V-Belts

Thursday, June 17, 2021 8:01 PM

+
$$H_{e}$$
 analysis of V-bells can be Consisted in He (peps below):
() Find V, Lp, C, φ and $exp(o.5123 \varphi)$
 $V = Idn$, $Lft In:nJ$
 $L_{p} = 2C + \pi(D + d)/2 + (D - d)^{2}/(4C)$ (17-16d)
 $C = 0.25\left\{\left[L_{p} - \frac{\pi}{2}(D + d)\right] + \sqrt{\left[L_{p} - \frac{\pi}{2}(D + d)\right]^{2} - 2(D - d)^{2}}\right\}$ (17-16b)
 $\varphi = \Theta J = T - 2 \sin^{-1} (D - d)$
 $2C$
(2) Find Hd, He and Vb
 $H_{d} = H_{nom}K_{s}n_{d}$
 $H_{a} = K_{1}K_{2}H_{ub}$
where H_{a} allowable power, per belt
 K_{1} angle-of-wrap (φ) correction factor, Table 17-13
 K_{2} = belt length correction factor, Table 17-14
 $N_{b} = \frac{H_{d}}{H_{a}}$ $N_{b} = 1, 2, 3, ...$
(3) Find Fc, $\Delta F + Fr$, $Fr + Fr$ and M_{ps} ,
 $F_{c} = K_{c} \left(\frac{V}{1000}\right)^{2}$ $F_{c} = \frac{F_{1} + F_{2}}{2} - F_{c}$
 $\Delta F = \frac{63 \ 025 H_{d}/N_{b}}{n(d/2)}$ $F_{i} = \frac{F_{1} + F_{2}}{2} - F_{c}$
 $F_{1} = F_{c} + \frac{\Delta F \exp(f\phi)}{n(d/2)}$ $n_{p} = \frac{H_{a}N_{b}}{H_{aom}K_{s}}$
 $F_{1} = F_{c} + \frac{K_{p}}{m(d/2)}$ $I_{2} = F_{1} + \frac{K_{p}}{D}$

STUDENTS-HUB.com