# **ENCS3340 - Artificial Intelligence**

# Search (Problem Formulation)

STUDENTS-HUB.com

### Search as Problem-Solving Strategy

- Many problems can be viewed as reaching a goal from a given starting point
  - often there is an underlying state space that defines the problem and its possible solutions in a more formal way
  - the space can be traversed by applying a successor function (operators, actions, state transitions) to proceed from one state to the next
  - if possible, information about the specific problem or the general domain is used to improve the search

Uploaded By: Jibreel Bornat

- experience from previous instances of the problem
- strategies expressed as heuristics
- simpler versions of the problem
- constraints on certain aspects of the problem

### Examples

#### • Loading a moving truck

- start: apartment full of boxes and furniture
- goal: empty apartment, all boxes and furniture in the truck
- **actions**: select item, carry item from apartment to truck, load item

### Getting settled after moving

- **start**: items randomly distributed over the place
- goal: satisfactory arrangement of items
- actions: select item, move item

#### • Repairing a flat tire on your bike

- **start**: bike with a flat tire
- goal: bike with two properly inflated tires
- **actions**: remove wheel, remove tire, remove tube, fix tube, return tube, return tire, partially inflate tube, return wheel, fully inflate tube

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>2</sup>Bornat

### **Problem-Solving Agents**

- Agents whose task it is to solve a particular problem
  - problem formulation
    - what are the possible states of the world relevant for solving the problem
    - what information is accessible to the agent
    - how can the agent progress from state to state
  - goal formulation
    - what is the goal state
    - what are important characteristics of the goal state
    - how does the agent know that it has reached the goal
    - are there several possible goal states
      - are they equal or are some more preferable
      - if necessary, a utility function is required to determine priorities among goals

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>3</sup>Bornat

# **Problem Types**

#### single-state problems

- accessible world and knowledge of its actions allow the agent to know which state it will be in after a sequence of actions
- Ex: playing chess

#### multiple-state problems

- the world is only partially accessible, and the agent has to consider several possible states as the outcome of a sequence of actions
- Ex: walking in a dark room

#### contingency problems

- at some points in the sequence of actions, sensing may be required to decide which action to take; this leads to a tree of sequences
- Ex: a new skater in a ring

#### exploration problems

- the agent doesn't know the outcome of its actions, and must experiment to discover states of the world and outcomes of actions
- Ex: Mars Exploration Rovers

#### STUDENTS-HUB.com

Uploaded By: Jibreel<sup>4</sup>Bornat

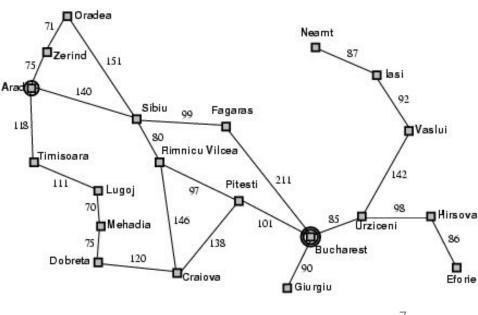
# **Well-Defined Problems**

- initial state
  - starting point from which the agent sets out
- actions (operators, successor functions)
  - describe the set of possible actions, and transitions from one state to another
- state space
  - set of all states reachable from the initial state by any sequence of actions
- goal state
  - terminal state that the agent wants to achieve
- goal test
  - determines if a given state is the goal state
- Path
  - sequence of actions leading from one state in the state space to another
- path cost
  - determines the expenses of the agent for executing the actions in a path
- Solution
  - path from the initial state to a goal state

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>5</sup>Bornat

### Selecting States and Actions

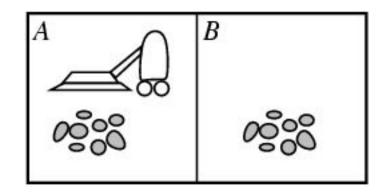

- states describe distinguishable points or periods during the problem-solving process
  - dependent on the task and domain
- actions move the agent from one state to another one
  - an action is applied to the current state and takes the agent to the successor state
  - dependent on states, capabilities of the agent, and properties of the environment
- choice of suitable states and actions
  - can make the difference between a problem that can or cannot be solved
  - level of abstraction
    - high: smaller state space, complex actions
    - low: simple actions, larger state space

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>6</sup>Bornat

# Example Problem: Romania Map

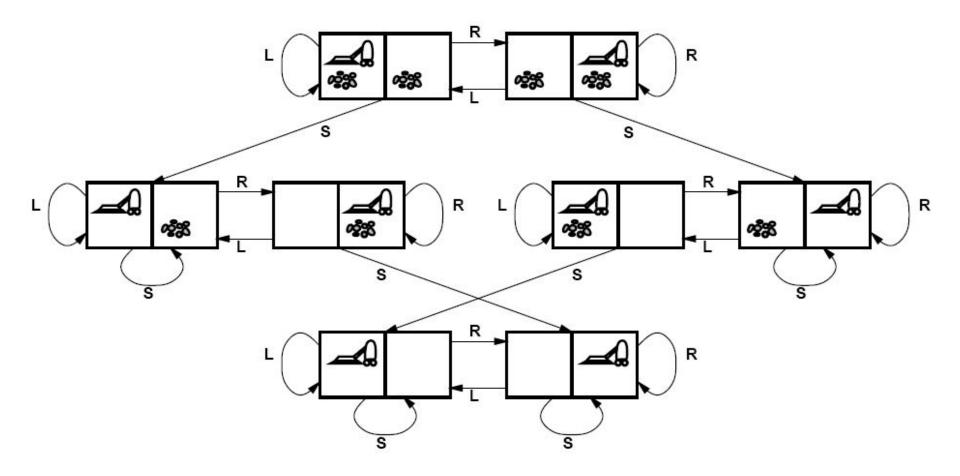
- On vacation in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
- Initial state
  - Arad
- Actions
  - Go from one city to another
- Transition model (successor function)
  - If you go from city A to city B, you end up in city B
- Goal state
  - Bucharest
- Path cost
  - Sum of edge costs




Uploaded By: Jibreel<sup>7</sup>Bornat



### Example Problem: Vacuum world


- States
  - Agent location and dirt location
  - How many possible states?
  - What if there are n possible locations?
- Actions
  - Left, right, suck
- goal test
  - all squares clean
- path cost
  - one unit per action

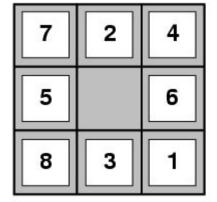


#### STUDENTS-HUB.com

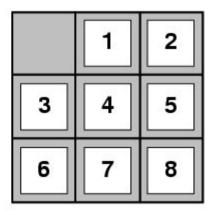
Uploaded By: Jibreel<sup>8</sup>Bornat

### Vacuum world state space graph




STUDENTS-HUB.com

Uploaded By: Jibreel<sup>9</sup>Bornat

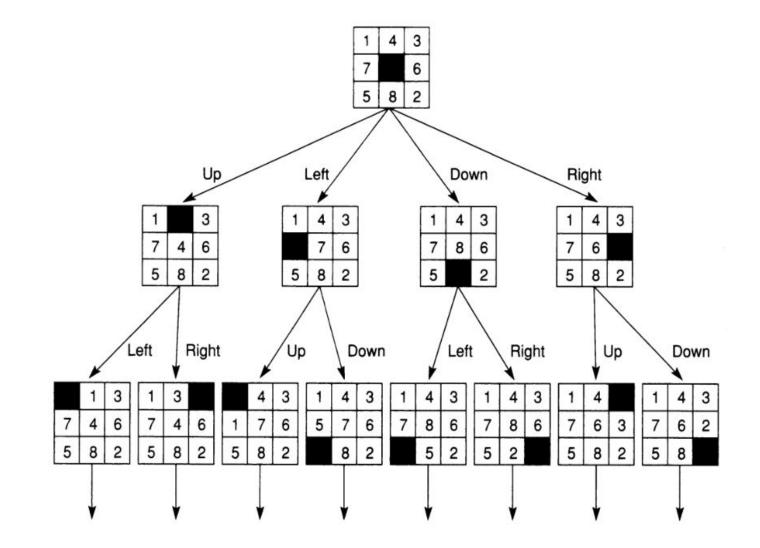

### Example Problem: The 8-puzzle

#### • States

- location of tiles (including blank tile)
- 9!/2 = 181,440 reachable states
- Actions
  - Move blank left, right, up, down
- Path cost
  - 1 per move

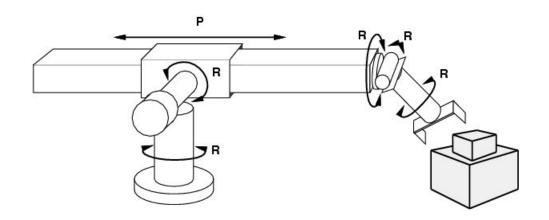


Start State






### Finding the optimal solution of n-Puzzle is NP-hard


STUDENTS-HUB.com

### State Space for the 8-puzzle

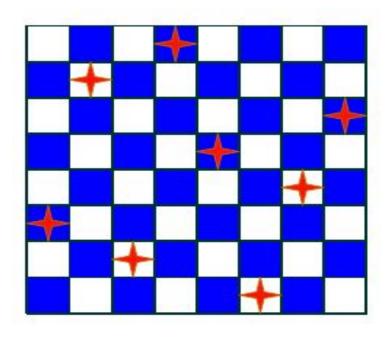


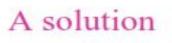
STUDENTS-HUB.com

### Example Problem: Robot motion planning



- States
  - Real-valued coordinates of robot joint angles
- Actions
  - Continuous motions of robot joints
- Goal state
  - Desired final configuration (e.g., object is grasped)
- Path cost
  - Time to execute, smoothness of path, etc.

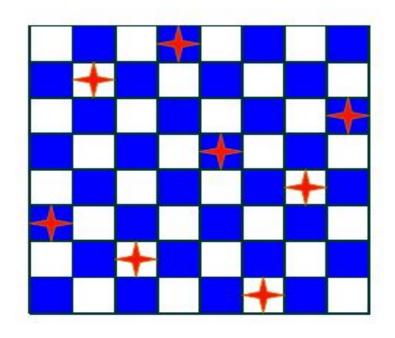

### Example: n-queens


• Put n queens on a n × n board with no two queens on the same row, column, or diagonal



## 8-Queens: Incremental Approach

- start with an empty board
- add queens one by one (no violation of constraints)
- incremental formulation
  - states
    - arrangement of up to 8 queens on the board
  - initial state
    - empty board
  - successor function (actions)
    - add a queen to any square
  - goal test
    - all queens on board
    - no queen attacked
  - path cost
    - irrelevant (all solutions equally valid)






Uploaded By: Jibreel Bornat

### 8-Queens: Complete-State Approach

- start with a full board (all n queens placed on the board, conflicts are to be expected)
- try to find a better configuration (reduced number of conflicts)
- Complete-state formulation
  - states
    - arrangement of the 8 queens on the board
  - initial state
    - all 8 queens on board
  - successor function (actions)
    - move a queen to a different square
  - goal test
    - no queen attacked
  - path cost
    - irrelevant (all solutions equally valid)





Uploaded By: Jibreel Bornat

### Example Problem: VLSI Layout

- States
  - positions of components, wires on a chip

#### • Initial state

- incremental: no components placed
- complete-state: all components placed (e.g. randomly, manually)

#### • Successor function (actions)

- incremental: place components, route wire
- complete-state: move component, move wire

#### Goal test

- all components placed
- components connected as specified

#### • Path cost

• may be complex: distance, capacity, number of connections per component

#### STUDENTS-HUB.com

### Searching for Solutions

#### • Given

- Initial state
- Actions
- Transition model
- Goal state
- Path cost
- How do we find the optimal solution?
  - How about building the state space and then using Dijkstra's shortest path algorithm?
    - The state space may be huge!
    - Complexity of Dijkstra's is O(E + V log V), where V is the size of the state space

STUDENTS-HUB.com

### Searching for Solutions

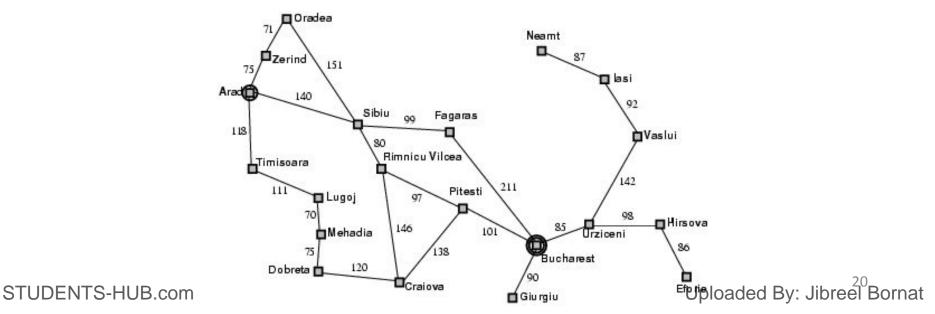
#### traversal of the search space

- from the initial state to a goal state
- legal sequence of actions as defined by successor function (actions, operators, state transitions)

#### • general procedure

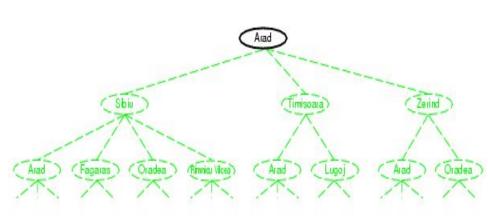
- check for goal state
- expand the current state
  - determine the set of reachable states
  - return "failure" if the set is empty
- select one from the set of reachable states
- move to the selected state

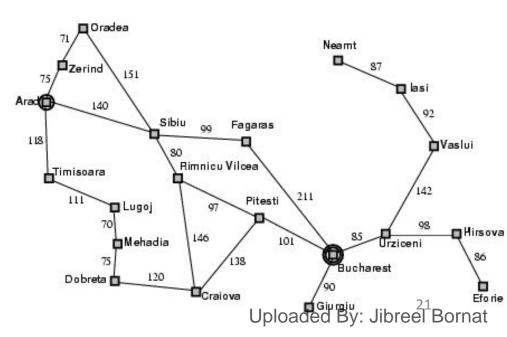
#### a search tree is generated


nodes are added as more states are visited

# Search Terminology

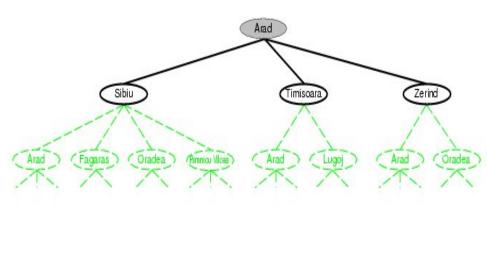
- search tree
  - generated as the search space is traversed
    - the search space itself is not necessarily a tree, frequently it is a graph
    - the tree specifies possible paths through the search space
  - expansion of nodes
    - as states are explored, the corresponding nodes are expanded by applying the successor function
      - this generates a new set of (child) nodes
    - the fringe (frontier) is the set of nodes not yet visited
      - newly generated nodes are added to the fringe
  - search strategy
    - determines the selection of the next node to be expanded
    - can be achieved by ordering the nodes in the fringe
      - e.g. queue (FIFO), stack (LIFO), "best" node w.r.t. some measure (cost)

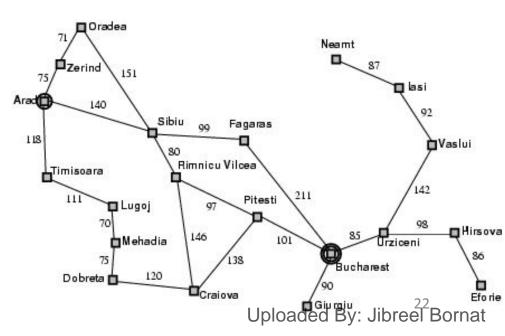

### Example: Graph Search


- describes the search (state) space
  - each node represents one state in the search space
  - e.g. a city to be visited in a routing or touring problem
- additional information
  - names and properties for the states
  - links between nodes, specified by the successor function
  - properties for links (distance, cost, name, ...)

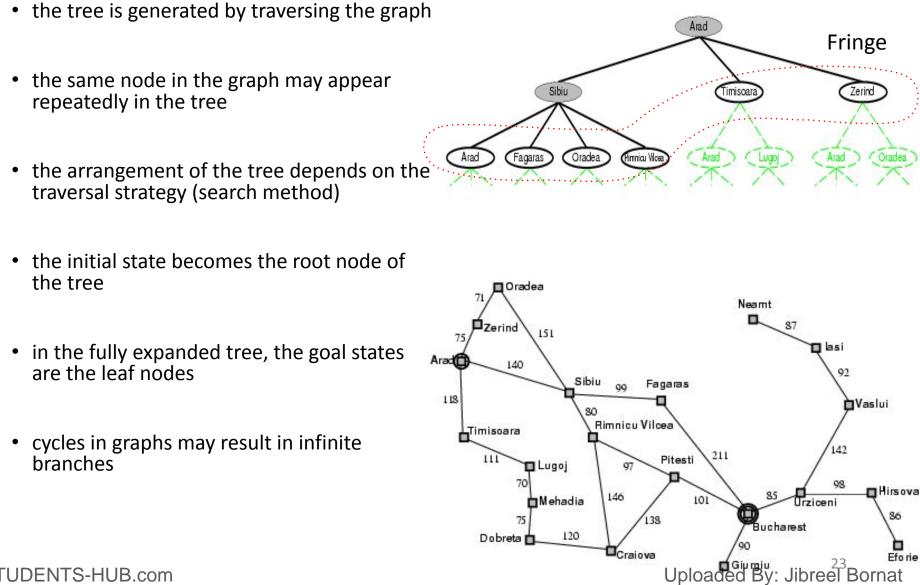


# Graph and Tree


- the tree is generated by traversing the graph
- the same node in the graph may appear repeatedly in the tree
- the arrangement of the tree depends on the traversal strategy (search method)
- the initial state becomes the root node of the tree
- in the fully expanded tree, the goal states are the leaf nodes
- cycles in graphs may result in infinite branches







# Graph and Tree

- the tree is generated by traversing the graph
- the same node in the graph may appear repeatedly in the tree
- the arrangement of the tree depends on the traversal strategy (search method)
- the initial state becomes the root node of the tree
- in the fully expanded tree, the goal states are the leaf nodes
- cycles in graphs may result in infinite branches





# Graph and Tree



### **General Tree Search Algorithm**

- generate the first node from the initial state of the problem
- Repeat
  - return failure if there are no more nodes in the fringe
  - examine the current node; if it's a goal, return the solution
  - expand the current node, and add the new nodes to the fringe

*Terminology: Fringe:* Set of "visible" but unexplored notes

```
function GENERAL-SEARCH (problem, QUEUING-FN) returns solution
```

```
nodes := MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
```

loop do

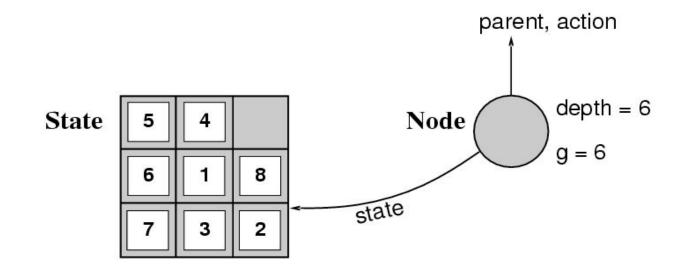
```
if nodes is empty then return failure
```

node := REMOVE-FRONT(nodes)

**if** GOAL-TEST[*problem*] applied to STATE(*node*) succeeds

then return node

```
nodes := QUEUING-FN(nodes, EXPAND(node,
ActionS[problem]))
```


end

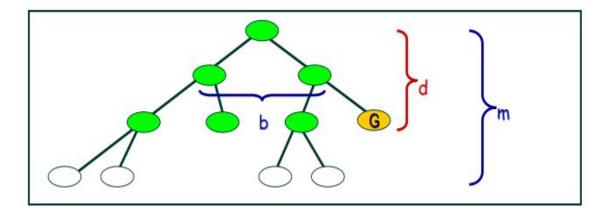
Note: QUEUING-FN is customizable which will be used to specify the search method

STUDENTS-HUB.com

### Implementation: states vs. nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree includes state, parent node, action, path cost g(x), depth




• The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

### Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
  - Completeness: does it always find a solution if one exists?
  - Optimality: does it always find a least-cost solution?
  - Time complexity: time it takes to find the solution (number of nodes generated)
  - Space complexity: maximum number of nodes in memory

### Search strategies

- Time and space complexity are measured in terms of
  - b: maximum branching factor of the search tree
  - d: depth of the least-cost solution
  - m: maximum length of any path in the state space (may be infinite)



### Search Cost and Path Cost

- the search cost indicates how expensive it is to generate a solution
  - time complexity (e.g. number of nodes generated) is usually the main factor
  - sometimes space complexity (memory usage) is considered as well

 path cost indicates how expensive it is to execute the solution found in the search

Uploaded By: Jibreel Bornat

• distinct from the search cost, but often related

• total cost is the sum of search and path costs

# Search strategies

### • Uninformed Search

- breadth-first
- depth-first
- uniform-cost search
- depth-limited search
- iterative deepening
- bi-directional search

### Informed Search

- best-first search
- search with heuristics
- memory-bounded search
- iterative improvement search

- Local Search and Optimization
  - hill-climbing
  - simulated annealing
  - local beam search
  - genetic algorithms
  - constraint satisfaction

Others