Engineering Electromagnetics

Chapter 8&:

Magnetic Forces, Torque, and
Inductance
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Force on a Moving Charge

The forces exerted on a point charge by electric and magnetic fields are:

charge can be stationary charge is moving
or moving at velocity v
0D F, F,, ()
V
0D
E B
F, =0k F,=0 (vXxB)
in the direction of E into the screen
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Lorentz Force Law

Generally, with both electric and magnetic fields present, we have both forces:

B

The electric field will, n this
case, accelerate the charge in
the direction of E, making it
E cross the B field lines in the
perpendicular sense; this gives a
0® v magnetic force component that
is out of the screen

The total force on the moving charge is then the sum of the two, or

F=QE+vxB)

sTUDENTS I I8 the Lorentz Force Law (sometimes called the [fifth Maxwell equation®) o



Hall Effect

When a B field is applied in a direction perpendicular to a current,
positive and negative carriers will be displaced slightly, as shown,
as a result of the magnetic forces on the moving charges.

This produces a measurable voltage, known as the Hall Voltage.

—_ T —D-FQ + _"'FQ
; | T y
g’ +

@

®/ ®/ - x @/ @/ /
A A

(a) (b)
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Force on a Differential Current Element

r (O dv
Consider a small segment (length dL)
of current in the form ofa volume
dL J B current density J, suspended in a magnetic
field, B. The current element has volume dv.

\'

We know that current density is volume charge density moving at velocity v:

..and we can write the differential force
dF = dQQv x B

on a differential charge, dQ:

Therefore: dF = ,Ovdl) vxB ..so that finally:
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J=npv

where dQ = p,dv

dF = J x Bdv
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Other Expressions for Differential Force

For volume current, surface current, or filament current, we have the
appropriate expressions for differential current:

Jdv =KdS = 1dL

The corresponding expressions for differential force within magnetic field B are:

dF = J x Bdv
dF = K x BdS
dF = I dL x B
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volume current density (three dimensions)

surface current density (two dimensions)

filament current of length dL (one dimension)
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Evaluating the Total Force

In three or two dimensions,
the net force 1s found by

integrating over the volume 9
or surface that the current occupies

p
F:f J xBdv
vol

F:[KdeS
\ S

Fora filament current, the total force will be the integral ofthe differential
force, generally taken over the closed path that comprises the current:

szIdLXB:—IfodL

For a straight filment of length L, having uniform current, and within a uniform field, this becomes:

F=/L xB which in turn reduces to ' — BIL. s1n &
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Example: Force on a Square Current Loop

The magnetic field arising from the straight wire,

evaluated in the plane of the loop, is: Free space
I/ 15
H = —4a; = —4; A/m «~— 15A -
27X 2mx o

(1,0,0) 1,2,0)

The B field is then:

3x107°
B=puH=47r x100’"H="—"+—a, T  *% — 5 mA
X x

The total force on the loop is then found by evaluating:

F=—[%Bde

over all four loop segments
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Example: Continued

The integral becomes:

3 2
-3 —6 a; a;
F=-2x107"x3x10 — X dxa, + — x dya,
x=1 X y=0 3
- J - J
h'd h'd
A B .
1 0 I
aZ Free space
+[ —xdxax—l—f —xdyay] p
x=3 X y=2
w ~ J . ~ J
¢ D ~ 15A .
(1,2, 0)
B 3 112 1 0
=—6x 107" |Inx a,+ -yl (—a,)+Inx| a, + y| (—a,)
b 3T 3 2
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6 x 107

8a, nN

[ 2 1
(In 3)ay — gax + (ln g) ay + 2a.!£:|
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Force Between Difterential Current Elements

We use the Biot-Savart Law to find the differential
magnetic field at Point 2 that arises from the
differential current element at Point 1:

I]dLl X AR12 Free space
2
4R,

dH, =

The flux density associated with this field
will generate a force on an additional current
element at Point 2

LdL{

Point 1
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Force Between Difterential Current Elements

A second differential current element is now placed
at Point 2. It will experience a force given by:

d(sz) = Izsz X dB2

Then with:
Il dL1 X AR(o Free space
dH, = 5
4Ry,
where: dB, = odH;
we finally obtain: 7~ LidL{
Point 1
11
d(dF;) = o s-dLy x (dLy x agp2) |«
4Ry,

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh



Example (8.2)

Given: [I1dL; = —3a,A-mat Pi(5,2, 1)

LdL, = —4a,A-m at P»(1, 8, 5)

Then R, = —4a, —|—6ay +4a,

Substitute these 1nto:
d(dF>) ULERg (dL; % agi2)
= X X /
2 220 471Rf2 2 1 RI12 7 LdL;
Point 1
X
Obtain:
471077 (—4a,) x [(—3a,) x (—4a, + 6a, + 4a,)]
d(dF,) = : :
4 (16 + 36 + 16)15
= 8.56a, nN

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh



Force Between Current Filaments of Finite

(or Infinite) Lengths

The force is found by integrating the differential filament result:

I/
d(dF) = MOMITész « (dL; x ag1»)

12

in which the integral is taken over the lengths of both filaments. To be complete,
both integrals would be taken over the closed loops that the currents must form, thus
the general expression:
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/
/

2
RIZ

_ R12

i dL
L, x % | X agr12

|

dL
%amz >; 1] « dL,

These integrals can

be modified to incorporate
specific limits, in order to
find the force from a
specified segment of a
wire that acts on a specific
segment of another wire
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Example: Force Between Parallel Wires
(the easy way)

Consider the two wires shown here, carrying equal and opposite currents, 1,
and spaced by distance d;, along the y axis. The wires are oriented in the z direction

and both are infinitely long.

The force is to be found on a length ¢ of wire 2, z
of equal extent above and below the y axis.
We can solve this one fairly quickly by observing I
that the B field from wire 1 at the location of wire 2
will be: ¢
1, T /2
ol ®B,,
B2 = — Ay T
27Td12
di, Y
and [dLo = —Idza
: 1 —e/2
1
wire 1 wire 2
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Example (continued)

ol
We have: B, =— a a; and [dLo, = —Idzya.
27Td12
Z
Then the force
acting on the differential  JF'y = JdLo X B1o ]
element shown is:
IdL, T £/2
= tdea o (ol _ pol’dzm ~NleB
2%z 2wdys o2wdyy 7 T
di, Yy
The total force on the length is therefore: 1y /2
¢/2 1%/
Fz—/ IdLy x Byy = 20" 5 !
wire 1 wire 2
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Torque: Basic Definition

Given a force F at point P, the torque

about the origin is a vector that is perpendicular
to the plane containing F and position vector

R. The torque vector is the cross product:

T=RxF

Y
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Torque: General Equation

Now, consider two equal and opposite
forces, applied at points P, and P, as shown.

As the net force is zero, there is no translation of the object.

The net torque on the system will be:

T:R1XF1—|—R2XF2

But since F,=-F; :

T:(RI—RQ)XFIZRQIXFl

This means that the forque is independent of the choice of origin, provide the total
force acting is zero. This applies to any number of forces. And the origin can be
STUDeuated aayyrhere that is convenient. Uploaded By: Mohammad Awawdeh



Torque on a Differential Current Loop

The filament loop shown here lies in the xy plane with

its center at the origin. Magnetic flux density B

exists everywhere, and in a general direction. As the

loop is of differential size, the magnitude of B is dx B
assumed uniform over the loop area, and has value B, ) /

Current / circulates around the loop.

The differential force acting onside 1 is:

dF, =I1dxa, x By

=1 dx(B()yaZ — BOzay)
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Torque on a Differential Current Loop
We have the differential force acting on side 1:

dFl = Id)C(B()yaZ — B()Zay)

Forside 1, the lever arm extends from
the origin to the midpoint of the side, and
is given by:

The differential torque acting on side 1 is then:
dTl = R1 X dF1
1
= —%dx dy I Bpyay
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Torque on a Differential Current Loop

We next consider the opposite side (3), and

using similar reasoning, find the differential
torque acting on side 3:

dT3 = R3 X dF3

= 2dya, x (=l dxa, x By)

= —2dxdy IByya, = dT; ()

The total differential torque acting on sides 1 and 3 is then:

dT| +dT3; = —dx dy IByya,

Then, using the same reasoning, the total differential
torque acting on sides 2 and 4 is:

dT> +dTs = dxdy IBy,ay
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Torque on a Differential Current Loop

Now, with:
dT1 + dT3 = —dx dy IB()yax

and

dT, +dT4 = dx dy IBy,a,

The total torque on all four sides is:
dT = I dx dy(Boray, — Boyay)

The terms in parenthesis can be written as a cross product:

dT = I dxdy(a; x By)

Finally resulting in:

where the differential loop area vector is defined using the right hand convention:

dT =1dS x B dS = dudy a,

ST\IS BOIS dut i therscreen in this example Fingers in direction of curygpf) syl 8, AGEH08,048d Awawdeh




Differential Magnetic Moment

Having found the torque on a differential current loop:

dT =1dS x B

Define the differential magnetic dipole moment (magnetic strength) as the product of the current and
the differential area vector:

dm = [ dS

from which:

dT =dm x B

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh



Torque on a Large-Scale Current Loop

If we remove the restriction on differential size, and assume uniform magnetic flux density
over the entire loop area, the differential result

becomes:

dT = dm x B

T=ISxB=mxB

These results are independent of the shape of the loop -- the area and orientation

are all that matter.
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Example

Calculate the torque by using T = IS x B.

B,=—0.6a,+0.8a, T

T =4 x 107°[(1)(2)a,] x (—0.6a, + 0.8a,)

—=4.8a, mN -m

Thus, the loop tends to rotate about an axis parallel to the positive x axis. The small
magnetic field produced by the 4 mA loop current tends to line up with By.
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i —

N turns
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Inductance Detfinition

-

d

s

Having the flux linkage (i.e. Total Flux):

where

o, = / B, - dS,
S;

The inductance ofthe device is defined as the flux linkage per unit current, or

L =

A
i

where the last equality applies if all
turns are identical

The units of inductance are Weber-turns per Ampere, where
1 Wb-t/A 1s defined as one Henry [H].
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Solenoid Inductance

For a long solenoid, having turn density n, and core permeability (1,
the magnetic flux density has magnitude:

B
NI
| d
T ‘ Then, assuming equal flux densities through N identical turns,
+— the flux linkage is
Iy
N turns
uN?IS
A= Nb= NBS = ——
d
Si
...and the inductance is: [, = i — N2 ﬁ
1 d
It is interesting to compare this result to the capacitance €
of a parallel-plate capacitor, having plate area S, plate = —
spacing, d, and dielectric permittivity, €:
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Example: Inductance of a Coaxial Line

Consider a length d of coax, as shown here. The magnetic field strength between conductors is:

1
Hy=—— (a<p<b
¢ 27 p ( P )
I
and so: B=u0H=%a¢

The magnetic flux is now the integral of B over the
flat surface between radii a and b, and of length d along z.
As we have only one turn (N = 1), the result is also the flux linkage:

d rb
Vi

@Z]B'dS:ff &aé.dpdzad):uo[dlné

s 0 Ja 2mp 2T a

Now, with d = 1, the inductance per unit length is:
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— i = ﬂln é H/m
I 27 a
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Two Inductors

Suppose we have two solenoids, having different specifications as indicated:

The self linkage and self inductance of each coil are determined in the manner
that we used before, assuming identical fluxes through each turn.

AQQ — N2(1)22 — NQ/ B22'dSQ
So

Coil 2

_ A22

259
) N2
I>

and Loo 9 p
2

A1 = NPy = N1/ B -dS;

S1
Coil 1

A1 5 151
Ly=21 = N
11 Il 1 dl
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Interaction Between Inductors

Actually, the magnetic fields generated by each coil will link the other,
as shown here. This flux overlap is the basis of mutual inductance.

Throughout this discussion, the field in red is that generated by Coil 1,
while the blue field is generated by Coil 2

With both currents on, all the fields indicated here will be present.

The fields and other quantities are kept track of by the subscripts,
the meaning of which is:

B

Lj
arising / \ evaluated
from coil i within coil j
ij=1,2

Note that the diagrams shown here are oversimplified, because there will
be significant spreading of the crossover fields, B, and B,; .
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Mutual Inductance, M,

In this case, current in Coil 2 is turned off, leaving only the flux density
generated by Coil 1, By, , existing within Coil 2.

The mutual linkage between Coils 1 and 2 is found through:

Coil 2
A2 = No®is = Ny / Bis - dSs
So
... and the mutual inductance between Colils 1 and 2 1s defined as:
) )\12
Coil 1 M12 = =
I

Again, we oversimplify here, in that the non-uniformity of B, may likely
require a turn-by-turn evaluation ofthe flux in Coil 2, in order to obtain the
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Mutual Inductance, M,,

In this case, current in Coil 1 is turned off, leaving only the flux density
generated by Coil 2, B, , existing within Coil 1.

The mutual linkage between Coils 2 and 1 is found through:

Coil 2
A1 = N1Poyy = Ny / Bo1 - dS,
S1
... and the mutual inductance between Colils 2 and 1 1s defined as:
Coil 1 _Ao1
Moy = —
I

As before, the likely non-uniformity of B,; may likely require a turn-by-turn
evaluation of the flux in Coil 1, in order to obtain the mutual linkage.
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Example: Concentric Solenoids

@ In this configuration, two concentric solenoids have different numbers
of turns, N, and N, (even though in the drawing the turn count would
Ny — @ appear to be the same). Both coils have the same length, d. The area

@ of each identical turn in the two coils is S, for the outer coil, and S, for
N, M the interior coil. The core permeability is [

>

@Td

S S
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Mutual Inductance, M,

With the outer coil current /; turned on, the interior flux
a, B, exists throughout the outer coil volume, and consequently
throughout the volume of the inner coil as well.

________
T | - Flux density B, resides inside coil 2 (and in coil 1 as well)
Assuming a long coil, B _ /JJNl I a
— the flux density is: 12 d <
N T 111
T h d The mutual linkage between coils 1 and 2 is then:
N, + | HN I
s I 111
5 A2 = No®ip = N Tsz
S S
1 | ’ .. and the mutual inductance is:
- ~ J
A12 pSa2
By, My = — = NjNyg—=
I d
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Mutual Inductance, M,,

With the inner coil current /, turned on, the interior flux
B, exists throughout the inner coil volume, which overlaps with
A the outer coil volume

Flux density B,,resides inside coil 2 (and in coil 1 as well), but
the flux in the coil 1 volume is confined within the volume of coil 2.

I =+ =S The coil 2 flux density B o LLN2IZ a
(that resides in both coils) is: 2L = T 92

d
N, 7 | The mutual flux linkage between coils 2 and 1 1s then:

No 1.
S, s, )\21 = N1¢)21 — Nl%

...and the mutual inductance is:

S2

rammad Awawdeh
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A Property of the Mutual Inductances

The foregoing example illustrates an important property of
the mutual inductances between any pair of inductors:

They’re equal!

Mis = Mo
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Exercises
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8.2. Compare the magnitudes of the electric and magnetic forces on an electron that has attained a
velocity of 107 m/s. Assume an electric field intensity of 10> V/m, and a magnetic flux density
associated with that of the Earth’s magnetic field in temperate latitudes, 0.5 gauss. We use the
Lorentz Law, F = F,. + F,, = q(E + v x B). where |B| = 0.5 G = 5.0 x 10> T. We find

F.|=(1.6x10""C)(10°V/m) = 1.6 x 10" N

F,.l = (1.6 x 107C) (10" m/s)(5.0 x 107°T) = 8.0 x 107" N = 0.005/F |
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8.3. A point charge for which @ = 2 x 107" C and m = 5 x 107%% kg is moving in the combined fields
E = 100a, — 200a, + 300a, V/m and B = —-3a, + 2a, —a. mT. If the charge velocity at t = 0 is
v(0) = (2a, — 3a, — 4a;) x 10° m/s:
a) give the unit vector showing the direction in which the charge is accelerating at ¢ = 0: Use
F(t =0) =q|E + (v(0) x B)]. where

v(0) x B = (2a, — 3a, — Jaz}l{lﬁ x (—3a, + 2a, — a,-_]l'[l_:] = 1100a, + 1400a, — 500a.
So the force in newtons becomes
F(0) = (2x107'%)[(100+1100)a, + (1400 — 200)a, + (300 —500)a.] = 4 x 10~ '*[6a, + 6a, —a.]

The unit vector that gives the acceleration direction is found from the force to be

ar =
F \/ﬁ

= .70a, + .70a, — .12a.

b) find the kinetic energy of the charge at t = 0:

) 1 .
K.E. = §m|v(n)|? = —(5x 10720 kg)(5.39 x 10°m/s)? = 7.25 x 10715 = 7.25 {J

1
2
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