Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

/‘*V/ g
BIRZEIT UNIVERSITY

COMP232
Data Structure

Lectures Note

Prepared by: Dr. Mamoun Nawahdah
2015

1

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Math Review

1. log(nm) = log n + log m.

2. log(n/m) = logn —log m.
3. lﬂgl[ﬂrj =T lUg re.
4. lﬂ.gﬂ 1 = lﬂgb T.'.f lﬂgb il.
i . n(n+1)
= | - 2 '
z“:,_z _ 2n® +3n2 +n _ ?1(2"+”(”+1]_
" 6 {i
i=]
logn
Z n = nlogn.
i=1
n . an+l -1
Z At i foca £ 1.
.= u -

e | 1
and

iz‘* R e |

1=

logn
22“ = bentl _ 1 _95_ 1.

i=()

Finally,

i% _ 2_?1;—12.

i=1

2

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Table of Contents

(Lecture 3) What is @n AIZOTTNM?oei ettt e st e et te e et ae e st s e e e teeessseessseeeseeasnseeassteesnseesseeeansessnsennns 4
(Lecture 4) Analysis Of AIGOTTTIMSco..viiiieeeee ettt e e et e e e e tb e e e eeabeeeeeaaaeeeeeateeeeessseaaasraeeeennsaeeeanseeanan 6
(LeCture 5) ASYMPtOtiC ANGIYSIS....ccuuiiiiiiiieeccieee ettt e et e st e e et e e e e st te e e e et ateeeesabaeeeeabaeeeassbaeeeesssaeeaassaaeeennseeeessnsreeesansees 10
(Lecture 6) Analyzing algorithm EXamMPIES........iii it e e et re e e e bt e e e et e e e e s abeeeeesasteesesaseaesennnees 14
(LECEUIE 7) LINKEA LISt eeeiiieiiiiiiiriieiee e eeciieeee e e ettt e e e e eeeittaeeeeeeeeeettaeaeeeeeeeeaassssbesaeeeeeenasssaaseeeeseasassraaesseesseenansrrnereeeeennns 19
(Lecture 8) DOUDIY LINKEA LiSt......cccuiieeeiiiieeeeiieeeecie e eectte e ee ettt e e ettt e e e e etae e e e e tabeeeeaasaeeeeabaeee e asesaeeassseaaeansssaesanssseeaannseeesansrens 25
(Lecture 9) Analyzing the COmPIeXity Of IMEIZE SOuii ettt e e e e te e e e e e bbe e e e e bree e eeaeeeeeeanreeeeenneeas 32
(LECEUIE 10) SEACKS L urveeiiiiiiiiiiiiiiie ettt e eee e ee e e e e ee bbbt e e e e e ee e e ababaaeeeeeeeaaabbsbaeaaeseeesssssbeaseeeeessanbbsaaeseesenesssrareseesesaans 37
(LECEUIE 11) SEACKS 2 urveeiiiiiiiiiiiiiee ettt e ettt e e e e ee ettt e e e e e ee e et abaaeeeeeeeaaabbsbasaaesesessastsbaaseaseeesasbtsaaeseeseeassnraseseeeeseans 41
(LECEUIE 12) QUUEBUES. ...ceeeeeeeeetietieeeeeeeeeeetieeee e e e e eeeetbrereeeeeeeeeatabesaeeseesasasaasaseseeeesaastsbesaeeseeenasssaasseeeeeeaasstaseseesseesnansrrnnseeeeennns 48
(Lecture 13) Cursor Implementation Of LINKEA LiSTS......cuuiiiiiiiie e e ecieee e et e e e sttt e e e ettee e e bt ee e e aaeeeeeaareeaeesseeaeeassaeaeenneeas 53
(LECTUNE 14) TIrEES «.uvveeeeeieieeeectieee e ettt e e eettte e eeeaeee e ettt e eeeaasseaeeassaeeaaassasaeessssaeaassseseeasssesaeansaaesansssseeassbeaeeassseaasansseeesnnnsaeesansrens 54
(LECTUNE 15) EXPIrESSION TIEES ..ueeieecueeeeeeiureeeeeitteeeeeireeeeeeareeeeaseeeeeasssseeaassseaeaasssesaaassseeesansasseassssseeasssesaeanssaessassseeansseeesansrens 58
(Lecture 16) Binary SEArch Tre@S BSTuiii i eiiiee ettt e ettt e e et e e e e st tte e e e tte e e e abaaeseabaeeeassbaeeaansaeeaensseaeseanseeeessnsteeeennsens 61
(LECEUIE 17, 18) AVL TIEES . .uuuvrreeeeeeeeeeeetireeeeeeeeeeeeettteeeeeeeesessstareseeeeeesesatarasaeaseeeaastsresaeeeeeesasssbesseeseeesastsseseeesenessssrarerseeesanns 68

3

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 3) What is an Algorithm?

Definition:
e An algorithm is a way of solving WELL-SPECIFIED computational problems. Cormen et al.
e Afinite set of rules that give a sequence of operations for solving a specific type of problem - Knuth

e Algorithm is a finite list of well-defined instructions for accomplishing some task that, given an initial
state, will terminate in a defined end-state.

Euclid’s Algorithm (300BC)

e Used to find Greatest common divisor (GCD) of two positive integers.
e GCD of two numbers, the largest number that divides both of them without leaving a remainder.

Euclid’s Algorithm:

Consider two positive integers ‘m’ and ‘n’, such that m>n

O

o Stepl: Divide m by n, and let the reminder be r.
o Step2:if r=0, the algorithm ends, n is the GCD.
o Step3:Set, m=>n, n>r, go backtostepl.

Implement this iteratively and recursively
Why Algorithms?

Gives an idea (estimate) of running time.
Help us decide on hardware requirements.
What is feasible vs. what is impossible.

o O O O

Improvement is a never ending process.
Correctness of an Algorithm
Must be proved (mathematically)
Step1l: statement to be proven.
Step2: List all assumptions.
Step3: Chain of reasoning from assumptions to the statement.
Another way is to check for incorrectness of an algorithm.

Stepl: give a set of data for which the algorithm does not work.
Step2: usually consider small data sets.

Step3: Especially consider borderline cases.

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Analysis of Algorithms

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to
determine how much in the way of resources, such as time or space, the algorithm will require.

e Space Complexity = memory and storage is very cheap nowadays. ¥
e Time Complexity v Different platforms =» different time. Absolute time is hard to measure as it
depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc.
time is not good measurement. Number of steps is a better one.

Example:

ZI{—HEH‘!-_"}H

» Consider the problem of summing #=I
Come up with an algorithm to solve this problem.

Algorithm A Algorithm B Algorithm C

=0 sum = n * (n + 1) / 2
1ton for i =
sum = sum + i {
for j =1 1o i
sum = sum + 1

Counting Basic Operations
* A basic operation of an algorithm is the most significant contributor to its total time requirement.

Algorithm A Algorithm B Algorithm C

Additions n nn+1)/2 1
Multiplications 1
Divisions 1
Total basic operations n (n:+n)l2 3

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 4) Analysis of Algorithms

e Space Complexity %
e Time Complexity v

How to calculate the time complexity?

e Measure execution time. x Algorithm for small data size will take small time comparing to a large data.
e Calculate time required for an algorithm in terms of the size of input data. ¥ Does not work as the
same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time
e Determine order of growth of an algorithm with respect to the size of input data. v/
Order of time or growth of time

Go back to summing result

n, C
1) Linear 820 Constant
10) growth 104 growth
100) , 102
1000) , 66700, 2983004, 3079
10000) , 411484, 149256917, 2052
100000) , 1903500, 13209223813, 1027

In term of time complexity, we say that algorithm C is better than A and B
Types of Time Complexity

e Worst case analysis v/
e Best case analysis %
e Average case analysis ¥ too complex (statistical methods)

RAM model of computation
We assume that:

e We have infinite memory

e Each operation (+,-,*,/,=) takes 1 unit of time
e Each memory access takes 1 unit of time

e All dataisin the RAM

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Bubble sort
0 ©
VE‘E

L
-

w ©
-

e Rules:
o You can only pick one ball at a time.
Before picking up another ball, you have to drop the existing ball-in hand, in an empty basket.

You have to start from the left most basket and arrange the balls moving towards the right.
You can use a stick to keep track of the sorted part.

O O O

Make a demo using the following data set
12| 8|7 |52
Worst case

Comparison | Swap
_ 1 3

After 1% round:

After 2™ round:

For whole sorting algorithm: 16+12+8+4 for a data size of 5 elements

=4(4 +3+2+1) =4(n1+n2+..+2+1) =4(n-1*n/2)=
2
2*n*(n-1)=> pn +qn+r - p, q, and r are some constant.

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Implement and test effectiveness of bubble sort algorithm

for(int i=0; i<n-1; it++){
for (int j=0; j<n-1-i; j++){

if (num[j+1] < num[j]) { i=0 O0-)J n2 (n-1)
temp = numl[]j];
num[j] = num[j+1]; _ i=1 O0-)-n3 (n-2)
num[j+1] = temp; = ’) .
1] L L]
} . . .
} i=n2| 0-j 0 1
|

)

The Big O notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to find an
upper bond for this function T(n). Consider a function c;n” € never over take T(n)

C,n” such that its greater than T(n) for n>ng . in this case we say that C;n* is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

T(n)=pn? +gqn +r

(]
z
F OBSERVATIONS:
Yn=>ng
cn? 2 pn?+qn+r
(0] [N n

Big Oh O(n?) : f(n): there exist positive constants € and Ny such that 0<=f(n) <= cn® forall n >=n,
In general

O(g(n)) : f(n): there exist positive constants € and ng such that 0<=f(n) <= cg(n) forall n >=n,
Example 1:

5n’+6 € O(n?) ??? v
Find cn? = =6 and ng=3
=>» ¢=5.1 n0=8

Example 2:

5n+6 € O(n?) ??? v
Find cn? = ¢=11 and np=1

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Example 3:
n*+2n*+4n+8 e O(n?) ??? x
Find cn®? >= n*+2n’+4n+87??? x

a,nm+a. NMlo--ooo + a, € O(n™)

logn=VYn< n< nlogn< n?s< n¥s2"s<n!

What does it mean?

int[]la={1,3,7,8,9,2}

4

al4]
k[l b= 5, 8, 1,......... 25, 20 }100 Elements

Array element search: Tosaren = O(N)

Aloop inside a loop in an algorithm usually represents a time complexity of
0O(n?)

£
Bubble sort algorithm: Nl % N2t crenccsrenemnssssssnsssnsanss +1

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 5) Asymptotic Analysis
Asymptotic analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer scientists who
must determine if a particular algorithm is worth considering for implementation.

e The critical resource for a program is -most often- running time.

e The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its
input grows.

o ¢€n (for c any positive constant) = linear growth rate or running time.
o n* > quadratic growth rate

o 2"> exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the algorithm must
perform at least that well.

Example:
Assume : Algorithm A: time = 15n+93
Algorithm B: time = 2n’+1 which is faster?
Graph using Excel

800 ’
600 mm
400 o 15n+93
—"‘
ot
L | 2n2+1
200 -—"_,
0 ==t ! ! !
024638 101?141618
<\ <

The “break-even point”

We are interested for large n

* for sufficiently large n, algorithm A is faster
* in the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or highest growth rate
that the algorithm can have. = big-O notation.

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist two positive
constants ¢ and ng such that T(n) < cf(n) for all n > n,.

10

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

* Prove that 15n+93 is O(n)
We must show +ve ¢ and ng such that 15n+93 <= cn for n >=ng
<provided n=93> =» 15n+n=>» 16n<=cn > <provided c=16>
So forc=16 andn0=93 => //proved

Graph using Excel
Prove that 2n’+1 = O(n?)

Must show +ve ¢, ng such that 2n%+1 <= cn’ forn >= No

2n*+1 <provided n=1>

2n*+n”> 2 3n? <provided c=3>

2n%+1 <= 3n?

So, ¢=3, ne=1 //proved

Graph using Excel

Example 3.5 For a particular algorithm, T(n) = ¢;n® 4 czn in the av-
erage case where ¢; and ¢y are positive numbers. Then, c1n? + con <
cin? + ean? < (e1 + ea)n? forall n > 1. So, T(n) < en? fore = ¢; + ¢,
and ng = 1. Therefore, T(n) is in O(n?) by the second definition.

The lower bound for an algorithm is denoted by the symbol Q, pronounced “big-Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Q(g(n)) if there exist two positive constants ¢
and ng such that T(n) 2 cg(n) for all n > ny.

* prove that 15n+93 is Q(n)

We must show +ve ¢ and ng such that 15n+93 >=cn for n>=ng
<because 93 is +ve> >=cn = <provided c=15> < so any ng >0 will do
So ¢=15, ng=1 // proved

Graph using Excel

* prove that 2n%+1 is Q(n?)

must show +ve ¢ and ng such that 2n*+1 >= cn’ for n >=ng
<because 1 is +ve>

So ¢=2, np=1 // proved

Graph using Excel

11

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Example 3.7 Assume T(n) = ¢1n? + can for ¢; and ¢ > 0. Then,

1 n? 4 CoTl = €] n?

for all n > 1. So, T(n) > en? for ¢ = ¢; and ng = 1. Therefore, T(n) is
in £2(n?) by the definition.

When the upper and lower bounds are the same within a constant factor, we indicate this by using
O (big-Theta) notation.
T(n) = ©(g(n)) iff T(n)=0(g(n)) and T(n)=0q (g(n))

Example: Because the sequential search algorithm is both in O(n) and in Q(n) in the average case,

we say it is @(n) in the average case.

Examples:
f g Relations
n 8n* f€0(g)
nd | 12n8 +4n? | f € O(9), f € Qg), f € O(g)
lEn n f€0(g),feg),feB(g)
n! R f€Q(g)
Simplifying Rules

1. If f(n)isin O(g(n)) and g(n) is in O(h(n)), then f(n) isin O(h(n)).

2. If f(n)is in O(kg(n)) for any constant k > (0, then f(n) is in O(g(n)).

3. If fi(n)isin O(gi(n)) and fo(n) is in O(ga(n)). then fi(n) + fo(n) is in
O(max(gi1(n), g(n))).

4. If fi(n) is in O(gy(n)) and fo(n) is in O(ga2(n)), then fi(n)fz(n) is in
O(g1(n)g2(n)).

e Rule (2) is that you can ignore any multiplicative constants.
e Rule (3) says that given two parts of a program run in sequence, you need consider only the more
expensive part.
e Rule (4) is used to analyze simple loops in programs.
Taking the first three rules collectively, you can ignore all constants and all lower-order terms to determine
the asymptotic growth rate for any cost function.

12

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Order of growth of some common functions

0(1) < O(logzn) < O(n) < O(n logzn) < O(n?) < O(n®) < 0(2")

n *log,n

75 1

50 -

Value of growth-rate function

25

log,n

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-oh analysis

e Overestimate.

e Analysis assumes infinite memory.

e Not appropriate for small amounts of input.

e The constant implied by the Big-Oh may be too large to be practical (2Nlog N vs. 1000N)

13

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 6) Analyzing algorithm examples

General Rules of analyzing algorithm code:

Rule 1—for loops.
The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops.
Analyze these inside out. The total running time of a statement inside a group of nested loops

is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3—Consecutive Statements.
These just add (which means that the maximum is the one that counts;

Rule 4 —if/else.
if(condition)
S1
else
S2

The running time of an if/else statement is never more than the running time of the test plus
the larger of the running times of S1 and S2.

Rule 5 —methods call.
If there are method calls, these must be analyzed first.
Sorting Algorithm
1- Bubble Sort (revision) = O(n?)

for(int i=0; i<n-1; i++){
for (int j=0; j<n-1-i; Jj++){
if (num[j+1] < num[j]) {
temp = num[j];
num[j] = num[j+1];
num[]j+1] = temp;

)|

14

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
2- Selection Sort (revision) & O(n?) :named selection because every time we select the smallest item.

int temp, minIndx;
for(int i=0; i<num.length-1;i++) {
minIndx = 1i;
for (int j=i+1; j<num.length;j++) {
if(num[j] < num[minIndx])
minIndx=j;
}

if(i!'= minIndx) {

temp = numl[i];
num[i] = num[minIndx];
num[minIndx] = temp;

3- Insertion sort:

Example:

int j, temp, current;
for(int i=1; i<n; i++){
current = num|[i];
o= 1i-1;
while (j>=0 && num[]j]>current) {
num[j+1] = num[]];
i i
}

num[]j+1] = current;

Pseudo code: }
15

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
O(n?) sorting algorithms comparison :

(run demo @ http://www.sorting-algorithms.com/)

Very inefficient Better than bubble sort Relatively good for
small lists
Running time is Relatively good for
independent of ordering partially sorted lists
of elements

Merge sort : recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Example: merge method —
|, MERGLORT 7 |

MERGESORT MERGESORT
‘;‘lEQGESORT. MERGESORT /MERGESORT MERGESORT
|

I
zauvi

MERGE

MERGE MERGE

/ MERGE | / MERGE MERGE MERGE

. . ' -'"uv. - . .

Example: merge sort

16

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

start=0 I end= A length - 1

Pseudo-code :
MergeSort (A, start, end) MergeSort (A, 0, 7) [l
if start < end
middle = Floor{(start + end)/2] middle = 3
MergeSort(A, start, middle) MergeSort (A, 0, 3) [l
MergeSort(A, middie+1, end)

Pseudo code: Merge(A, start, middle, end)

Pseudo-code (Merge) :

Merge (A, start, mid, end)
n, = mid - start + 1
n, =end - mid

Let left[0..n,] and right[0..n,] be new temp arrays
fori=0ton,-1
left [I] =A[start+i]

i left j right You| = 0% ho
right[j] =A[mid+1+j]
i.j=0
for k = start to end
ifleft [i]sright[j]
Alk] = left[i]
i=i+1
else A[k]=right|j]
j=]*1

Make sure of array boundaries

H.W: implement merge sort your own

Searching elements in an array:

af2=5 : 0O(1)
find (8) : O(n)

Case 1: unordered array: delete (item) : O(n)

17

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

3‘7 20‘32 45
| i |

find (60)
Finding Index
| 52| = o m=— al3)=232
5] - o ati=5s
55 | - g wemmp |a[6] = 60
Case 2: ordered array: -Binary search- |_ 2 J g
First Search ‘N find (item) = O(log.n)
n
Second Search 5 e : I n ‘ | og,n
M=n == (j-1) = log,n
Third Search % 1) 92 2 1
. 1024 10
L]
(i-1)™ Search <2 1048576 (Million) 20
ih Search S 1099511627776 (Trillion) 40

Inserting and deleting items from ordered array

Insert (52)

Insert (item) = O (n)
Search (item) = O (log.n)

Delete (55)
Delete (item) = O (n)

18

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 7) Linked List

Algorithm - abstract way to perform computation tasks

Data Structure - abstract way to organize information

Linked List: Head Node

Node:

Node code:
public class Node<T> {
private T data;
private Node<T> nextNode;

public Node(T data) { this.data = data; }

public void setData(T data) { this.data = data; }
public T getData() { return data; }

public Node<T> getNextNode() { return nextNode; }

public void setNextNode(Node<T> nextNode) { this.nextNode = nextNode; }

Linked List Code:

public class LinkedList<T> {
private Node<T> head;

}

19

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Inserting a new node:

et e
*

-

Connect Head = new node ?? we lose pointer to linked list
Order of connecting the node is very important

.&. :. r. » NULL

Head

1

Insert code:
public void addAtStart(T data) {
Node<T> newNode = new Node<T>(data);
newNode.setNextNode(this.head); //step 1
this.head = newNode; // step 2

Create a driver class to test linked list classes.
Override the toString methods first

What’s the time complexity of inserting an item to the head?? = O(1)

Node toString:
@Override
public String toString() { return this.data.toString(); }

LinkedList toString:
@Override
public String toString() {

String res ="=>";

Node<T> curr = this.head;

while (curr != null) {
res+=curr+">";
curr = curr.getNextNode();

}

return res + “NULL”;

STUDENTS-HUB.com Uploaded By: anonymous

20

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Length of Linked List?

Head Length: 0

Case 1: If it's empty: _—

Case 2: If not: Make a pointer and move over all the nodes and maintain a counter
= Length: 6

TTTT T
7 '

Length code: Time Complexity & O(n)
public int length() {
int length = 0;
Node<T> curr = this.head;
while (curr != null) {
length++;
curr = curr.getNextNode();

}

return length;

}

Deleting the head node:

3 3 3 R W

Head

Simply move the head to the head.nextNode
Now first Node has no reference to it =» Garbage

Time Complexity = O(1)

Delete at head code: // make sure linked list is not empty
public Node<T> deleteAtStart() {
Node<T> toDel = this.head;
this.head = this.head.getNextNode();
return toDel;

21

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Searching for an Item in a Linked List:

Search (data) l
Search (12)

Time Complexity: linear growth = O(n)
Find code:
public Node<T> find(T data) {
Node<T> curr = this.head;
while (curr != null) {
if (curr.getData() == data) // if (curr.getData().equals(data))
return curr;
curr = curr.getNextNode();

}

return null;

How to use Java generics?? (Optional)
Provided by java, to be able to parameterize the Node and Linked List objects.

22

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Doubly Ended Linked List:

We have two pointers: one at head and one at tail
Therefore, we can add and delete at both ends.

Doubly Ended list code:
public class DoubleEndedList<T> extends LinkedList<T> {
private Node<T> tail;

public Node<T> getTail() { return this.tail; }

public void addAtEnd(T data) {
Node<T> newNode = new Node<T>(data);
if (this.head == null) { // empty
this.head = newNode;
this.tail = newNode;

}

else {
this.tail.setNextNode(newNode);
this.tail = newNode;

}

Make sure to override addAtStart to set the tail pointer correctly:

@Override
public void addAtStart(T data) {
Node<T> newNode = new Node<T>(data);
if (this.head == null) { // empty
this.head = newNode;
this.tail = newNode;
}
else{
newNode.setNextNode(this.head);
this.head = newNode;
}
}

23

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Inserting new Node to a sorted linked list:

Head

Case 1: empty linked list: in this case we added as first element.

1“ =1

e

ot il
Case 2: adding first to a sorted linked list:

Case 3: adding in the middle in a sorted linked list:

X

/

!—-

Head

However we can access the next node from the current node.

1T

7

Time Complexity & O(n)

H.W. = implement insert into a sorted linked list

24

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 8) Doubly Linked List

P
Node:

RR=R ==

Doubly Linked List: Head_/

Doubly Node Code:
public class DNode {
private int data;
private DNode nextNode;
private DNode prevNode;

public DNode(int data) { this.data = data; }

public int getData() { return data; }

public DNode getNextNode() { return nextNode; }
public DNode getPrevNode() { return prevNode; }

public void setNextNode(DNode nextNode) { this.nextNode = nextNode; }
public void setPrevNode(DNode prevNode) { this.prevNode = prevNode; }

@Override
public String toString() { return this.data+"”; }

}

Doubly Linked List code:
public class DLinkedList {
private DNode head;

}

25

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

prevhode peevhode prevode prevhlode
Tl NN NN MEEN
nextNode neviNode nexthode nextMode
ext

' Insert a new Element

Insert a new node at head: Head\ _/
Insert at head code:
public void insertAtHead(int data) {
DNode newNode = new DNode(data);
newNode.setNextNode(this.head);
if (this.head != null) // make sure it’s not empty
this.head.setPrevNode(newNode);
this.head = newNode;

}

Length of a doubly linked list code:
public int length() {
int length = 0;
DNode curr = this.head;
while (curr != null) {
length++;
curr = curr.getNextNode();

}
return length;
}
Override toString method code:
@Override

public String toString() {

StringBuilder sb = new StringBuilder(“head ->");

DNode n = this.head;

while (n = null) {
sb.append(“[“+n+"]");
n = n.getNextNode();
if(n!=null)

sb.append(“<=>");

}

sb.append(“->NULL");

return sb.toString();

Student Activity: insert at last:

26

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
public void insertAtEnd(int data) {

DNode newNode = new DNode(data);
if (this.head == null)
this.head = newNode;

else { // find last node
DNode last = head;

while(last.nextNode != null) last = last.nextNode;
last.nextNode = newNode;
newNode.prevNode = last;

27

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Insertion Sort using doubly linked list:

Review insertion sort logic and point to problem of insertion and time needed to shift the items
Worst case if the array is reverse sorted

Example: assume we need to sort the following doubly linked list:

WUt o : :
.—2—4—3—-

Assumption: 1* node is sorted. We start from the 2" element:

Here:
e The black pointer points to the current node to be sorted.
e The red pointer points to previous node of current node to be sorted.
e The green pointer points to next node of current node to be sorted.

Step 1: The red pointer keeps move backward until it reaches a node which has a value smaller than the

current node OF reach NULL.
Step 2: the current item will be inserted after red pointer as follow:

Make sure you maintain references correctly.
To do so draw the expected outcome and follow the steps to change the pointers:

A — A—
Initial state:

Final state:

28

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Case 1: insert to head

Step 2.0: make new green pointer = black.nextNode

=
=» black.prevNode.nextNode = green

Step 2.1:

il = =C
Step 2.2: — g >

if (green !=null) §reéen.prevNode = black.prevNode

=
Step 2.3: — > = black.prevNode = red

Previous

Previous

\\
i b}t

- ‘ : 4
Step 2.4: @: >

if(red==null) black.nextNode = black.nextNode.prevNode
else black.nextNode = red.nextNode

29

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Step 2.5: ‘ .*.* ¢ >

If (red == null) black.nextNode.prevNode = black

else red.NextNode. PrevNode = black
Step 2.6:

if (red == NULL) head = black

else red.setNextNode = black;

Previous Previous

Step 2.7: black = green

Case 2: insert 4 in the middle

Practice yourself

Case 3: insert last element

-TJ:-:-:-_.,
RN

30

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Insertion Sort Code:

public void sort() {
DNode black = this.head;
while (black != null) {
DNode red = black.getPrevNode();
while (red != null && (red.getData() > black.getData())) {
red = red.getPrevNode();
}
DNode green = black.getNextNode(); //step 2.0
if (red !=null || (head != black)) {
black.getPrevNode().setNextNode(green); //step 2.1
if (green!=null) {
green.setPrevNode(black.getPrevNode()); // step 2.2

}
black.setPrevNode(red); //step 2.3

}
if (red == null) { // set the black as head
if (head != black) {
black.setNextNode(this.head); [/ step 2.4
black.getNextNode().setPrevNode(black); // step 2.5
head = black; // step 2.6

}

}else{ //redis notnull
black.setNextNode(red.getNextNode()); // step 2.4
red.getNextNode().setPrevNode(black); // step 2.5
red.setNextNode(black); // step 2.6

}

black = green;

}

Circular Double Linked List:

head
®

Y

-
@ > L - L 2

I—) . .
|—o «—o «~—®

|4 L

Doubly Linked Circular list

31

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 9) Analyzing the Complexity of Merge Sort

HEIGHT? " MERGE
MERGE MERGE

MERGE MERGE MERGE MERGE

. . . i:-u,.. . . .

B o

L] L] L
EEEEEEEE

2h-1 =N

Level 1: 1 array

Level 3 : 4 arrays

h=1+log,n
O (n log, n)

In Place vs. Not in Place Sorting

In place sorting algorithms are those, in which we sort the data array, without using any additional

memory.
What about selection, bubble, insertion algorithms?

Well, our implementation of these algorithms is IN PLACE. The thing is, if we use a constant amount of extra
memory (like one temporary variable/s), the sorting is In-Place.

But in case extra memory (merging sort), which is proportional to the input data size, is used, then it is

NOT IN PLACE sorting.

But because memory these days is so cheap, that we usually don't bother about using extra memory, if it

makes the program run faster.
Stable vs. Unstable Sort

Ursarted Array

;
f

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Example: Insertion Sort Code:

public void sort(int[] data) { public void sort(int[] data) {
for (int i =@; i < data.length; i++) { for (int i =@; i < data.length; i++) {
int current = data[i]; int current = data[i];
int j = i-1; int § = 1-1;
while (j >=0 8&[data[j] > current)| { while (j >=0 a.qdata[j] >= current)| {|
data[j+1] = I3 data[j+1] = I3
3=-3 3-=3
}
data[j+1] = current; ; data[j+1] = current; o
}
} }
Example:
Unsorted Array Sorted By Age

Amit Kumar
R
——

Llmetahls Cark

0(n?%) = selection sort, bubble sort, insertion sort
O(n log n) = merge sort
O(n) = (Sorting in linear time) ??

If we know some information about data to be sorted (e.g. students’ marks -Range 50 to 99 —), we can

achieve linear time sorting

33

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Counting Sort:

Example: assume data range from 1 to 10

ensaladalalodadofoale
(o] ZEEE SRS EEES B G s g 10

o
clelalalolslelslelzlslolainle

Time analysis:

Data
size n
n Writes
-remp—»—
k k+1 Reads

size n
Note: K is typically small comparing ton

Bad Situation: what if K is larger than n ??

100 Elements

0-1000

Create a temporary array of size 1000?77

Is counting sort is In-Place or Not-In-Place ?? why?

34

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Radix Sort:

What is Radix? The radix or base is the number of unique digits, including zero, used to represent numbers
in a positional numeral system.

For example, for the decimal system: radix is 10 , Binary system: radix is 2
Example Radix Sort:

Step 1: take the least significant digits of the values to be sorted.
Step 2: sort the list of elements based on that digit

Step 3: take the 2" least significant digits and repeat step 2
Then the 3™ LSD and so on

57 713 297

29 821 477

82 630 572
—

47 572 630

630 477 713

1 297 821

How to implement Radix Sort:
Radix Sort Algorithm using linked list:

Consider the following array

|9 [179]139[38|10]5 | 36|

Create an array of linked lists as follow:

0 e Total of 10 linked lists

1 e 0to9refertoactual numbers

2 e With input numbers, we will start with mod 10 then divide the resulted
3 number by 1

4 Code:

> e m=10 =>» mod operation

6 e n=1; => find the specific digit at that column

7 e.g. Arr[0]=9

8 9%m=9

9 ™ 9/n=9

35

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

0]>10
1 \ e If we reaches the end of array.

2 \ e Make a new array by removing data from the head of each linked
3 \ list in order.

4 \
5|>5 \
6|>6 \
7

8> 38

9>9 2179 >139 H

Result:

1105 [36 [38]9 |179]139]|
Is this sorted?
Next step: consider the 2™ significant digit from the previous resulted array:

Code: 0]>5>9
m=m * 10 =100 1]1->10
n=n*10= 10 2| =
3| >36->38~>139
e.g. Arr[0] =10 41>
10% m = 10 512
*10/n=1 612>
71> 179
8| >
9|->

Result:

5]9 |10 [36]38]139]179|
Is this sorted? Yes in this case but we are not done yet

Next step: consider the 3" significant digit from the previous array:

Code:
m=m * 10 = 1000 0| >5>9>10>36—>38
n=n*10=100 1|91399179
e.g. Arr[0] =5 glz
5%m=5 |
\5/ o 4| >
n= 5]
Result:

s |9 |10 |36]38|139]179|
Is this sorted? What is the time complexity

HW: implement Radix sort using Doubly Linked List
36

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 10) Stacks 1

stack is an abstract data type that serves as a collection of elements, with two principal operations:
® push adds an element to the collection;

" pop removes the last element that was added.

Push y [Pop

1
N
B
I
e Last In, First Out = LIFO
UML DescripTioN
+push(newEntry: T): void Task: Adds a new entry to the top of the
stack.
+pop(): T Task: Removes and returns the stack’s top
entry.
+peek(d: T Task: Retrieves the stack’s top entry
without changing the stack i any
way.
+isEmpty(): boolean Task: Detects whether the stack 15 empty.
+Clear(): void Task: Removes all entries from the stack

Linked Implementation:
Each of the following operation involves top of stack

= push
" pop
= peek

Head or Tail for topNode??
Head of linked list easiest, fastest to access =» Let this be the top of the stack

Chain

[~ t|e——(1)

topNode

Top entry of stack

S

Stack

37

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
public class LinkedStack<T> {

private Node<T> topNode;

public void push(T data) {
Node<T> newNode = new Node<T>(data);
newNode.setNextNode(topNode);
topNode = newNode;

}

public Node<T> pop() {
Node<T> toDel = topNode;
assert topNode!=null : "Empty Stack" ;
topNode = topNode.getNextNode();
return toDel;

}

public Node<T> peek() { return topNode; }
public int length() {
int length = 0;
Node<T> curr = topNode;
while (curr != null) {
length++;
curr = curr.getNextNode();

}

return length;
}
public boolean isEmpty() { return (topNode == null); }
public void clear { topNode == null; }

Array-Based Implementation
* End of the array easiest to access
= Let this be top of stack
= Let first entry be bottom of stack

0 1 2 3
a3 Ty Tp e T T T]
topIndex
C) Top entry of stack
O
G
O
Stack

H.W. implement array based stack

38

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Balanced Expressions

Delimiters paired correctly =» compilers
Example 1: The contents of a stack during the scan of an expression that contains the balanced delimiters

{101}

] } Delimiters in expression

[{ Delimiters popped from stack

T

I
-
——

—_—

—_—

(
[[L
{ { { { {
After After After After After After

pushC'{') push('[') push('(') popO) pop() pop()
Example 2: The contents of a stack during the scan of an expression that contains the unbalanced delimiters

{[(1)}

Delimiters are not a pair

{ [\] Delimiters in expression

Delimiter popped from stack

J U

After After After After
push("{") push(C'[") pushC' (") popQ)

Example 3: The contents of a stack during the scan of an expression that contains the unbalanced delimiters

[O)1}

A pair of parentheses

\ A pair of brackets
N

) } Delimiters in expression
(

Delimiters popped from stack

‘ o
u H u H H?‘i“ﬁﬁﬂf&i;‘&““"

After After After After
push('[') push('(') popQ pop()

Example 4: The contents of a stack during the scan of an expression that contains the unbalanced delimiters

{[()]

A pair of parentheses

\ A palr of brackets

{ [() Delimiters in expression
l l ([Delimiters popped from stack
(
[
{ { { {
Brace is left over in stack
After After After After After

pushC'{") push('[') push(' (') pop() pop()

39

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Algorithm to process for balanced expression:

Algorithm checkBalance(expression)

isBalanced = true
while ((isBalanced == true) and nof at end of expression)

4
L

nextCharacter = mext character in expression
switch (nextCharacter)

{
case '(': case '[': case '{':
Push nextCharacter onto stack
break
case ')': case "]': case '}':
if (stack is empty)
isBalanced = false
else
{
openDelimiter = fop enfry of stack
Pop stack
isBalanced = true or false according fo whether openDelimiter and
nextCharacter are a pair of delimiters
}
break
}

}

if (stack is not empty)
isBalanced = false
return isBalanced

H.W. implement check balance algorithm using linked/array stacks

Generic stack: array implementation

public class FixedCapacityStack<Item>
{

private Item[] s;

private int N = 0;

public FixedCapacityStack(int capacity)
{ s = (Item[]) new Object[capacity]; }

public bpolean isEmpty()
{ retytn N — 0; 1}

public void push(Item 1item)

{ return s[--N]; }

40

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015

(Lecture 11) Stacks 2

Processing Algebraic Expressions

Infix: each binary operator appears between its operands a +b
Prefix: each binary operator appears before its operands +ab

Postfix: each binary operator appears after its operands a b +

Arithmetic expression evaluation

Evaluate infix expressions.

(Ll L2+x3)p*Ca ™5)))

\ \

operand operator

Two-stack algorithm. [E. W. Dijkstra]
« Value: push onto the value stack.

« Operator: push onto the operator stack.
« Left parenthesis: ignore.

» Right parenthesis: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Example:

infix expression value stack operator stack

{fully parenthesized)

(1 | + ((2|+ | 3) . (&~ 5

operand operator

STUDENTS-HUB.com

Prepared by: Dr. Mamoun Nawahdah

41

Uploaded By: anonymous

Data Structure: Lectures Note 2015
public class Evaluate
{
public static void main(String[] args)
{
Stack<String> ops = new Stack<String>();
Stack<Double> vals = new Stack<Double>=();
while (!StdIn.isEmpty()) {
String s = StdIn.readString();
if (s.equals(" (")) -
else if (s.equals("+")) ops.push(s);
else if (s.equals("*")) ops.push(s);
else if (s.equals(")"))
{
String op = ops.pop();
if (op.equals("+")) vals.push(vals.pop() + vals.pop());
else if (op.equals("*")) wvals.push(vals.pop() * wvals.pop());
}
else vals.push(Double.parseDouble(s));
h
StdOut.printin(vals.pop());
}
3 % java Evaluate

(1+CC2+3)*(C4a*5)))

101.0

Infix to Postfix

Infix-to-postfix Conversion:

» Operand

* Operator A

¢ Operator +. -, *, or /

» Open parenthesis

* Close parenthesis

Example 1: Converting the infix expression a + b * ¢ to postfix form
Next Character in

Prepared by: Dr. Mamoun Nawahdah

Append each operand to the end of the output expression.

Push A onto the stack.

Pop operators from the stack. appending them to the output

expression, until the stack is empty or its top entry has a lower
precedence than the new operator. Then push the new operator

onto the stack.

Push (onto the stack.

Pop operators from the stack and append them to the output
expression until an open parenthesis is popped. Discard both

parentheses.

Infix Expression

Postfix Form

Operator Stack
(bottom to top)

STUDENTS-HUB.com

a a

+ a

b ab

@ ab

c abc
abce*
abc*+

3

+ + 4+ + 4+

42

Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Example 2: Converting an infix expression to postfix form:a-b + ¢

Next Character in Postfix Operator Stack
Infix Expression Form (bottom to top)
a a
= a -
b ab =
+ ab—
ab - +
(& ab—c +
ab—-c+

Example 3: Converting an infix expression to postfix form:a”b " ¢

Next Character in Postfix Operator Stack
Infix Expression Form (bottom to top)
a a
A a A
b ab A
A a b AA
c abc ol
abch 4
abch”?

Example 4: The steps in converting the infix expression a / b * (c + (d - e)) to postfix form

Next Character Postfix Operator Stack
from Infix Form (bottom to top)
Expression

a a

/ a /

b ab /

- ab/
ab/ *

(ab/ *(

c ab/c *(

: ab/c %

(ab/c *(+(

d ab/cd *(+(

- ab/cd *(+ (-

e ab/cde *(+ (-

) ab/cde — o+ (
ab/cde — *(+

) ab/cde— + *(
ab/cde — + *

ab/cde—+*

43

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Infix-to-postfix Algorithm

Algorithm convertToPostfix(infix)
// Converts an infix expression to an equivalent postfix expression.

operatorStack = a new empty stack

postfix = a new empty string

while (infix has characters left to parse)

{
nextCharacter = next nonblank character of infix
switch (nextCharacter)

{
case variable:
Append nextCharacter fo postfix
break
case 'A’
operatorStack.push(nextCharacter)
break
case '+' : case '-' : case '¥*' : case '/’
while (loperatorStack.isEmpty() and
precedence of nextCharacter <= precedence of operatorStack.peek())
{
Append operatorStack.peek () fo postfix
operatorStack.pop(Q)
}
operatorStack. push(nextCharacter)
break
case '('
operatorStack. push(nextCharacter)
break
case ')' : // Stackis not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != '(')
{
Append topOperator to postfix
topOperator = operatorStack.pop()
}
break
default: break // Ignore unexpected characters
}
}
while (loperatorStack.isEmpty())
{

topOperator = operatorStack.pop()
Append topOperator fo postfix

return postfix

STUDENTS-HUB.com

44

Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Infix:1 -2A3A3-(4+5%6)*7

M
1 2 | % |
w s E Twm m W
A + +
HE i { |4 |4 (|8
F T e ¥ wm F
E‘ ;' 6 fe |, L7 ..
ST o T T 7 o
H.W.example: Postfix:1 23 3AMA-456"*+7"*-

Evaluating Postfix Expressions

e When an operand is seen, it is pushed onto a stack.
e When an operator is seen, the appropriate numbers of operands are popped from the stack, the
operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1* item popped becomes the rhs parameter to the binary operator and that the

2" item popped is the lhs parameter; thus parameters are popped in reverse order. For
multiplication, the order does not matter, but for subtraction and division, it does.
e When the complete postfix expression is evaluated, the result should be a single item on the stack that
represents the answer.

Example 1: The stack during the evaluation of the postfix expressionab/ whenais2andbis4

a b / / /4 /4 2/4 2/4

WU

Example 2: The stack during the evaluation of the postfix expressionab +c/whenais2,bis4,andcis 3
a b ks + + 4 +4 2+4 2+4 c / / 13 /3 6/3 6/3

Voo 1 b

3 3 3
2 2 6 6 6 6 6 6

STUDENTS-HUB.com Uploaded By: anonymous

=

A=

=
L]

(38
(e

~d
(3]

45

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Algorithm for evaluating postfix expressions.

Algorithm evaluatePostfix(postfix)

[/ Evaluartes a posiiix expression

valueStack = a new empty stack
while (postfix has characters left to parse)
{
nextCharacter = next nonblank character of postfix
switch (nextCharacter)
{
case variable:
valueStack.push(value of the variable nextCharacter)
break

1 L L)) L.

case '+' : case '-' : case '*' : case '/' : case 'A'
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in nextCharacter and its operands
operandOne and operandTwo
valueStack.push(result)
break

default: break // Ignore unexpected characters
}

Postfix Expression:12-4513*6* 72277/ -

5
2 4 4
1 1 < 1 =
1 2 - 4 5
3 6 7
1024 1024 3072 3072 | |18432| 18432
-1 -1 4 -1 -1 -1
A 3 * 6 * 7
2
2 2 4
7 7 7 2401
18432 [18432| |18432] |18432 7
-1 A -1 4 - -8
2 A A /

H.W. Example: 2

46

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Iteration (optional)
e Design challenge. Support iteration over stack items by client, without revealing the internal

representation of the stack.
e Java solution. Make stack implement the java.lang.lterable interface.

Q.
A.

Q.

A

Iterable interface

What is an Iterable ?
public interface Iterable<Item>
Has a method that returns an Iterator. {
Iterator<Item> iterator();

}

What is an Iterator ?
Has methods hasNext() and next().

Iterator interface

public interface Iterator<Item>

{
boolean hasNext();
2 Item next(); optional; use
Why make data structures Iterable ? void remove(); <— at your own risk
. Java supports elegant client code. }
“foreach” statement (shorthand) equivalent code (longhand)
for (String s : stack) Iterator<String> i = stack.iterator();
StdOut.printin(s); while (i.hasNext())
{
String s = i.next();
StdOut.printin(s);
$ }

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>

{
public Iterator<Item> iterator() { return new ListIterator(); }
private class ListIterator implements Iterator<Item>
{
private Node current = first;
public boolean hasNext() { return current != null; }
public void remove() { /* not supported */ }
public Item next() \
{ ‘\ throw UnsupportedOperationException
Item item = current.i tem; throw NoSuchElementException
current = current. next; if no more items in iteration
return item;
}
}
}
first current
times — > of — best the was it null

47

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note

Elements Leave

2015
(Lecture 12) Queues

Prepared by: Dr. Mamoun Nawahdah

Elements Enter

HEAD TAIL
First Last
front FIFO : First In First Out | B3

ENQUEUE
Inserts an element in the queue from the tail towards the head
DEQUEUE

Removes an element in the queue from the head of the queue

UML

DEscripTION

+enqueue(newEntry: integer): void Task: Adds a new entry to the back of

+dequeue(): T

+getFront(}: T

+isEmpty(): boolean

+clear(): void

Linked-list Representation of a Queue
Maintain pointer to first (head) and last (tail) nodes in a linked list;
insert/remove from opposite ends.

first —s=

last

m \
l—*| be

- p— R

Delete dequeue:

first—-.._______________‘-_*
be

Add enqueue:

save a link to the last node
Node oldlast = Tlast;

R

first —

ar

mull

aldlast

ta

be

STUDENTS-HUB.com

—

|

ar

reull

the queue.

Task: Removes and refurns the entry at
the front of the queue.

Task: Retnieves the queue’s front entry
without changing the queue mn
any way.
Task: Detects whether the queue 1s empty.
Task: Removes all entries from the queue.

48

Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
create a new node for the end

last = new Node();
last.item = "not";

oldlast

first

link the new node to the end of the list

oldlast.next = last;
oldlast

First

special cases for
ampty gueue

49

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Array implementation of a Queue.

o e e S a N a S e al al

¥
S maxSize = 8
a

int[] queueArray = new int[maxSize)

Front inthead =-1
Back int tail = -1

* enqueue(): add new item at g[tail] .
+ dequeue(): remove item from gq[head] .
enqueue(8)

al sl |l al o8l g @

enqueue(8)

enqueue (12)
I Y Y Y 3 O 1 N 5 I |

T

After a number of enqueues:

Ll 0] (] (] [[[[]

peay

f

dequeue(): returns the item pointed by head and advances head pointer
o [S Y [[3 [I3 [£

=
o
o
Q.

0 8 R B3

t

peay

—>
peay
et

50

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
enqueue (27) ?? how to advance tail?? We have space at the beginning?? Shift??
@) B Gl G

L] Az
— 1% fe
enqueue(27)

How to find free spaces??

Math.abs(Tail Index = Head Index) < Length of array _q

So, if tail at max index and we have free spaces, we move tail to 1* index. =» Circular Queue

S Y [[[B [3 [|

"I

enqueue (9) ??
O 0 0 0 60 0 @ [0

peay

T

Circular Queue

MAX QUEUE - 1

back

Delete » Delete » Insert 9

front ax QuEUE-1 0 MAX_QUEUE - 1 0

51

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Queue with single item ———» Delete item—queue becomes empty

MAX_QUEUE —1 MAX QUEUE —1

T AR
4bv N

front AT 3

(a)

back back
front

Queue with single empty slot ———— Insert 9—queue becomes full
MAX_QUEUE —1 MAX_QUEUE —1

‘% dl%
4»’ Vab

front front
back back

* To detect queue-full and queue-empty conditions
— Keep a count of the queue items
* Toinitialize the queue, set
— frontto-1
— backto -1
— counttoO
Inserting into a queue
If(count < MAX_QUEUE) // free
back = (back+1) % MAX_QUEUE;
items[back] = newltem;

++count;
If(count==1) // first item
front = back;
Deleting from a queue
If(count > 0) // not empty
front = (front+1) % MAX_QUEUE;
--count;
If(count==0) // empty
front = back =-1

DE Queue (Double Ended Queue)

Allows add / remove elements from both head/tail.

HW This of implementations using linked List and Arrays.

52

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 13) Cursor Implementation of Linked Lists

Many Languages do not support pointers.

If data max length is known, using Array is faster

Solution =» Cursor Implementation

2 features present in a pointer implementation of linked lists:

e The data are stored in array, each array element contains data and a pointer to the next structure.
e A new structure can be obtained from the system’s global memory by a call to malloc and released by
a call to free.

To Be Completed

53

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 14) Trees

Sorted Arrays Linked List
Search : Fast (O(logn)) Search : Slow (O(n))
Insert : Slow (O(n)) Insert : Fast (O(1))
Delete : Slow (O(n)) Delete : Fast (O(1))

Tree

Siblings:
children of node A

node B e ----- Level 3

------------------- Level 4

.......................

e Atreeis a collection of N nodes, one of which is the root, and N — 1 edges.
e Every node except the root has one parent.

e Nodes with no children are known as leaves.

e Aninternal node (parent) is any node that has at least one non-empty child.
e Nodes with the same parent are siblings.

® The depth of a node in a tree is the length of the path from the root to the node.

® The height of a tree is the number of levels in the tree.

Example: Family Trees (one parent)
Example: file system tree

54

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Binary Trees

e Abinary tree is a tree in which no node can have more than two children.

Root
veft Rigry
[wa]
Ten T int

where T\ and T

ight AT€ Dinary trees.

Binary Tree Node: lwal wal

e Each node in a full binary tree is either:
(1) an internal node with exactly two non-empty children or
(2) a leaf.

e A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by
levels from left to right.

e e

(a) This tree is full (b) This tree is complete
(but not complete). (but not full).

® The max. number of nodes in a full binary tree as a function of the tree’s height = 2"1

Full Tree Height Number
of Nodes
O 1 1=21-1
.
T C 2 3=22-1
g .
e - ——
' —
A e
(O () 3 7=2"-1

55

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Implementation:

public class TreeNode {
private Integer data;
private TreeNode leftChild;
private TreeNode rightChild;
public TreeNode(Integer data) { this.data = data; }
public Integer getData() { return data; }
public TreeNode getLeftChild() { return leftChild; }
public void setLeftChild(TreeNode left) { this.leftChild = left; }
public TreeNode getRightChild() { return rightChild; }
public void setRightChild(TreeNode right) { this.rightChild = right;}
}
public class BinaryTree {

private TreeNode root;

public void insert(Integer data) {}

public TreeNode find(Integer data) { return null; }
public void delete(Integer data) {}

}

Tree Traversal
Definition: visit, or process, each data item exactly once.

In-Order Traversal:

(=) @.
© A
() @ @

1.Traverse the left sub tree. / A / N @
2. Visit the root. @ @1 @ e‘

3.Traverse the right sub tree.
93 D2 65 12 25 27 33 34 39 48 52 60 65 72 78 90

@ TreeNode

public void traverselnOrder() {
if (this.leftChild != null)
this.leftChild.traverselnOrder();
System.out.print(this + " ");
if (this.rightChild != null)
this.rightChild.traverselnOrder();

}
@BinarySerachTree
public void traverselnOrder() {
if (this.root != null)
this.root.traverselnOrder();
System.out.printin();

56

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Pre-Order Traversal

1.Visit the root.
2.Traverse the left sub tree.
3.Traverse the right sub tree.

52 33 65 52 33 25 12 27 39 34 48 65 60 78 72 90

Post-Order Traversal

1.Traverse the left sub tree.
2.Traverse the right sub tree.
3.Visit the root.

33 65 52 12 27 25 34 48 39 33 60 72 90 78 65

Level-Order Traversal (Optional)
e Begin at root and visit nodes one level at a time
e Level-order traversal is implemented via a queue.
e The traversal is a breadth-first search.

HW: implement level-order traversal

57

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 15) Expression Trees

(a) a/b () a*b+c (€ a*(b+c) (d) a*(b+c*d) /e
&) (1) () (/)
A ®
(a) (®)) (o (@ &)
() (*)
(o) (4

e The leaves of an expression tree are operands, such as constants or variable names, and the other
nodes contain operators.

e |[tisalso possible for a node to have only one child, as is the case with the unary minus operator.

e We can evaluate an expression tree by applying the operator at the root to the values obtained by
recursively evaluating the left and right subtrees.

Algebraic expressions:

e Algebraic expression trees represent expressions that contain numbers, variables, and unary and
binary operators.

e Some of the common operators are x (multiplication), + (division), + (addition), - (subtraction), A
(exponentiation), and - (negation).

)
Example: ((5+2z)/-8)*(4"2) \/J\
(i)
\
Lt D "GS I&./’
/

— —,
2/ \Z/ ®

Boolean expressions:

| v

e Boolean expressions are represented very similarly to
algebraic expressions, the only difference being the specific _f -
values and operators used. (s v
e Boolean expressions use true and false as constant values, ’{—\/\
. - f - Iy)
and the operators include A (AND), V (OR), ~ (NOT). v 9) F)

/
o -
"y, " ®

58

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Algorithm for evaluation of an expression tree:

Algorithm evaluate(expressionTree)
if (expressionTree is empty)

return 0
else
{
firstOperand = evaluate(left subtree of expressionTree)
secondOperand = evaluate (right subtree of expressionTree)
operator = the root of expressionlree
return the result of the operation operator and its operands firstOperand
and secondOperand
}

Constructing an expression tree:
The construction of the expression tree takes place by reading the postfix expression one symbol at a time:
e [f the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.
e |If the symbol is an operator,
o Two pointers trees T1 and T2 are popped from the stack
o A new tree whose root is the operator and whose left and right children point to T2 and T1
respectively is formed .
o A pointer to this new tree is then pushed to the Stack.

Example: (ab+cde+**)

e Since the first two symbols are operands, one-node trees are created and pointers are pushed to them
onto a stack.

® The next symbolis a'+'. It pops two pointers, a new tree is formed, and a pointer to it is pushed onto
to the stack.

59

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
e Next, ¢, d, and e are read. A one-node tree is created for each and a pointer to the corresponding tree

is pushed onto the stack.

® Continuing, a '+'is read, and it merges the last two trees.

® Now, a '"*'is read. The last two tree pointers are popped and a new tree is formed with a '*' as the root.

\

® Finally, the last symbol is read. The two trees are merged and a pointer to the final tree remains on the
stack.

60

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 16) Binary Search Trees BST
Binary Search Tree

Binary TE

e In a binary search tree for every node, X, in the tree, the values of all the items in its left subtree are

smaller than the item in X, and the values of all the items in its right subtree are larger (or equal) than
the itemin X.

Search for anitem: Find(52) , Find(39) , Find(35)

@ TreeNode

public TreeNode find(Integer data) {

if (this.data == data)
return this;

if (data < this.data && leftChild != null)
return leftChild.find(data);

if (rightChild != null)
return rightChild.find(data);

return null;

}

@BinarySerachTree

public TreeNode find(Integer data) {
if (root != null)
return root.find(data);
return null;

}

Efficiency of a search: Searching a binary search tree of height h is O(h)
To make searching a binary search tree as efficient as possible ... Tree must be as short as possible.

61

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note

Prepared by: Dr. Mamoun Nawahdah
Finding Max and Min Values

e The find Min operation is performed by following left nodes as long as there is a left child.

e The find Max operation is similar.

@TreeNode

public Integer largest() {
if (this.rightChild == null)
return this.data;
return this.rightChild.largest();

}

public Integer smallest() {
if (this.leftChild == null)
return this.data;
return this.leftChild.smallest();

@BinarySerachTree
public Integer largest() {
if (this.root != null)
return root.largest();
return null;

}

public Integer smallest() {
if (this.root != null)
return root.smallest();
return null;

STUDENTS-HUB.com

62

Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Insert in Binary Search Tree

Insert(63)
Insert (63)
@TreeNode
public void insert(Integer data) {
if (data >= this.data) { // insert in right subtree
if (this.rightChild == null)
this.rightChild = new TreeNode(data);
else
this.rightChild.insert(data);
}else { // insert in left subtree
if (this.leftChild == null)
this.leftChild = new TreeNode(data);
else
this.leftChild.insert(data);
}
}
@BinarySerachTree

public void insert(Integer data) {
if (root == null)
this.root = new TreeNode(data);
else
root.insert(data);

63

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Deleting a Node
Case 1: Node to be deleted is a leaf.
Case 2: Node to be deleted has one child.
Case 3: Node to be deleted has two children.

Delete (34)

Case 1 : Node to be deleted is a leaf.

@BinarySerachTree

public void delete(Integer data) {
TreeNode current = this.root;
TreeNode parent = this.root;
boolean isLeftChild = false;

if (current == null) return; //treeis empty

while (current != null && current.getData() != data) {
parent = current;
if (data < current.getData()) {
current = current.getLeftChild();
isLeftChild = true;
}else {
current = current.getRightChild();
isLeftChild = false;
}
}

if (current == null) return; // node to be deleted not found

// this is case 1
if (current.getLeftChild() == null && current.getRightChild() == null) {
if (current == root) { root = null; // no elements in tree now
}else {
if (isLeftChild)
parent.setLeftChild(null);
else
parent.setRightChild(null);

64

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Delete (72)

Case 2 : Node to be deleted has one child.
If a node has one child, it can be removed by having its parent bypass it.

Note: The root is a special case because it does not have a parent.

@BinarySerachTree
// This is case 2 broken down further into 2 separate cases
else if (current.getRightChild() == null) { // current has left child
if (current == root) {
root = current.getLeftChild();
} else if (isLeftChild) {
parent.setLeftChild(current.getLeftChild());
}else {
parent.setRightChild(current.getLeftChild());

}
} else if (current.getLeftChild() == null) { // current has right child

if (current == root) {
root = current.getRightChild();

} else if (isLeftChild) {
parent.setLeftChild(current.getRightChild());

}else {
parent.setRightChild(current.getRightChild());

}

Delete (33)

Successor

Case 3 : Node to be deleted has two children. Case 3 : Node to be deleted has two children.

65

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

A node with two children is replaced by using the smallest item in the right subtree (Successor). Then
another node is removed.

What if 34 has a right child?

@BinarySerachTree
// This is case 3 - Most complicated (node to be deleted has 2 children)
else {
TreeNode successor = getSuccessor(current);
if (current == root)
root = successor;
else if (isLeftChild) {
parent.setLeftChild(successor);
}else {
parent.setRightChild(successor);

}
successor.setLeftChild(current.getLeftChild());

private TreeNode getSuccessor(TreeNode node) {

TreeNode parentOfSuccessor = node;

TreeNode successor = node;

TreeNode current = node.getRightChild();

while (current != null) {
parentOfSuccessor = successor;
successor = current;
current = current.getLeftChild();

}

if (successor != node.getRightChild()) {
parentOfSuccessor.setLeftChild(successor.getRightChild());
successor.setRightChild(node.getRightChild());

}

return successor;

}
Soft Delete (lazy deletion): When an element is to be deleted, it is left in the tree and merely marked as
being deleted.

e |[f adeleted item is reinserted, the overhead of allocating a new cell is avoided.

66

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Tree Height
@BinarySerachTree
public int height() {
if (this.root == null) return 0;
return this.root.height();

@TreeNode
public int height() {
if (isLeaf()) return 1;
int left = 0;
int right = 0;
if (this.leftChild != null)
left = this.leftChild.height();
if (this.rightChild != null)
right = this.rightChild.height();
return (left > right) ? (left + 1) : (right + 1);

Efficiency of Operations

* For tree of height h

= The operations add, remove, and getEntry are O(h)
* If tree of n nodes has height h=n

= These operations are O(n)
* Shortest tree is full

= Results in these operations being O(log n)

Unbalanced Tree

57121525274247
@ Balanced

®
®e

®e
Unbalanced

* The order in which you add entries to a binary search tree affects the shape of the tree.

67

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(Lecture 17, 18) AVL Trees

* An AVL tree is a BST with the additional balance property that, for any node in the tree, the height of
the left and right subtrees can differ by at most 1.
* Complete binary trees are balanced.

Single Rotations
(a) (b) (c) (d)

® @ @) ®)

Unbalanced Balanced

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

(a) (b) (c)

Balanced Unbalanced Balanced
Example: (a) Adding 80 to the tree does not change the balance of the tree;
(b) a subsequent addition of 90 makes the tree unbalanced ;

(c) a left rotation restores its balance

Case 1: Single Right Rotation

(a) Before addition (b) After addition (c) After right rotation
T N _— i
C)
I h
h+1
¥ ki i I, T, T;
I

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

68

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Unbalanced Balanced
Example: Before and after a right rotation restores balance to an AVL tree

Algorithm rotateRight(nodeN)

nodeC = /eft child of nodeN

Set nodeN 5 left child to nodeC’s right child
Set nodeC’s right child to nodeN

return nodeC

Case 2: Single Left Rotation

(a) Before addition {b) After addition {c) After left rotation
B C T
N N
h h
SLIA X
TI T‘I T‘;

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Algorithm rotatelLeft(nodeN)

nodeC = right child of nodeN

Set nodeN s right child to nodeC's left child
Set nodeC’s /eft child to nodeN

return nodeC

69

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. Arotation about node N’s new child

Case 3: Right-Left Double Rotations

(a) After adding 70 (b) After right rotation (c) After left rotation

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both
(b) a right rotation and (c) a left rotation

(a) Before addition (b) After addition
N —
C
G
h+1
I
e T,
T,

(d) After left rotation

T_T T4 Tl T_: T,
Before and after an addition to an AVL subtree that requires both
a right rotation and a left rotation to maintain its balance
70

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

Algorithm rotateRightLeft(nodeN)

nodeC = right child of nodeN

Set nodeN ‘s right child to the node returned by rotateRight(nodeC)
return rotatelLeft(nodeN)

Case 4: Left-Right Double Rotations
Example:

(a) After adding 55, 10, and 40 (b) After adding 35

Imbalance at

@ @ this node

(c)After left rotation about 40 (d) After right rotation about 40

(a) The AVL tree after additions that maintain its balance;
(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

71

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah
(a) Before addition (b) After addition

B %

(c) After left rotation

Before and after an addition to an AVL subtree that requires both
a left rotation and a right rotation to maintain its balance

Algorithm rotatelLeftRight(nodeN)

nodeC = left child of nodeN
Set nodeN’s left child to the node returned by rotateLeft(nodeC)

return rotateRight(nodeN)

» Four rotations cover the only four possibilities for the cause of the imbalance at node N

* The addition occurred at:
= The left subtree of N’s left child (case 1: right rotation)
= The right subtree of N’s left child (case 4: left-right rotation)
= The left subtree of N’s right child (case 3: right-left rotation)
= The right subtree of N’s right child (case 2: left rotation)

72

STUDENTS-HUB.com Uploaded By: anonymous

