C H A P T E R 7

Kinetic Energy and Work

7-1 KINETIC ENERGY

Learning Objectives
After reading this module, you should be able to . . .

7.01 Apply the relationship between a particle’s kinetic 7.02 Identify that kinetic energy is a scalar quantity.
energy, mass, and speed.

Key Idea

® The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is well below the speed of light, is

K = %mvz (kinetic energy).

What Is Physics?

One of the fundamental goals of physics is to investigate something that every-
one talks about: energy. The topic is obviously important. Indeed, our civilization
is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy:
Flying across the Pacific Ocean requires it. Lifting material to the top floor of an
office building or to an orbiting space station requires it. Throwing a fastball
requires it. We spend a tremendous amount of money to acquire and use energy.
Wars have been started because of energy resources. Wars have been ended
because of a sudden, overpowering use of energy by one side. Everyone knows
many examples of energy and its use, but what does the term energy really mean?

What Is Energy?

The term energy is so broad that a clear definition is difficult to write. Technically,
energy is a scalar quantity associated with the state (or condition) of one or more
objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we
associate with a system of one or more objects. If a force changes one of the
objects by, say, making it move, then the energy number changes. After countless
experiments, scientists and engineers realized that if the scheme by which we
assign energy numbers is planned carefully, the numbers can be used to predict the
outcomes of experiments and, even more important, to build machines, such as fly-
ing machines. This success is based on a wonderful property of our universe:
Energy can be transformed from one type to another and transferred from one
object to another, but the total amount is always the same (energy is conserved).
No exception to this principle of energy conservation has ever been found.

Money. Think of the many types of energy as being numbers representing
money in many types of bank accounts. Rules have been made about what such
money numbers mean and how they can be changed. You can transfer money
numbers from one account to another or from one system to another, perhaps
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128 CHAPTER 7 KINETIC ENERGY AND WORK

electronically with nothing material actually moving. However, the total amount
(the total of all the money numbers) can always be accounted for: It is always
conserved. In this chapter we focus on only one type of energy (kinetic energy)
and on only one way in which energy can be transferred (work).

Kinetic Energy

Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

K = %mvz (kinetic energy). (7—1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of
6.0 kg - m?/s?; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and all types of energy) is the joule (J), named
for James Prescott Joule, an English scientist of the 1800s, and defined as

1joule =17 =1 kg -m?%s’.
Thus, the flying duck has a kinetic energy of 6.0 J.

(7-2)

Sample Problem 7.01 Kinetic energy, train crash

In 1896 in Waco, Texas, William Crush parked two locomotives
at opposite ends of a 6.4-km-long track, fired them up, tied
their throttles open, and then allowed them to crash head-on at
full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of
people were hurt by flying debris; several were Kkilled.
Assuming each locomotive weighed 1.2 X 10° N and its accel-
eration was a constant 0.26 m/s?, what was the total kinetic en-
ergy of the two locomotives just before the collision?

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:
V2 = v} + 2a(x — xp).

With vy = 0 and x — xy = 3.2 X 10°> m (half the initial sepa-
ration), this yields

v2 =0+ 2(0.26 m/s?)(3.2 X 103 m),
or v = 40.8 m/s = 147 km/h.

ILEY

We can find the mass of each locomotive by dividing its
given weight by g:
1.2 X 10N
=——— =122 X 10°kg.
T T o8 mi 0"ke
Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as
K =2(¢mv?) = (1.22 X 10° kg)(40.8 m/s)>

= 2.0 X 108 7. (Answer)
This collision was like an exploding bomb.

Courtesy Library of Congress

Figure 7-1 The aftermath of an 1896 crash of two locomotives.

W
PLUS Additional examples, video, and practice available at WileyPLUS
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T-2 WORK AND KINETIC ENERGY

Learning Objectives
After reading this module, you should be able to . . .

7.03 Apply the relationship between a force (magnitude and
direction) and the work done on a particle by the force
when the particle undergoes a displacement.

7.04 Calculate work by taking a dot product of the force vec-
tor and the displacement vector, in either magnitude-angle
or unit-vector notation.

Key Ildeas

® Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object
is positive work, and from the object, negative work.

@ The work done on a particle by a constant force F during
displacement dis

W=chos¢=l?-(—i)

(work, constant force),

in which ¢ is the constant angle between the directions of F
and d.

® Only the component of F thatis along the displacement d
can do work on the object.

7-2 WORK AND KINETIC ENERGY 129

7.05 If multiple forces act on a particle, calculate the net work
done by them.

7.06 Apply the work—kinetic energy theorem to relate the
work done by a force (or the net work done by multiple
forces) and the resulting change in kinetic energy.

® When two or more forces act on an object, their net work is
the sum of the individual works done by the forces, which is
also equal to the work that would be done on the object by
the net force F)nc[ of those forces.

® For a particle, a change AK in the kinetic energy equals the
net work W done on the particle:

AK=K,— K;,=W
in which K; is the initial kinetic energy of the particle and K is

the kinetic energy after the work is done. The equation
rearranged gives us

(work —kinetic energy theorem),

K=K+ W.

Work

If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy K (= 5 mv?) of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

A Y

'0' Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.
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130 CHAPTER 7 KINETIC ENERGY AND WORK

Work and Kinetic Energy

Finding an Expression for Work

Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force F , directed at an angle ¢ to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

F,=ma,, (7-3)

where m is the bead’s mass. As the bead moves through a displacement d, the
force changes the bead’s velocity from an initial value v, to some other value v.
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq.2-16 to write, for components along the x axis,

V2 =%+ 2a.d. (7-4)
Solving this equation for a,, substituting into Eq. 7-3, and rearranging then give us
Imv? = mv} = F.d. (7-5)

The first term is the kinetic energy K, of the bead at the end of the displacement
d, and the second term is the kinetic energy K; of the bead at the start. Thus, the
left side of Eq. 7-5 tells us the kinetic energy has been changed by the force, and
the right side tells us the change is equal to F,d. Therefore, the work W done on
the bead by the force (the energy transfer due to the force) is

W=Fd. (7-6)
If we know values for F, and d, we can use this equation to calculate the work W.
AN

." To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.
The force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can writg F, as F cos ¢, jvhere ¢ is the angle
between the directions of the displacement d and the force F.Thus,

W = Fdcos ¢ (work done by a constant force). (7-7)

This component

Small initial This force does positive work
CEESDUTES kinetic energy on the bead, increasing speed
————— F F and kinetic energy.
! lerex K, O/K )
Bead -/ —>

This component N
Figure 7-2 A constant force F directed at does work. r
angle ¢ to the displacement d of a bead 3//
on a wire accelerates the bead along the
wire, changing the velocity of the bead
from v, to V. A “kinetic energy gauge” Larger final F
indicates the resulting change in the kinet- kinetic energy I K/
ic energy of the bead, from the value K; to (4
the value K. —_ 7
In WileyPLUS, this figure is available as N >
an animation with voiceover. Displacement d
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7-2 WORK AND KINETIC ENERGY 131

We can use the definition of the scaler (dot) product (Eq.3-20) to write

W = F- 3 (work done by a constant force), (7-8)

where F is the magnitude of F. (You may wish to review the discussion of scaler
products in Module 3-3.) Equation 7-8 is especially useful for calculating the
work when F and d are given in unit-vector notation.

Cautions. There are two restrictions to using Egs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for Work. The work done on an object by a force can be either positive
work or negative work. For example, if angle ¢ in Eq. 7-7 is less than 90°, then cos ¢ is
positive and thus so is the work. However, if ¢ is greater than 90° (up to 180°), then
cos ¢ is negative and thus so is the work. (Can you see that the work is zero when
¢ = 90°?) These results lead to a simple rule. To find the sign of the work done by a
force, consider the force vector component that is parallel to the displacement:

A Y
"' A force does positive work when it has a vector component in the same direction

as the displacement, and it does negative work when it has a vector component in
the opposite direction. It does zero work when it has no such vector component.

Units for Work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqgs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N-m). The corresponding unit in the British system is the foot-pound
(ft-1b). Extending Eq.7-2, we have

1J7=1kg-m¥s?=1N-m = 0.738 ft-Ib. (7-9)

Net Work. When two or more forces act on an object, the net work done on
the object is the sum of the works done by the individual forces. We can
calculate the net work in two ways. (1) We can find the work done by each force
and then sum those works. (2) Alternatively, we can first find the net force Fnet
of those forces. Then we can use Eq. 7-7, substituting the magnitude F, for F
and also the angle between the directions of Fnet and d for ¢. Similarly, we can
use Eq. 7-8 with ﬁnet substituted for F.

Work-Kinetic Energy Theorem

Equation 7-5 relates the change in kinetic energy of the bead (from an initial
K; = ;mvj to a later K; = ;mv?) to the work W (= F,d) done on the bead. For
such particle-like objects, we can generalize that equation. Let AK be the change
in the kinetic energy of the object, and let W be the net work done on it. Then

AK=K;— K, =W, (7-10)
which says that < N
F
change in the kinetic\ _ [net work done on f
energy of a particle / the particle
We can also write ¢
Kf =K+ W, (7-11) Figure 7-3 A contestant in a bed race. We
which says that can approximate the bed and its occupant
as being a particle for the purpose of cal-
kinetic energy after \ kinetic energy the net culating the work done on them by the
the net work is done/ ~ \before the net work work done /° force applied by the contestant.
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CHAPTER 7 KINETIC ENERGY AND WORK

These statements are known traditionally as the work—kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

M Checkpoint 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from —3 m/s to —2 m/s
and (b) from —2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

Sample Problem 7.02 Work done by two constant forces, industrial spies

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement d of magnitude
8.50 m. The push F1 of spy 001 is 12.0 N at an angle of 30. 0°
downward from the horizontal; the pull F, of spy 002 is
10.0 N at 40.0° above the horizontal. The magnitudes and di-
rections of these forces do not change as the safe moves, and
the floor and safe make frictionless contact.

(a) What is the net work done on the safe by forces F,and F,
during the displacement d?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7
(W = Fd cos ¢) or Eq. 7-8 (W = F~ d) to calculate those
works. Let’s choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Flg 7-4b, the work done by F| is

= Fid cos ¢, = (12.0 N)(8.50 m)(cos 30.0°)
=88.33],

and the work done by E is

W, = F,d cos ¢, = (10.0 N)(8.50 m)(cos 40.0°)
=65.111.
Thus, the net work W is
W=W,+W,=8833] +65111J
=153.4] = 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies transfer
153 J of energy to the kinetic energy of the safe.

STUDENTS-HUB.com

Spy 00
py 002 Only force components

parallel to the displacement
do work.

Spy 001

(a) ()
Figure 7-4 (a) Two spies move a floor safe through a displacement
d. (b) A free-body diagram for the safe.

(b) During the displacement, what is the work W, done on the
safe by the gravitational force F and what is the work Wy
done on the safe by the normal force Fy, from the floor?

KEY IDEA

Because these forces are constant in both magnitude and
direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

W, = mgd cos 90° = mgd(0) = 0
and Wy = Fnd cos 90° = Fyd(0) =

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(Answer)

(Answer)

(c) The safe is initially stationary. What is its speed v at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its klnetlc energy is
changed when energy is transferred to it by F, 1and F. 9
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7-3 WORK DONE BY THE GRAVITATIONAL FORCE

Calculations: We relate the speed to the work done by
combining Egs. 7-10 (the work—kinetic energy theorem) and
7-1 (the definition of kinetic energy):

W = K;— K, = ymv} — ym?.

The initial speed v; is zero, and we now know that the work

133

done is 153.4 J. Solving for v, and then substituting known
data, we find that

- \/ZW ~ \/2(153.4 D)
s m 25 kg

= 1.17 m/s.

(Answer)

Sample Problem 7.03 Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (—3.0 m)i
while a steady wind pushes against the crate with a force
F = (20N)i + (—6.0N)j. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W =
Fd cos ¢) or Eq.7-8 (W = F-d) to calculate the work. Since
we know F and d in unit-vector notation, we choose Eq. 7-8.

Calculations: We write
W=F-d=[20N)i+ (=6.0N)j]-[(—3.0 m)i].

Of the possible unit-vector dot products, only i-1, j-J, and
k -k are nonzero (see Appendix E). Here we obtain

W= (20N)(-3.0m)i-i + (—6.0N)(—3.0 m)j-i
=(=6.01)(1) +0=—6.01. (Answer)

WILEY

The parallel force component does
negative work, slowing the crate.

y
-~ IR

———— XF
d

Figure 7-5 Force Fslowsa .
crate during displacement d.

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginnigg
of displacement d, what is its kinetic energy at the end of d?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work—kinetic energy theorem in

the form of Eq.7-11, we have
K;=K,+W=10J + (—6.0J) =4.01. (Answer)

Less kinetic energy means that the crate has been slowed.

PLUS Additional examples, video, and practice available at WileyPLUS

7-3 WORK DONE BY THE GRAVITATIONAL FORCE

Learning Objectives
After reading this module, you should be able to . . .

7.07 Calculate the work done by the gravitational force
when an object is lifted or lowered.

Key Ideas

® The work W, done by the gravitational force F)g ona
particle-like object of mass m as the object moves through a
displacement d is given by

W, = mgd cos ¢,

in which ¢ is the angle between F)g and d.

@ The work W, done by an applied force as a particle-like
object is either lifted or lowered is related to the work W,

STUDENTS-HUB.com

7.08 Apply the work—kinetic energy theorem to situations
where an object is lifted or lowered.

done by the gravitational force and the change AK in the
object’s kinetic energy by

AK=K;,— K, =W, + W,
If K; = K; then the equation reduces to
w,=-W

g?
which tells us that the applied force transfers as much energy
to the object as the gravitational force transfers from it.
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134 CHAPTER 7 KINETIC ENERGY AND WORK

a8 &

A
e
i The force does negative
work, decreasing speed
and kinetic energy.

Fi

Figure 7-6 Because the gravitational force F o
acts on it, a particle-like tomato of mass m
thrown upward slows from velocity V, to
velocity v during displacement d. A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from
K (= s mv}) to K; (= s mv?).

N
P

Upward
displacement

S

Does
positive
work

=

Object — Does

el

negative
work

Does
negative
work

=

Object—_
Does

positive
work

o

Downward

d displacement

v
(0)

Figure 7-7 (a) An applied force F lifts an
object. The object’s displacement d makes
an angle ¢ = 180° with the gravitational
force l_'“; on the object. The applied force
does positive work on the object. (b) An
applied force F lowers an object. The dis-
placement d of the object makes an angle
¢ = 0° with the gravitational force F‘g. The
applied force does negative work on the
object.
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Work Done by the Gravitational Force

We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v, and thus with initial kinetic energy K; = %mvﬁ. As the tomato
rises, it is slowed by a gravitational force F,; that is, the tomato’s kinetic energy
decreases because F, does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W = Fd cos ¢) to express the work
done during a displacement d. For the force magnitude F, we use mg as the mag-
nitude of PZ.’I’hus, the work W, done by the gravitational force Fg is

Wg = mgd cos ¢ (work done by gravitational force). (7-12)

For a rising object, force Fg) is directed opposite the displacement d, as indi-
cated in Fig. 7-6. Thus, ¢ = 180° and

W, = mgd cos 180° = mgd(—1) = —mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object. This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle ¢ between force F . and displacement d is zero. Thus,

W, = mgd cos 0° = mgd(+1) = +mgd. (7-14)

The plus sign tells us that the gravitational force now transfers energy in the amount
mgd to the kinetic energy of the falling object (it speeds up, of course).

Work Done in Lifting and Lowering an Object

Now suppose we lift a particle-like object by applying a vertical force F toit.
During the upward displacement, our applied force does positive work W, on the
object while the gravitational force does negative work W, on it. Our applied
force tends to transfer energy to the object while the gravitational force tends to
transfer energy from it. By Eq. 7-10, the change AK in the kinetic energy of the
object due to these two energy transfers is

AK =K, — K;= W, + W, (7-15)

in which K is the kinetic energy at the end of the displacement and K; is that at
the start of the displacement. This equation also applies if we lower the object,
but then the gravitational force tends to transfer energy fo the object while our
force tends to transfer energy from it.

If an object is stationary before and after a lift (as when you lift a book from
the floor to a shelf), then Kyand K; are both zero, and Eq. 7-15 reduces to

W,+ W,=0
or W, =-W,. (7-16)

Note that we get the same result if K; and K; are not zero but are still equal.
Either way, the result means that the work done by the applied force is the nega-
tive of the work done by the gravitational force; that is, the applied force transfers
the same amount of energy to the object as the gravitational force transfers from
the object. Using Eq. 7-12, we can rewrite Eq.7-16 as

W, = —mgdcos ¢ (work done inlifting and lowering; K; = K;), (7-17)

with ¢ being the angle between F. . and d.1If the displacement is vertically upward
(Fig. 7-7a), then ¢ = 180° and the work done by the applied force equals mgd.
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If the displacement is vertically downward (Fig. 7-7b), then ¢ = 0° and the work

done by the applied force equals —mgd.

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or
lowered, with the object stationary before and after the lift. They are independent
of the magnitude of the force used. For example, if you lift a mug from the floor
to over your head, your force on the mug varies considerably during the lift. Still,
because the mug is stationary before and after the lift, the work your force does
on the mug is given by Eqgs. 7-16 and 7-17, where, in Eq. 7-17, mg is the weight of

the mug and d is the distance you lift it.

Sample Problem 7.04 Work in pulling a sleigh up a snowy slope

In this problem an object is pulled along a ramp but the ob-
ject starts and ends at rest and thus has no overall change in
its kinetic energy (that is important). Figure 7-8a shows the
situation. A rope pulls a 200 kg sleigh (which you may know)
up aslope at incline angle 6 = 30°, through distance d = 20 m.
The sleigh and its contents have a total mass of 200 kg. The
snowy slope is so slippery that we take it to be frictionless.
How much work is done by each force acting on the sleigh?

KEY IDEAS

(1) During the motion, the forces are constant in magnitude
and direction and thus we can calculate the work done by
each with Eq. 7-7 (W = Fd cos ¢) in which ¢ is the angle be-
tween the force and the displacement. We reach the same
result with Eq. 7-8 (W = F-d) in which we take a dot prod-
uct of the force vector and displacement vector. (2) We can
relate the net work done by the forces to the change in
kinetic energy (or lack of a change, as here) with the
work-kinetic energy theorem of Eq. 7-10 (AK = W).

Calculations: The first thing to do with most physics prob-
lems involving forces is to draw a free-body diagram to organ-
ize our thoughts. For the sleigh, Fig. 7-8b is our free-body dia-
gram, showing the gravitational force F, o> the force T from the
rope, and the normal force Fy from the slope.

Work W)y by the normal force. Let’s start with this easy cal-
culation. The normal force is perpendicular to the slope and
thus also to the sleigh’s displacement. Thus the normal force
does not affect the sleigh’s motion and does zero work. To
be more formal, we can apply Eq. 7-7 to write

Wy = Fyd cos 90° = 0. (Answer)

Work W, by the gravitational force. We can find the work
done by the gravitational force in either of two ways (you
pick the more appealing way). From an earlier discussion
about ramps (Sample Problem 5.04 and Fig. 5-15), we know
that the component of the gravitational force along the
slope has magnitude mg sin 6 and is directed down the
slope. Thus the magnitude is

F,. = mgsin § = (200 kg)(9.8 m/s?) sin 30°
= 980 N.

STUDENTS-HUB.com

The angle ¢ between the displacement and this force com-
ponent is 180°. So we can apply Eq. 7-7 to write

W, = Fyd cos 180° = (980 N)(20 m)(—1)

=—1.96 X 10*J. (Answer)

The negative result means that the gravitational force re-
moves energy from the sleigh.

The second (equivalent) way to get this result is to use
the full gravitational force F;, instead of a component. The
angle between F; and d is 120° (add the incline angle 30°
to 90°). So, Eq. 7-7 gives us

W, = F,d cos 120° = mgd cos 120°
= (200 kg)(9.8 m/s?)(20 m) cos 120°

=—1.96 X 10*]. (Answer)

Work Wr by the rope’s force. We have two ways of calculat-
ing this work. The quickest way is to use the work—kinetic en-
ergy theorem of Eq. 7-10 (AK = W), where the net work W
done by the forcesis Wy + W, + Wy and the change AK in the
kinetic energy is just zero (because the initial and final kinetic
energies are the same—namely, zero). So, Eq. 7-10 gives us

0=Wy+ W, + Wr=0-196X10*J + Wy

and Wi =1.96 X 10*]. (Answer)

Does
positive work

mg cos

T
g

® LU

Figure 7-8 (a) A sleigh is pulled up a snowy slope. (b) The free-
body diagram for the sleigh.
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Instead of doing this, we can apply Newton’s second law for
motion along the x axis to find the magnitude F7 of the rope’s
force. Assuming that the acceleration along the slope is zero
(except for the brief starting and stopping), we can write

Fnet,x = max’
F; — mgsin 30° = m(0),
to find
Fr = mg sin 30°.

Sample Problem 7.05 Work done on an accelerating elevator cab

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration @ = g/5 (Fig.7-9a).

(a) During the fall through a distance d = 12 m, what is the
work W, done on the cab by the gravitational force F,?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12
(W, = mgd cos ¢) to find the work W,.

Calculation: From Fig.7-9b, we see that the angle between
the directions of F, and the cab’s displacement d is 0°. So,

W, = mgd cos 0° = (500 kg)(9.8 m/s?)(12 m)(1)
=5.88 X 10*J = 59 kJ.

(b) During the 12 m fall, what is the work Wy done on the
cab by the upward pull 7 of the elevator cable?

(Answer)

KEY IDEA

We can calculate work W, with Eq. 7-7 (W = Fd cos ¢) by
first writing F,., = ma, for the components in Fig.7-9b.
Calculations: We get

T — F, = ma. (7-18)

Solving for T, substituting mg for F,, and then substituting

the result in Eq. 7-7, we obtain
Wy = Td cos ¢ = m(a + g)d cos ¢. (7-19)

Next, substituting —g/5 for the (downward) acceleration a
and then 180° for the angle ¢ between the directions of
forces T'and mg, we find

4
Wr= m(—%+g>dcos¢=?mgdcos¢

4
== (500 kg)(9.8 m/s?)(12 m) cos 180°

= —470 X 104J = —47klJ. (Answer)

CHAPTER 7 KINETIC ENERGY AND WORK

This is the magnitude. Because the force and the displace-
ment are both up the slope, the angle between those two
vectors is zero. So, we can now write Eq. 7-7 to find the work
done by the rope’s force:

W= Frd cos 0° = (mg sin 30°)d cos 0°
= (200 kg)(9.8 m/s?)(sin 30°)(20 m) cos 0°

=1.96 X 10*J. (Answer)

[

’ Elevator

r cable

e ]

Figure 7-9 An elevator Does
cab, descending with T negative
speed v;, suddenly g Cab work
begins to accelerate . \
downward. (a) It
moves throggh a dis- 7 Doe's.
placement d with 4 ¢ positive
constant acceleration work
d = g/5. (b) A free- S T
body diagram for the “
cab, displacement 4
included. (a) ()

Caution: Note that Wy is not simply the negative of W, be-
cause the cab accelerates during the fall. Thus, Eq. 7-16
(which assumes that the initial and final kinetic energies are
equal) does not apply here.

(c) What is the net work W done on the cab during the fall?
Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W=W,+ Wr=588x10*J — 470 X 10*J
=118 X 10*J = 12 kJ.

(d) What is the cab’s kinetic energy at the end of the 12 m fall?

(Answer)

KEY IDEA

The kinetic energy changes because of the net work done on
the cab,according to Eq. 7-11 (K, = K; + W).

Calculation: From Eq. 7-1, we write the initial kinetic
energy as K; = imv?. We then write Eq.7-11 as

K=K +W=;mi+W
— (500 kg)(4.0 m/s)*> + 1.18 X 10*J

= 1.58 X 10*J = 16 kJ. (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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7-4 WoRK DONE BY A SPRING FORCE

Learning Objectives

After reading this module, you should be able to . . .

7.09 Apply the relationship (Hooke's law) between the force
on an object due to a spring, the stretch or compression
of the spring, and the spring constant of the spring.

7.10 Identify that a spring force is a variable force.

7.11 Calculate the work done on an object by a spring force
by integrating the force from the initial position to the final

Key Ideas
@ The force E from a spring is

Fs = —kg (Hooke’s law),

7-4 WORK DONE BY A SPRING FORCE 137

position of the object or by using the known generic result
of that integration.

7.12 Calculate work by graphically integrating on a graph of
force versus position of the object.

7.13 Apply the work—kinetic energy theorem to situations in
which an object is moved by a spring force.

@ A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

@ If an object is attached to the spring’s free end, the work W
done on the object by the spring force when the object is
moved from an initial position x; to a final position x,is

where d is the displacement of the spring’s free end from
its position when the spring is in its relaxed state (neither
compressed nor extended), and k is the spring constant

(a measure of the spring's stiffness). If an x axis lies along the W, = %kxiz - %kx%.
spring, with the origin at the location of the spring’s free end

when the spring is in its relaxed state, we can write If x; = 0 and x; = x, then the equation becomes

_ 1
F.= —kx (Hooke’s law). W, = _ikxz'

Work Done by a Spring Force

x=0 Block

We next want to examine the work done on a particle-like object by a particular L=0 attached
type of variable force—namely, a spring force, the force from a spring. Many mm\- tospring
forces in nature have the same mathematical form as the spring force. Thus, by ‘ X
examining this one force, you can gain an understanding of many others. 0

) (a)
The Spring Force
Figure 7-10a shows a spring in its relaxed state —that is, neither compressed nor x positive | d_

F, negative J
S
<t

extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as

in Fig. 7-10b, the spring pulls on the block toward the left. (Because a spring v x
force acts to restore the relaxed state, it is sometimes said to be a restoring force.) 0
If we compress the spring by pushing the block to the left as in Fig. 7-10c, the (4)
spring now pushes on the block toward the right. . = « negative
To a good approximation for many springs, the force F; from a spring is pro- }_/W\_Wf F, positive
portional to the displacement d of the free end from its position when the spring :
is in the relaxed state. The spring force is given by
_ R ’«—x—l X
F, = —kd (Hooke’slaw), (7-20) 0

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring. The larger £ is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement. The SI unit for
k is the newton per meter.

In Fig. 7-10 an x axis has been placed parallel to the length of the spring, with
the origin (x = 0) at the position of the free end when the spring is in its relaxed

STUDENTS-HUB.com

Figure 7-10 (a) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by d, and
the spring is stretched by a positive amount
x. Note the restoring force F exerted by
the spring. (c¢) The spring is compressed by
a negative amount x. Again, note the
restoring force.
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138 CHAPTER 7 KINETIC ENERGY AND WORK

state. For this common arrangement, we can write Eq. 7-20 as
F.= —kx (Hooke’slaw), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then F, is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then F, is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end. Thus F, can be symbolized as F(x). Also
note that Hooke’s law is a linear relationship between F, and x.

The Work Done by a Spring Force

To find the work done by the spring force as the block in Fig. 7-10a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force F, does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find this
work by using Eq. 7-7 (W = Fd cos ¢) because there is no one value of F to plug
into that equation—the value of Fincreases as the block stretches the spring.

There is a neat way around this problem. (1) We break up the block’s dis-
placement into tiny segments that are so small that we can neglect the variation
in F in each segment. (2) Then in each segment, the force has (approximately) a
single value and thus we can use Eq. 7-7 to find the work in that segment. (3)
Then we add up the work results for all the segments to get the total work. Well,
that is our intent, but we don’t really want to spend the next several days adding
up a great many results and, besides, they would be only approximations. Instead,
let’s make the segments infinitesimal so that the error in each work result goes to
zero. And then let’s add up all the results by integration instead of by hand.
Through the ease of calculus, we can do all this in minutes instead of days.

Let the block’s initial position be x; and its later position be x;. Then divide
the distance between those two positions into many segments, each of tiny length
Ax. Label these segments, starting from x;, as segments 1, 2, and so on. As the
block moves through a segment, the spring force hardly varies because the seg-
ment is so short that x hardly varies. Thus, we can approximate the force magni-
tude as being constant within the segment. Label these magnitudes as F,; in
segment 1, F, in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here ¢ = 180°, and so cos ¢ = —1. Then
the work done is —F,; Ax in segment 1, —F,, Ax in segment 2, and so on. The net
work W, done by the spring, from x; to x;,is the sum of all these works:

W, =3 —F,Ax, (7-22)
where j labels the segments. In the limit as Ax goes to zero, Eq. 7-22 becomes
W, = J Y _F. dx, (7-23)
From Eq. 7-21, the force magnitude F, is’ kx.Thus, substitution leads to
W, = jxr‘—kx dx = —k Jx{x dx

= (k)L = (—3k)(F — ). (7-24)
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Multiplied out, this yields

W, = %kxl2 - %kx]% (work by a spring force). (7-25)

This work W, done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from x; to x;. Caution: The final position x; appears in the second
term on the right side of Eq. 7-25. Therefore, Eq. 7-25 tells us:

A Y

"' Work Wi is positive if the block ends up closer to the relaxed position (x = 0) than
it was initially. It is negative if the block ends up farther away from x = 0. It is zero
if the block ends up at the same distance from x = 0.

If x; = 0 and if we call the final position x, then Eq. 7-25 becomes
W, = —% kx? (work by a spring force). (7-26)

The Work Done by an Applied Force

Now suppose that we displace the block along the x axis while continuing to apply a

force ﬁa to it. During the displacement, our applied force does work W, on the block
while the spring force does work W,. By Eq. 7-10, the change AK in the kinetic en-

ergy of the block due to these two energy transfers is
AK=K;,— K, =W,+ W, (7-27)

in which K is the kinetic energy at the end of the displacement and K is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then K;and K; are both zero and Eq. 7-27 reduces to

W,=-W., (7'28)

AN

"' If a block that is attached to a spring is stationary before and after a displacement,
then the work done on it by the applied force displacing it is the negative of the
work done on it by the spring force.

Caution: If the block is not stationary before and after the displacement, then this
statement is not true.

IZ Checkpoint 2

For three situations, the initial and final positions, respectively, along the x axis for the
block in Fig. 7-10 are (a) —3 cm, 2 cm; (b) 2 cm, 3 cm;and (¢) —2 c¢cm, 2 cm. In each sit-
uation, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem 7.06 Work done by a spring to change kinetic energy

When a spring does work on an object, we cannot find the ,
. .. . . The spring force does
work by simply multiplying the spring force by the object’s neaative work. decreasin
displacement. The reason is that there is no one value for S ge d and kinvetic ener 9 2
the force—it changes. However, we can split the displace- P % D —

ment up into an infinite number of tiny parts and then ap-

k

proximate the force in each as being constant. Integration Frictionless | S8
sums the work done in all those parts. Here we use the
generic result of the integration. ——d —
In Fig. 7-11, a cumin canister of mass m = 0.40 kg slides Stop First touch
across a horizontal frictionless counter with speed v = 0.50 m/s. Figure 7-11 A canister moves toward a spring.

STUDENTS-HUB.com Uploaded By: Ayham Nobani



140

It then runs into and compresses a spring of spring constant
k = 750 N/m. When the canister is momentarily stopped by
the spring, by what distance d is the spring compressed?

KEY IDEAS

1. The work W done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (W, =
—1kx?), with d replacing x.

2. The work Wi is also related to the kinetic energy of the
canister by Eq.7-10 (K, — K; = W).

3. The canister’s kinetic energy has an initial value of K =
Imv? and a value of zero when the canister is momen-
tarily at rest.

WILEY ®

CHAPTER 7 KINETIC ENERGY AND WORK

Calculations: Putting the first two of these ideas together,
we write the work —kinetic energy theorem for the canister as

K;— K, = —3kd>

Substituting according to the third key idea gives us this
expression:

0 —3m? = —3kd>

Simplifying, solving for d, and substituting known data then

give us
m 0.40 kg
v/ P (0.50 m/s) , 750 N/

=12X102m=12cm.

d

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

7-0 WORK DONE BY A GENERAL VARIABLE FORCE

Learning Objectives
After reading this module, you should be able to . . .

7.14 Given a variable force as a function of position, calculate
the work done by it on an object by integrating the function
from the initial to the final position of the object, in one or
more dimensions.

7.15 Given a graph of force versus position, calculate the
work done by graphically integrating from the initial
position to the final position of the object.

Key Ildeas

® When the force F on a particle-like object depends on
the position of the object, the work done by F on the ob-
ject while the object moves from an initial position r; with
coordinates (x;, y;, z;) to a final position r, with coordinates
(x5 ¥, 7p) must be found by integrating the force. If we as-
sume that component F, may depend on x but not on y or
z, component F, may depend on y but not on x or z, and
component F, may depend on z but not on x or y, then the

7.16 Convert a graph of acceleration versus position to a
graph of force versus position.

7.17 Apply the work—kinetic energy theorem to situations
where an object is moved by a variable force.

work is
Xf yr i
W= | F.dx + Fydy + | F.dz.
Xi Vi 2

o If Fhas only an x component, then this reduces to

Xr
W= f F(x) dx.

Work Done by a General Variable Force

One-Dimensional Analysis

Let us return to the situation of Fig. 7-2 but now consider the force to be in the
positive direction of the x axis and the force magnitude to vary with position x.
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on
it changes. Only the magnitude of this variable force changes, not its direction,

and the magnitude at any position does not change with time.
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Figure 7-12a shows a plot of such a one-dimensional variable force. We want
an expression for the work done on the particle by this force as the particle
moves from an initial point x; to a final point xz. However, we cannot use Eq. 7-7
(W = Fd cos ¢) because it applies only for a constant force F. Here, again, we
shall use calculus. We divide the area under the curve of Fig. 7-12a into a number
of narrow strips of width Ax (Fig. 7-12b). We choose Ax small enough to permit us
to take the force F(x) as being reasonably constant over that interval. We let F;,,,
be the average value of F(x) within the jth interval. Then in Fig. 7-12b, F} ,, is the
height of the jth strip.

With F;,,, considered constant, the increment (small amount) of work
AW; done by the force in the jth interval is now approximately given by Eq.
7-7 and is

AW, = F, 5, Ax. (7-29)

jave
In Fig.7-12b, AW; is then equal to the area of the jth rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves
from x; to x;, we add the areas of all the strips between x; and x;in Fig. 7-12b:
W = 2AW, = D F, ., Ax. (7-30)

J-avg

Equation 7-30 is an approximation because the broken “skyline” formed by the tops
of the rectangular strips in Fig. 7-12b only approximates the actual curve of F(x).

We can make the approximation better by reducing the strip width Ax and
using more strips (Fig. 7-12¢). In the limit, we let the strip width approach
zero; the number of strips then becomes infinitely large and we have, as an ex-
act result,

W= lim XF,, Ax. (7-31)
Ax —0
This limit is exactly what we mean by the integral of the function F(x) between
the limits x; and x;. Thus, Eq. 7-31 becomes

X
W = f F(x) dx  (work: variable force). (7-32)

If we know the function F(x), we can substitute it into Eq. 7-32, introduce the
proper limits of integration, carry out the integration, and thus find the work.
(Appendix E contains a list of common integrals.) Geometrically, the work is
equal to the area between the F(x) curve and the x axis, between the limits x; and
x; (shaded in Fig. 7-12d).

Three-Dimensional Analysis
Consider now a particle that is acted on by a three-dimensional force

F =Fi+Fj+Fk, (7-33)

in which the components F,, F,, and F, can depend on the position of the particle;
that is, they can be functions of that posmon. However, we make three simplifica-
tions: F, may depend on x but not on y or z, F, may depend on y but not on x or z,
and F, may depend on z but not on x or y. Now let the particle move through an in-
cremental displacement
d7 = dxi + dyj + dzk. (7-34)
The increment of work dW done on the particle by F during the displacement d7
is, by Eq. 7-8,
dW = F-d7 = F,dx + F,dy + F, dz. (7-35)
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Work is equal to the
area under the curve.

F(x)

(=]
-
&

(a)

We can approximate that area
with the area of these strips.

F(x)

We can do better with
more, narrower strips.

For the best, take the limit of
strip widths going to zero.

F(x)

|

|

|

|

|

|

| |
o L
(d)

Figure 7-12 (@) A one-dimensional force
F(x) plotted against the displacement x of
a particle on which it acts. The particle
moves from x; to x;. (b) Same as (a) but
with the area under the curve divided into
narrow strips. (¢) Same as (b) but with the
area divided into narrower strips. (d) The
limiting case. The work done by the force
is given by Eq. 7-32 and is represented by
the shaded area between the curve and
the x axis and between x; and x;.
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142 CHAPTER 7 KINETIC ENERGY AND WORK

The work W done by F while the particle moves from an initial position r; having
coordinates (x;,y;, z;) to a final position r,having coordinates (xy, yy, zs) is then

T, X Y, z
W= J "aw = f 'R, dx + f 'F, dy + J 'F, dz. (7-36)
T X; Y

i Zi

If F has only an x component, then the y and z terms in Eq. 7-36 are zero and the
equation reduces to Eq. 7-32.

Work-Kinetic Energy Theorem with a Variable Force
Equation 7-32 gives the work done by a variable force on a particle in a one-
dimensional situation. Let us now make certain that the work is equal to the
change in kinetic energy, as the work —kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a
net force F(x) that is directed along that axis. The work done on the particle

by this force as the particle moves from position x; to position x;is given by
Eq.7-32 as

W= f "F(x) dx = f ' ma dx, (7-37)

in which we use Newton’s second law to replace F(x) with ma. We can write the
quantity ma dx in Eq.7-37 as

d
madx =m 71; dx. (7-38)

From the chain rule of calculus, we have

dv dv dx dv
W a d (7-39)

and Eq. 7-38 becomes
d
madx =m d_v vdx = mvdv. (7-40)
x

Substituting Eq. 7-40 into Eq. 7-37 yields

W=ffmvdv=mffvdv

= smvi — 3mvy. (7-41)

Note that when we change the variable from x to v we are required to express the
limits on the integral in terms of the new variable. Note also that because the
mass m is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows
us to write this equation as

W=K;— K, = AK,

which is the work —kinetic energy theorem.

Sample Problem 7.07 Work calculated by graphical integration

In Fig. 7-13b, an 8.0 kg block slides along a frictionless floor ~ example, from x = 0 to x = 1 m, the force is positive (in
as a force acts on it, starting at x; = 0 and ending at x; = 6.5 m.  the positive direction of the x axis) and increases in mag-
As the block moves, the magnitude and direction of the nitude from O to 40 N. And from x = 4 m to x = 5 m, the
force varies according to the graph shown in Fig. 7-13a. For ~ force is negative and increases in magnitude from 0 to 20 N.
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(Note that this latter value is displayed as —20 N.) The
block’s kinetic energy at x; is K; = 280 J. What is the
block’s speed at x; = 0,x, = 4.0 m, and x; = 6.5 m?

KEY IDEAS

(1) At any point, we can relate the speed of the block to its
kinetic energy with Eq. 7-1 (K = ymv?). (2) We can relate
the kinetic energy K at a later point to the initial kinetic K;
and the work W done on the block by using the work-
kinetic energy theorem of Eq. 7-10 (K; — K; = W). (3) We
can calculate the work W done by a variable force F(x) by
integrating the force versus position x. Equation 7-32 tells
us that

W= f /F(x) dx.

We don’t have a function F(x) to carry out the integration,
but we do have a graph of F(x) where we can integrate by
finding the area between the plotted line and the x axis.
Where the plot is above the axis, the work (which is equal to
the area) is positive. Where it is below the axis, the work is
negative.

Calculations: The requested speed at x = 0 is easy because
we already know the kinetic energy. So, we just plug the
kinetic energy into the formula for kinetic energy:

Kl = %mv%’
2807 = 3(8.0 kg)vi,
and then

v, = 8.37 m/s = 8.4 m/s. (Answer)

As the block moves from x = 0 to x = 4.0 m, the plot in
Figure 7-13a is above the x axis, which means that positive
work is being done on the block. We split the area under the
plot into a triangle at the left, a rectangle in the center, and a
triangle at the right. Their total area is

140N)(1 m) + (40N)(2m) + 2(40N)(1 m) = 120 N-m
= 12017.
This means that between x = 0 and x = 4.0 m, the force
does 120 J of work on the block, increasing the kinetic en-
ergy and speed of the block. So, when the block reaches

x = 4.0 m, the work—kinetic energy theorem tells us that
the kinetic energy is

K2:K1 + W
=280J + 120J = 4007J.
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0 2 4

(0)
Figure 7-13 (a) A graph indicating the magnitude and direction of a
variable force that acts on a block as it moves along an x axis on
a floor. (b) The location of the block at several times.

Again using the definition of kinetic energy, we find
K, = imv},
400J = (8.0 kg)v},
and then

v, = 10 m/s. (Answer)

This is the block’s greatest speed because from x = 4.0 m to
x = 6.5 m the force is negative, meaning that it opposes the
block’s motion, doing negative work on the block and thus
decreasing the kinetic energy and speed. In that range, the
area between the plot and the x axis is
120N)(1 m) + (20 N)(1 m) + (20 N)(0.5m) = 35N-m
=351J.
This means that the work done by the force in that range is
—35 J. At x = 4.0 m, the block’s K = 400 J. At x = 6.5 m, the
work-kinetic energy theorem tells us that its kinetic energy is
K3 = KZ + W
=400J —35J =3651J.
Again using the definition of kinetic energy, we find
K = b3
3657 = 2(8.0 kg)v3,
and then

v; = 9.55 m/s = 9.6 m/s. (Answer)

The block is still moving in the positive direction of the
X axis, a bit faster than initially.

PLUS Additional examples, video, and practice available at WileyPLUS
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CHAPTER 7 KINETIC ENERGY AND WORK

Sample Problem 7.08 Work, two-dimensional integration

When the force on an object depends on the position of the
object, we cannot find the work done by it on the object by
simply multiplying the force by the displacement. The rea-
son is that there is no one value for the force—it changes.
So, we must find the work in tiny little displacements and
then add up all the work results. We effectively say, “Yes, the
force varies over any given tiny little displacement, but the
variation is so small we can approximate the force as being
constant during the displacement.” Sure, it is not precise, but
if we make the displacements infinitesimal, then our error
becomes infinitesimal and the result becomes precise. But,
to add an infinite number of work contributions by hand
would take us forever, longer than a semester. So, we add
them up via an integration, which allows us to do all this in
minutes (much less than a semester).

Force F = (3x2N)i + (4 N)j, with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

WILEY ®

KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqgs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

Calculation: We set up two integrals, one along each axis:

3 0 3 0
W=f3x2dx+f4dy=3jxzdx+4fdy
3 3 2 3

=3B + 4[yl§ = [3° — 2°] + 4[0 — 3]

=7.01. (Answer)

The positive result means that energy is transferred to the
particle by force F.Thus, the kinetic energy of the particle
increases and, because K = %mvz, its speed must also
increase. If the work had come out negative, the kinetic

energy and speed would have decreased.

PLUS Additional examples, video, and practice available at WileyPLUS

7-6 power

Learning Objectives

After reading this module, you should be able to . . .

7.18 Apply the relationship between average power, the
work done by a force, and the time interval in which that
work is done.

7.19 Given the work as a function of time, find the instanta-
neous power.

Key Ideas

@ The power due to a force is the rate at which that force
does work on an object.

@ If the force does work W during a time interval At, the aver-
age power due to the force over that time interval is

w

Poy = ——.
avg At

Power

7.20 Determine the instantaneous power by taking a dot
product of the force vector and an object’s velocity vector,
in magnitude-angle and unit-vector notations.

@ Instantaneous power is the instantaneous rate of doing work:
aw
pP=—
dt
@ Foraforce F atan angle ¢ to the direction of travel of the
instantaneous velocity V, the instantaneous power is

P=Fvcosd)=ﬁ-V.

The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time At, the average
power due to the force during that time interval is

STUDENTS-HUB.com

w

Ppg=—
e T Ar

(7-42)

(average power).

Uploaded By: Ayham Nobani



7-6 POWER 145

The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

dw

= —— (instantaneous power). (7-43)

dt

Suppose we know the work W(r) done by a force as a function of time. Then to

get the instantaneous power P at, say, time ¢ = 3.0 s during the work, we would

first take the time derivative of W(f) and then evaluate the result for r = 3.0 s.
The SI unit of power is the joule per second. This unit is used so often that it

has a special name, the watt (W), after James Watt, who greatly improved the  © Reglain/ZUMA

rate at which steam engines could do work. In the British system, the unit of Figure 7-14 The power due to the truck’s

power is the foot-pound per second. Often the horsepower is used. These are  4pplied force on the trailing load is the

related by rate at which that force does work on the

load.
lwatt=1W =11J/s = 0.738 ft -1b/s (7-44)

and 1 horsepower = 1 hp = 550 ft-1b/s = 746 W. (7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour. Thus,

1 kilowatt-hour = 1 kW -h = (10> W)(3600 s)
=3.60 X 10°J = 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as,say,4 X 107 kW -h (or more conveniently as 4 mW -h).

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force F directed at some angle ¢ to that line, Eq. 7-43 becomes

dW  Fcos ¢ dx dx
P = = = F _—
dt dt €os ¢< dt )

or P = Fv cos ¢. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product F-7,we may also write
the equation as

P=Fv (instantaneous power). (7-48)

For example, the truck in Fig. 7-14 exerts a force F on the trailing load, which
has velocity ¥ at some instant. The instantaneous power due to F is the rate at
which F does work on the load at that instant and is given by Egs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

M Checkpoint 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the
cord positive, negative, or zero?
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Sample Problem 7.09 Power, force, and velocity

Here we calculate an instantaneous work—that is, the rate at
which work is being done at any given instant rather than av-
eraged over a time interval. Figure 7-15 shows constant forces
F 1 and F » acting on a box as the box slides rightward across a
frictionless floor. Force F 1 is horizontal, with magnitude 2.0 N;
force F , is angled upward by 60° to the floor and has magni-
tude 4.0 N.The speed v of the box at a certain instant is 3.0 m/s.
What is the power due to each force acting on the box at that
instant, and what is the net power? Is the net power changing
at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Negative power.
(This force is i
removing energy.) :

Positive power.
(This force is

supplying energy.)

Frictionless B

Figure 7-15 Two forces F ; and F , act on a box that slides
rightward across a frictionless floor. The velocity of the box is V.

CHAPTER 7 KINETIC ENERGY AND WORK

Calculation: We use Eq.7-47 for each force. For force F ,at
angle ¢, = 180° to velocity v, we have

P, = Fyv cos ¢ = (2.0 N)(3.0 m/s) cos 180°
= —6.0 W. (Answer)

This negative result tells us that force F 1 1s transferring en-
ergy from the box at the rate of 6.0 J/s.
For force F. »,at angle ¢, = 60° to velocity vV, we have

P, = F,v cos ¢, = (4.0 N)(3.0 m/s) cos 60°

= 6.0 W. (Answer)

This positive result tells us that force F , 1s transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers
(complete with their algebraic signs):

Pnet:Pl+P2
—6.0W +6.0W =0,

(Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero. Thus, the kinetic energy (K = » > mv?)
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces F 1 and F , nor the
velocity V' changing, we see from Eq. 7-48 that P, and P, are
constant and thus so is P,;.

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Kinetic Energy The kinetic energy K associated with the mo-
tion of a particle of mass m and speed v, where v is well below the
speed of light, is

1
K =;m?

(kinetic energy). (7-1)

Work Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object is posi-
tive work, and from the object, negative work.

Work Done by a Constant Force The work done on a par-
ticle by a constant force F during displacement d is

W =Fdcos¢=F-d (7-7,7-8)

(work, constant force),

in which ¢ is the constant angle between the directions of Fandd.
Only the component of F that is along the displacement d can do
work on the object. When two or more forces act on an object,
their net work is the sum of the individual works done by the
forces, which is also equal to the work that would be done on the
object by the net force fnet of those forces.

Work and Kinetic Energy For a particle, a change AK in the
kinetic energy equals the net work W done on the particle:

AK = K;— K; = W  (work—kinetic energy theorem), (7-10)

STUDENTS-HUB.com

in which K; is the initial kinetic energy of the particle and K} is the ki-
netic energy after the work is done. Equation 7-10 rearranged gives us

K;=K;+W. (7-11)
Work Done by the Gravitational Force The work W,
done by the gravitational force F on a particle-like object of mass
m as the object moves through a dlsplacement dis given by

W, = mgd cos ¢, (7-12)

in which ¢ is the angle between F gand d.

Work Done in Lifting and Lowering an Object The work
W, done by an applied force as a particle-like object is either lifted
or lowered is related to the work W, done by the gravitational
force and the change AK in the object’s kinetic energy by

AK =K;— K; =W, + W, (7-15)
If K; = K;, then Eq. 7-15 reduces to
W, =-W,, (7-16)

which tells us that the applied force transfers as much energy to the
object as the gravitational force transfers from it.
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Spring Force The force F, from a spring is

F = —kd (Hooke’s law), (7-20)

where d is the displacement of the spring’s free end from its posi-
tion when the spring is in its relaxed state (neither compressed nor
extended), and k is the spring constant (a measure of the spring’s
stiffness). If an x axis lies along the spring, with the origin at the lo-
cation of the spring’s free end when the spring is in its relaxed
state, Eq. 7-20 can be written as

F,= —kx (Hooke’s law). (7-21)

A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

Work Done by a Spring Force If an object is attached to
the spring’s free end, the work W, done on the object by the spring
force when the object is moved from an initial position x; to a final
position x,is

W, = 3kx? — Sk} (7-25)
If x; = 0 and x; = x, then Eq.7-25 becomes
W, = —Lkx?. (7-26)

Work Done by a Variable Force When the force F on a particle-
like object depends on the position of the object, the work done by F
on the object while the object moves from an initial position #; with co-
ordinates (x;, y;, z;) to a final position 7, with coordinates (x, yy, z))

Problems

1 When accelerated along a straight line at 2.8 X 10" m/s? in a
machine, an electron (mass m = 9.1 X 1073 kg) has an initial
speed of 1.4 X 107 m/s and travels 5.8 cm. Find (a) the final speed
of the electron and (b) the increase in its kinetic energy.

2 If a Saturn V rocket with an Apollo spacecraft attached had a
combined mass of 2.9 X 10° kg and reached a speed of 11.2 km/s,
how much kinetic energy would it then have?

3 On August 10, 1972, a large meteorite skipped across the atmos-
phere above the western United States and western Canada, much
like a stone skipped across water. The accompanying fireball was so
bright that it could be seen in the daytime sky and was brighter than
the usual meteorite trail. The meteorite’s mass was about 4 X 10° kg;
its speed was about 15 km/s. Had it entered the atmosphere vertically,
it would have hit Earth’s surface with about the same speed. (a)
Calculate the meteorite’s loss of kinetic energy (in joules) that would
have been associated with the vertical impact. (b) Express the energy
as a multiple of the explosive energy of 1 megaton of TNT, which is
42X 1057, (c) The energy associated with the atomic bomb
explosion over Hiroshima was equivalent to 13 kilotons of TNT. To
how many Hiroshima bombs would the

meteorite impact have been equivalent? Wo

4  Aforce F, is applied to a bead asthe
bead is moved along a straight wire =
through displacement +5.0cm. The

magnitude of Fa is set at a certain value,

but the angle ¢ between I?l, and the 0
bead’s displacement can be chosen.
Figure 7-16 gives the work W done by F,
on the bead for a range of ¢ values; W,

o
Figure 7-16 Problem 4.

STUDENTSU S iy done by Fif ¢is (2) 64° and (b) 14772
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must be found by integrating the force. If we assume that component
F, may depend on x but not on y or z,component F, may depend on y
but not on x or z,and component F, may depend on z but not on x or
y,then the work is

X yf Zf
W= J F.dx + f Fydy + f F.dz. (7-36)
X; Vi 2
If F has only an x component, then Eq. 7-36 reduces to
X5
W= f F(x) dx. (7-32)

Power The power due to a force is the rate at which that force
does work on an object. If the force does work W during a time inter-
val Az, the average power due to the force over that time interval is

w

Pyoe=——. 7-42
avg At ( )
Instantaneous power is the instantaneous rate of doing work:
dw
P=— 7-43
o (7-43)

For a force F at an angle ¢ to the direction of travel of the instan-
taneous velocity v, the instantaneous power is

P=Fvcosp = F-V. (7-47,7-48)

5 A father racing his son has half the kinetic energy of the son,
who has half the mass of the father. The father speeds up by 1.0 m/s
and then has the same kinetic energy as the son. What are the origi-
nal speeds of (a) the father and (b) the son?

6 A bead with mass 1.8 X 1072 kg is moving along a wire in the
positive direction of an x axis. Beginning at time ¢ = 0, when the
bead passes through x = 0 with speed 12 m/s, a constant force
acts on the bead. Figure 7-17 indicates the bead’s position at
these four times: t, =0, ¢, =1.0s, 1, = 2.0 s, and t3 = 3.0s. The
bead momentarily stops at ¢ = 3.0 s. What is the kinetic energy of
the bead at ¢t = 10 s?

N 4
J-[I I R R A ||\£ [
0 5 10
x (m)

Figure 7-17 Problem 6.

1, t:
I |ZI\$ I /I3 |
15 2

0

7 A 3.0kg body is at rest on a frictionless horizontal air track
when a constant horizontal force F acting in the positive direction of
an x axis along the track is applied to the body. A stroboscopic graph
of the position of the body as it slides to the right is shown in Fig. 7-
18.The force F is applied to the body at ¢t = 0, and the graph records
the position of the body at 0.50 s intervals. How much work is done
on the body by the applied force F betweent = 0and = 2.0's?

0 0.2 0.4 0.6 0.8
x (m)
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8 A ice block floating in a river is pushed through a displacement
d = (20 m)i — (16 m)] along a straight embankment by rushing wa-
ter, which exerts a force F = (210 N)i — (150 N);j on the block. How
much work does the force do on the block during the displacement?

9 The only force acting on a 2.0 kg canister that is moving in an
xy plane has a magnitude of 5.0 N. The canister initially has a veloc-
ity of 4.0 m/s in the positive x direction and some time later has a
velocity of 6.0 m/s in the positive y direction. How much work is
done on the canister by the 5.0 N force during this time?

10 A coin slides over a frictionless plane and across an xy
coordinate system from the origin to a point with xy coordinates
(3.0 m, 4.0 m) while a constant force acts on it. The force has mag-
nitude 2.5 N and is directed at a counterclockwise angle of 100°
from the positive direction of the x axis. How much work is done
by the force on the coin during the displacement?

11 A particle travels through a three-dimensional displacement
given by d = (5.00i — 3.00] + 4.00k) m. If a force of magnitude
22.0 N and with fixed orientation does work on the particle, find
the angle between the force and the displacement if the change in
the particle’s kinetic energy is (a) 45.0 J and (b) —45.0 J.

12 A can of bolts and nuts is W,
pushed 2.00 m along an x axis by a
broom along the greasy (frictionless)
floor of a car repair shop in a version =
of shuffleboard. Figure 7-19 gives the =

work W done on the can by the con-

stant horizontal force from the

broom, versus the can’s position x. 0 1 2
The scale of the figure’s vertical axis is x (m)

set by W, = 6.0 J. (a) What is the mag- Figure 7-19 Problem 12.
nitude of that force? (b) If the can

had an initial kinetic energy of 3.00 J, moving in the positive direction
of the x axis, what is its kinetic energy at the end of the 2.00 m?

13 A luge and its rider, with a total mass of 85 kg, emerge from a
downbhill track onto a horizontal straight track with an initial speed of
37 m/s. If a force slows them to a stop at a constant rate of 2.0 m/s?, (a)
what magnitude F is required for the force, (b) what distance d do
they travel while slowing, and (c) what work W is done on them by the
force? What are (d) F, (¢) d,and (f) W if they, instead, slow at 4.0 m/s*?

14  Figure 7-20 shows an overhead y
view of three horizontal forces acting
on a cargo canister that was initially
stationary but now moves across a
frictionless floor. The force magni-
tudes are F;=3.00N, F,=4.00N,
and F;=9.00N, and the indicated
angles are 6, = 50.0° and 6; = 35.0°.
What is the net work done on the
canister by the three forces during
the first 4.00 m of displacement?

15 Figure 7-21 shows three forces =

applied to a trunk that moves leftward

by 3.00 m over a frictionless floor. The

force magnitudes are F; =5.00N, F, F /

=9.00N, and F; = 3.00 N, and the in- G

dicated angle is # = 60.0°. During the ]
I

displacement, (a) what is the net work
done on the trunk by the three forces
and (b) does the kinetic energy of the

trunk increase or decrease? Figure 7-21 Problem 15.
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16 A 7.0kg object is moving in K (J)

the positive direction of an x axis.

When it passes through x =0, a Ko

constant force directed along the

axis begins to act on it. Figure 7-22

gives its kinetic energy K versus

position x as it moves fromx = 0to 5
x =5.0m; K, = 30.0 J. The force "

continues to act. What is v when Figure 7-22. Problem 16.
the object moves back through x = —3.0 m?

x (m)

17 A military helicopter lifts a 75 kg flood survivor 16 m vertically
from the river by a rope. If the acceleration of the survivor is g/10,
how much work is done on the survivor by (a) the force from the hel-
icopter and (b) the gravitational force on her? Just before she
reaches the helicopter, what are her (c) kinetic energy and (d) speed?

18 (a) In 1975 the roof of Montreal’s Velodrome, with a weight
of 360 kN, was lifted by 10 cm so that it could be centered. How
much work was done on the roof by the forces making the lift? (b)
In 1960 a Tampa, Florida, mother reportedly raised one end of a
car that had fallen onto her son when a jack failed. If her panic lift
effectively raised 4000 N (about } of the car’s weight) by 5.0 cm,
how much work did her force do on the car?

19 In Fig. 7-23, a block of ice slides
down a frictionless ramp at angle
6 = 50° while an ice worker pulls on the
block (via a rope) with a force F, that
has a magnitude of 50 N and is directed
up the ramp. As the block slides X/
through distance d = 0.50 m along the
ramp, its kinetic energy increases by 80
J. How much greater would its kinetic
energy have been if the rope had not Figure 7-23 Problem 19.
been attached to the block?

20 A block is sent up a frictionless K,
ramp along which an x axis extends
upward. Figure 7-24 gives the kinetic
energy of the block as a function of po-
sition x; the scale of the figure’s vertical
axis is set by K; = 50.0 J. If the block’s
initial speed is 5.00 m/s, what is the
normal force on the block?

K (J)

0 1 2
x (m)

21 A cord is used to vertically lower  Figure 7-24 Problem 20.

an initially stationary block of mass M

at a constant downward acceleration of g/4. When the block has
fallen a distance d, find (a) the work done by the cord’s force on the
block, (b) the work done by the gravitational force on the block, (c)
the kinetic energy of the block, and (d) the speed of the block.

22 A cave rescue team lifts an injured spelunker directly upward
and out of a sinkhole by means of a motor-driven cable. The lift is
performed in three stages, each requiring a vertical distance of 12.0
m: (a) the initially stationary spelunker is accelerated to a speed of
5.00 m/s; (b) he is then lifted at the constant speed of 5.00 m/s; (c)
finally he is decelerated to zero

speed. How much work is done on

the 85.0 kg rescuee by the force lift-

ing him during each stage? |
23 In Fig. 7-25, a constant force F,, |
of magnitude 82.0N is applied !
to a 3.00kg shoe box at angle I
¢ = 53.0°, causing the box to mTve

Up
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up a frictionless ramp at constant speed. How much work is done
on the box by F, when the box has moved through vertical dis-

tance & = 0.150 m?

24 In Fig. 7-26, a horizontal force

F’a of magnitude 23.0 N is applied to
a 3.00 kg psychology book as the d
book slides a distance d = 0.580 m /
up a frictionless ramp at angle 6 =
30.0°. (a) During the displacement,
what is the net work done on the
book by F‘a the gravitational force
on the book, and the normal force
on the book? (b) If the book has
zero kinetic energy at the start of
the displacement, what is its speed at the end of the displacement?

25 InFig 7-27,a0.250 kg block of cheese lies on the
floor of a 900 kg elevator cab that is being pulled up-
ward by a cable through distance d; = 2.40 m and then
through distance d, = 10.5m. (a) Through dj, if the
normal force on the block from the floor has constant
magnitude Fy = 3.00 N, how much work is done on
the cab by the force from the cable? (b) Through d,, if
the work done on the cab by the (constant) force from
the cable is 92.61 kJ, what is the magnitude of Fy?

vV
ioN

0

Figure 7-26 Problem 24.

Figure 7-27
Problem 25.

26 A spring of spring constant 5.0 X 10° N/m is
stretched initially by 5.0 cm from the unstretched position. What is the
work required to stretch it further by another 5.0 cm?

27 A spring and block are in the arrangement of Fig. 7-10. When the
block is pulled out to x = +4.0 cm, we must apply a force of magnitude
360 N to hold it there. We pull the block to x = 11 cm and then release
it. How much work does the spring do on the block as the block
moves from x; = +5.0cm to (a) x = +3.0 cm, (b) x = —3.0 cm,
(c)x = —=5.0cm,and (d)x = —9.0 cm?

28 During spring semester at MIT, residents of the parallel build-
ings of the East Campus dorms battle one another with large cata-
pults that are made with surgical hose mounted on a window frame.
A balloon filled with dyed water is placed in a pouch attached to the
hose, which is then stretched through the width of the room. Assume
that the stretching of the hose obeys Hooke’s law with a spring con-
stant of 110 N/m. If the hose is stretched by 5.00 m and then re-
leased, how much work does the force from the hose do on the bal-
loon in the pouch by the time the hose reaches its relaxed length?

29 In the arrangement of Fig. 7-10, we gradually pull the block
from x = 0 to x = +3.0 cm, where it is stationary. Figure 7-28 gives
the work that our force does on the block. The scale of the figure’s
vertical axis is set by W, = 1.0 J. We then pull the block out to x =
+5.0 cm and release it from rest. How much work does the spring
do on the block when the block moves from x; = +5.0 cm to
(a)x = +4.0 cm, (b) x = —2.0 cm, and (¢) x = —5.0 cm?

W. —

s

w({J)

x (cm)
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30 In Fig.7-10a, a block of mass m K
lies on a horizontal frictionless sur- =
face and is attached to one end of a &
horizontal spring (spring constant 0
k) whose other end is fixed. The
block is initially at rest at the posi-
tion where the spring is unstretched
(x = 0) when a constant horizontal
force F in the positive direction of the x axis is applied to it. A plot
of the resulting kinetic energy of the block versus its position x is
shown in Fig. 7-29. The scale of the vertical axis is set by K; = 6.0 J.
(a) What is the magnitude of F? (b) What is the value of k?

31  As a 2.5 kg body moves in the positive direction along an x
axis, a single force acts on it. The force is given by F, = —6x N, with
x in meters. The velocity at x = 3.5 m is 8.5 m/s. (a) Find the veloc-
ity of the body at x = 4.5 m. (b) Find the positive value of x at
which the body has a velocity of 5.5 m/s.

x (m)

Figure 7-29 Problem 30.

32 Figure 7-30 gives spring force
F, versus position x for the
spring—block arrangement of Fig. 7-
10. The scale is set by F; = 160.0 N.
We release the block at x = 12 cm.
How much work does the spring do
on the block when the block moves _F
from x; = +8.0cm to (a) x = +5.0
cm, (b) x = —=5.0cm, (¢) x = —8.0
cm,and (d) x = —10.0 cm?

33 The block in Fig. 7-10a lies on a horizontal frictionless sur-
face, and the spring constant is 50 N/m. Initially, the spring is at its
relaxed length and the block is stationary at position x = 0. Then
an applied force with a constant magnitude of 3.0 N pulls the block
in the positive direction of the x axis, stretching the spring until the
block stops. When that stopping point is reached, what are (a) the
position of the block, (b) the work that has been done on the block
by the applied force, and (c) the work that has been done on the
block by the spring force? During the block’s displacement, what
are (d) the block’s position when its kinetic energy is maximum
and (e) the value of that maximum kinetic energy?

Figure 7-30 Problem 32.

34 A 15 kg brick moves along an ag
x axis. Its acceleration as a function
of its position is shown in Fig. 7-31.
The scale of the figure’s vertical
axis is set by a, = 24 m/s%. What is
the net work performed on the
brick by the force causing the accel-
eration as the brick moves from
x=0tox =8.0m?

a (m/sQ)

0 72 4 &6
x (m)

Figure 7-31 Problem 34.

[ee]

35 The force on a particle is directed along an x axis and given by
F = Fy(x/x, — 1). Find the work done by the force in moving the par-
ticle from x = 0 to x = 2x, by (a) plotting F(x) and measuring the
work from the graph and (b) integrating F(x).

36 A 25kg block moves in a
straight line on a horizontal friction- ~ F,
less surface under the influence of a &
force that varies with position as é) 0
shown in Fig. 7-32. The scale of the &
figure’s vertical axis is set by F, = ”

10.0 N. How much work is done by o 2 4 6 8
the force as the block moves from Position (m)
the origin to x = 8.0 m? Figure 7-32 Problem 36.
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37 Figure 7-33 gives the acceleration of a 2.00 kg particle as an ap-
plied force F, moves it from rest along an x axis fromx = 0 tox = 9.0
m. The scale of the figure’s vertical axis is set by a, = 6.0 m/s>. How
much work has the force done on the particle when the particle
reaches (a) x = 4.0 m, (b) x = 7.0 m, and (c) x = 9.0 m? What is the
particle’s speed and direction of travel when it reaches (d) x = 4.0 m,
(e)x = 7.0 m,and (f) x = 9.0 m?

0 x (m)

a (m/s?)

—-a

Figure 7-33 Problem 37.

38 A 1.0kg block is initially at rest on a horizontal frictionless sur-
face when a horizontal force along an x axis is applied to the block.
The force is given by F(x) = (2.5 — x?)i N, where x is in meters and
the initial position of the block is x = 0. (a) What is the kinetic energy
of the block as it passes through x = 2.0 m? (b) What is the maximum
kinetic energy of the block between x = 0 and x = 2.0 m?

39 A particle of mass 0.020 kg moves along a curve with velocity
5.0i + 18k m/s. After some time, the velocity changes to 9.0i + 22j
m/s due to the action of a single force. Find the work done on the
particle during this interval of time.

40 A can of sardines is made to move along an x axis from
x =025m to x =225 m by a force with a magnitude given by
F = exp(—4x?), with x in meters and F in newtons. (Here exp is the
exponential function.) How much work is done on the can by the
force?

41  Only one force is acting on a 2.8 kg particle-like object whose
position is given by x = 4.0t — 5.0 + 2.0, with x in meters and ¢
in seconds. What is the work done by the force from t =0 s to
t=6.0s?

42 Figure 7-34 shows a cord attached to a cart that can slide
along a frictionless horizontal rail aligned along an x axis. The left
end of the cord is pulled over a pulley, of negligible mass and fric-
tion and at cord height # = 1.25 m, so the cart slides from x; = 3.00
m to x, = 1.00 m. During the move, the tension in the cord is a con-
stant 28.0 N. What is the change in the kinetic energy of the cart
during the move?

Figure 7-34 Problem 42.

43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
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and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

44 A skier is pulled by a towrope up a frictionless ski slope that
makes an angle of 12° with the horizontal. The rope moves parallel
to the slope with a constant speed of 1.0 m/s. The force of the rope
does 880 J of work on the skier as the skier moves a distance of 7.0
m up the incline. (a) If the rope moved with a constant speed of 2.0
m/s, how much work would the force of the rope do on the skier as
the skier moved a distance of 8.0 m up the incline? At what rate is
the force of the rope doing work on the skier when the rope moves
with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

45 Across a horizontal floor, a 102 kg block is pulled at a con-
stant speed of 5.5 m/s by an applied force of 125 N directed 38°
above the horizontal. Calculate the rate at which the force does
work on the block.

46  The loaded cab of an elevator has a mass of 5.0 X 10° kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

47 A machine carries a 4.0 kg package from an initial position of
d; = (0.50 m)i + (0.75 m)j + (0.20 m)k at ¢ = 0 to a final position
of dy= (750 m)i + (12.0m)j + (720 m)k at ¢ = 12's. The con-
stant force applied by the machine on the package is
F = (200 N)i + (4.00N)] + (6.00 N)k. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

48 A 0.35 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k = 450 N/m) whose
other end is fixed. The ladle has a kinetic energy of 10J as it
passes through its equilibrium position (the point at which the
spring force is zero). (a) At what rate is the spring doing work on
the ladle as the ladle passes through its equilibrium position? (b)
At what rate is the spring doing work on the ladle when the spring
is compressed 0.10 m and the ladle is moving away from the equi-
librium position?

49 A fully loaded, slow-moving freight elevator has a cab with a
total mass of 1200 kg, which is required to travel upward 54 m in
3.0 min, starting and ending at rest. The elevator’s counterweight
has a mass of only 950 kg, and so the elevator motor must help.
What average power is required of the force the motor exerts on
the cab via the cable?

50 (a) At a certain instant, a particle-like object is acted on by a
force F = (4.0 N)i — (2.0 N)] + (9.0 N)k while the object’s veloc-
ityis v = —(2.0 m/s)i + (4.0 m/s)k. What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is —15 W, what is the veloc-
ity of the object?

51 A force F= (3.00N)i + (7.00N)] + (700 N)k acts on a
2.00 kg mobile object that moves from an initial position
of d. = (3.00m)i — (2.00m)j + (5.00m)k to a final position of
dy= —(5.00m)i + (4.00m)j + (7.00m)k in 4.00s. Find (a) the
work done on the object by the force in the 4.00s interval,
(b) the average power due to the force during that interval, and
(c) the angle between vectors d, and Zf.

52 A funny car accelerates from rest through a measured track
distance in time 7 with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?
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