8-3(b).
The third partial sum,
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br

is pictured in Fig. 8-8(¢). Notice that each
term in the series is a positive sine, all of
which are therefore in phase at = = 0.

S, = 3, + o sinbke T aN

—N2 0 A2

8.3. Derive the Fourier series represen-
tation of the periodic function de-
picted in Fig., 8-4. Plot each of the -1 P
first six harmonics, as well as the NS 3, = Jsinks
sixth partial sum. (a)

The function is clearly odd, which N
means that A,, =0. Over the interval NS
from —)\/2 to +1/2; f(x) = x and so /

9 M2 . \
B, = x sin mkx dx N [N s
N2 ;N an F

. / \ 7 v
_ 2 sinmkx =z cos mkx V2 N/ L S/

- - ~er

N mk a2 \ ;

= ——:—Ecos mw \ /A/l

and so .4_(

(®) - sinkz + % sin 8kz>
fx) = %(sin kx — -21- sin 2kx

1.
+~§sm3kx )

Figure 8-6 shows the first six har- - S N . )
monics, as well as the sixth partial sum. NN BT WA >
Observe that the minus signs in the series ) ) )
are equivalent to a phase shift. :

84. Figure 8-6, page 208, shows a peri- LN s

odic function, the repeating element 3 = f(-in kz + % sin 3kz + % sin 5"')
of which corresponds to f(z)= 2% (©
Compute the appropriate Fourier
series. Fig. 8-3
fx) A

A /2
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(=) ﬂ

1 I ] »
> T
=Y -2 o A2 A
i

Fig. 8-6
The function is evidently even, hence B,, =0 and

: g (M2
Ay, = T f 22 cos mkzx dx
N2

We need first to evaluate A¢:

2 +A/2 2/ 2
= -_— 2 = —_— -
Ao X a2 22 dx 3

Integrating the expression for A, (m > 0) yields

_ 2[ 2 2 . a2 R g=ym
A, = K[W cos mkx — Wsmmkx + msinrnk:zt::l“”2 = o
= 1/ 4™
whence flx) = 3<> + 2 iz % mhx
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85. Imagine the electric field component of an electromagnetic wave to have the rather
unlikely profile shown in Fig. 8-7. This is the familiar half-wave rectified sine
function. Compute its Fourier series representation.

E(x) A

Eyt

py =y ° V) A a2

Fig. 8-7

This time the function, with the vertical axis at the given location, is neither odd nor even.
We have: 9 (M2
A, = Kf E, sin ka cos mkx dx
[}

_ 2E, [:__ cosk(l—m)xz _ cosk(l + m):zz:])‘/2
x 21 — m) T

except when m =1, in which case the integral is zero (i.e., 4; =0). Carrying on,

2F, {_ cos fr(1—m)} —1  cos[r(1 +m)] — 1}

Am = = k@ —m) 2kl +m)

which is zero for odd m and yields
E, 1

_ 1
Am = x 1—m+1+m]

2 A/2
B, = ;j; E, sin kx sin mkx dx

for even m. Similarly,
which, because of the limits, is zero for all m #= 1. When, however, m =1,

B—gﬂ?.uz—ﬂ
1= Nl2d - 2

_ Eo Eo R 2Eo 1 1
E(@ = —+ 5 sinks — —(3cos2kz + - cosdkx + ---
T x \3

Hence

16

86. Envision a plane wave of amplitude E, impinging normally on a large horizontal
Ronchi ruling. The latter is a grating formed of alternately transparent and opaque
strips, each of width b. The emerging electric field over the screen or aperture is a
step function —compute its Fourier series representation, assuming it to have effec-
tively infinite extent.

Figure 8-8 is the field as seen along a vertical line across the ruling. By locating the origin
mid-peak, we create an even function for which B,, = 0. Thus, with b = /2,

2 +A/4
Ao = —f Eodﬂ = E,
LSV
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Bear in mind that here \ is the spatial period
of the aperture function and not the wavelength
of the incident wave. Continuing,

_2_ +A/4

An = x Ey cos mky dy
—N/4

2K, +)\/4
= ],

2By omx _ o mu
= ansing = Eysincg
Consequently, the field across the aperture can
be thought of as having a specific harmonic con-
tent, namely

-]
Ely) = % + 3 E,sincZE cos mky
. m=1 2

As in Problem 8.5, the function resides
above the axis and, therefore, has a nonzero
average value, i.e. Ay # 0. In effect, this means
that to go from a sgituation such as that of
Fig. 8-2 to the present case, we must raise up
the function by the inclusion of a constant or
“de” term (Ey/2).

8.7. Derive a complex exponential form of
the Fourier series.

Using the identities

e+ e~ = 2cosu
eit — e~ = 2iginu Fig. 8-8
the trigonometric statement
AO w© w© .
f@) = 5+ S A, cosmkz + X B, sinmkx
m=1 m=1

can be reformulated as

Ao hd imkz 4 o-—imkz L& eimkr — g—imkz
flw) = T"’ EAmg—'Te——_q' EBm_'z—_'
m=1 m=1

Shifting terms around a bit leads to

‘

flx) = ﬂ.,. 3 metmkx + § Mﬂe—tmkz
2 m=1 2 m=1
or f® = Co+ I Cpemkz + 3 C_, e imkz
m=1 m=1
where C, = Ay/2, and, for m =1,2,3,...,
A, —1iB A, +iB
Cn = —5— Com = —5—
A still more concise form comes from allowing negative spatial frequencies, i.e. negative values
of mk, whereupon m=+w
flx) = m __2_ - Cpetmhz

The complex coefficients C,, are now given for all m by

1
Cn = —-f f(x) e~ imkz dy
AJg
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82 FOURIER TRANSFORMS

Come back for a moment to the periodic square wave of Fig. 8-8. The coefficients of
the appropriate Fourier series, i.e. the A, vary as a sinc function. Since these terms are
weighting factors which specify how much of each harmonic component at any one spatial
frequency is present in the synthesis, a plot of their values, as in Fig. 8-9, is known as the
frequency spectrum. Notice in the figure that as the peaks of the square wave increase in
separation, they represent smaller and smaller fractions of the wavelength, even though
their widths are unchanged. Now, as the details of the function being reproduced get
smaller in comparison to A, the Fourier components themselves must have correspondingly
smaller wavelengths and, therefore, higher spatial frequencies. The spectrum of Fig. 8-9(c)
clearly shows this increasing number of frequency components.

f(=) T

A=1lem
£
3 N4 0 M4 A -~
g o 4, ) ~1/4 0 1/4 1 (em)
[
E I ! k=2
ﬁol A"?" e I D S o= mk
0 k 2k Sk 4k 5k 8k 10k
0 2 4r 6r 85 10x 16 20r
(a)
/(Z)t A=2em
2 |
—
3 N8 0 A8 N ®
g -1/4 0 1/4 2 (em)
£
2
£
2% 4k
0k 8k bk 10k
0 %2 4r 6v 8 10x12r 16z  20¢
(%)
flz)
A=4em
5
2 i | .
g —M16 0 M18
~1/4 0 1/4 4 (em)
§1 g )
1 |t A 1
'g k=qx/2
£ mi
2%k 6k
0 4k sk
0r2r 4 8 120  16r 20w

(©)

Fig. 8-9
When A is envisioned as extending to infinity, leaving a single pulse rather than a peri-
odic function, the discrete set of spatial frequencies, i.e. all the mk-values, smooth out into

a continuous distribution. The Fourier series representation of the periodic function changes
to the Fourier integral for a nonperiodic function:
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@) = %[ fo " A(K) cos ke dk + J; " B(k) sin ke a |

where Ak) = ' f(x) cos kx dx B(k) = f(x) sin kx dz

— -0 1

The latter two quantities are known as the Fourier cosine and sine transforms of the
function f(z).

Once again a convenient complex representation can also be generated and one finds

it to be teo
fl@) = 5 f F(k) e~ dk
+ e
where F(k) = f f(x) e*= dx

The function F'(k) is spoken of as the Fourier transform of f(x), and we write
F(k) = A(k) +iB(k) = F{f(x)}
Adopting a similar notation for the cosine and sine transforms, we have
Fif@)} = Fc (@)} +1iF {f(=)}
The quantity f(x) is said to be the inverse Fourier transform of F(k), or
fx) = FH{F(k)}

Our particular present interest in the Fourier pair, f(x) and F(k), lies far more with
the transform itself than with the process of actually synthesizing the function. Moreover,

as the functions of concern are usually two-dimensional in the spatial domain, we general-
ize the Fourier transform as follows:

+
f(x,y) = (szffp‘_kx’ky) e~z dk. dk,

4+
and F(ks ky) = f f f(z, y) €%+ dg dy

In Section 7.5 we saw that the diffracted field in the Fraunhofer case was given by

ei(mt— kR)

R ff 6.4(?/’ Z) eik(Yy+22)/R dy dz

aperture

E(Y,Z) =

where now we allow the possibility that the source strength is a variable over the aper-
ture. The exponential in front of the integral contributes only to the phase of the wave at
(Y,Z), while the 1/R term, which generates the drop-off in amplitude in going from the
aperture to the plane of observation, is constant over that plane in the Fraunhofer approx-
imation. Therefore, as far as the amplitude distribution in the diffracted field is concerned,
the factor multiplying the integral is inessential. Defining the spatial frequency param-
eters k, and k, by

kY kZ

R R

and introducing the aperture function, o4 (y, z), we then have for the diffracted field:

+ o
E(k, k) = fj‘ oA (y, 2) Mex+iaD Gy dy

kYE kZE

i
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This, of course, just means that
E(ky, k) = F{A(y,2)}

The diffracted field in the Fraunhofer case is the Fourier transform of the field distribution
over the aperture as expressed by c4(y,z). In other words, each spot of light in the diffrac-
tion pattern signifies the presence of a particular spatial frequency component in the syn-
thesis of the aperture function. This is just one of many examples of the applicability of
Fourier methods in opties.

SOLVED PROBLEMS
8.8. Calculate the Fourier transform of the square pulse in Fig. 8-10.

The origin is located so as to make the function even and thereby nullify the sine transform.
Hence, the cosine transform is

+o +L/2
Fc{f(®)} = A(k) = f f(x) coskz dx = f Eq coskzx dx
- —-L/2
E, +L/2 o
or Akk) = =2 sin kx:l = =2 sin kL _ EyL sginc kL
k -L/2 k 2 2

Just as in Problem 8.6 we have a sinc function, and it is the envelope of the frequency spectrum
of Fig. 8-9 as well. If you would like to know how strongly a given frequency contributes to
making up f(x), you need only plug that value of k into the sinc function and get the specific A(k).

Notice that f(x) can be related to the aperture function of a long narrow slit, whereupon its
transform resembles the diffracted field magnitude as studied in Section 7.3.

flx) A f(x) A

+E,

—d

8y

—L/2 0 +L/2

Fig. 8-10 Fig. 8-11

89. Compute and plot the complex Fourier transform of the function depicted in Fig. 8-11.
Inasmuch as N

F) = Lw f(z) e¥z dx

we must evaluate

0 : +d
Flif=)} = f_d —Eetkz dx + A E etk dy

This is simply

Flf@) = [—%e""]o_ﬁ[%e""]: d
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F(k)

2E, + 2Eo<eikd + e—ikd)

ik | ik 2

2{iE,
= - (1 — cos kd)
sin2 (kd/2)

kd/2
Figure 8-12 is a plot of the transform.

= 24Ed

8.10. The pulse illustrated in Fig. 8-18 can be expressed as
B(z) - Eocosky,r when —L=gx=1L
0 when |z| > L

Or, if P(x) is a unit-amplitude square pulse, as in Fig. 8-14, E(x) = P(x) E\, cos k,x.
In either event, k; is the spatial frequency of the oscillatory region of the pulse.
Compute F{E(x)}.

P(x) A
1
]
—L 0 +L
Fig. 8-13 Fig. 8-14
) Because E(x) is even,
+L
FlE@)} = A = E, cos k,x cos kx dx
Using the identity
cos{a*xB) = cosacosf T sinesing

the integral becomes
+L 4
F{E(x)} = f_L Eo§ {cos (k, + k) + cos (k, — k)z) dz
and hence

FE (=)}

sin (k, + k)L sin (kp — k)L
E°L[ Uy +PL + "y —PL ]

E,Lisinc (k, + k)L + sinc (k, — k)L)]

If L>x, (kp+kL>2r and
' F{E(x)} =~ E4L sinc (kp,— k)L

8.11. Determine the Fourier transform of the wave train given by
E(x) = P(x) cos? kyx

STUDENTS-HUB.com : Uploaded By: Jibreel Bornat



CHAP. 8] INTRODUCTION TO FOURIER OPTICS 215

where P(z) is the unit square pulse of Fig. 8-14. Sketch the transform in the limit
as the pulse extends to infinity.

We will use the complex transform and so represent E(x) in exponential form as follows:

cos?kyx = %+ %cos2kpx = %+%(e‘2kﬂ+e—ﬂkﬂ)

Consequently, ‘L oL .
F{E(x)} = 1 elkz doe + 1f el +2k)7 g + lf eltk—2k,)z dp
2/ AJ-L 4)
— : 1 .
= ksinkL + I+ 2% oky) sin (k + 2k,)L
1 .
+ 2(,‘_—2,‘?) sin (k - 2kp)L

L sinc kL + % sinc (k + 2k,)L + % sinc (k — 2k,)L

Figure 8-15 is a plot of the transform and its limiting case as L - ». Notice that although we
began this computation with the complex transform, the ultimate solution is real, just as it was
in Problem 8.10. The function here is even and F{E(x)} = Fc {E(x)}.

Keep in mind that E(x) may be related to an aperture function (in this instance, of a long
grating). Thus Fig. 8-15 resembles the magnitude of the Fraunhofer diffracted field.

|

~2k, 0 +2k,

~2k, 0 +2k,
Fig. 8-16

8.12. Calculate and plot the complex Fourier
transform of the function E(x) depicted
in Fig. 8-16. Observe that it can be
expressed as

E(@x) = Ux)e~**
wherein ¢ is a positive constant and U(x)
is the unit step function equal to zero
for z <0 and one for = > 0.
From the definition of the transform Fig. 8-16
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<« <«
f e—0rgikz dy = f e—(a—it)z g
o 0

[—a_likg—(a—ik)z]: = a 1' %

F{E(x)}

In order to plot this complex frequency speectrum, we first express it in terms of its magnitude and

phase, i.e.
F{E()} = F(k) = |[F(k)|ete®

To that end multiply top and bottom by (a — ik)*, yielding

_ a+ ik _ a .k
Fl) = Grbetd — o+ ‘gt

As in Fig. 1-6 it follows that

_ a 2 k 2
[P = (m) + (m)

k
tang(k) = (a,2 + k2>/<a2 -T- k2>

Consequently,
— 1 i tan=1(k/a)
F{E(x)} = ————ce
Va2 + k2

and this is plotted in Fig. 8-17.

vl E@z)

|F (k)|
L
»/2
7
D o — -k 1 1 -2
L +L
- ,/
— ~7/2}
Fig. 8-17 Fig. 8-18

8.13. Consider a long narrow slit in the y-direction which is covered with an amplitude
mask so that the field is made to drop off linearly from the center as in Fig. 8-18.
Calculate the diffracted Fraunhofer field for normally incident monochromatie light.

This is an even function and so

0 L
F{E(2)} f L (L + 2 coskzzdz + J; (L — 2) cos kzz dz

= 2—2(1 — cos kzL)
kz

By trigonometric transformation we get

2 _4.2"z_L2."zL
F{E@)) = E—sm - = smcz-z—

and this squared is proportional to the irradiance distribution. The process of masking an aper-
ture, generally to reduce the diffracted secondary peaks, is known as apodization.
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8.14. The Dirac delta function defined by

0 z%0 +a
8(z) = {w z:o and f_w s@)de = 1

is also known as the unit impulse function. One of its most interesting character-
istics is the sifting property

f_ :” 8z —z0) f(z)de = f(o)

Show that F{8(x —xo)} = e'*=, In addition, determine the transform of the two delta
functions comprising f(x) in Fig. 8-19.

From the definition of the transform

+eo fl=) §
Flo(x—xg)} = f_ 8(x — xp)ek= dy

If we then think of e** as f(x), the shifting property
dictates that the integral equal f(x¢), or in this case,
etkzo, Hence

F{o(x —xg)} = ez

-3 a
It should be evident from the form of the trans- 8(z+ 2) a(z 2)
form that if a function f(x) consists of a sum of indi- ‘
vidual functions, F{f(x)} is, in turn, the sum of their
individual transforms. Thus, quite generally, if

fl) = ? 3(x — =) ~a/2 0 a/2
then F{f®)} = ? eikz; Fig. 8-19
In particular, here .
flx) = 8<x—%>+ 8<x+%>
and so Fif(x)} = eha/2 + g—tka/2 = 2 cos,;—a'

Recall Young’s experiment. As long as it consisted of two exceedingly narrow slits the idealized
interference field was cosinusoidal. In other words, if the aperture function corresponds to Fig. 8-19
the irradiance system will be cosine-squared fringes.

83 CONVOLUTION
Imagine an object with an irradiance distribution I.(y, z) followed by an optical system
which creates an image I(Y,Z). The object information is transformed into the image by
a process which can be represented mathematically as
+oo

IY,2) = fflo(y,z)s(Y—y,Z—z)dydz

Here s(Y —y, Z —z) is called the point-spread function. In effect, each source point on the
object appears as some sort of blotch of light on the image plane. The exact configuration
of the blotch (i.e. the impulse response) is determined by the particular optical system.
(In the case of a perfect lens system, for example, S would be an Airy pattern.) The inte-
gral merely sums up all of these spots of light thereby yielding the resultant image. Thus,
if we put a piece of tape on the front of a camera lens, that would certainly change the
image of a point source, i.e. the spread function, and any other photo thereafter would be
affected accordingly.
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The above expression represents a convolution integral in two dimensions, and one
speaks of the process as “convolving” the two functions. More succinctly, the integral can
be written as

KY,Z) = L2 ® s2)

Geometrically, one can view the convolution as the volume under the product surface
I(y,2)S(Y — ¥, Z — z) encompassing the region of overlap of the two functions. And in one

dimension the convolution, f(x) (*) k(x), is the overlap area under the product of the two
functions.

SOLVED PROBLEMS

8.15.

8.16.

STUDENTS-HUB.com

The cylinder or top hat function P(r) shown in Fig. 8-20 is a two-dimensional exten-
sion of the unit pulse. Calculate the self-convolution, g(R) = P(r) (®) P(r), for
R =0 and plot it versus the position variable R.

P(r) | B
A
a
4 B | -
Ol D . o
C
Fig. 8-20 Fig. 8-21

Since P(r) has unit height, the convolution is simply the area of overlap in Fig. 8-21 as a func-

tion of R. The area of either segment (ACBA or ACDA) is equal to the area of sector OABCO
minus the area of triangle AOC, i.e.

-;—03(20) - %aﬂ sin 2¢

Twice this is the overlap area A:
A = a2(26 — sin26) = a?(26 — 2 sin § cos §)

To express 4 as a function of R use
R = 2acoss Ao(R)
which is valid for R = 2a. Thus, for R = 2a,

| R rR2\'V2 R
= a2 N . A 2
g(R) a?| 2 cos <2a> 2<1 4a.2> %a

When R =0, g(R) = ra2, while a value of R = 2q
yields g(R) =0 (no overlap). The function is graphed
in Fig. 8-22.

zad

This is a particularly important calculation since 0 ; 2a >R
it is closely related to the optical transfer function
of an ideal lens. Fig. 8-22

The convolution theorem states that where ¢(X) = f(x) (® h(x),
Flg}y = FUU ® b} = Fif} Fik}

i.e. the transform of the convolution of two functions is the product of the transforms
of the individual functions. Prove that this is indeed the case.
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The convolution g is a function of X and so its transform is

+o
Flg} = f_ 9(X) etkX dX

@

f: [ J._‘f“ f(@) k(X — x) dx] ok dX
= T[S e axax ] o as

Letting X — z equal w, we have dw = dX, elkX = etkw ¢ikz, and so

+o te
Fo) = [ f@eds [ hwetwdw = F(f)eFH)

8.17. Figure 8-23 depicts a cosine function f(z) and its Fourier transform F(k) (see Prob-
lem 8.14). Graphically form the self-convolution of F(k).

A f(x) = coskyx 1} F(k)

Fig. 8-23

In general, to construct g = f @ h,

we imagine f to be composed of a series 3+ k) r(k-k’)

of delta functions, each of which is then

spread out in the form of h with its origin 1 -k
at the position of the delta function. The .k 0 +ky

sum of the contributions for all the delta (a)

functions is then g. This is particularly
easy to do here, since we are dealing with a
function which is in fact composed of delta

functions. Hence, we picture &(k+k,)

spread out into two delta functions as ‘ ‘

in Fig. 8-24(b), and similarly 8(k — k) is 1 k
spread out as in (¢). The sum of (b) and (¢) —2k, ~k, 0

is the self-convolution shown in (d). (b)

8.18. Use the approach discussed in Prob-
lem 8.17 to self-convolve a square
pulse of width d. ' ]
2k,

It follows from the sifting property of ‘
the delta function (Problem 8.14) that a ' —k,
function can be expressed as a linear sum ©
of impulses. The left side of Fig. 8-25,
page 220, depicts the square pulse as repre-
sented by a convenient number of delta
functions. Each of these, in turn, serves as
the center of a square pulse on the right ‘ '

1 i — k
[}

©
S

side of the figure. The sum of all of these
is then the convolution. In other words,

each delta function constituting f is spread 2y —ky @ ky 2k,
out into a square pulse corresponding to A.
Here, of course, f and h are identical. Fig. 8-24
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Proceeding to the limit of infinitely many delta functions, we see that the convolution g is tri-
angular with a base of 2d and a height d-times the height of the square pulse.

) ® b hia)
I s s B T —
= —
L - — ~x
-
s
| . 1 —

- X

9(X)

| %2 | %) %8|
% %3 %y 27

Fig. 8-25

8.19. Use the convolution theorem to verify the results of Problem 8.13, i.e. to show that
sinc-squared is the transform of a triangular pulse.

" From Problem 8.18 we know that the self-convolution of a square pulse is a triangle. Further-
more, the convolution theorem leads to
FUE® = [FHR

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



CHAP. 8] INTRODUCTION TO FOURIER OPTICS 221

As we saw in Problem 8.8, the transform of a square pulse is a sinc function. Hence the trans-
form of a triangular pulse is the product of two identical sinc functions, as indicated in Fig. 8-26.

f ® h = g
4 'y
d
1 1
>z ® = — - X
i~ b— 2 —f
Fin X = Flg}
4
d
d sincu d2 sinc2u
X =
0 < 2, = kd/2 of * 2 L =kd2

8.20. Suppose we amplitude modulate a sinusoidal function f(x) with a sinusoid g(x) to yield
h(z) = f(z) g(x), as in Fig. 8-27. Make a sketch of F{h(x)).

f(x)

NANNNNNL
/ V VIV V V

| ()

| h(x)

-7\ /\ ' ‘ 7\~-7<

’—\/‘\\\J \j U v a )

Fig. 8-27
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We are looking for F{f(x) g(x)}, which, from the frequency convolution theorem (Problem 8.37),
equals the coiivelution of the corresponding transforms. The calculation is indicated in Fig. 8-28.

AT ® Fig} = 4 F{r}

- -k L k : - Lk

Fig. 8-28

Notice how the dc, or zero-frequency, contribution raises g(x) above the x-axis. No such component
is present in the spectrum of either f(x) or h(x).

i

z, )

Fig. 8-29

8.21. There are several simple means of optically genera-
ting the convolution of fwo-dimensional functions.
Generally one uses opaque screens with appropri-
ate apertures. Determine the convolution of the
two functions f(x,%) and h(x,y), each represented
by three small holes in a mask, as shown in Fig. 8-29.

Each aperture constituting f(x,y) serves, in turn, as
the impulse which is then spread out into three spots cor-
responding to h(z,y). Figure 8-30 shows the holes of
f(x, y) serving as centers of the spread function. The result
is a hexagonal pattern of six equally bright spots surround-
ing a strong central spot. Fig. 8-30

Supplementary Problems

PERIODIC WAVES AND FOURIER SERIES
822, Show that

f@) = Cy+ m§1 C,, co8 (%x + e,,.)
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is equivalent to the more usual sine and cosine expression for the Fourier series.

8.23. Show that a function possesing screw symmetry, ie. f(x) = —f(x —\/2), will have nonzero Fourier
series contributions only when m is odd.

8.24, Under what circumstances will a function have only even harmonics in its Fourier series expansion?

Ans. If it has a period of » rather than 2r. See Problem 8.29.

8.25. Derive the Fourier series for the function shown in Fig. 8-31.

f@

«L
-
—2r -7 0 r 2r
-%
Fig. 8-31
— T _2cosz 2co83z inz — Lis 1 -
Ans. f(z) = 1 7 12 - 3 + 8sinz 2(sm 2z) + 3(3 sin 82)
where k = 1 since A = 27.
8.26. Compute the Fourier series for the periodic function of Fig. 8-32.
v
-y

Fig. 8-32

4/ co 8 b
Ans. fly) = %_;< 1821I+co;21/+co§2v+_,_>

where k =1 since A = 2r.

827, Generalize Problem 8.26 by finding the Fourier series equivalent to the function in Fig. 8-88.

ans. fy) = 3-& °°s(i’;””‘)+°°s(§’;””‘)+m]

where k = 2g¢/L.

828. By shifting axes in Problem 8.26, determine the Fourier series for the periodic function depicted
in Fig. 8-34.
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fw)

Fig. 8-33

-
=

Fig. 8-34

4/,
Ans.  fy) = ;(———°°182”+"°°§f”+ )

829, Derive the Fourier series representation in the time domain of a full-wave rectified sine function

of amplitude Ey having a 1-second period.

_ 2E, 4E,/q 1
Ans. f() = - - §cos2rt+ﬁcos41rt+~--

Recall Problem 8.24.

FOURIER TRANSFORMS

8.30. Recompute the transform of the square pulse of Fig. 8-10, this time using the complex exponential
formulation.

831, Compute the Fourier transform of the product of the unit square pulse and a sine function of
spatial frequency k,, i.e. E(x) = P(x)E,sink,», or,

E, sink,x when |z| =L
B = 0 when |z| > L

Ans, F(k) = iE¢L[sinc (k — kp)L — sinc (k + k,)L]
832. Determine the Fourier transform of
E(x) = P(x)E, sin? kyx
where P(z) is the unit square pulse ranging from = = —L to z = +L.
Ans. §F{E(x)} = E,L[sinckL — § sine (k + 2k )L — } sine (k — 2k,)L)

833, Determine the Fourier transform of the function depicted in Fig. 8-35. Do it first by calculating
Fc {f(x)} directly and then by using the even part of the transform of Problem 8.12.
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2a
Ans. Felf(x)} = P
f(=)
884. Find the Fourier transform of the Gaussian function

f@) = Valre—as

Why might this function be used to determine an
apodization mask?

Ans. F(k) = e~*¥/%8 which is also Gaussian. If a N
lens were coated so that the aperture function [ 1/a
were Gaussian, the Airy rings in the diffraction
pattern would vanish. Fig. 8-35

e~alzl

= ¥

8.35. Calculate the Fourier transform of the function
E(x) = U(x)xe—o*
where U(x) is the unit step function.
Ans. F{E(z)} = 1/(a—ik)?

8.36. Using the sifting property of the delta function, show that
Fls(x)} = 1
Now determine F{1}.
Ans. F{1} = 27 8(k)

CONVOLUTION

8.37. Prove the frequency convolution theorem:

FU-B = =FH @ Fb

838. Use the result of Problem 8.87 to find ¥{cos?kyx}.
Ans, See Fig. 8-24(d).

839. Prove that f(z) (® h(z) = h(z) (& f(2).

8.40. Construct the self-convolution of the function f(x) depicted in Fig, 8-36.
Ans. See Fig. 8-37.

| /(=) | fl@) ® fla)

3F sk

‘_.
8

RN NEARN

-3 -2 -1 0 1 2 3 -8 -2 =1 0
Fig. 8-36 Fig. 8-37

841. With Problem 8.40 in mind, use the fact that
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226 INTRODUCTION TO FOURIER OPTICS [CHAP. 8

sz—a) & 8(x—b) = 8[z — (a + b)]
to compute f (*) f, where .
fle) = 8(x— 1) + 8(x) + 8(x+ 1)

Ans. f(x) @ f®) = 8(x—2) + 28(x— 1) + 38(x) + 28(x+ 1) + 8(x +2)

8.42. Construct the self-convolution of the function shown in Fig, 8-838. This is the frequency spectrum

of a disturbance consisting of two cosine waves of differing wavelengths.

Fk)

RSB

-3 -2 -1 0 1

Ans. See Fig. 8-39.

Fig. 8-39

843. Convolve the two functions in Fig. 8-40 to get the function depicted in Fig. 8-11.

Then, using the
eonvolution theorem, find its transform (Fig. 8-12),

\
) e | .
‘ I
e @ ] —d
Fig. 8-40
<\ _ | _
\
Fig, 8-41
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Ans.

See Fig. 8-41.

INTRODUCTION TO FOURIER OPTICS 227

8.44, Determine the self-convolution of the function shown in Fig. 8-42. It corresponds to the aperture

function for a double slit.

Ans. See Fig. 8-48.

845, Construct the convolution of the two functions shown in Fig. 8-44.

8.46. Construct the convolution indicated in Fig. 8-46, page 228.
Ans. See Fig. 8-47,

STUDENTS-HUB.com

—a—

Fig. 8-42

)

Fig. 8-46.

h(z)

I———d———~[———d

3

Fig. 8-43

h L k
4 5 0 2 3 4 5 [] 7
Fig. 8-44
Remember to place the origin for h at the location of each §-function making up f. See
f(z) ® k()
r
L e ' 1

Fig. 8-45
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[¥46] br(z)

on sl

o Jm—

- ® /l\ -

Fig. 8-46

/(@) (® h(z)

Fig. 8-47

847. Figure 8-48 shows a mask with six circular holes representing a two-dimensional function f(x, v).

Determine f(z,y) ® f(=,y).
Ans. Figure 8-49 depicts the nineteen hexagonally arrayed spots.

Fig. 8-48 Fig. 8-49
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Appendix

Values of the Function (sinu)/x = sincu
« 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 1000000 0.99983 0.999933 0.999850 0.999733 0.999583 0.999400 0.999184 0.998934 0.998651
0.1 0.998334 0997985 0.997602 0.997186 0.996737 0.996254 0.995739 0.995190 0.994609 0.993994
0.2 0.993347 0992666 0.991953 0.991207 0.990428 0.989616 0.988771 0.987894 0.986984 0.986042
0.3 0985067 0984060 0.983020 0.981949 0.980844 0979708 0.978540 0.977339 0.976106 0.974842
0.4 0973546 0972218 0.970858 0.969467 0.968044 0.966590 0.965105 0.963588 0.962040 0.960461
0.5 0.958851 0957210 0.956539 0.953836 0.952104 0.950340 0.948547 0.946723 0.944869 0.942985
0.6 0941071 0939127 0.937163 0.935150 0.933118 0.931056 0.928965 0.926845 0.924696 0.922518
0.7 0920311 0918076 0915812 0913520 0.911200 0.908852 0.906476 0.904072 0.901640 0.899181
0.8 0896695 0894182 0.891641 0.889074 0.886480 0.883850 0.881212 0.878539 0.875840 0.873114
0.9 0.870363 0.867587 0864784 0861957 0.859104 0.856227 0.853325 0.850398 0.847446 0.844471
1.0  0.841471 0838447 0.835400 0.832320 0.829235 0.826117 0.822977 0.819814 0.816628 0.813419
11 0810189 0806936 0.803661 0.800365 0.797047 0.793708 0.790348 0.786966 0.783564 0.780142
12 0.776699 0.773236 0.769754 0.766251 0.7627290 0.759188 0.755627 0.752048 0.748450 0.744833
1.3 0741199 0.737546 0.733875 0.730187 0.726481 0.722758 0.719018 0.715261 0.711488 0.707698
1.4 0703893 0700071 0.696234 0.692381 0.688513 0.684630 0.680732 0.676819 0.672892 0.668952
1.5 0664997 0.661028 0.657046 0.653051 0.649043 0.645022 0.640988 0.636942 0.632885 0.628815
1.6 0.624734 0.620641 0.616537 0.612422 0.608297 0.604161 0.600014 0.595858 0.591692 0.587517
1.7 0583332 0579138 0.574936 0.570726 0.566505 0.562278 0.558042 0.553799 0.549549 0.545201
1.8  0.541026 0.536756 0.532478 0528194 0.523904 0.519608 0.515307 0.511001 0.506689 0.502373
1.9 0.498053 0.493728 0.489399 0.485066 0.480720 0.476390 0.472047 0.467701 0.463353 0.459002
2.0 0454649 0450294 0.445937 0.441579 0.437220 0.432860 0.428499 0.424137 0.419776 0.415414
21 0411052 0.406691 0.402330 0.397971 0.393612 0.389255 0.384900 0.380546 0.376194 0.371845
2.2 0367498 0,36315¢ 0.358813 0.354475 0.350141 0.345810 0.341483 0.337161 0.332842 0.328529
2.3 0324220 0319916 0315617 0.311324 0.307036 0.302756 0.298479 0.294210 0.289947 0.285692
2.4 0.281443 0277202 0.272967 0.268741 0.264523 0.260312 0.256110 0.251916 0.247732 0.243556
2.5 0239389 0.235231 0.231084 0.226946 0.222817 0.218700 0.214592 0.210495 0.206409 0.202334
2.6 0198270 0.194217 0.190176 0.186147 0.182130 0.178125 0.174132 0.170152 0.166185 0.162230
2.7 0.168289 0.154361 0.150446 0.146546 0.142650 0.138786 0.134927 0.131083 0.127253 0.123439
2.8 0.119639 0.115854 0112084 0.108330 0.104592 0.100869 0.097163 0.093473 0.089798 0.086141
29 0.082500 0.078876 0.075268 0.071678 0.068105 0.064550 0.061012 0.057492 0.053990 0.050506
3.0 0.047040 0.043592 0.040163 0.036753 0.033361 0.029988 0.026635 0.023300 0.019985 0.016689
31 0013413 0.010157 0.006920 0.003704 0.000507 —0.002669 —0.005825 —0.008960 —0.012075 —0.015169
3.2 —0.018242 —0.021294 —0.024325 —0.027335 —0.030324 —0,033291 —0.036236 —0.039160 —0.042063 —0.044943
3.3 —0.047802 —0.050638 —0.053453 —0.056245 —0.059014 —0.061762 —0.064487 —0.067189 —0.069868 —0.072525
3.4 —0.075169 —0.077770 —0.080358 —0,082023 —0.085465 —0.087983 —0.090478 —0.092950 —0.095398 ~0.097823
3.5 —0.100224 —0.102601 —0.104956 —0.107285 —0,109591 —0.111873 —0.114131 —0.116365 —0.118575 —0.120761
3.6 —0.122922 ~0.125060 —0.127173 —0.120262 —0.131326 —0.133366 —0.135382 —0.137373 —0.139339 —0.141282
3.7 —0.143199 —0.145092 —0.146960 —0.148803 —0.150622 —0.1562416 —0.154186 —0.155930 —0.1567650 —0.159345
3.8 —0.161015 —0.162661 —0.164281 —0.165877 —0.167448 —0.168994 —0.170515 —0.172011 —0.173482 ~0.174929
3.9 —0.176350 —0.177747 —0.179119 —0.180466 —0.181788 —0.183086 —0.184358 —0.185606 —0.186829 —0.188027
4.0 —0.189201 —0.190349 —0.191473 —0.192573 —0.193647 —0.194698 —0.195723 —0.196724 —0.197700 —0.198652
41 —0.199580 —0.200483 —0.201361 —0.202216 —0.203046 —0.203851 —0.204633 —0.205390 —0.206124 —0.206833
4.2 —0.207518 —0.208179 —0.208817 —0.209430 —0.210020 —0.210586 —0.211128 —0.211647 —0.212142 —0.212614
4.3 —0.213062 —0.213487 —0.213888 —0.214267 —0.214622 —0.214955 —0.215264 —0.216550 —0.215814 —0.216055
4.4 —0.216273 —0.216469 —0.216642 —0.216793 —0.216921 —0.217028 —0.217112 —0.217174 —0.217214 —0.217232
45 —0.217229 —0.217204 —0.217157 —0.217089 —0.217000 —0.216889 —0.216757 —0.216604 —0.216430 —0.216235
4.6 —0.216020 —0.215784 —0.216527 —0.215250 —0.214953 —0.214635 —0.214298 —0.213940 —0.213563 —0.213166
47 —0.212750 —0.212314 —0.211858 —0.211384 —0.210890 —0.210377 —0.209846 —0.209296 —0.208727 —0.208140
48 —0.207534 —0.206911 —0.206269 —0.205609 —0.204932 —0.204236 —0.203524 —0.202794 —0.202046 —0.201282
49 —0.200501 —0.199702 —0.198887 —0.198056 —0.107208 —0.106344 —0.195464 —0.194568 —0.193656 —0.192728
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232 VALUES OF THE FUNCTION (sin «)/« = sinc« [APPENDIX

u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

5.0 —0.191785 —0.190826 —0.189853 —0.188864 —0.187860 —0.186841 —0.185808 —0.184760 —0.183699 —0.182622
5.1 —0.181532 —0.180428 —0.179311 —0.178179 —0.177035 —0.175877 —0.174706 —0.173622 —0.172326 —0.171117
5.2 —0.169895 —0.168661 —0.167415 —0.166158 —0.164888 —0.163607 —0.162314 —0,161010 —0.159695 —0.168369
53 —0.157032 —0.155684 —0.154326 —0.152958 —0.1515679 —0.150191 —0.148792 —0.147384 —0.145967 —0.144540
5.4 —0.143105 —0.141660 —0.140206 —0.138744 —0.137273 —0.135794 —0.134307 —0,132812 —0.131309 —0.129798
5.5 —0.128280 —0.126756 —0.1256222 —0.123683 —0.122137 —0.120684 —0.119024 —0.117459 ~0.115887 —0.114310
5.6 —0.112726 —0.111137 —0.109543 —0.107943 —0.106338 —0.104728 —0.103114 —0,101495 —0.099871 —0.098243
5.7 —0.096611 —0.094976 —0.093336 —0.091693 —0.090046 —0.088396 —0.086743 —0.085087 —0.083429 —0.081768
5.8 —0.080104 —0.078438 —0.076770 —0.075100 —0.073428 —0.0717556 —0.070080 —0.068404 —0.066726 —0.065048
5.9 —0.063369 —0.061689 —0.060009 —0.058329 —0.056648 —0.054967 —0.053287 —0.061606 —0.049927 —0.048248

6.0 —0.046569 —0.044892 —0.043216 —0.041540 —0.039867 —0.038195 —0.036524 —0.034856 —0.033189 —0.031525
6.1 —0.029863 —0.028203 —0.026546 —0.024892 —0.023240 —0.021592 —0.019947 —0.018305 —0.016667 —0.015032
6.2 —0.013402 —0.011775 —0.010152 —0.008533 —0.006919 —0.005309 —-0.003703 —0.002103 —0.000507 0.001083
6.3 0.002669 0.004249 0.005824 0.007393 0.008956 0.010514 0.012066 0.013612 0.015151 0.016684
6.4 0018211 0.019731 0.021244 0.022751 0.024250 0.025743 0.027228 0.028706 0.030177 0.031640
6.5 0.033095 0.034543 0.035983 0.037414 0.038838 0.040253 0.041661 0.043059 0.044449 0.045831
6.6  0.047203 0.048567 0.049922 0.051268 0.052604 0.053931 0.055248 0.056568 0.067867 0.059146
T6.7 0.060425 0.061696 0.062956 0.064204 0.065444 0.066673 0.067892 0.069101 0.070299 0.071487
6.8  0.072664 0.073830 0.074986 0.076130 0.077264 0.078386 0.079498 0.080598 0.081688 0.082765
6.9  0.083832 0.084887 0,085930 0.086962 0.087982 0.088991 0.089987 0.090972 0.091945 0.092906

7.0 0093855 0.004792 0.095717 0.096629 0.097530 0.098418 0.099293 0.100157 0.101008 0.101846
7.1  0.102672 0.103485 0.104286 0.105074 0.105849 0.106611 0.107361 0.108098 0.108822 0.109533
72 0110232 0.110917 0.111589 0.112249 0.112895 0.113528 0.114149 0.114756 0.116350 0.115981
7.3 0.116498 0.117053 0.117594 0.118122 0.118637 0.119138 0.119627 0.120102 0.130563 0.121012
7.4 0121447 0.121869 0.122277 0.122673 0.123055 0.123423 0.123779 0.124121 0,124449 0.124765
7.5  0.125067 0.1253556 0.125631 0.125893 0.126142 0.126378 0.126600 0.126809 0.127005 0.127188
7.6 0127358 0.127514 0.127668 0.127788 0.1279056 0.128009 0.128100 0.128178 0.128243 0.128295
7.7 0128334 0128360 0.128373 0.128373 0.128361 0.128335 0.128297 0.128247 0.128183 0.128107
7.8 0128018 0.127917 0.127803 0.127677 0.127539 0.127388 0.127224 0.127049 0.126861 0.126661
7.9 0126448 0.126224 0.125988 0.125739 0.126479 0.125207 0.124923 0.124627 0.124320 0.124000

8.0  0.123670 0.123328 0.122974 0.122609 0.122232 0.121845 0.121446 0.121036 0.120615 0.120183
81 0119739 0.119286 0.118821 0.118345 0.117859 0.117363 0.1168556 0.116338 0.115810 0.115272
82 0.114723 0.114165 0.113596 0.113018 0.112429 0.111831 0.111223 0.110606 0.109978 0.109341
83 0.108695 0.108040 0.107376 0.106702 0.106019 0.105327 0.104627 0.103918 0.103200 0.102473
8.4  0.101738 0.100994 0.100243 0.099483 0098714 0.097938 0.097154 0.096362 0.095562 0.094755
85 0.093940 0.093117 0.092287 0.091450 0.090606 0.089755 0.088896 0.088031 0.087159 0.086280
8.6  0.085395 0.084503 0.083605 0.082701 0.081790 0.080874 0.079951 0.079023 0.078089 0.077149
8.7 0.076203 0.075263 0.074296 0.073335 0.072369 0.071397 0.070421 0.069439 0.068453 0.067463
8.8 0.066468 0.065468 0.064465 0.063457 0.062445 0.061429 0.060410 0.059386 0.058359 0.057328
89  0.056294 0.055257 0.064217 0.068173 0.052127 0.051077 0.050025 0.048970 0.047913 0.046853

9.0  0.045791 0.044727 0.043660 0.042592 0.041521 0.040449 0.0393756 0.038300 0.037223 0.036145
9.1 0.085066 0.033985 0.032904 0.031821 0.030738 0.029654 0.028569 0.027484 0.026399 0.025313
9.2 0.024227 0.023141 0.022056 0.020970 0019884 0.018799 0.017714 0.016630 0.015547 0.014464
9.3 0.013382 0.012301 0.011222 0.010143 0.009066 0.007990 0.006916 0.005843 0.004772 0.003703
9.4 0.002636 0.001670 0.000507 —0.000554 —0.001612 —0.002669 —0.003722 —0.004774 —0.005822 —0.006868
9.5 —0.007911 —0.008950 —0.009987 —0,011021 —0.012051 —0.013078 —0.014101 —0.016121 —0.016138 —0.017150
9.6 —0.018159 —0.019164 —0.020165 —0.021161 —0.022154 —0.023142 —0,024126 —0,025106 —0.026081 —0.027051
9.7 —0.028017 —0.028977 —0.029933 —0.030884 —0.031830 —0.032771 —0.033707 —0.034637 —0.035562 —0.036482
9.8 -0.037896 —0.038304 —0.039207 —0.040104 —0.040995 —0.041881 —0.042760 —0.043633 —0.044500 —0.045361
9.9 —0.046216 —0.047064 —0.047906 —0.048741 —0.049570 —0.0650392 —0.051208 —0.052017 —0.052819 —0.053614
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7 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10.0 ~0.054402 —0.055183 —0.055957 —0.056724 —0.057484 —0.058237 —0.058982 —0.0569720 —0.060450 —0.061173
10.1 —0.061888 —0.062596 —0.063296 —0.063988 —0.064673 —0.065350 —0.066019 —0.066680 —0.067333 —0.067978
10.2 —0.068615 —0.069244 —0.0698656 —0.070477 —0.071082 —0.071678 —0.072266 —0.072845 —0.073416 —0.073979
10.3 —0.0745638 —0.076078 —0.075615 —0.076148 —0.076663 —0.077174 —0.077677 —0.078170 —0.078655 —0.079131
10.4 —0.079599 —0.080057 —0.080507 —0.080947 —0.081379 —0.081802 —0.082216 —0.082620 —0.083016 —0.083403
10.5 —0.083781 —0.084149 —0.084509 —0.084859 —0.085200 —0.085532 —0.085855 —0.086169 —0.086473 —0.086768
10.6 —0.087054 —0.087331 —0.087599 —0.087857 —0.088106 —0.088346 —0.088576 —0.088797 —0.089009 —0.089212
10.7 —0.089405 —0.089589 —0.089764 —0.089929 —0.090085 —0.090282 —0.090370 —0.090498 —0.090617 —0.090727
10.8 —0.090827 —0.090919 —0.091001 —0.091073 —0.091137 —0.091191 —0.091236 —0.091272 —0.091299 —0.091316
10.9 —0.091324 —0.091324 —0.091314 —0.091295 —0,091267 —0.091229 —0.091183 —0.091128 —0.091064 —0.090990
11.0 —0.090908 —0.090817 —0.090717 —0.090608 —0.090490 —0.090364 —0.090228 —0.090084 —0.089931 —0.089770
11.1 —0.089599 —0.089420 —0.089233 —0.089037 —0.088832 —0.088619 —0.088397 —0.088167 —0.087929 —0.087682
11.2 —0.087427 —0.087163 —0.086891 —0.086612 —0.086324 —0.086027 —0.085723 —0.085411 —0.085091 —0.084763
11.83 —0.084426 —0.084083 —0.083731 —0.083371 —0.083004 —0.082630 —0.082247 —0.081857 —0.081460 —0.081055
11,4 —0.080643 —0.080223 —0.079796 —0.079362 —0.078921 —0.078473 —0.078017 —0.077566 —0.077086 —0.076609
11.6 —0.076126 —0.075636 —0.0756140 —0.074637 —0.074127 —0.073611 —0.073088 —0.072569 —0.072023 —0.071481
11.6 —0.070934 —0.070379 —0.069819 —0.069253 —0.068681 —0.068103 —0.067519 —0.066929 —0.066334 —0.065733
11.7 —0.0656127 —0.064515 —0.063898 —0.063276 —0.062647 —0.062014 —0.061376 —0.060733 —0.060084 —0.059431
11.8 —0.058773 —0.0568111 —0.057448 —0.056771 —0.056095 —0.055414 —0.054728 —0.054039 —0.053345 —0.052646
11.9 —0.051944 —0.051238 —0.050528 —0.049814 —0.049096 —0.048375 —0.047660 —0.046921 —0.046189 —0.045453
12,0 —0.044714 —0.043972 —0.043227 —0.042479 —0.041727 —0.040973 —0.040216 —0.039456 —0.038694 —0.037929
12.1 —0.037161 —0.036391 —0.035618 —0.034844 —0.034067 —0.033288 —0.032506 —0.031723 —0.030938 —0.030152
12.2 —0.029363 —0.028573 —0.027781 —0.026988 —0.026193 —0.025398 —0.024600 —0.023802 —0.023008 —0.022202
12.3 —0.021401 —0.020599 —0.019796 —0.018992 —0,018188 —0.017384 —0,016578 —0.015773 —0.014967 —0.014161
12.4 —0.0133556 —0.012649 —0.011743 —0.010937 —0.010181 —0.009826 —0.008521 —0.007716 —0.006912 —0.006109
12,6 —0.005306 —0.004504 —0.003702 —0.002902 —0.002108 —0.001304 —0.000507 0.000289 0.001083 0.001877
12,6  0.002668 0.003459 0.004248 0.005035 0.005820 0.006603 0.007385 0.008164 0.008942 0.009717
127 0.010491 0.011262 0.012030 0.012797 0.013560 0.01431Z 0.015080 0.015836 0.016589 0.017339
12.8  0.018087 0.018831 0.019572 0.020311 0.021046 0.021778 0.022506 0.023231 0.023953 0.024671
129 0.025386 0.026097 0.026804 0.027507 0.028207 0.028903 0.029594 0.030282 0.030966 0.031645
130 0.032321 0.032992 0.033668 0.034321 0.034978 0.085632 0.036281 0.0369256 0.037564 0.038199
13.1 0.038829 0.039454 0.040075 0.040690 0.041300 0.0419056 0.042506 0.043101 0.043690 0.044275
13.2 0.044854 0.045428 0.045996 0.0465669 0.047117 0.047669 0.048215 0.048756 0.049291 0.049820
13.3 0.050344 0.050861 0.051373 0.051879 0.052379 0.052873 0.0563361 0.053843 0.054319 0.054788

, 13.4 0.065262 0.065709 0.066160 0.056606 0.057048 0.057476 0.057901 0.058321 0.058733 0.059140
18.5 0.059540 0.059933 0.060320 0.060700 0.061073 0.061440 0.061800 0.062164 0.062500 0.062840
13.6 0.063174 0.063500 0.063820 0.064132 0.064438 0.064737 0.065029 0.065314 0.065593 0.065864
137 0.066128 0.066385 0.066636 0.066879 0.067115 0.067344 0.067566 0.067781 0.067989 0.068190
18.8 0.068384 0.068570 0.068750 0.068922 0.069087 0.069245 0.069396 0.069540 0.069677 0.069806
13.9 0.069929 0.070044 0.070152 0.070258 0.070346 0.070433 0.070512 0.070584 0.070649 0.070707
14.0 0,070758 0.070801 0.070838 0.070867 0.070889 0.070904 0.070912 0.070913 0.070907 0.070893
141 0.070873 0.070846 0.070811 0.070770 0.070721 0.770666 0.070603 0.070634 0.070457 0.070374
142 0070284 0.070186 0.070082 0.069971 0.069854 0.069729 0.069598 0.069460 0.069315 0.069163
14.3 0.069005 0.068840 0.068668 0.068490 0.068305 0.068114 0.067916 0.067712 0.067501 0.067283
144 0.067060 0.066829 0.066598 0.066350 0.066101 0.065845 0.065584 0.066316 0.065042 0.064762
145 0.064476 0.064183 0.063885 0.063581 0.063271 0.062954 0.062633 0.062305 0.061971 0.061632
146 0.061287 0.060936 0.060580 0.060218 0.059851 0.059478 0.059100 0.0658717 0.058328 0.057933
14.7 0.057534 0.067129 0.066719 0.056304 0.055884 0.055459 0.065029 0.064594 0.054164 0.053710
14.8 0.053260 0.052806 0.052347 0.051884 0.051416 0.050944 0.050467 0.049985 0.049500 0.049010
149 0.048516 0.048017 0.047515 0.047008 0.046497 0.045983 0.045464 0.044942 0.044416 0.043886
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VALUES OF THE FUNCTION (sin u)/« = sinc «

[APPENDIX

u

0.00 0.01 0.02 0.03 0.04

0.05

0.06 0.07 0.08 0.09

15.0
15.1
15.2
15.3
15.4
15.6
15.6
15.7
15.8
15.9

16.0
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

17.0
17.1
17.2
17.3
17.4
17.6
17.6
17.7
17.8
17.9

18.0
18.1
18.2
18.3
18.4
18.6
18.6
18.7
18.8
18.9

19.0
19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

0.043353
0.037828
0.032000
0.025931
0.019683

0.042815
0.0387267
0.031403
0.025313
0.019051

0.042275
0.036684
0.030803
0.024693
0.018418

0.041730
0.036108
0.030202
0.024072
0.017783

0.041183
0.085529
0.029598
0.023450
0.017148

0.013320 0.012680 0.012040 0.011399 0.010758

0.006907 0.006266 0.0056624 0.004983 0.004342

0.000507 —0.000130 —0.000766 —0.001401 —0.002035
—0.005817 —0.006443 —0.007067 —0.007690 —0.008311
—0.012004 —0.012613 —0.013219 —0.013824 —0.014427

—0.017994 —0.018580 —0.019163 —0.019744 —0.020322
—0.023731 —0.024289 —0.024843 —0.0256395 —0.025943
~0.029162 —0.029686 —0.030207 —0.030724 —0.031237
—0.034236 —0.034722 —0.035204 —0.035682 —0.036156
—0.038909 —0.039352 —0.039792 —0.040226 —0.040656
—0.043139 —0.043536 —0.043928 —0.044315 —0.044698
—0.046889 —0.047236 —0.047578 —0.047915 —0.048247
—0.050128 —0.0650423 —0.050713 —0.050997 —0.051275
—0.052831 —0.053071 —0.053306 —0.053635 —0.053758
—0.054978 —0.055161 —0.055339 —0.0556511 —0.055677

—0.056663 —0.056678 —0.066798 —0.056912 —0.057021
—0.057548 —0.067615 —0.067677 —0.057732 —0.057782
—0.057959 —0.057968 —0.067972 —0.057969 —0.057961
—0.057790 —0.0567742 —0.057688 —0.057628 —0.057562
—0.057049 —0.056944 —0.056834 —0.066717 —0.056596
—0.055750 —0.05565690 —0.06564256 —0.056264 —0.055078
—0.053912 —0.053699 —0.053481 —0.053268 —0.053031
—0.051558 —0.051296 —0.051028 —0.060756 —0.050479
—0.048719 —0.048410 —0.048096 —0.047778 —0.047455
—~0.045428 —0.045075 —0.044718 —0.0443568 —0.043993

—0.041722 —0.041330 —0.040934 —0.040535 —0.040132
—0.037642 —0.037215 —0.036785 —0.036351 —0.036916

—0.028541 —0.028059 —0.0275674 —0.027086 —0.026597
—0.023618 —0.023114 —0.022610 —0.022103 —0.021594
—0.018512 —0.017994 —-0.017474 —0.016953 —0.016431
—0.013278 —0.012750 —0.012220 —0.011691 —0.011160
—0.007968 —0.0074356 —0.006901 —0.006368 —0.005834
—0.002635 —0.002102 —0.001570 —0.001038 —0.000507

0.002668 0.003194 0.003720 0.004245 0.004769

0.007888
0.012976
0.017881
0.022558
0.026962
0.031053
0.034794
0.038151
0.041095
0.043600

0.008404
0.013475
0.018360
0.023011
0.027386
0.031444
0.035148
0.038464
0.041365
0.043826

0.008918
0.013973
0.018836
0.023462
0.027807
0.031831
0.035497
0.038774
0.041632
0.044047

0.009431
0.014468
0.019310
0.023910
0.028224
0.032214
0.035843
0.039079
0.041893
0.044263

0.009942
0.014962
0.019782
0.024356
0.028638
0.032694
0.036185
0.039379
0.042151
0.044475

0.040632
0.034948
0.028992
0.022825
0.016512
0.010116
0.003702

—0.002668 —0.003300
—0.008931 —0.009549
—0.016027 —0.016625

—0.020898 —0.021470
—0.026488 —0.027030
—0.031747 —0.032252
—0.036626 —0.037091
—0.041081 —0.041502
—0.045076 —0.045448
—0.048574 —0.048895
—0.051648 —0.051816
—0.0563975 —0.054187
—0.056837 —0.055992

—0.057123 —0.0567220
—0.057826 —0.057865
—0.067947 —0.057927
—0.057491 —0.057414
—0.056468 —0.056336
—0.05489% —0.054710
—0.052798 —0.062560
—0.050198 —0.049911
—0.047128 —0.046796
—0.043624 —0.043251

~0.039726 —0.039316
—0.035475 —0,035033
—0.033233 —0.032775 —0.032315 —0.031853 —0.031387 —0.030919 —0.030449
~0.026105 —0.025612
—0.021085 —0.020573
—0.015908 ~-0.015384
—0.010629 —0.010098
—0.005301 —0.004767

0.000024
0.005292

0.010452
0.015454
0.020251
0.024797
0.029049
0.032970
0.036522
0.039676
0.042404
0.044682

0.040077
0.034363
0.028383
0.022199
0.015875
0.009475
0.003062

0.039520
0.033776
0.027773
0.021572
0.015237

0.038959
0.033187
0.027161
0.020944
0.014599

0.008833 0.008191

0.002422 0.001783
—0.003931 —0.004561
—0.010166 —0.010780
—0.016221 —0.016814

0.038395
0.032595
0.026547
0.020314
0.013960
0.007549
0.001145
—0.005190
—0.011393
—0.017405

—0.022040 —0.022607
—0.027668 —0.028103
—0.0327564 —0.033262
—0.0375562 —0.038009
—0.041918 —0.042330
—0.045816 —0.046179
—0.049212 —0.049522
—0.052078 —0.052335
—0.054393 —0.054594
—-0.056141 —0.056284

~0.023170
—0.028634
—0.033746
—0.038461
—0.042737
—0.046536
—0.049828
—0.052586

0.054789
—0.056421

—0.057310 —0.057395
—0.057897 —0,0567924
—0.057902 —0.057870
—0.057331 —0.057243
—0.056197 —0.056054
—0.054518 —0.054321
—0.052317 —0.052069
—0.049620 —0.049324
—-0.046461 —0.046121
—0.042875 —0.042494

—0.0567474
—0.0567944
—0.057833
—0.067149
—0.0565905
—0.054119
—0.051816
—0.049024
—0.045776
—0.042110

—0.038902 —0.038485
—0.034587 —0.034139
~0.029976 —0.029500
—0.026116 —0.024619
—0.020060 —0.019546
—0.014859 —0.014333
—0.009566 —0.009033
—0.004234 —0.003701

0.001083 0.001612

0.006334 0.006853

—0.038065
—0.033687
—0.029022
—0.024119
—0.019030
—0.013806
—0.008501
—0.003168

0.002140

0.007371

0.000554
0.005813

0.010960
0.015944
0.020717
0.025236
0.029457
0.033342
0.036856
0.039968
0.042652
0.044885

0.011466
0.016431
0.021181
0.025672
0.029861
0.033711
0.037186
0.040256
0.042896
0.045082

0.011971
0.016917
0.021643
0.026105
0.030262
0.034076
0.037512
0.040540
0.043135
0.045275

0.012474
0.017400
0.022102
0.026535
0.030659
0.034437
0.037833
0.040820
0.043370
0.045464
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Afocal, 91
Air, 181
Airy disk, 178, 180, 181"
Airy pattern, 178
Ampére, André Marie, 20
Amplitude, 8
Amplitude coeflicients, 40
reflection (r), 40, 46, 108
transmission (t), 40
Amplitude modulation, 221
Amplitude splitting, 142
Analyzer, 105, 106
Angstrom (1 A = 10-1° m), 164
Angular deviation, 47, 122, 133
Angular frequency (o), 3
Angular width, 167
Anharmonic waves, 205
Antireflection coatings, 138
Aperture function, 212
Apex angle (a), 47
Apodization, 216, 225
Area of coherence (4.), 151
Aspherical surfaces, 51

Back focal length (b.f.1.), 69
Bandwidth (A»), 148

Beam splitter, 143

Bessel functions, 177

Billet’s split lens, 154 .
Biprism (Fresnel’s double prism), 133
Birefringence, 111, 113

Brewster’s law, 109

Cadmium red line, 150
Calcite, 111, 113

Carbon dioxide laser, 30
Carbon disulfide, 24, 60
Carbon tetrachloride, 80, 141
Cartesian ovoid, 52
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Chromatic resolving power (X), 174
Circular light, 96
Cladding, 50
Cleavage form, 112
Coherence, 123, 148

area of, 151

complex degree of (¥;5), 149

length (A¢), 148

partial, 124

spatial, 149

temporal, 149

time (At), 128, 148
Coherent line source, 159, 198
Collimated light, 88, 84
Compensator plate, 143
Complex representation, 8, 18
Compound lens, 68, 76
Conjugate points, 61
Constructive interference, 125
Convolution, 217

integral, 218

theorem, 218, 225
Cornu spiral, 192
Critical angle (¢.), 46, 49

D lines of sodium, 115, 141, 156, 174, 175
Degree of coherence (|3 |), 149
Degree of polarization (V), 108, 111
Delta function, 217
Destructive interference, 126
Deviation, angular, 84
Diamond, 28, 30
Dichroie crystals, 104
Dichroism, 104, 119
Dielectric films, 185, 156
Differential wave equation
one-dimensional, 1
three-dimensional, 11
Diffraction, 159
coherent oscillators, 159
Fourier methods, 212
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Diffraction (cont.) Fizeau, Armand Hippolyte Louis, 20
Fraunhofer, 159, 199 Fluorite, 60
circular aperture, 176, 201 Flux density, 256
double slit, 164, 168, 199 Focal length (f)
many slits, 170, 200 back (b.f.1.), 69
rectangular aperture, 176, 201 effective, 69
single slit, 164, 199 first, 56
Fresnel, 159, 182, 190 front (£.f.1.), 69
circular apertures, 182, 202 image (f), 54
narrow obstacle, 198, 204 object (f,), 54
rectangular aperture, 190 second, 56
semi-infinite screen, 197 Focal plane, 62
single slit, 195, 203 . Fourier
gratings, 170, 200 analysis, 205
blazed, 175 diffraction theory, 212
Dioptric power (D), 69 integrals, 211
Dirac delta function, 217 optics, 205
Dispersion . transforms, 211, 224
angular (D), 172 Fraunhofer diffraction, 159, 164, 212
of glass, 23

Fraunhofer lines, 181
Frequency (»), 4
angular (0), 4, 7
spectrum, 148
Frequency stability, 150
Fresnel, Augustin Jean, 1, 40
Fresnel equations, 40, 48
amplitude coefficients (r, t), 40
phase shifts, 43
reflectance (R), 40, 108
transmittance (T), 40
Fresnel integrals, 190, 191
Fresnel zone plate, 208
Fresnel zones, 188

Dispersive power, 172

Effective focal length, 69
Electric field (E), 20
Electric permittivity (e), 20
Electromagnetic momentum (p), 26
Electromagnetic-photon spectrum, 27, 28
Electromagnetic theory, 20

Maxwell’s equations, 20
Electromagnetic waves, 20
Electron volt (eV), 26
Elliptical light, 99

Euler’s formula, 9 Fresnel’s double mirror, 131

Exitance, 25 Fresnel’s double prism, 183

Extended objects, images of, 62, 82 Fringe order, 136, 145

Eye lens, 91 Fringes

Eyepiece (ocular) equal inclination, 136
Huygens, 91 equal thickness, 139
Ramsden, 91 Haidinger, 137

Front focal length (f.£.1.), 69

f-number (£/#), 180 Gamma rays, 28

Far-field diffraction; see Fraunhofer diffraction Gauss, Karl Friedrich, 20
Faraday, Michael, 20 Gaussian function, 225
Fast axis, 115 Gaussian lens formula, 57
Fermat, Pierre de, 36 Geometrical optics, 51
Fermat’s principle, 32, 36, 48, 52 Glass, 23

Fiber optics, 50 ‘ Green Bank, 202

Field lens, 91 Gregorian telescope, 85
Films: see Dielectric films Glycerin, 24
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Haidinger fringes, 137

Half-wave plate, 116

Harmonics, 206

Helium-neon laser, 31, 151, 157, 158, 187,
198, 201

Hero of Alexandria, 36

Hertz, §

Huygens-Fresnel principle, 159

Huygens ocular, 91

Huygens’ principle, 111

Ice, 113
Iceland spar (calcite), 111, 118
Image
distance (s;), 52
erect, 64
focal length (f)), 54
inverted, 64
real, 55
space, 99
virtual, 56
Imagery, 62
Index of refraction (n)
absolute, 28, 30
glass, 28
relative, 88
Infrared, 28
Initial phase (), 6
Interference, 128
constructive, 125
destructive, 126
term, 124
thin films, 185, 155
Interferometers, 128, 154
amplitude-splitting, 135, 142, 156
Jamin, 145, 157
Mach-Zehnder, 157
Michelson, 142
Twyman-Green, 147
wavefront-splitting, 128, 154
Fresnel’s double mirror, 181
Fresnel’s double prism, 133
Lloyd’s mirror, 184
Young’s experiment, 128
Irradiance (I), 24, 30

Jamin interferometer, 145
Jodrell Bank, 81
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Kitt Peak, 85
Krypton-86, 156

Laser
carbon dioxide, 30
helium-neon, 81, 151, 157, 158, 187,
198, 201
ruby, 140, 204
Law of reflection, 82
Law of refraction, 38
Left-circular light, 97
Lens, 57
aspherical, 61
compound, 57, 68, 76
equation, 57
finite imagery, 62
focal points and planes, 54, 62
magnification, 63
simple, 57
telephoto, 90
thick, 72
thin, 57
thin-lens combinations, 68
Lensmaker’s formula, 57
Lick Observatory, 181
Light, 28
Light rays, 32
Linewidth, 150
Lloyd’s mirrgr, 134

Mach-Zehnder interferometer, 157
Magnetic induction (B), 20
Magnification

lateral or transverse (My), 68
Malus’s law, 106
Maxwell, James Clerk, 20
Maxwell’s equations, 20
Meniscus lens, 71
Mercury light, 120, 150
Michelson interferometer, 142, 149
Michelson stellar interferometer, 158
Microscope, 70
Microwaves, 28, 198
Mirror equation, 81
Mirrors, 79, 92

aspherical, 79, 92

finite imagery, 82
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Mirrors (cont.) Photon {cont.)
magnification, 82 flux (N), 27
parabolic, 40, 80 momentum (p), 26
planar, 87, 79, 92 spectrum, 27, 81
spherical, 79, 92 Planck’s constant (h), 26
Missing order, 168 Plane of incidence, 82
Momentum (p), 26, 80 Plane of vibration, 15, 93
Monochromatic, 4 Plane waves, 11, 12

propagation vector (k), 11
Point-spread function (§), 217
Poisson’s spot, 185
Polarization

angle (o,,), 50, 109

circular, 96, 116

degree of (V), 108, 111

elliptical, 99, 101

half-wave plate, 121

linear, 94, 100

partial, 102, 119

plane, 93

quarter-wave plates, 116

Nanometer (1nm = 10-2m), §

Natural light, 45, 102

Near-field diffraction; gee Fresnel diffraction
Negative lens, 59

Negative uniaxial crystal, 113

Newton’s rings, 140, 142, 156

Newtonian form of lens equation, 62

Obj.ect by reflection, 108, 120
distance (s,), 52 retarders, 115
focal length (fa)) b4

state, 98

unpolarized light, 15, 45, 102, 119

wave plates, 116
Polarization, electrical, 28
Polarizers

birefringent, 114, 120

circular, 116

linear, 105

transmission axis, 105

Wollaston, 114, 115

wire-grid, 104
Polaroid, 104, 119
Polychromatic light, 199, 200
Polyvinyl alecohol, 105, 116
Positive uniaxial crystal, 118
Power coefficients, 41
Poynting vector (8), 25
Pressure, radiation (P), 27
Principal planes, 72
Principal points, 72

Obliquity factor (K), 182

Ocular; see Eyepiece

Optic axis, 104, 111

Optical field, 26

Optical path difference (O.P.D., A) 186
Optical path length (O.P.L.), 86
Order number, 136, 145

Palomar Observatory, 81, 182
Parabolic mirror, 81
Paraxial ray, 54
Partially polarized light, 102
Period

temporal (7), 4

spatial (A), 8
Permeability (x), 20, 28
Permittivity (¢), 20, 28

Phase, 6, 18 Principal section, 112
difference (3), 124 Prisms, 47, 50, 114
initial (¢), 6 Profile, 1

rate of change with distance, 7
rate of change with time, 7
Phase plate, 114

Progressive wave, 2
Propagation number (k), 8

Pulses, 12
Phase velocity (v), 6, 7, 18, 20
Phasors, 192
Photon, 26 Quantum nature of light, 26
energy (€), 26, 30 Quarter-wave plate, 116
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Quartz, 23, 113 Spatial period, 3
Quasimonochromatic, 4 Spectral lines, 172
Spectrum, 27, 31
Speed of light in vacuum {(¢), 20
Speed of profile, 7

Radiant flux, 25 Spherical waves, 12, 14
Radiant flux density, 25 Standing wave, 10
Radiation pressure (¥), 27 State of polarization, 93
Radio-frequency waves, 28 Stellar interferometry, 157
Ramsden ocular, 91 Superposition, 2, 123
Rayleigh’s criterion, 174, 181

Rays, 82

converging, 59
diverging, 39
extraordinary, 112
ordinary, 112
Reflectance (R), 40, 44, 45, 108
Reflection, 32, 47

Telephoto lens, 90
Telescope, Galilean, 90

Gregorian, 85
Temporal coherence, 149
Tesla, 22

fl,xternal, 46 Thick lens, 72, 90
internal, 46 combinations, 76
Refracted wave, 32 principal planes, 72

Refraction, 82, 47

principal points, 72
Thin films; see Dielectric films
Thin lens, combinations, 68, 90
. equation, 57, 89
Total internal reflection, 46
Tourmaline, 104
Transmission, 82
Transmittance (T), 40
Transverse waves, 1, 15
electromagnetic, 21
Twyman-Green interferometer, 147

at aspherical surfaces, 51, 88
Cartesian ovoid, 52
at spherical surfaces, 54, 89
Refractive index (n), 28
Refractive indices of birefringent crystals,
table, 118
Resolution, 174
Resolving power, chromatic (R), 174
Retarders, 115
Right-circular light, 97
Ronchi ruling, 209
Rontgen, Wilhelm Conrad, 28
Rutile, 118

Ultraviolet, 28
Uniaxial crystal, 113
Unit planes, 74
Screw symmetry, 206
Self-convolution, 218
Sifting property, 217
Sign convention, 55, 64, 82
Sine function, 165
table, 229

Velocity of light, 20
Vibration curve, 184

Sine waves, 8, 17 Vlf‘t“al 55, 64
Slow axis, 115 lm?ge’ ’
object, 55, 64

Snell’s law, 82, 88, 87
Sodium light, 115, 141, 156, 174, 175
Source strength, 12, 160
Spatial coherence, 149
Spatial frequency, 206
spectrum, 211 Water, 33, 120

Visibility (V), 126, 153
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Wave
equation, 1, 11, 16
function, 1
number (), 6
profile, 1
progressive, 2, 3
vector, 156
velocity (v), 1, 4, 6, 20
‘Wavefront splitting, 128, 154
Wavefronts, 15, 82
Wavelength (A), 8
Waves, 1, 11, 19
electromagnetic, 20
harmonic, 8, 17
homogeneous, 15
inhomogeneous, 15
linearly polarized, 15
plane, 11, 12
plane polarized, 15
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Waves (cont.)
propagation vector (k), 11
spherical, 12, 14
transverse, 1, 15, 21
Wollaston prism, 114

X-rays, 28

Young’s experiment, 128, 149

Zircon, 30
Zone construction, 188
Zone plate, 208
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Schaum's Outlines
and the Power of Computers...
The Ultimate Solution!

Now Available! An electronic, interactive version of Theory and
Problems of Electric Circuits from the Schaum's Outline Series.

MathSoft, Inc. has joined with McGraw-Hill to offer you an electronic version
of the Theory and Problems of Electric Circuits from the Schaum's Outline
Series. Designed for students, educators, and professionals, this resource
provides comprehensive interactive on-screen access to the entire Table of
Contents including over 390 solved problems using Mathcad technical
calculation software for PC Windows and Macintosh.

When used with Mathcad, this "live" electronic book makes your problem
solving easier with quick power to do a wide range of technical calculations.
Enter your calculations, add graphs, math and explanatory text anywhere on the
page and you're done — Mathcad does the calculating work for you. Print your
results in presentation-quality output for truly informative documents, complete
with equations in real math notation. As with all of Mathcad's Electronic
Books, Electric Circuits will save you even more time by giving you hundreds of

interactive formulas and explanations vou can immediately use in your own
work.

Topics in Electric Circuits cover all the material in the Schaum's Outline
" including circuit diagramming and analysis, current voltage and power relations
with related solution techniques, and DC and AC circuit analysis, including
transient analysis and Fourier Transforms. All topics are treated with "live"

math, so you can experiment with all parameters and equations in the book or
in your documents.

[
Froblem$ 2 The RC Cwcunt: Powae and Energy Transients

To obtain the latest prices and terms and to order Mathcad and the electronic

version of Theory and Problems of Electric Circuits from the Schaum's Outline
Series, call 1-800-628-4223 or 617-577-1017.
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Schaum's Qutlines and Solved Problems Books

in the
BIOLOGICAL SCIENCES

SCHAUM OFFERS IN SOLVED-PROBLEM AND QUESTION-AND-ANSWER FORMAT
THESE UNBEATABLE TOOLS FOR SELF-IMPROVEMENT.

# Fried BIOLOGY oORDER cODE 022401-3/$12.95
(including 888 solved problems)

% Jessop ZOOLOGY oroer cope 032551-0/$13.95
(including 1050 solved problems)

# Kuchel et al. BIOCHEMISTRY order code 035579-7/$13.95
(including 830 solved problems)

# Meislich et al. ORGANIC CHEMISTRY, 2/ed ORDER cODE 041458-0/$13.95
(including 1806 solved problems)

# Stansfield GENETICS, 3/ed oroer cobe 060877-6/$12.95
(including 209 solved problems)

# Van de GraafffRhees HUMAN ANATOMY AND PHYSIOLOGY oRDER cODE 066884-1/$12.95
{(including 1470 solved problems)

# Bernstein 3000 SOLVED PROBLEMS IN BIOLOGY oRper cope 005022-8/$16.95

# Meislich et al. 3000 SOLVED PROBLEMS IN ORGANIC CHEMISTRY oRDER coDE 056424-8/$22.95

Each book teaches the subject thoroughly through Schaum's pioneering solved-problem
format and can be used as a supplement to any textbook. If you want to excel in
any of these subjects, these books will help and they belong on your shelf.

Schaum's Outlines have been used by more than 25,000,000 student's worldwide!
PLEASE ASK FOR THEM AT YOUR LOCAL BOOKSTORE OR USE THE COUPON BELOW TO ORDER.

QUANTITY $ AMOUNT 1
i
LOCALSALESTAX _ A
$1.25 SHIPPING/HANDLING
TOTAL
NAME
(plea” PﬂM) MAIL PAYMENT AND COUPON TO:
ADURESS MCGRAW-HILL, INC.
{no P.O. boxea piease) ORDER PROCESSING -1
oITY STATE 2P PRINCETON ROAD
HIGHTSTOWN, NJ 08520
ENCLOSEDIS QO ACHECK QO MASTERCARD Q VISA [ AMEX (v one) OR CALL
1-800-338-3987
ACCOUNT # EXP. DATE
SIGNATURE
MAKE CHECKS PAYABLE TO MCGRAW-HILL, INC. PRICES SUBJECT TO CHANGE WITHOUT NOTICE AND MAY VARY OUTSIDE U.S. FOR THIS INFORMATION, WRITE TO THE
ADDRESS ABOVE OR CALL THE 800 NUMBER.
e o o e i i i o o o o e e o o e e o e e e e e ————— o —— — — — — - — - - o
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unique new series of three class-tested books
Are which will supplement your required texts. Bob

Y Miller teaches Precalculus, Calculus |, and
ou Calculus Il in a friendly, personable way. You will learn
S U ff e ri N g through creative explanations of topics and muitiple
examples which are found throughout the text. Here are
From some comments from students who have used the CALC
| HELPER:
“Without this book I'm not so sure
WEVE | would have come close to passing.
A N XIETY 3 With it | not only passed but received

an ‘A’ | recommend this book highly
to anyone taking a calculus course.”

|
Try
*Your book is really excellent; you
B ' explained every problem step by step.
o b This book makes every topic seem very
. . simple compared to other books."
Miller's

Math
Helpers

Bob Miller's PRECALC HELPER
Bob Miller's CALC | HELPER
Bob Miller's CALC i HELPER

Affordably priced for students at $8.95 each. *

Available at your local bookstore or use the order form
below.

SCHAUM bl g

iISBN TITLE QUANTITY $ AMOUNT Make checks payable to McGraw-Hil, inc.
042256-7 Precalc Helper Mall with coupon to:
042257-5 Calc | Helper McGraw-Hill, Inc.
042258-3 Calc Il Helper Order Processing S-1
LOCALSALESTAX ____ Pflnceton Road
$1.25 SHIPPING/HANDUING Hightstown, NJ 08520
TOTAL or call
! 1-800-338-3987
NAME
{PLEASE PRINT)
ADDRESS
{NO P.0. BOXES)
cy STATE
ENCLOSED IS (Jacheck O Mastercarp O Visa JAMex (7 one)
{  ACCOUNT # EXP. DATE |
| SIGNATURE

* PRICES SUBJECT TO CHANGE WITHOUT NOTICE AND MAY VARY OUTSIDE THE U.S FOR THIS INFORMATION,
WRITE TO THE ADDRESS ABOVE OR CALL THE 80O NUMBER.

e s o e - - - - - - - - - - - - - - - - - - - - - - -
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SCHAUM'S SOLVED PROBLEMS SERIES

B Learn the best strategies for solving tough problems in step-by-step detail

B Prepare effectively for exams and save time in doing homework problems

B Use the indexes to quickly locate the types of problems you need the most help solving
B Save these books for reference in other courses and even for your professional library

To order, please check the appropriate box(es) and complete the following coupon.

=

3000 SOLVED PROBLEMS IN BIOLOGY
ORDER CODE 005022-8/$16.95 406 pp.

3000 SOLVED PROBLEMS IN CALCULUS
ORDER CODE 041523-4/$19.95 442 pp.

3000 SOLVED PROBLEMS IN CHEMISTRY
ORDER CODE 023684-4/$20.95 624 pp.

2500 SOLVED PROBLEMS IN COLLEGE ALGEBRA & TRIGONOMETRY
ORDER CODE 055373-4/$14.95 608 pp.

2500 SOLVED PROBLEMS IN DIFFERENTIAL EQUATIONS
ORDER CODE 007979-x/$19.95 448 pp.

2000 SOLVED PROBLEMS IN DISCRETE MATHEMATICS
ORDER CODE 038031-7/$16.95 412 pp.

3000 SOLVED PROBLEMS IN ELECTRIC CIRCUITS
ORDER CODE 045936-3/$21.95 746 pp.

2000 SOLVED PROBLEMS IN ELECTROMAGNETICS
ORDER CoDt 045902-9/$18.95 480 pp.

2000 SOLVED PROBLEMS IN ELECTRONICS
ORDER CODE 010284-8/$19.95 640 pp.

2500 SOLVED PROBLEMS IN FLUID MECHANICS & HYDRAULICS
ORDER CODE 019784-9/$21.95 800 pp.

1000 SOLVED PROBLEMS IN HEAT TRANSFER
ORDER CODE 050204-8/$19.95 750 pp.

3000 SOLVED PROBLEMS IN LINEAR ALGEBRA
ORDER CODE 038023-6/$19.95 750 pp.

2000 SOLVED PROBLEMS IN Mechanical Engineering THERMODYNAMICS
ORDER CODE 037863-0/$19.95 406 pp.

2000 SOLVED PROBLEMS IN NUMERICAL ANALYSIS
ORDER CODE 055233-9/$20.95 704 pp.

3000 SOLVED PROBLEMS IN ORGANIC CHEMISTRY
ORDER CODE 056424-8/$22.95 688 pp.

2000 SOLVED PROBLEMS IN PHYSICAL CHEMISTRY i
ORDER CODE 041716-4/$21.95 448 pp.

3000 SOLVED PROBLEMS IN PHYSICS
ORDER CODE 025734-5/$20.95 752 pp.

3000 SOLVED PROBLEMS IN PRECALCULUS
ORDER CODE 055365-3/$16.95 38S pp.

800 SOLVED PROBLEMS IN VECTOR MECHANICS FOR ENGINEERS
Vol I: STATICS
ORDER CODE 056582-1/$20.95 800 pp.

0O OO0 0O OO 0O O 0O OCOCOCOOCUOUGODODO

O

700 SOLVED PROBLEMS IN VECTOR MECHANICS FOR ENGINEERS
Vol II: DYNAMICS
ORDER CODE 056687-9/$20.95 672 pp.
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ASK FOR THE SCHAUM'S SOLVED PROBLEMS SERIES AT YOUR LOCAL BOOKSTORE
OR CHECK THE APPROPRIATE BOX(ES) ON THE PRECEDING PAGE
AND MAIL WITH THIS COUPON TO:
McGRaw-HILL, INC.
ORDER PROCESSING S-1

PRINGETON ROAD
HIGHTSTOWN, NJ 08520

OR CALL
1-800-338-3987

NAME (PLEASE PRINT LEGIBLY OR TYPE)

ADDRESS (NO P.0. BOXES)

CITY STATE P
ENCLOSEDIS J ACHECK {J MASTERCARD (J visA O AMEX (v ONE)

ACCOUNT # EXP. DATE

SIGNATURE

MAKE CHECKS PAYABLE TO MCGRAW-HILL, INC. PLEAS

PRICES SUBJECT TO CHANGE WITHOUT NOT[CE AND MAY VARY OUTSIDE THE U.S. FOR THIS
INFORMATION, WRITE TO THE ADDRESS ABOVE OR CALL THE 800 NUMBER.
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SCHAUM'S

oul/ines 4

OVER 30 MILLION SOLD

Students love Schaum’s Outlines because they

produce results. Each year, hundreds of thousands of

students improve their test scores and final grades
with these indispensable study guides.

Get the edge on your classmates. Use Schaum’s!

If you don’t have a lot of time but want to excel
class, this book helps you:

* Brush up before tests

 Find answers fast

* Study quickly and more effectively

» Get the big picture without spending hours
poring over lengthy textbooks

Schaum’s Outlines give you the information your

in

teachers expect you to know in a handy and succinct
format—without overwhelming you with unnecessary
details. You get a complete overview of the subject.
Plus, you get plenty of practice exercises to test your
skill. Compatible with any classroom text, Schaum’s

let you study at your own pace and reminds you of

the important facts you need to remember—fast! And

Schaum'’s are so complete, they’re perfect for
preparing for graduate or professional exams.

Visit us on the World Wide Web at www.schaums._.com

The McGraw-Hill companies:

$16.95

ISBN 0O-07-027730-3
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