ENCS5337: Chip Design Verification
Spring 2023/2024

Introduction to Coverage in
SystemVerilog

Dr. Ayman Hroub

https://students-hub.com

Outline

= Covergroups

= Coverpoints

* Bins

= Cross Coverage

https://students-hub.com

Covergroup

= A Cover Group Is a user-defined type specifying a coverage model

= The coverage model can be defined using the covergroup
keyword

= |t can be declared in a package/interface/module/program/class.

= A cover group contains:
— A sampling event whose coverage can be manually sampled.

— A coverpoint for each variable whose value must be sampled for
coverage.

STUDENTS-HUB.com

https://students-hub.com

Covergroup Example

= You can define a variable of the covergroup name.
= You can instantiate the coverage model using new

module example;

logic clk;
logic [2:0] address;
logic [7:0] data;

covergroup cgl @ (posedge clk);
cl: coverpoint address;
c2: coverpoint data;
endgroup : cgl

cgl cover inst = new();

endmodule

STUDENTS-HUB.com

https://students-hub.com

Bins

* Each coverpoint in a covergroup creates a series of counters,
called bins, which are stored in a coverage database.

= When coverage is sampled, the bin corresponding to the variable
value Is incremented.

= By default, a coverpoint creates a single bin for every value in
the variable range

= These are called automatic, or implicit, bins and are named using
the identifier auto and the value for the bin.

STUDENTS-HUB.com

https://students-hub.com

Automatically Created Cover Point Bins Example

module example;
logic clk;
logic [2:0] address;
logic [7:0] data;

covergroup cgl @ (posedge clk);
///f+cl: coverpoint address;

c2: coverpoint data;
endgroup : cgl

cgl cover inst = new();

endmodule

address bins |cl.auto[0] |cl.auto[1l] |cl.auto[2] cl.auto[7]

STUDENTS-HUB.com

https://students-hub.com

Explicit Bins

= You can define the bins explicitly:
— To track only a subset of values.
— To control what values increment which bin.

= Use the bins keyword, and provide a:

— Bin name.
— List of values or value ranges.

= With explicit bins, unlisted values are not tracked.
= Each coverpoint can have multiple bins clauses.

STUDENTS-HUB.com

https://students-hub.com

Explicit Bins Example

cl: coverpoint varl {
bins Vv = {1, 2, 5} ;:

, \
\Ht., \

No semicolon at end of
coverpoint with explicit bins

Bin v increments
forvarl=1,20r5

Value list examples

{ [0:5], 10 } - wvalues 0-5 and 10

{ [0:5], [9:14] } - walues 0-5 and 9-14

{ *hl, 'hZ, "hF } = walues 1, 2, 15

{ [1:9], [7:12] } - range overlap allowed
{

[16:5] } - range 16 to max wvalue

STUDENTS-HUB.com

https://students-hub.com

Explicit Scalar and Vector Bins

= Scalar bin
— A single bin that counts occurrences of any of the values in its list

— Incremented for all values in value range list.

= Vector bin (array of bins)
— A unique bin for each value in the range list.
— Incremented when variable takes the corresponding value.

= You can mix scalar and vector bins for the same coverpoint.

STUDENTS-HUB.com

https://students-hub.com

Explicit Scalar and Vector Bins Example

Scalar example

cs: coverpoint varl |
// bin V increments for 1, 2 or 5

bins V = {1, 2, 5} ;

} \

Creates a single bin cs.v

Vector example

cv: coverpoint wvarl ({
// bins V[1], V[2] and V[5]
bins V[] = {1, 2, 5} ;
}

b

| [1 for 3 values creates 3 bins

cv.V[1l], cv.V[2], cv.V[5]

STUDENTS-HUB.com

https://students-hub.com

More on Explicit Scalar and Vector Bins

= jillegal bins specifies a bin for illegal values of the coverpoint
variable. These values are automatically excluded from all other bins
clauses in the same coverpoint, even if explicitly listed.

= The simulator issues an error when a sampled variable has an illegal
value.

= ignore bins specifies bins for ignored values. Once a value Is

defined in the list for ignored bins, it is automatically excluded from all
other bins clauses in the same coverpoint,

= The default keyword specifies bins for values that do not appear in
any other bins.

STUDENTS-HUB.com

11

https://students-hub.com

Vector Bins Size

= For a vector bin of unconstrained size
— Each unique value in the list has its own bin.
— Duplicate values are not retained.
— lllegal and ignored values are removed after the values are distributed.

= For a vector bin of a specified size

— The values are distributed as evenly as possible by order of appearance in
the list, with the later bins getting any extra values.

— Duplicate values are retained, so can show up in multiple bins.
— lllegal and ignored values are removed after the values are distributed.

STUDENTS-HUB.com

12

https://students-hub.com

illegal bins and ignore bins Example

logic [3:0] wvarl;

ce: coverpolint wvarl |
// 1 bin for illegal wvalues {0, 15}
illegal bins a = { 0, 15 };
// 1 bin for ignored wvalues {13, 14}
// (value 15 is illegal)

ignore bins b = { [13:15] };

// 1 bin for {2, 3}

bins c = { 2, 3 };

// 3 bins e[l], e[2], e[6]

bins e[] = { [0:2], 2, & };

// 2 bins - d[0] = {9,10,11,9}

/7 - d[1l] = {12}

bins d[2] = { [9:11], 9, [l12:15] };
// 1 bin for {4,5,7,8},

bins f = default;

STUDENTS-HUB.com 13

https://students-hub.com

Covergroup Coverage — How Many BIns?

STUDENTS-HUB.com

typedef enum bit[2:0]
typedef enum bit[1:0]

op t opC;
regs t regs;
logic[7:0] data;

{ADDI, SUBI,
{REGO, REG1,

covergroup cg @ (posedge clk);
cl: coverpoint opc { bins op[] =

c?2: coverpoint regs;
c3: coverpoint data

endgroup

cg cgl = new();

ANDI, XORI, JMP, JMPC,
REGZ, REG3} regs_t;

{

CALL} op_t;

cl: 7 explicit vectored bins named
cl.op[ADDI] tocl.op[CALL]

[ADDI:S$] }; }

{

bins low/(]
bins high

c2: 4 automatic vectored bins named
c2.auto[REG0O] to c2.auto [REG3]

{ [0:'hOF] } ;
{ ['h10:'hFF] } ;

T~

c3: 16 explicit vectored bins named
c3.low[0] to c3.low[15]
and 1 explicit scalar bin named c3.high

14

https://students-hub.com

What Is a Cover Cross?

= A Cover Cross Is a user-defined item in a coverage model
specifying a cross-product of cover points to cover and optionally a
condition guarding its sampling.

= You can track cross-products of:
— Coverpoints within the covergroup.
— Other scope variables

= Use the cross keyword and provide a:
— Cross name (optional).
— List of coverpoints and/or variables.

= Bins are created for every cross combination.

STUDENTS-HUB.com

15

https://students-hub.com

Cover Cross Example

STUDENTS-HUB.com

typedef enum bit[1l:0
op t opc;
regs t regs;

covergroup cg @ (posedge clk);
cl: coverpoint opc;
c2: coverpoint regs;
opcxreg: cross cl, c2;
endgroup

c?.auto [REGO]
cZ2.auto [REGL]
cZ.auto [REGZ]

c?.auto[REG3]

Bin incremented for opc=JMPC and regs=REG2

typedef enum bit[Z2:0] {ADDI, SUBI, ANDI, XORI,
] {REGO, REGl, REGZ, REG3}

JMP, JMPC, CALL}

regs t;
H B oH H o— O 4
Q m o oo & & 4
a b =2 0 =2 =2
£ Mmoo X B Bow
o o ©0 o0 0o © ©
R = N C L B C S
T 5 = 3 = o5 3
@ © © ®© © @©
- 4 4 ~ 4 ~
o o o o o o o

op_t;

16

https://students-hub.com

Cover Cross Bins

= A Coverage Bin is a tool-defined or user-defined counter
associated with a cover point value set, a cover point value
transition set, or a cover cross tuple set.

= For cross-products the tool automatically creates a unique bin for
each tuple.

STUDENTS-HUB.com

17

https://students-hub.com

Cover Cross Bins Example

STUDENTS-HUB.com

logic [1:
logic [3:
logic ¢;

0] a;
0] b;

covergroup cg @ (posedge clk);

bep: coverpoint b

bins bl = { [9:12] 1};
bins b2[] = { [13:15] };
bins restofb[] = default;

}

ccp: coverpolnt c;

axbxc:

endgroup

cross a, becp,

cg

ccp;

//one bin bl

axbxc.
axbxc.
axbxc.
axbxc.

axbxc.

<a
<a
<a
<a

<a

.auto[0],
.auto[0],
.auto[0],
.auto[0],
.auto[0],

oo o oo

.bl, c.auto[0]>
.bl, c.autc[l]>
.b2[13], c.auto[0]>
.b2[13], c.autol[l]>
.b2[14], c.auto[0]>

//3 bins: b2[13], b2[14]1, b2[15]
//9 bins: [0] ... [8] not in cross

// two automatic bins
// 32 bins = a(4) = becp(4) % ccp(2)

]

Implicit

coverpoint for a

[Crosses

created

18

https://students-hub.com

Explicit Cross Bin and Select Expressions

= You can create explicit cross coverage bins:
— binsof selects specific bins from a coverpoint.
— intersect filters bin selection to specified value ranges.

= Youcanuse !, &&, || onresulting selections.

= SystemVerilog by default automatically creates a single bin for
every product of the cover cross.

= |t does not include any coverpoint bins declared with the default
range or any declared with illegal bins Or ignore bins.

STUDENTS-HUB.com 19

https://students-hub.com

Explicit Cross Bin and Select Expressions Example

STUDENTS-HUB.com

cl

c2

REGO
REG1
REG2

REG3

typedef enum bit[2:0] {ADDI, SUBI, ANDI,
XORI, JMP, JMPC,
CALL} op_t;
typedef enum bit[1:0] {REGO, REGL,
REGZ, REG3} regs t;
op_t opc; B
regs t regs;

covergroup cg @ (posedge clk);
cl: coverpoint opc ;
c2: coverpolint regs ;

opxr : cross cl, c2 {
bins xl1 =
binsof (cl) intersect {[ADDI:XORI]} &&

binsof (c2) intersect {REG0, REG3};

}
endgroup \

H H H H o4
o @m o @M oo 4
o D =2 0 =2 =2
L B - e L N &
FI‘IIHII!IH —
u“’f

1

=1 — track logical opcodes
(ADDI-XORI) on REGO and REG3

20

https://students-hub.com

Defining Cover Cross with lllegal and Ignored Cross Bins

= Use ignore bins to exclude bins from a cross:
— Even Iif selected elsewhere in the same cross.

= Use illegal bins to specify illegal bins:
— Even If selected or excluded elsewhere in same cross.

21

STUDENTS-HUB.com

https://students-hub.com

Cover Cross with lllegal and Ignored Cross Bins Example

STUDENTS-HUB.com

cl

c2

REGO
REG1
REGZ

REG3

H
o
=
p

SUBI

ANDI

XORI

JMP

JMPC

CALL

typedef enum bit[Z2:0] (ADDI, SUBI, ANDT,
XORI, JMP, JMPC,
CALL} op_t;

typedef enum bit[1l:0] {REGO, REG1,
REGZ, REG3} regs_t;

op_t opcC;

regs t regs;

covergroup cg @ (posedge clk);
cl: coverpoint opc ;
cZ2: coverpoint regs ;

opxXr : cross cl, c2 {
bins %3 = ! binsof (c2) intersect {[REGZ:REG3]};
ignore bins x4 = binsof(cl) intersect {[JMP:JMPC]};

}
endgroup \

=3 — select all bins not of REG2 or REG3, but
ignore all JMPp or JMPC bins (x4)

22

https://students-hub.com

Defining Easier Cover Cross Bins

= Complex cross expressions can be avoided using dedicated

coverpoints:
— Define multiple coverpoints for required values or ranges.

— Cross coverpoints directly

= You can have as many coverpoints as you wish on the same
variable, as long as each is uniguely named.

STUDENTS-HUB.com

23

https://students-hub.com

Defining Easier Cover Cross Bins Example

// declarations as before
op_t opc;
regs_ t regs;

covergroup cg @ (posedge clk);
cl : coverpoint opc;
clnj: coverpoint opc {
| ——bins opnj={ [ADDI:¥X0ORI],CALL};}

Select all opcodes
except JMP & JMPC

c2 : coverpolnt regs;
c201l: coverpoint regs {
opxr : cross clnj, cZ01;

SUBI

endgroup \\\\\\
c201 \\\\
. \ Select all bins not of REG2 or REG3, but opxr.<opnj,rg0l>

ignore all JMP or JMPC bins

clnj
ADDI
ANDIT
XORI
CALL

STUDENTS-HUB.com

https://students-hub.com

How to Use Cover Groups in Classes (1)

= To define the cover group In the class definition is an intuitive way
to define the coverage model for the class.

= Each instance of the class will track coverage separately.
= Define the class member cover group instance.

= The declaration creates an instance variable of an anonymous
cover group type.

— You cannot create another instance of that type

STUDENTS-HUB.com 25

https://students-hub.com

How to Use Cover Groups in Classes (2)

= Construct the cover group instance

= Define cover group sampling

— For a design or test component class object, define a sampling event.

— For a data class object, call the cover group method sample ()

STUDENTS-HUB.com

26

https://students-hub.com

How to Use Cover Groups in Classes: Example

class covclass;

] address;

logic [2:
7:0] data;

0
logic [7:0
covergroup cgl;

cl: coverpoint address;

c2: coverpoint data;
endgroup : cgl

function new () ;
cgl = new();

endfunction ' Aclass covergroup
instance is not
endclass ‘ separately named

covclass one = newl();
initial begin

one.cgl.sample () ;

STUDENTS-HUB.com

https://students-hub.com

Defining a Cover Point Bin for Value Transitions

= Coverpoints can also track transitions:
— Single value change
— Sequence of values
— Multiple changes between arrays of values

typedef enum bit[2:0] {ADDI, SUBI, ANDI, XORI, JMP, JMPC, CALL} op_t;

op_t opc;
1 transition
covergroup cg;
cl: coverpoint opc {bins adsu=(ADDI => SUBI); 1 sequence
bins suan=(ADDI => SUBI => ANDI) ; transition
bins su3= (ADDI,SUBI => ANDI); }

endgroup

(ADDI => ANDI), (SUBI => ANDI)

(ADDI => SURI) : 1 transition
(JMP => JMPC => CALL): sequence
(SUBI =>» ANDI,XORI) : 2 transitions
: (SUBI => ANDI)
: (SUBI => XORI)
(ADDI[*3]) : consecutive repetition
(ADDI => ADDI => ADDI)

STUDENTS-HUB.com

https://students-hub.com

