

COMP242 Data Structure

Lectures Note: AVL Trees

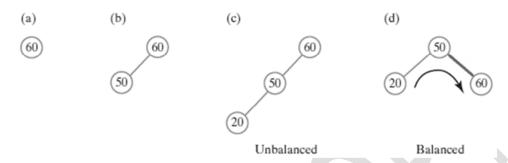
Prepared by: Dr. Mamoun Nawahdah

2016/2017

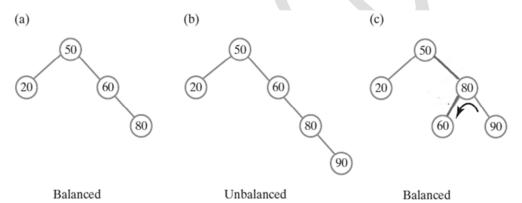
AVL Trees

- An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance
 property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.
- Complete binary trees are balanced.

Single Rotation

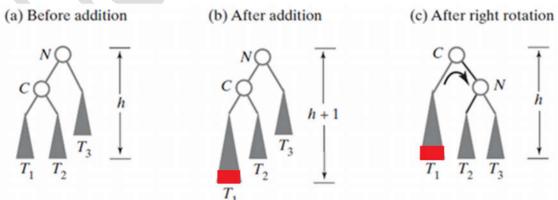


Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty **BST**, the tree is **not balanced**; (d) a corresponding **AVL** tree rotates its nodes to restore balance



Example: (a) Adding 80 to the tree does not change the balance of the tree; (b) a subsequent addition of 90 makes the tree unbalanced; (c) a left rotation restores its balance

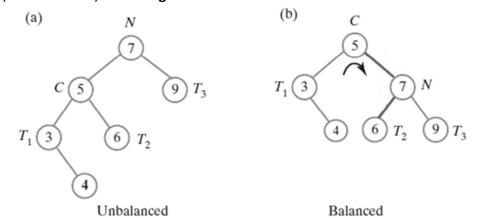
Case 1: Single Right Rotation (left-left addition)



Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

Data Structure: AVL Trees

Example: a) before and b) after a right rotation restores balance to an AVL tree



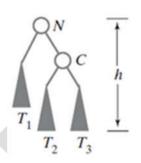
Algorithm rotateRight(nodeN)

// Corrects an imbalance at a given node nodeN due to an addition // in the left subtree of nodeN's left child.

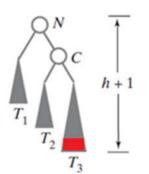
nodeC = left child of nodeN
Set nodeN's left child to nodeC's right child
Set nodeC's right child to nodeN
return nodeC

Case 2: Single Left Rotation (right-right addition)

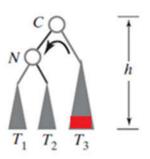
(a) Before addition



(b) After addition



(c) After left rotation



Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Algorithm rotateLeft(nodeN)

// Corrects an imbalance at a given node nodeN due to an addition // in the right subtree of nodeN's right child.

nodeC = right child of nodeN
Set nodeN's right child to nodeC's left child
Set nodeC's left child to nodeN
return nodeC

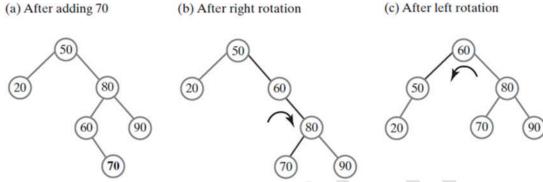
■ Data Structure: AVL Trees

Double Rotations

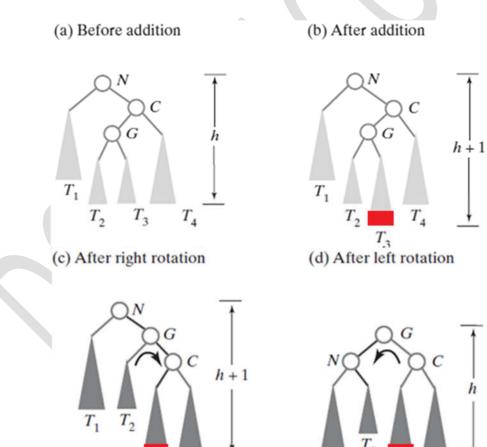
A double rotation is accomplished by performing two single rotations:

- 1. A rotation about node N's grandchild G (its child's child)
- 2. A rotation about node N's new child

Case 3: Right-Left Double Rotations (right-left addition)



Example: (a) Adding 70 destroys tree's balance; to restore the balance, perform both (b) a **right rotation** and (c) a **left rotation**



Before and after an addition to an **AVL** subtree that requires both a **right rotation** and a **left rotation** to maintain its balance

 T_3

Algorithm rotateRightLeft(nodeN)

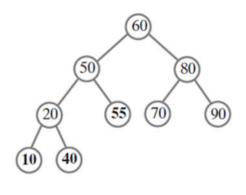
// Corrects an imbalance at a given node nodeN due to an addition // in the left subtree of nodeN's right child.

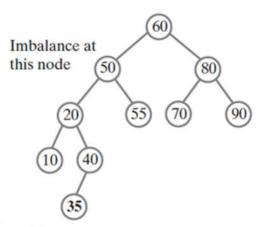
nodeC = right child of nodeN
Set nodeN's right child to the node returned by rotateRight(nodeC)
return rotateLeft(nodeN)

Case 4: Left-Right Double Rotations (left-right addition) Example:

(a) After adding 55, 10, and 40

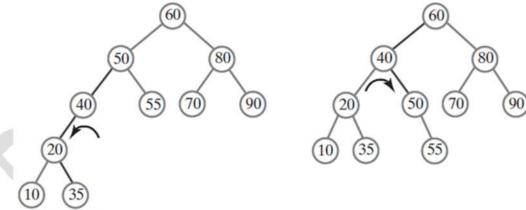
(b) After adding 35





(c) After left rotation about 40

(d) After right rotation about 40



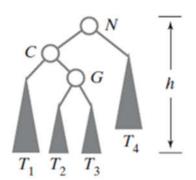
- (a) The AVL tree after additions that maintain its balance;
 - (b) after an addition that destroys the balance;
 - (c) after a left rotation;
 - (d) after a right rotation

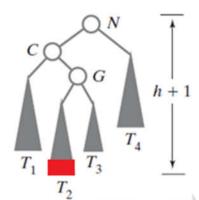
Data Structure: AVL Trees 2016/2017

(a) Before addition

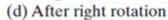
Prepared by: Dr. Mamoun Nawahdah

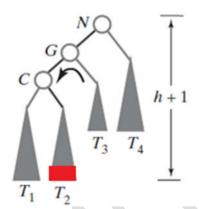
(b) After addition

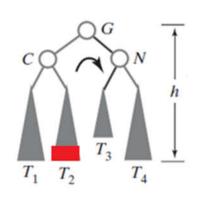




(c) After left rotation







Before and after an addition to an AVL subtree that requires both a left rotation and a right rotation to maintain its balance

Algorithm rotateLeftRight(nodeN)

// Corrects an imbalance at a given node nodeN due to an addition // in the right subtree of nodeN's left child.

nodeC = *left child of* nodeN Set nodeN's left child to the node returned by rotateLeft(nodeC) return rotateRight(nodeN)

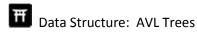
- Four rotations cover the only four possibilities for the cause of the imbalance at node N
- The addition occurred at:
 - The left subtree of N's left child (case 1: right rotation)
 - The right subtree of N's left child (case 4: left-right rotation)
 - The left subtree of N's right child (case 3: right-left rotation)
 - The right subtree of N's right child (case 2: left rotation)

Data Structure: AVL Trees **Rebalance Code Implementation**

Pseudo-code to rebalance the tree:

```
Algorithm rebalance(nodeN)
if (nodeN's left subtree is taller than its right subtree by more than 1)
    // Addition was in nodeN's left subtree
   if (the left child of nodeN has a left subtree that is taller than its right subtree)
       rotateRight(nodeN) // Addition was in left subtree of left child
   else
       rotateLeftRight(nodeN) // Addition was in right subtree of left child
else if (nodeN's right subtree is taller than its left subtree by more than 1)
   // Addition was in nodeN's right subtree
   if (the right child of nodeN has a right subtree that is taller than its left subtree)
       rotateLeft(nodeN)
                              // Addition was in right subtree of right child
   else
       rotateRightLeft(nodeN) // Addition was in left subtree of right child
}
    private TNode rebalance(TNode nodeN){
      int diff = getHeightDifference(nodeN);
```

```
if (diff > 1) { // addition was in node's left subtree
  if(getHeightDifference(nodeN.left)>0)
    nodeN = rotateRight(nodeN);
  else
    nodeN = rotateLeftRight(nodeN);
else if ( diff < -1){ // addition was in node's right subtree
  if(getHeightDifference(nodeN.right)<0)</pre>
    nodeN = rotateLeft(nodeN);
  else
    nodeN = rotateRightLeft(nodeN);
return nodeN;
```



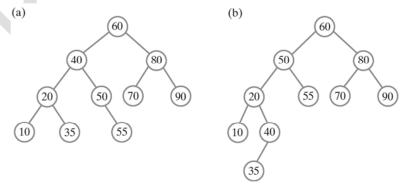
Insert Code Implementation:

```
public void insert(T data) {
                   root = new TNode<>(data);
  if(isEmpty())
  else {
    TNode rootNode = root;
    addEntry(data, rootNode);
    root = rebalance(rootNode);
}
public void addEntry(T data, TNode rootNode){
  assert rootNode != null;
  if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree}
    if(rootNode.hasLeft()){
      TNode leftChild = rootNode.left;
      addEntry(data, leftChild);
      rootNode.left=rebalance(leftChild);
    }
    else
               rootNode.left = new TNode(data);
  else { // right into right subtree
    if(rootNode.hasRight()){
      TNode rightChild = rootNode.right;
      addEntry(data, rightChild);
      rootNode.right=rebalance(rightChild);
    }
    else
               rootNode.right = new TNode(data);
  }
```

Delete Code Implementation:

```
public TNode delete(T data) {
   TNode temp = super.delete(data);
   if(temp!= null){
      TNode rootNode = root;
      root = rebalance(rootNode);
   }
   return temp;
}
```

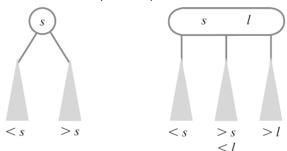
An AVL Tree versus a BST:



Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST

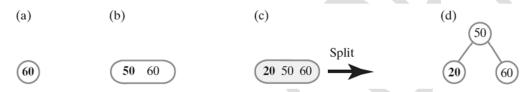
2-3 Trees

- Definition: general search tree whose interior nodes must have either 2 or 3 children.
 - A **2-node** contains one data item *s* and has two children.
 - A 3-node contains two data items, s and I, and has three children.

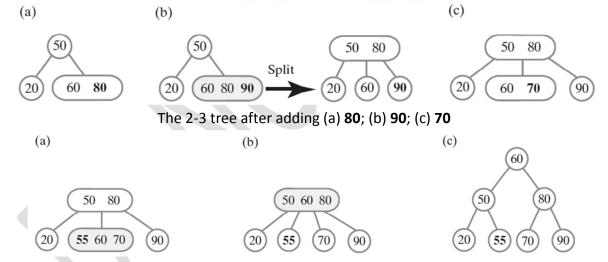


Adding Entries to a 2-3 Tree:

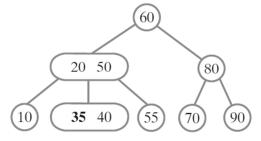
Data Structure: AVL Trees



Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split



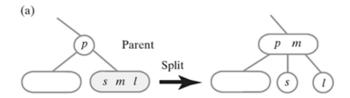
Adding 55 to the 2-3 tree, causes a leaf and then the root to split



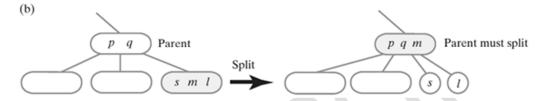
The 2-3 tree, after adding 10, 40, 35

Splitting Nodes during Addition:

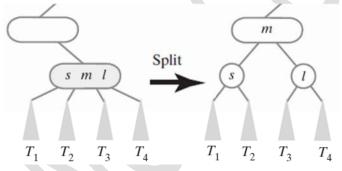
- Splitting a **leaf** to accommodate a new entry when the leaf's **parent** contains:
 - (a) one entry:



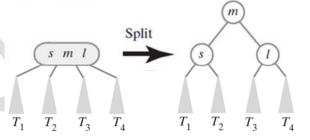
(b) two entries:



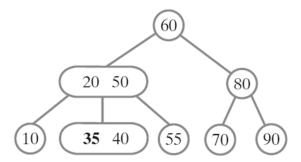
Splitting an internal node to accommodate a new entry:



Splitting the root to accommodate a new entry:



Searching a 2-3 Tree:



Data Structure: AVL Trees

2-3 tree: performance:

2-3 tree is a perfect balanced tree: Every path from root to a leaf has same length.

Tree height:

- Worst case: log N. [all 2-nodes]
- Best case: log₃ N ≈ .631 log N. [all 3-nodes]
 - Between 12 and 20 for a million nodes.
 - · Between 18 and 30 for a billion nodes.

2-3 tree: implementation?

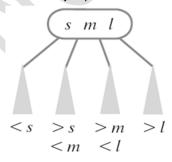
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- · Large number of cases for splitting.

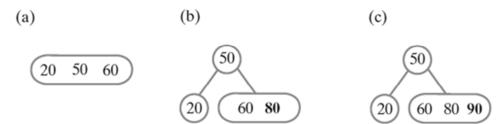
exercise: 50 60 70 40 30 20 10 80 90 100

2-4 Trees

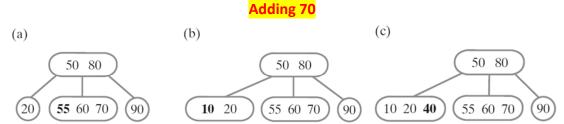
- Sometimes called a 2-3-4 tree.
 - General search tree
 - Interior nodes must have either two, three, or four children
 - Leaves occur on the same level
 - A 4-node contains three data items **s**, **m**, and **l** and has four children.



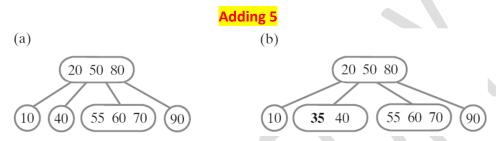
Adding Entries to a 2-4 Tree



The 2-4 tree, after (a) adding 20, 50, and 60 (b) adding 80 and splitting the root; (c) adding 90

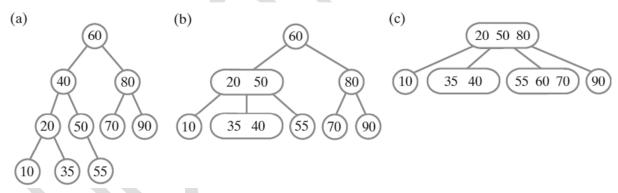


The 2-4 tree after adding (a) 55; (b) 10; (c) 40



The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees:



Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35: (a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

B-Trees

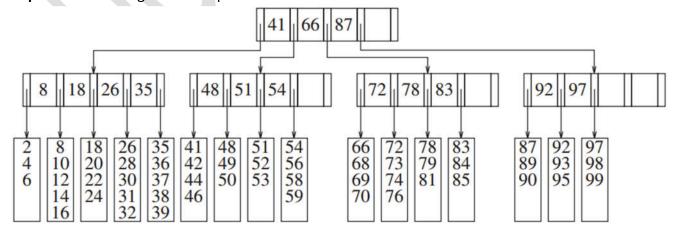
B-trees (Bayer-McCreight, 1972)

- Definition: multiway search tree of order m
 - A general tree whose nodes have up to *m* children each
- A binary search tree is a multiway search tree of order 2. In a binary search tree, we need one key to
 decide which of two branches to take. In an M-ary search tree, we need M 1 keys to decide which
 branch to take.
- 2-3 trees and 2-4 trees are balanced multiway search trees of orders 3 and 4, respectively.
- As branching increases, the depth decreases. Whereas a complete binary tree has height that is roughly log₂ N, a complete M-ary tree has height that is roughly log_M N.
- The B-tree is the most popular data structure for disk bound searching.
- To make this scheme efficient in the worst case, we need to ensure that the M-ary search tree is balanced in some way.
- Additional properties to maintain balance:
 - The root has either no children or between 2 and m children.
 - Other interior nodes (non-leaves) have between $\lceil m/2 \rceil$ and m children each.
 - All leaves are on the same level.

A B-tree of order M is an M-ary tree with the following properties: (B⁺ tree)

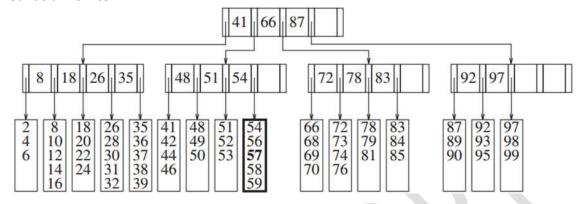
- 1. The data items are stored at leaves.
- 2. The non-leaf nodes store up to **M 1** keys to guide the searching; key **i** represents the smallest key in subtree **i+1**.
- 3. The **root** is either a leaf or has between two and **M** children.
- 4. All non-leaf nodes (except the **root**) have between **M/2** and **M** children.
- 5. All leaves are at the same depth and have between *L/2* and *L* data items, for some *L* (the determination of L is described shortly).

Example: The following is an example of a B⁺ tree of order **5** and **L=5**

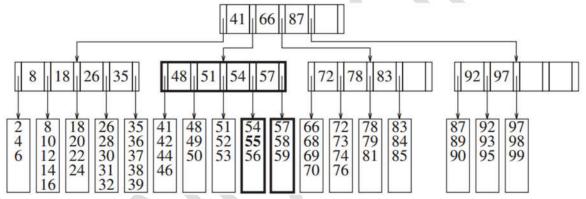


Add items from the B⁺ tree:

• **Insert 57**: A search down the tree reveals that it is not already in the tree. We can then add it to the leaf as a fifth item:

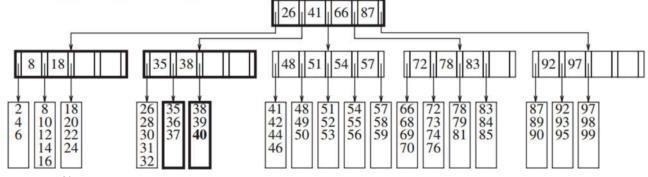


• Insert 55: The leaf where 55 wants to go is already full. Solution: split them into two leaves:



Note: The node splitting in the previous example worked because the parent did not have its full complement of children.

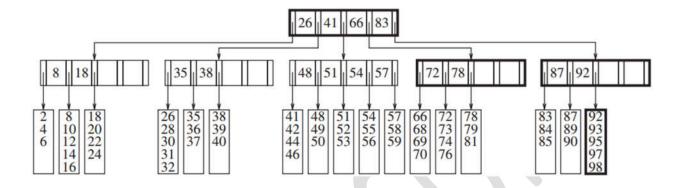
- Insert 40: We have to split the leaf containing the keys 35 through 39, and now 40, into two leaves.
 - o The parent has six children now → split the parent.



- Note:
- When the parent is split, we must update the values of the keys and also the parent's parent.
- o if the parent already has reached its limit of children? In that case, we continue splitting nodes up the tree until either we find a parent that does not need to be split or we reach the root. Then we split the root and this will generate a new level.

Remove items from the B⁺ tree:

- We can perform deletion by finding the item that needs to be removed and then removing it.
 - o The problem is that if the leaf it was in had the minimum number of data items, then it is now below the minimum.
- Remove 99: Since the leaf has only two items, and its neighbor is already at its minimum of three, we combine the items into a new leaf of five items.



Splay Trees

Recall: **Asymptotic analysis** examines how an algorithm will perform in worst case.

Amortized analysis examines how an algorithm will perform in practice or on average.

The **90–10 rule** states that **90%** of the accesses are to **10%** of the data items.

However, balanced search trees do not take advantage of this rule.

- The **90–10** rule has been used for many years in **disk I/O systems**.
- A cache stores in main memory the contents of some of the disk blocks. The hope is that when
 a disk access is requested, the block can be found in the main memory cache and thus save the
 cost of an expensive disk access.
- Browsers make use of the same idea: A cache stores locally the previously visited Web pages.

Splay Trees:

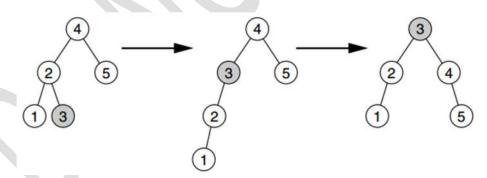
- Like **AVL** trees, use the standard binary search tree property.
- After any operation on a node, make that node the new root of the tree.

A simple self-adjusting strategy (that does not work)

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its parent. Moving the item closer to the root, a process called the **rotate-to-root strategy**.

• If the item is accessed a second time, the second access is cheap.

Example: Rotate-to-root strategy applied when node **3** is accessed



- As a result of the rotation:
 - future accesses of node 3 are cheap
 - Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move down a level.
- Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can occur.

The basic bottom-up splay tree

Data Structure: AVL Trees

Splaying cases:

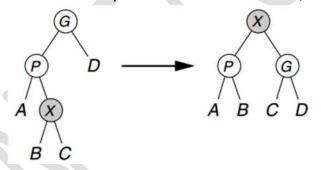
• The zig case (normal single rotation)

If **X** is a non-root node on the access path on which we are rotating and the parent of **X** is the root of the tree, we merely rotate **X** and the root, as shown:

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries.

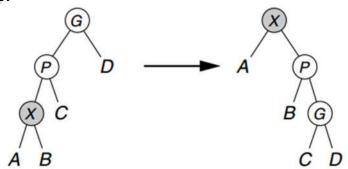
zig-zag case:

- This corresponds to the inside case for AVL trees.
- Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child).
- We perform a double rotation exactly like an AVL double rotation, as shown:



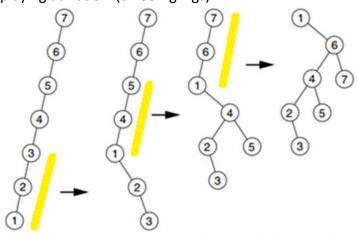
zig-zig case:

- The outside case for AVL trees.
- Here, **X** and **P** are either both left children or both right children.
- In this case, we transform the left-hand tree to the right-hand tree (or vice versa).
- Note that this method differs from the rotate-to-root strategy.
 - The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root strategy rotates between X and P and then between X and G.



Splaying has the effect of roughly **halving** the depth of most nodes on the access path and increasing by at most **two levels** the depth of a few other nodes.

Example: Result of splaying at node 1 (three zig-zigs)



Exercise: perform rotate-to-root strategy

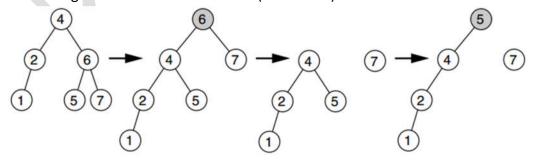
Basic splay tree operations

A splay operation is performed after each access:

- After an item has been inserted as a leaf, it is **splayed** to the root.
- All searching operations incorporate a splay. (find, findMin and findMax)
- To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted, we get two subtrees, L and R (left and right). If we find the largest element in L, using a **findMax** operation, its largest element is rotated to L's root and L's root has no right child. We finish the remove operation by making R the right child of L's root. An example of the remove operation is shown below:

Example: The remove operation applied to node **6**:

- First, **6** is splayed to the root, leaving two subtrees;
- A **findMax** is performed on the left subtree, raising **5** to the root of the left subtree;
- Then the right subtree can be attached (not shown).



The cost of the remove operation is two splays.

