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Shortest-Path
Algorithms

* Single-Source shortest path: find the shortest path from a source
vertex s to all vertices in a graph

» Single-Destination shortest path: find a shorter path to a given
destination vertex d from all vertices in a graph

» Single-Pair shortest path: find the shortest path from a source
vertex u to a destination vertex v

* All-Pairs shortest path: find the shortest path from a source vertex
to a destination vertex v for all vertices u and v in the graph
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Shortest-Path
Algorithms

* Shortest-path algorithms aim at finding the shortest path between
nodes in a graph

* The input is a weighted graph: associated with each edge (v;, v)) is
cost ¢;; to traverse the edge

* The cost of a path v,v, ... vyis Xioq € 141

 This is referred to as the weighted path length

* The unweighted path length is the number of edges on the path,
namely, N - 1
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Single-Source Shortest-Path =
Algorithms

 Given as input a weighted graph, G = (V, E), and a distinguished
vertey, s, find the shortest weighted path from s to every other
vertex in G.

* For example, the shortest weighted
path from v, to v.has a cost of 6
and goes from v, to v, to v, to v,

* The shortest unweighted path
between these vertices is 2

Figure 9.8 A directed graph G
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Single-Source Shortest-Path ===
Algorithms

- Having negative weights in the graph
may cause some problems.

 The path from v¢ to v, has cost 1,
but a shorter path exists by
following the loop vg, v,, vy, ve, vy,
which has a cost of -5

* This path is still not the shortest,

because we could Stay in the 100p Figure 9.9 A graph with a negative-cost cycle
arbitrarily long.

* Thus, the shortest path between these two points is undefined.

D R Felira? &IDEAIAAd Abusnaina coMiP'229 (b ENGAPRS



Single-Source Shortest-Path ===
Algorithms

* Another example, the shortest path

* from v, to v, is undefined, because

we can get into the same loop.

* This loop is known as a

negative-cost cycle; when one is _
Figure 9.9 A graph with a negative-cost cycle

present in the graph, the shortest paths

are not defined.
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Single-Source Shortest-Path ==
Algorithms

* Negative-cost edges are not necessarily bad, as the cycles are, but

their presence seems to make the problem harder.

* For convenience, in the absence of a negative-cost cycle, the shorte

path from s to s is zero.
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Single-Source Shortest-Path ===
Algorithms

* There are many examples where we might want to solve the
shortest-path problem.

* If the vertices represent computers; the edges represent a link
between computers; and the costs represent communication costs
(phone bill per megabyte of data), delay costs (number of seconds
required to transmit a megabyte), or a combination of these and
other factors, then we can use the shortest-path algorithm to find
the cheapest way to send electronic
news from one computer to a set of
other computers.
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Single-Source Shortest-Path =
Algorithms

* Another example is to model an airplane (or transportation routes
by graphs and use a shortest path algorithm to compute the best
route between two points.

* In this and many practical applications, we might want to find the
shortest path from one vertex, s, to only one other vertex, t.

* Currently there are no algorithms in which finding the path from s
to one vertex is any faster (by more than a constant factor) than
finding the path from s to all vertices.

» We will solve 4 variations of this problem
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Unweighted Shortest Paths

 Given an unweighted graph, G. Using

some vertex, s, which is an input parameter,

we want to find the shortest path from s _ | |
Figure 9.10 An unweighted directed graph G

to all other vertices.

* We are only interested in the number of edges contained on the

path (because there are no weights).

 This is clearly a special case of the weighted shortest-path problem

since we could assign all edges a weight of 1.
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Unweighted Shortest Paths

* Suppose we are interested in the length
of the shortest path not in the
actual paths themselves. Keeping track of
the actual paths will turnouttobea  Figure 9.10 an unweighied directed graph 6
matter of simple bookkeeping.

* Suppose we choose s to be v;.

* Immediately, we can tell that the shortest path from s to v; is then
path of length 0.

* We can mark this information and then obtain the following graph
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Unweighted Shortest Paths

* Now look for vertices that are distant by 1 from s (v;), which are th
adjacent vertices of s.

v, and v, are the adjacent vertices to s.

Figure 9.11 Graph after marking the start node as reachable in zero edges
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Unweighted Shortest Paths

* Now find vertices whose shortest path from s is exactly 2, by findin
all the vertices adjacent to v, and v, (the vertices at distance 1).

* v, and v, are the adjacent vertices to s.

Figure 9.12 Graph after finding all vertices whose path length from s is 1
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Unweighted Shortest Paths

* Finally we can find, by examining vertices adjacent to the recently
evaluated v, and v,, that v and v, have a shortest path of three
edges.

Figure 9.13 Graph after finding all vertices whose shortest path is 2
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Unweighted Shortest Paths

* Now all vertices have been calculated.

* This strategy of searching a graph is known as
Breadth-First Search (BFS).

* It operates by processing vertices in
layers: The vertices closest to the start
are evaluated first, and the most
distant vertices are evaluated last.

* This is much the same as a
level-order traversal for trees.

Figure 9.14 Final shortest paths
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Unweighted Shortest Paths

* The BFS can be implemented by adapting the v known 4,
following table V1 F 00

* First, for each vertex, keep its distance from s in :2 E %O
the entry d, (initially all vertices are unreachable ‘_: . ~
except for s, whose path length is 0). s E ~o

* Variable p, is the bookkeeping variable, which will vs F 00
F o0

allow us to print the actual paths. V7

 Variable known is set to true after a vertex is processed.
* Initially, all entries are not known, including the start vertex.

* When a vertex is marked known, we have a guarantee that no
cheaper path will ever be found, and so processing for that vertex is
essentially complete
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BFS: Unweighted Shortest Paths

BFS(G.s)

1
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11
12
13
14
15
16
17
18

for each vertex u € G.V — {s}
u.color = WHITE
u.d = oo
u.T = NIL
s.color = GRAY
s5.d =0
5.1 = NIL
O=40
ENQUEUE(Q. 5)
while 0 # @
u = DEQUEUE((Q)
for each v € G.Adj[u]
if v.color == WHITE
v.color = GRAY
vd = ud+1
VT = u
ENQUEUE(Q, v)
u.color = BLACK
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Dijkstra’s Algorithm

* If the graph is weighted, the problem becomes harder, but we can
still use the ideas from the unweighted case.

* Dijkstra’s algorithm solves the problem of finding the shortest pat
from a vertex (source) to another vertex (destination).

* For example, you want to get from one city to another in the fastest
possible way? °
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Dijkstra’s Algorithm

BEFS is to find the shortest path between two points.

“Shortest path” means the path with the fewest segments.

But in Dijkstra’s algorithm, a weight is assigned to each edge.

Then Dijkstra’s algorithm finds the path with the smallest total
weight.
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Dijkstra’s Algorithm

* Dijkstra's algorithm computes shortest paths for positive numbers.
* However, if one allows negative numbers, the algorithm will fail.
* Alternatively, the Bellman-Ford algorithm can be used.

* Dijkstra's algorithm is considered as a prime example of a greedy-
search algorithm.

* Greedy algorithms generally solve a problem in stages by doing
what appears to be the best thing at each stage.
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Dijkstra’s Algorithm

Dijkstra’s algorithm computes the cost of the shortest path from a
starting vertex to all other vertices in the graph.

Consider the following graph: Starting point ‘A, destination ‘E’.

If we run this using the BFS, we will end-up with the cost of 7 (6+1

We aim at finding the destination is less time! (if exists)
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Dijkstra’s Algorithm

* 4-basic steps for Dijkstra’s algorithm:

1. Find the node with the minimal cost. This is the node you can get
to in the least amount of time.

2. Update the costs of the neighbor nodes.
3. Repeat until this is done for every node in the graph.
4. Calculate the final path.
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Dijkstra’s Algorithm

* At each stage:
Select an unknown vertex v that has the smallest d,
Declare that the shortest path from s to v is known.

For each vertex w adjacent to v:
* Setits distance d,, to the d, + cost, , )
4 l 3 0
* Setits pathp,tov. ( J\/ / ,}K\/\

Figure 9.20 The directed graph G (again)

coM@‘Q@Q‘?@@%%ﬁﬁ@.
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Dijkstra’s Algorithm

 Step 1: Find the node with the minimal cost.

* We are standing at the starting node ‘A. ‘B’ will take 6; and ‘C’ will
take 2. We don’t know the rest yet.

* As we don’'t know how long it will take to reach the destination, we
will put it infinity.
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Dijkstra’s Algorithm

 Step 1: Find the node with the minimal cost.

* We are standing at the starting node ‘A. ‘B’ will take 6; and ‘C’ will
take 2. We don’t know the rest yet.

* As we don’'t know how long it will take to reach the destination, we

will put it infinity.
Node Cost to 6 1
Node
5 2 (4]
C 6
Destination oo 2 5
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Dijkstra’s Algorithm

* Step 2: Calculate how long it takes to get to all of node B’s
neighbours by following an edge from B.

* Notice that there is a shorter path to C (2 + 3)

* When there is a shorter path for a neighbor of B, update its cost.
In this Case
A shorter path to C (down from 6 to 5)
A shorter path to the destination (down from i

Node Cost to
Node
B 2
C 65
Destination 7
D R Felira? &IDEAI A Abusnaina
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Dijkstra’s Algorithm

 Step 3: Repeat the steps:

» Step 1 again: Find the node that takes the least cost to get to. We're
done with node B, so node C has the next smallest estimate.

Node Cost to 6 1
Node
5 2 (2]
C 5
Destination 7 2 5
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Dijkstra’s Algorithm

Step 2 again: Update the cost of C’s neighbours.
We run Dijkstra’s algorithm for every node (you don’t need to run it
for the finish node).

At this point, you know
It takes 2 minutes to get to node B.

[t takes 5 minutes to get to node C.

It takes 6 minutes to get to the destination.
Node Cost to 6 1
Node
B 2 (2]
C 5
Destination 76 2 5
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Dijkstra’s Algorithm

* So the final path is

* BFS wouldn’t have found this as the shortest path, because it has three
segments.

* And there’s a way to get from the
start to the destination in two
segments.
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Dijkstra’s Algorithm -
Example

21
B E
4 > N
Node Cost to
Node Q a

A 0 ° 12

B 00

S — ’ 1O

D 00 C i

E 0 5

F fe'e)
Destination (o)
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Dijkstra’s Algorithm -

p 21
B E
4 > N
Node Cost to
Node Q a
A 0 ° 12
B 4
C 10 10 Q
D 15 C i
E 2520 5
F 18
Destination | <034 24

D R Felira? &IDEAIAAd Abusnaina coMiP'229 (b ENGAPRS



Node Initial. °
A 0 3
.
B [o'e)
C 00
D o b i »
E 00
Dest. oo
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Dijkstra’s Algori*~ o

Node Initial. Stepl °
A 0 0 8
B % 10 2
C 00 20
D 0 0 b = >
E 00 [e%o)
Dest. oS o)
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Dijkstra’s Algori*~ o

Node | Initial. | Stepl Step2 (C) °
A 0 0 0 e
B o 10 10 /
C o0 20 20
D 0o 00 40 b ol o d
E 00 00 53
Dest. o 0 56
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Dijkstra’s Algori*~ o

Node | Initi | Step | Step2 | Step3 °
al. 1 Q) (B)
A 0 0 0 0 =
B o0 10 10 10 g
C 00 20 20 20
D o) 00 40 40 b s 4
E (o) o) 53 20
Dest. | oo o0 56 21
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Dijkstra’s Algorithm

Maintain 2 sets (arrays) of vertices:

S: a set of vertices whose shortest path from vertex s has been
determined

Q: a set of vertices in V-S (uses Heaps)

*keys in Q are estimates of shortest path weights.
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Dijkstra’s Algorithm

1. Store S in a heap with distance =0

2. While there are vertices in the queue
Delete Min a vertex v from queue
For all adjacent vertices w:
1. Compute new distance
2. Update distance table
3. Insert/update heap
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Dijkstra’s Algorithm

DIJKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S =10

3 0O0=0G.YV

4  while Q # 0

5 u = EXTRACT-MIN(Q)

6 S = S U{u}

7 for each vertex v € G.Adj[u]
8 RELAX(u, v, w)
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Dijkstra’s Algorithm -

}Plem

Eac ertex is’stored in the queue 0(V)

2. Delete Min O(VlogV)

3. Updating the queue (search and insert) O(log V)
Performed at most for each edge O(E log V)

4. O(ElogV+VlogV)=0((E+V)logV)

D R Felira? &IDEAIAAd Abusnaina coMiP'229 (b ENGAPRS



Graphs with Negative
.Elcfltge Costs

e graph has negative edge costs, then Dijkstra’s algorithm does
not work.

* Bellman-Ford algorithm solves the single-source shortest path
when there may be negative weights in the graph.

* It checks if there is a negative-weight cycle that is reachable from a
source vertex

[f exists; it indicates there is no solution exists

If no cycle; then the algorithm produces the shortest paths and their weigh
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Graphs with Negative
.Egli_%e Costs

terations should ensure that the shortest path is reached.
* The run-time is O(V.E)
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Graphs with Negative
Ecvivgve Costs

ill visit all vertices and initialize them

* sisthe source node

Node | Initial.

N | X |< | ] wn
8| 8|8 8]| <
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Graphs with Negative
.E%ihge Costs

adjacent of s are y and t.

Node | Initial. | Iter. 1
S
S 0
t 00
y 00
X 00
v/ 00
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Graphs with Negative
.E%ihge Costs

adjacent of s are y and t.

Node [ Initial. [ Iter. 1

S
S 0
t o) 6
y (0]
X 00
Z (0/0]
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Graphs with Negative
.E%ihge Costs

adjacent of s are y and t.

Node [ Initial. [ Iter. 1

N > < —+ wn
818|188 (e
~
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Graphs with Negative
.E%lO%e Costs

we can reach x & z.

*  We will check for all edges.
* CheckforX

Node | Initial. | Iter.1 | Iter. 2
S
S 0 0
t o0 6
y o) 7
X 0 00
Z (0.0] (00)
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Graphs with Negative
Edge Costs

* Now we can reach x & z.

*  We will check for all edges.
* CheckforX

Node | Initial. | Iter.1 | Iter. 2
S
S 0 0
t o0 6 6
y 00 7 7
X 00 00 11
Z (0.0] (00)
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Graphs with Negative
Edge Costs

* Now we can reach x & z.

*  We will check for all edges.
* CheckforX

Node | Initial. | Iter.1 | Iter. 2
S
S 0 0 0
t o0 6 6
y 00 7 7
X 00 00 11
Z 00 00 2
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Graphs with Negative

Edge Costs

* ytoz=16.ytox =4.

Now we are done with t, we have to check fory

Node | Initial. | Iter.1 | Iter. 2
S 0 0 0
t oo 6 6
y o) 7 7
X 00 00 114
y/ 00 oo 2
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Graphs with Negative
Edge Costs

* After the new update on the edge, we have to check
for all edges if there is a shorter path.

« We can find x->t

Node Initial. | Iter. 1 [ter. 2 [ter. 2
S
S 0 0 0
t 00 6 6
y o0 7 7
X 00 0 4
Z o0 o) 2
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Graphs with Negative

Edge Costs

« We can find x->t

After the new update on the edge, we have to check
for all edges if there is a shorter path.

Node Initial. | Iter. 1 [ter. 2 [ter. 3
S 0 0 0 0
t 00 6 6 62
y 0 7 7 7
X oo oo 4 4
7 0 o) 2 2
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Graphs with Negative
Edee Costs

from s ->y ->x ->t gives a shorter cost thans ->t

Node | Initial. | Iter. 1 | Iter.2 | Iter.3
S
S 0 0 0 0
t o 6 6 2
y o0 7 7 7
X 0 o0 4 4
Z o) o) 2 2
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Graphs with Negative

Edee Costs

[teration 4

We check for all vertices

We can notice a change in t -> z (the new cost to

RS2 I R = 2+ 4 = 2
' S
S 0 0 0 0
t o) 6 6 2
y | o | 7 | 7 | 7
X 00 00 4 4
72 o) o) 2 2
D R Felira? &IDEAIAAd Abusnaina coMiP'229 (b ENGAPRS




Graphs with Negative
FEdge Costs

[teration 4

We check for all vertices
We can notice a change in t -> z (the new cost to
reach tis 2, and fromt->z=-4) =2+ -4=-2

Node | Initial | Iter. 1 | Iter. 2 | Iter. 3 | Iter. 4
S 0 0 0 0 0
t 00 6 6 2 2
y 0 7 7 7 7
X 00 00 4 4 4
7 00 oo 2 2 2
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Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori =1to|G.V|—1

3 for ecach edge (u,v) € G.E

4 RELAX (u, v, w)

5 for eachedge (u,v) € G.E

6 ifv.d>u.d+ w(u,v) o)
7 return FALSE

8

return TRUE
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Acyclic Graphs

*  We want to find the shortest path in acyclic graph (Directed Acyclic
Graph)

*  DAG contains no cycles

® @
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Acyclic Graphs

 Ifthe graph is acyclic, we can use Bellman-Ford, but it takes
O(VE)

* A better solution is to use Topological sort:

Initialize distances to all vertices as infinite and distance to source as 0

Then find a topological sorting of the graph

)

a DAG a topological ordering
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Acyclic Graphs

* Precedence constraints: Edge (v;, v; ) means task v; must occur

before 4

* Examples of DAG
* Course prerequisite graph: course v; must be taken before v,
* Compilation: module v; must be compiled before v;

* Pipeline of computing jobs: output of job v, needed to determine
input of job v,
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Acyclic Graphs

* Topological sort represents a linear ordering of a graph

Topologically sorted
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Acyclic Graphs

* The idea: process vertices on each shortest path from left to right

* Every path in DAG is a subsequence of topologically sorted vertex
order. So processing vertices in that order will do each path in
forward order

* Just one pass.

* Time complexity O(V + E)

D R Felira? &IDEAIAAd Abusnaina coMiP'229 (b ENGAPRS



BIRZEIT UNIVERSITY

Acyclic Graphs

* Topologically sorted graph

* Now we have vertex s as the
source

*  We want to find the shortest
path from s to all vertices

» Start with r, what is the path from s to r?

There is no path (infinity)
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Acyclic Grap

* So the first iteration,
r =

* Now the second pass

» Take the adjacent of s. From s to t =2, which is less than oo, so upda
t and the predecessoris s

* From s to u is the same, 6 is less than o, so update u and the
predecessor is s
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Acyclic Grapl ,
@

* Next iteration, check
the adjacents of t

* From ttovis 2+4 = 6 which is less than oo, so update v and the
predecessoris t

* From tto wis 2+2 = 4 which is less than o, so update w and the
predecessoris t
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Acyclic Grapt .

* Next iteration, check
the adjacents of u

* Fromutovis6+-1=5whichislessthan 6, so update v and the
predecessor is u

* Fromutowis 6+ 1=7which is more than 4, so no updates
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Acyclic Grapl

* Next iteration, check
the adjacents of v

* Fromvtowis5+-2 =3 which is less than 4, so update w and the
predecessor is v instead of t
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Acyclic Grapl

* We are left with 1
iteration for w

* Notice that w has no adjacents

* Thus we reached the shortest path from the source s
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