Chapter 7.1, Problem 14E

Problem

Let $J5 = \{0, 1, 2, 3, 4\}$, and define functions $h: J5 \rightarrow J5$ and $k: J5 \rightarrow J5$ as follows: For each $x \in J5$, $h(x) = (x + 3)3 \mod 5$ and $k(x) = (x3 + 4x2 + 2x + 2) \mod 5$. Is h = k? Explain.

Step-by-step solution

Step 1 of 3

 $\text{Consider the functions, } h: J_5 \to J_5 \text{ and } k: J_5 \to J_5.$

Here, $J_5 = \{0, 1, 2, 3, 4\}$.

Define h(x) and k(x) for each $x \in J_5$ as follows:

 $h(x) = (x+3)^3 \mod 5$

 $k(x) = (x^3 + 4x^2 + 2x + 2) \mod 5.$

The objective is to check whether h = k or not.

Step	2 c	f	3
------	------------	---	---

x	$h(x) = (x+3)^3 \mod 5$	$k(x) = (x^3 + 4x^2 + 2x + 2) \mod 5$
0	$h(0) = 3^3 \mod 5$ $= 2$	$k(0) = 2 \mod 5$ $= 2$
1	$h(1) = 64 \mod 5$ $= 4$	$k(1) = 9 \mod 5$ $= 4$
2	$h(2) = 125 \mod 5$ $= 0$	$k(2) = (8+16+4+2) \mod 5$ = 30 mod 5 = 0
3	$h(3) = 216 \mod 5$ $= 1$	$k(3) = (27 + 36 + 6 + 2) \mod 5$ = 71 mod 5 = 1
4	$h(4) = 343 \mod 5$ $= 3$	$k(4) = (64+64+8+2) \mod 5$ = 138 mod 5 = 3

STUDENTS-HUB.com

Uploaded By: anonymous

The above table shows that,

$$h(x) = k(x)$$
 for every $x \in \{0, 1, 2, 3, 4\}$.

STUDENTS-HUB.com

Uploaded By: anonymous