

STUDENTS-HUB.com

Uploaded By: anonymous 1

Flexible machine elements are used in conveying systems and in the **transmission of power over comparatively long distances**. These elements can be used as a replacement for gears, shafts, bearings, and other relatively rigid powertransmission devices. In many cases their use simplifies the design of a machine and substantially **reduces the cost**.

Since these elements are elastic and usually quite long, they play an important part in **absorbing shock** loads and in damping out and isolating the effects of vibration. This is an important advantage as far as machine life is concerned.

Most flexible elements do **not have an infinite life**. When they are used, it is important to establish an inspection schedule to guard against wear, aging, and loss of elasticity.

17.1 Belts - Characteristics

- They may be used for long center distances.
- Except for timing belts, there is some slip and creep, and so the angular-velocity ratio between the driving and driven shafts is neither constant nor exactly equal to the ratio of the pulley diameters.
- In some cases an idler or tension pulley can be used to avoid adjustments in center distance that are ordinarily necessitated by age or the installation of new belts.

Table 17–1	Belt Type	Figure	Joint	Size Range	Center Distance
Characteristics of Some Common Belt Types (Figures are cross	Flat	\downarrow	Yes	$t = \begin{cases} 0.03 \text{ to } 0.20 \text{ in} \\ 0.75 \text{ to } 5 \text{ mm} \end{cases}$	No upper limit
timing belt, which is a side view).	Round	$\bigcirc \frac{4}{\frac{d}{1}}$	Yes	$d = \frac{1}{8} \operatorname{to} \frac{3}{4} \operatorname{in}$	No upper limit
	V	$\sum \frac{\frac{1}{b}}{\frac{b}{1}}$	None	$b = \begin{cases} 0.31 \text{ to } 0.91 \text{ in} \\ 8 \text{ to } 19 \text{ mm} \end{cases}$	Limited
	Timing		None	p = 2 mm and up	Limited

STUDENTS-HUB.com

(b)

 $L = \sqrt{4C^2 - (D+d)^2 + \frac{1}{2}(D+d)\theta}$ Uploaded By: anonymous 7

Figure 17-2

Nonreversing and reversing belt drives. (*a*) Nonreversing open belt. (*b*) Reversing crossed belt. Crossed belts must be separated to prevent rubbing if high-friction materials are used.

(c) Reversing open-belt drive.

Figure 17-3

Quarter-twist belt drive; an idler guide pulley must be used if motion is to be in both directions.

- where D = diameter of large pulley
 - d = diameter of small pulley
 - C =center distance

STUDENTS-HUB.com

 θ = angle of contact

The length of the belt is found by summing the two arc lengths with twice the distance between the beginning and end of contact. The result is

$$L = [4C^{2} - (D - d)^{2}]^{1/2} + \frac{1}{2}(D\theta_{D} + d\theta_{d}) \qquad \text{Uploaded By: anonymous}_{13}$$

17.2 Flat and Rounded Drives

$$\theta = \pi + 2\sin^{-1}\frac{D+d}{2C}$$
(17-3)

The belt length for crossed belts is found to be

$$L = [4C^2 - (D+d)^2]^{1/2} + \frac{1}{2}(D+d)\theta$$
 (17-4)

Uploaded By: anonymous₁₄

Figure 17–7

Forces and torques on a pulley.

17.2 Flat and Rounded Drives

loose-side tension F_2

Uploaded By: anonymous

$$\frac{F_1 - mr^2\omega^2}{F_2 - mr^2\omega^2} = \frac{F_1 - F_c}{F_2 - F_c} = \exp(f\phi)$$
(17-7)

The weight w of a foot of belt is given in terms of the weight density γ in lbf/in³ as $w = 12\gamma bt$ lbf/ft where b and t are in inches. F_c is written as

$$F_c = \frac{w}{g} \left(\frac{V}{60}\right)^2 = \frac{w}{32.17} \left(\frac{V}{60}\right)^2$$
(e)
$$V = \pi dn/12 \qquad \text{ft/min}$$

$$F_{1} - F_{2} = (F_{1} - F_{c}) \frac{\exp(f\phi) - 1}{\exp(f\phi)}$$

STUDENTS-HUB.com

(17 - 8)

Uploaded By: anonymous₁₆

$$F_1 = F_i + F_c + \Delta F/2 = F_i + F_c + T/d$$
(f)

$$F_2 = F_i + F_c - \Delta F/2 = F_i + F_c - T/d$$
 (g)

where F_i = initial tension F_i = hoop tension du

 F_c = hoop tension due to centrifugal force

 $\Delta F/2$ = tension due to the transmitted torque T

d = diameter of the pulley

$$F_{i} = \frac{F_{1} + F_{2}}{2} - F_{c} \qquad \text{OR} \qquad F_{i} = \frac{T}{d} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1} \quad (17-9)$$

$$F_1 = F_c + F_i \frac{2 \exp(f\phi)}{\exp(f\phi) + 1}$$

(17 - 10)

$$(17 - 11)$$

$$F_{2} = F_{c} + F_{i} \frac{2}{\exp(f\phi) + 1}$$
$$H = \frac{(F_{1} - F_{2})V}{33000}$$

Uploaded By: anonymous₁₈

 $(F_1 - F_2)V$

$$H = \frac{1}{33000}$$

$$n_{fs} = H_a / (H_{nom} K_s)$$

$$H_a = \frac{(F_{1a} - F_2)V}{33000}$$

$$(F_1)_a = bF_a C_p C_v$$

where
$$(F_1)_a$$
 = allowable largest tension, lbf
 b = belt width, in
 F_a = manufacturer's allowed tension, lbf/in
 C_p = pulley correction factor (Table 17-4)
 C_v = velocity correction factor
Check the friction development, $f' < f$. Use Eq. (17-7) solved for f' :

$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c}$$

STUDENTS-HUB.com

Uploaded By: anonymous₁₉

Table 17-2

Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

Material	Specification	Size, in	Minimum Pulley Diameter, in	Allowable Tension per Unit Width at 600 ft/min, Ibf/in	Specific Weight, Ibf/in ³	Coefficient of Friction
Leather	1 ply	$t = \frac{11}{64}$	3	30	0.035-0.045	0.4
		$t = \frac{13}{64}$	$3\frac{1}{2}$	33	0.035-0.045	0.4
	2 ply	$t = \frac{18}{64}$	$4\frac{1}{2}$	41	0.035-0.045	0.4
		$t = \frac{20}{64}$	6 ^{<i>a</i>}	50	0.035-0.045	0.4
		$t = \frac{23}{64}$	9^a	60	0.035-0.045	0.4
Polyamide ^b	$F-0^{c}$	t = 0.03	0.60	10	0.035	0.5
	$F-1^{c}$	t = 0.05	1.0	35	0.035	0.5
	$F-2^{c}$	t = 0.07	2.4	60	0.051	0.5
	$A-2^{c}$	t = 0.11	2.4	60	0.037	0.8
	$A-3^c$	t = 0.13	4.3	100	0.042	0.8
	$A-4^c$	t = 0.20	9.5	175	0.039	0.8
	$A-5^{c}$	t = 0.25	13.5	275	0.039	0.8
Urethane ^d	w = 0.50 in	t = 0.062	See	5.2 ^e	0.038-0.045	0.7
	w = 0.75 in	t = 0.078	Table	9.8^e	0.038-0.045	0.7
	w = 1.25 in	t = 0.090	17–3	18.9 ^e	0.038-0.045	0.7
	Round	$d = \frac{1}{4}$	See	8.3 ^e	0.038-0.045	0.7
		$d = \frac{3}{8}$	Table	18.6 ^e	0.038-0.045	0.7
$(F_1)_a = l$	$bF_aC_nC_v$	$d = \frac{1}{2}$	17–3	33.0 ^e	0.038-0.045	0.7
STUDENTS-HUE	B.com	$d = \frac{3}{4}$		74.3 ^e	Upbad.04 5By	r: anor ⊛7 mous

17.2 Flat and Rounded Drives

$$(F_1)_a = bF_a C_p C_v$$

 C_p = pulley correction factor (Table 17–4)

Table 17-4

Pulley Correction Factor C_p for Flat Belts*

	Small-Pulley Diameter, in						
Material	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5	
Leather	0.5	0.6	0.7	0.8	0.9	1.0	
Polyamide, F-0	0.95	1.0	1.0	1.0	1.0	1.0	
F-1	0.70	0.92	0.95	1.0	1.0	1.0	
F-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-3	_	0.70	0.87	0.94	0.96	1.0	
A-4		_	0.71	0.80	0.85	0.92	
A-5	_	—	—	0.72	0.77	0.91	

*Average values of C_P for the given ranges were approximated from curves in the *Habasit Engineering Manual*, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

17.2 Flat and Rounded Drives

$$(F_1)_a = bF_aC_pC_v$$

C_v = velocity correction factor

Figure 17-9

Velocity correction factor C_v for leather belts for various thicknesses. (*Data source:* Machinery's Handbook, 20th ed., *Industrial Press, New York, 1976, p. 1047.*)

Uploaded By: anonymous₂₂

17.2 Flat and Rounded Drives

$$dip = \frac{12(C/12)^2 w}{8F_i} = \frac{C^2 w}{96F_i}$$

where dip = dip, in C = center-to-center distance, in w = weight per foot of the belt, lbf/ft $F_i = initial tension, lbf$

17.2 Flat and Rounded Drives – Example 17.1

A polyamide A-3 flat belt 6 in wide is used to transmit 15 hp under light shock conditions where $K_s = 1.25$, and a factor of safety equal to or greater than 1.1 is appropriate. The pulley rotational axes are parallel and in the horizontal plane. The shafts are 8 ft apart. The 6-in driving pulley rotates at 1750 rev/min in such a way that the loose side is on top. The driven pulley is 18 in in diameter.

- (a) Estimate the centrifugal tension F_c and the torque T.
- (b) Estimate the allowable F_1 , F_2 , F_i and allowable power H_a .
- (c) Estimate the factor of safety. Is it satisfactory?

17.2 Flat and Rounded Drives – Example 17.1

The steps in analyzing a flat-belt drive can include (see Ex. 17–1)

- 1 Find $\exp(f\phi)$ from belt-drive geometry and friction
- 2 From belt geometry and speed find F_c
- 3 From $T = 63 \ 025 H_{\text{nom}} K_s n_d / n$ find necessary torque
- 4 From torque T find the necessary $(F_1)_a F_2 = 2T/d$
- 5 From Tables 17–2 and 17–4, and Eq. (17–12) determine $(F_1)_a$.
- 6 Find F_2 from $(F_1)_a [(F_1)_a F_2]$
- 7 From Eq. (i) find the necessary initial tension F_i
- 8 Check the friction development, f' < f. Use Eq. (17–7) solved for f':

$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c}$$

9 Find the factor of safety from $n_{fs} = H_a/(H_{nom}K_s)$

Table 17-2

Material	Specification	Size, in	Minimum Pulley Diameter, in	Allowable Tension per Unit Width at 600 ft/min, lbf/in	Specific Weight, Ibf/in ³	Coefficient of Friction
Leather	1 ply	$t = \frac{11}{64}$	3	30	0.035-0.045	0.4
		$t = \frac{13}{64}$	$3\frac{1}{2}$	33	0.035-0.045	0.4
	2 ply	$t = \frac{18}{64}$	$4\frac{1}{2}$	41	0.035-0.045	0.4
		$t = \frac{20}{64}$	6^a	50	0.035-0.045	0.4
		$t = \frac{23}{64}$	9^a	60	0.035-0.045	0.4
Polyamide ^b	$F-0^{c}$	t = 0.03	0.60	10	0.035	0.5
	$F-1^c$	t = 0.05	1.0	35	0.035	0.5
	$F-2^{c}$	t = 0.07	2.4	60	0.051	0.5
	$A-2^c$	t = 0.11	2.4	60	0.037	0.8
	A-3 ^c	t = 0.13	4.3	100	0.042	0.8
	$A-4^c$	t = 0.20	9.5	175	0.039	0.8
	$A-5^{c}$	t = 0.25	13.5	275	0.039	0.8
Urethane ^d	w = 0.50 in	t = 0.062	See	5.2^{e}	0.038-0.045	0.7
	w = 0.75 in	t = 0.078	Table	9.8^e	0.038-0.045	0.7
	w = 1.25 in	t = 0.090	17–3	18.9^e	0.038-0.045	0.7
	Round	$d = \frac{1}{4}$	See	8.3 ^e	0.038-0.045	0.7
		$d = \frac{3}{8}$	Table	18.6 ^e	0.038-0.045	0.7
		$d = \frac{1}{2}$	17–3	33.0 ^e	0.038-0.045	0.7
ENTS-HUB.c	com	$d = \frac{3}{4}$		74.3 ^e	UpBadlet 5By	: anonymous

Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

17.2 Flat and Rounded Drives

$$(F_1)_a = bF_a C_p C_v$$

 C_p = pulley correction factor (Table 17–4)

Table 17-4

Pulley Correction Factor C_p for Flat Belts*

		Small-Pulley Diameter, in						
Material		1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5	
Leather		0.5	0.6	0.7	0.8	0.9	1.0	
Polyamide, 1	F0	0.95	1.0	1.0	1.0	1.0	1.0	
]	F-1	0.70	0.92	0.95	1.0	1.0	1.0	
1	F-2	0.73	0.86	0.96	1.0	1.0	1.0	
1	4–2	0.73	0.86	0.96	1.0	1.0	1.0	
1	4–3	—	0.70	0.87	0.94	0.96	1.0	
I	4-4	_	_	0.71	0.80	0.85	0.92	
I	4–5	—	—	—	0.72	0.77	0.91	

*Average values of C_P for the given ranges were approximated from curves in the *Habasit Engineering Manual*, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

Uploaded By: anonymous₂₇

17.2 Flat and Rounded Drives

$$(F_1)_a = bF_aC_pC_v$$

C_v = velocity correction factor

Figure 17-9

Velocity correction factor C_v for leather belts for various thicknesses. (*Data source:* Machinery's Handbook, 20th ed., *Industrial Press, New York, 1976, p. 1047.*)

Uploaded By: anonymous₂₈

17.3 V Belts

17.3 V Belts

Table 17-9 Standard V-Belt Sections	Belt Section	Width <i>a,</i> in	Thickness <i>b,</i> in	Minimum Sheave Diameter, in	hp Range, One or More Belts
Sumuru v Den Sections	А	$\frac{1}{2}$	$\frac{11}{32}$	3.0	$\frac{1}{4}$ -10
	В	$\frac{21}{32}$	$\frac{7}{16}$	5.4	1–25
	С	$\frac{7}{8}$	$\frac{17}{32}$	9.0	15-100
	D	$1\frac{1}{4}$	$\frac{3}{4}$	13.0	50-250
	Е	$1\frac{1}{2}$	1	21.6	100 and up

Uploaded By: anonymous₃₀

17.3 V Belts

I

Table 17-10	Section	Circumference, in
Inside Circumferences of Standard V Belts	А	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128
	В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300
	С	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420
	D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660
	E	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

Table 17-11

Length Conversion Dimensions (Add the listed quantity to the inside circumference to obtain the pitch length in inches).

Belt section	А	В	С	D	Е
Quantity to be added	1.3	1.8	2.9	3.3	4.5

$$L_p = 2C + \pi (D + d)/2 + (D - d)^2/(4C)$$

(17–16a)

STUDENTS-HUB.com

Uploaded By: anonymous₃₁

17.3 V Belts

Table 17-10	Section	Circumference, in
Inside Circumferences of Standard V Belts	А	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128
	В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300
	С	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420
	D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660
	Е	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

Table 17-11

Length Conversion Dimensions (Add the listed quantity to the inside circumference to obtain the pitch length in inches).

	Belt section	А	В	С	D	Е	
	Quantity to be added	1.3	1.8	2.9	3.3	4.5	
$C = 0.25 \begin{cases} L_p - \frac{\pi}{2} \\ \text{STUDENTS-HUB.com} \end{cases}$	$\left[(D+d) \right] + \sqrt{\left[\right]}$	L_p –	$\frac{\pi}{2}(D$	(+d)	$\left(\right)\right]^{2}$ -	2(D	$\left d\right)^{2}$ (17–16b) Jploaded By: anonymous ₃₂

Chapter 17: Flexible | Table 17-12

17.3 V Belts

Horsepower Ratings of Standard V Belts

С

Belt	Sheave Pitch	Belt Speed, ft/min				
Section	Diameter, in	1000	2000	3000	4000	5000
А	2.6	0.47	0.62	0.53	0.15	
	3.0	0.66	1.01	1.12	0.93	0.38
	3.4	0.81	1.31	1.57	1.53	1.12
	3.8	0.93	1.55	1.92	2.00	1.71
	4.2	1.03	1.74	2.20	2.38	2.19
	4.6	1.11	1.89	2.44	2.69	2.58
	5.0 and up	1.17	2.03	2.64	2.96	2.89
В	4.2	1.07	1.58	1.68	1.26	0.22
	4.6	1.27	1.99	2.29	2.08	1.24
	5.0	1.44	2.33	2.80	2.76	2.10
	5.4	1.59	2.62	3.24	3.34	2.82
	5.8	1.72	2.87	3.61	3.85	3.45
	6.2	1.82	3.09	3.94	4.28	4.00
	6.6	1.92	3.29	4.23	4.67	4.48
	7.0 and up	2.01	3.46	4.49	5.01	4.90
С	6.0	1.84	2.66	2.72	1.87	
	7.0	2.48	3.94	4.64	4.44	3.12
	8.0	2.96	4.90	6.09	6.36	5.52
	9.0	3.34	5.65	7.21	7.86	7.39
	10.0	3.64	6.25	8.11	9.06	8.89
	11.0	3.88	6.74	8.84	10.0	10.1
	12.0 and up	4.09	7.15	9.46	10.9	11.1
D	10.0	4.14	6.13	6.55	5.09	1.35
	11.0	5.00	7.83	9.11	8.50	5.62
	12.0	5.71	9.26	11.2	11.4	9.18
	13.0	6.31	10.5	13.0	13.8	12.2
	14.0	6.82	11.5	14.6	15.8	14.8
	15.0	7.27	12.4	15.9	17.6	17.0
	16.0	7.66	13.2	17.1	19.2	19.0
	17.0 and up	8.01	13.9	18.1	20.6	20.7
E	16.0	8.68	14.0	17.5	18.1	15.3
	18.0	9.92	16.7	21.2	23.0	21.5
	20.0	10.9	18.7	24.2	26.9	26.4
	22.0	11.7	20.3	26.6	30.2	30.5
	24.0	12.4	21.6	28.6	32.9	33.8
	26.0	13.0	22.8	30.3	35.1	36.7
	28.0 and up	13.4	23.7 Up	oloaded l	By ³⁷ alnor	nymous

The rating, whether in terms of hours or belt passes, is for a belt running on equaldiameter sheaves (180° of wrap), of moderate length, and transmitting a steady load. Deviations from these laboratory test conditions are acknowledged by multiplicative adjustments. If the tabulated power of a belt for a C-section belt is 9.46 hp for a 12-indiameter sheave at a peripheral speed of 3000 ft/min (Table 17–12), then, when the belt is used under other conditions, the tabulated value H_{tab} is adjusted as follows:

$$H_a = K_1 K_2 H_{\text{tab}} \tag{17-17}$$

where H_a = allowable power, per belt

 K_1 = angle-of-wrap (ϕ) correction factor, Table 17–13

 K_2 = belt length correction factor, Table 17–14

17.3 V Belts

Table 17-13

Angle of Contact Correction Factor *K*¹ for VV* and V-Flat Drives

D-d			<i>K</i> ₁
С	θ, deg	VV	V Flat
0.00	180	1.00	0.75
0.10	174.3	0.99	0.76
0.20	166.5	0.97	0.78
0.30	162.7	0.96	0.79
0.40	156.9	0.94	0.80
0.50	151.0	0.93	0.81
0.60	145.1	0.91	0.83
0.70	139.0	0.89	0.84
0.80	132.8	0.87	0.85
0.90	126.5	0.85	0.85
1.00	120.0	0.82	0.82
1.10	113.3	0.80	0.80
1.20	106.3	0.77	0.77
1.30	98.9	0.73	0.73
1.40	91.1	0.70	0.70
1.50	82.8	0.65	0.65

17.3 V Belts

Table 17-14

Belt-Length Correction Factor K_2^*

	Nominal Belt Length, in				
Length Factor	A Belts	B Belts	C Belts	D Belts	E Belts
0.85	Up to 35	Up to 46	Up to 75	Up to 128	
0.90	38-46	48-60	81–96	144–162	Up to 195
0.95	48–55	62–75	105-120	173-210	210-240
1.00	60–75	78–97	128-158	240	270-300
1.05	78–90	105-120	162–195	270-330	330-390
1.10	96-112	128–144	210-240	360-420	420-480
1.15	120 and up	158-180	270-300	480	540-600
1.20		195 and up	330 and up	540 and up	660

*Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.

17.3 V Belts

17.3 V Belts

Tension forces relation

$$\frac{F_1 - F_c}{F_2 - F_c} = \exp(0.5123\phi)$$

Design Power $H_d = H_{\text{nom}} K_s n_d$

where H_{nom} is the nominal power, K_s is the service factor

Table 17–15	Source of Power					
Suggested Service Factors <i>K_s</i> for V-Belt	Driven Machinery	Normal Torque Characteristic	High or Nonuniform Torque			
Drives	Uniform	1.0 to 1.2	1.1 to 1.3			
	Light shock	1.1 to 1.3	1.2 to 1.4			
	Medium shock	1.2 to 1.4	1.4 to 1.6			
	Heavy shock	1.3 to 1.5	1.5 to 1.8			

Uploaded By: anonymous₃₈

17.3 V Belts

Tension forces relation

$$\frac{F_1 - F_c}{F_2 - F_c} = \exp(0.5123\phi)$$

Design Power

$$H_d = H_{\rm nom} K_s n_d$$

Number of Belts

$$N_b \ge \frac{H_d}{H_a} \qquad N_b = 1, 2, 3, \dots$$

Factor of safety

$$n_{fs} = \frac{H_a N_b}{H_{\rm nom} K_s}$$

Uploaded By: anonymous₃₉

17.3 V Belts

The centrifugal tension F_c is given by

$$F_c = K_c \left(\frac{V}{1000}\right)^2 \tag{17-21}$$

Table 17-16	Belt Section	Кь	K _c
Some V-Belt Parameters*	А	220	0.561
	В	576	0.965
	С	1 600	1.716
	D	5 680	3.498
	E	10 850	5.041
	3V	230	0.425
	5V	1098	1.217
	8V	4830	3.288

*Data courtesy of Gates Rubber Co., Denver, Colo.

Uploaded By: anonymous₄₀

17.3 V Belts

The power that is transmitted per belt is based on $\Delta F = F_1 - F_2$, where

$$\Delta F = \frac{63\ 025H_d/N_b}{n(d/2)} \tag{17-22}$$

then from Eq. (17–8) the largest tension F_1 is given by

$$F_1 = F_c + \frac{\Delta F \exp(f\phi)}{\exp(f\phi) - 1}$$
(17-23)

From the definition of ΔF , the least tension F_2 is

$$F_2 = F_1 - \Delta F \tag{17-24}$$

From Eq. (j) in Sec. 17–2

$$F_i = \frac{F_1 + F_2}{2} - F_c \tag{17-25}$$

Uploaded By: anonymous $_{\!\!\!\!\!_{41}}$

17.3 V Belts

STUDENTS-HUB.com

Uploaded By: anonymous

17.3 V Belts

$$T_1 = F_1 + (F_b)_1 = F_1 + \frac{K_b}{d}$$
$$T_2 = F_1 + (F_b)_2 = F_1 + \frac{K_b}{D}$$

Table 17–16Some V-Belt Parameters*

Belt Section	Кь	Kc
А	220	0.561
В	576	0.965
С	1 600	1.716
D	5 680	3.498
E	10 850	5.041
3V	230	0.425
5V	1098	1.217
8V	4830	3.288

T 7

*Data courtesy of Gates Rubber Co., Denver, Colo.

Uploaded By: anonymous₄₃

Figure 11-9

Plot of F^a as ordinate and L as abscissa for F^aL = constant. The linear damage hypothesis says that in the case of load F_1 , the area under the curve from L = 0 to $L = L_A$ is a measure of the damage $D = F_1^a L_A$. The complete damage to failure is measured by $C_{10}^a L_B$.

Bearing

$$F^a L = \text{constant} = K$$

17.3 V Belts

N_P : Number of passes

$$\frac{1}{N_P} = \left(\frac{K}{T_1}\right)^{-b} + \left(\frac{K}{T_2}\right)^{-b}$$

or

 $N_P = \left[\left(\frac{K}{T_1} \right)^{-b} + \left(\frac{K}{T_2} \right)^{-b} \right]^{-1}$ (17 - 27)

Table 17-17 Durability Parameters	Belt	10 ⁸ to 10 ⁹ Force Peaks		10 ⁹ to 10 ¹⁰ Force Peaks		Minimum Sheave	
for Some V-Belt Sections	Section	K	Ь	K	Ь	Diameter, in	
Source: M. E. Spotts, Design	А	674	11.089			3.0	
of Machine Elements, 6th ed. Prentice Hall, Englewood Cliffs, N.J., 1985.	В	1193	10.926			5.0	
	С	2038	11.173			8.5	
	D	4208	11.105			13.0	
	Е	6061	11.100			21.6	
	3V	728	12.464	1062	10.153	2.65	
	5V	1654	12.593	2394	10.283	7.1	
	8V	3638	12.629	5253	10.319	12.5	

17.3 V Belts

N_P : Number of passes

$$\frac{1}{N_P} = \left(\frac{K}{T_1}\right)^{-b} + \left(\frac{K}{T_2}\right)^{-b}$$

or

$$N_P = \left[\left(\frac{K}{T_1} \right)^{-b} + \left(\frac{K}{T_2} \right)^{-b} \right]^{-1}$$
(17-27)

The lifetime *t* in hours is given by

$$t = \frac{N_P L_p}{720V}$$
(17–28)

Uploaded By: anonymous₄₆

17.3 V Belts

The analysis of a V-belt drive can consist of the following steps:

- Find V, L_p , C, ϕ , and $\exp(0.5123\phi)$
- Find H_d , H_a , and N_b from H_d/H_a and round up
- Find F_c , ΔF , F_1 , F_2 , and F_i , and n_{fs}
- Find belt life in number of passes, or hours, if possible

Example 17.4

A 10-hp split-phase motor running at 1750 rev/min is used to drive a rotary pump, which operates 24 hours per day. An engineer has specified a 7.4-in small sheave, an 11-in large sheave, and three B112 belts. The service factor of 1.2 was augmented by 0.1 because of the continuous-duty requirement. Analyze the drive and estimate the belt life in passes and hours.

Uploaded By: anonymous₄₇

Chapter 17: Flexible | Table 17-12

17.3 V Belts

Horsepower Ratings of Standard V Belts

С

Belt	Sheave Pitch		Belt	Speed, ft,	/min	
Section	Diameter, in	1000	2000	3000	4000	5000
Α	2.6	0.47	0.62	0.53	0.15	
	3.0	0.66	1.01	1.12	0.93	0.38
	3.4	0.81	1.31	1.57	1.53	1.12
	3.8	0.93	1.55	1.92	2.00	1.71
	4.2	1.03	1.74	2.20	2.38	2.19
	4.6	1.11	1.89	2.44	2.69	2.58
	5.0 and up	1.17	2.03	2.64	2.96	2.89
В	4.2	1.07	1.58	1.68	1.26	0.22
	4.6	1.27	1.99	2.29	2.08	1.24
	5.0	1.44	2.33	2.80	2.76	2.10
	5.4	1.59	2.62	3.24	3.34	2.82
	5.8	1.72	2.87	3.61	3.85	3.45
	6.2	1.82	3.09	3.94	4.28	4.00
	6.6	1.92	3.20	4.23	4.67	4.48
	7.0 and up	2.01	3.46	4.49	5.01	4.90
С	6.0	1.84	2.66	2.72	1.87	
	7.0	2.48	3.94	4.64	4.44	3.12
	8.0	2.96	4.90	6.09	6.36	5.52
	9.0	3.34	5.65	7.21	7.86	7.39
	10.0	3.64	6.25	8.11	9.06	8.89
	11.0	3.88	6.74	8.84	10.0	10.1
	12.0 and up	4.09	7.15	9.46	10.9	11.1
D	10.0	4.14	6.13	6.55	5.09	1.35
	11.0	5.00	7.83	9.11	8.50	5.62
	12.0	5.71	9.26	11.2	11.4	9.18
	13.0	6.31	10.5	13.0	13.8	12.2
	14.0	6.82	11.5	14.6	15.8	14.8
	15.0	7.27	12.4	15.9	17.6	17.0
	16.0	7.66	13.2	17.1	19.2	19.0
	17.0 and up	8.01	13.9	18.1	20.6	20.7
E	16.0	8.68	14.0	17.5	18.1	15.3
	18.0	9.92	16.7	21.2	23.0	21.5
	20.0	10.9	18.7	24.2	26.9	26.4
	22.0	11.7	20.3	26.6	30.2	30.5
	24.0	12.4	21.6	28.6	32.9	33.8
	26.0	13.0	22.8	30.3	35.1	36.7
	28.0 and up	13.4	23.7 Up	loaded l	3y <mark>37</mark> alnor	nymous

STUDENTS-HUB.com

17.3 V Belts

Table 17-10	Section	Circumference, in
Inside Circumferences of Standard V Belts	А	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128
	В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300
	С	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420
	D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660
	Е	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

Table 17-11

Length Conversion Dimensions (Add the listed quantity to the inside circumference to obtain the pitch length in inches).

Belt section	А	В	С	D	Е
Quantity to be added	1.3	1.8	2.9	3.3	4.5

$$L_p = 2C + \pi (D + d)/2 + (D - d)^2/(4C)$$

(17–16a)

STUDENTS-HUB.com

Uploaded By: anonymous₄₉

17.2 Flat and Rounded Drives

- where D = diameter of large pulley
 - d = diameter of small pulley
 - C =center distance

STUDENTS-HUB.com

 θ = angle of contact

The length of the belt is found by summing the two arc lengths with twice the distance between the beginning and end of contact. The result is

$$L = [4C^{2} - (D - d)^{2}]^{1/2} + \frac{1}{2}(D\theta_{D} + d\theta_{d}) \qquad \text{Uploaded By: anonymous}_{50}$$

17.3 V Belts

جامعة BIRZEIT UNIVERSITY

Table 17-13

Angle of Contact Correction Factor K_1 for VV* and V-Flat Drives

D-d			<i>K</i> ₁
С	θ, deg	VV	V Flat
0.00	180	1.00	0.75
0.10	174.3	0.99	0.76
0.20	166.5	0.97	0.78
0.30	162.7	0.96	0.79
0.40	156.9	0.94	0.80
0.50	151.0	0.93	0.81
0.60	145.1	0.91	0.83
0.70	139.0	0.89	0.84
0.80	132.8	0.87	0.85
0.90	126.5	0.85	0.85
1.00	120.0	0.82	0.82
1.10	113.3	0.80	0.80
1.20	106.3	0.77	0.77
1.30	98.9	0.73	0.73
1.40	91.1	0.70	0.70
1.50	82.8	0.65	0.65

17.3 V Belts

Table 17-14

Belt-Length Correction Factor K_2^*

	Nominal Belt Length, in							
Length Factor	A Belts	B Belts	C Belts	D Belts	E Belts			
0.85	Up to 35	Up to 46	Up to 75	Up to 128				
0.90	38–46	48-60	81–96	144–162	Up to 195			
0.95	48–55	62-75	105-120	173-210	210-240			
1.00	60–75	78–97	128-158	240	270-300			
1.05	78–90	105-120	162–195	270-330	330-390			
1.10	96-112	128-144	210-240	360-420	420-480			
1.15	120 and up	158-180	270-300	480	540-600			
1.20		195 and up	330 and up	540 and up	660			

*Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.

17.3 V Belts

$$T_1 = F_1 + (F_b)_1 = F_1 + \frac{K_b}{d}$$
$$T_2 = F_1 + (F_b)_2 = F_1 + \frac{K_b}{D}$$

Table 17–16Some V-Belt Parameters*

Belt Section	Кь	K _c
А	220	0.561
В	576	0.965
С	1 600	1.716
D	5 680	3.498
E	10 850	5.041
3V	230	0.425
5V	1098	1.217
8V	4830	3.288

T 7

*Data courtesy of Gates Rubber Co., Denver, Colo.

Uploaded By: anonymous₅₃

17.4 Timing Belts

Figure 17-15

Timing-belt drive showing portions of the pulley and belt. Note that the pitch diameter of the pulley is greater than the diametral distance across the top lands of the teeth.

Uploaded By: anonymous₅₄

17.4 Timing Belts

17.4 Timing Belts

- A timing belt is made of a rubberized fabric coated with a nylon fabric, and has steel wire within to take the tension load.
- It has teeth that fit into grooves cut on the periphery of the pulleys. A timing belt does not stretch appreciably or slip and consequently transmits power at a constant angular-velocity ratio.
- No initial tension is needed. Such belts can operate over a very wide range of speeds, have efficiencies in the range of 97 to 99 %, require no lubrication, and are quieter than chain drives.
- The design and selection process for timing belts is so similar to that for V belts that the process will not be presented here.

STUDENTS-HUB.com

These chains are manufactured in single, double, triple, and quadruple strands. STUDENTS-HUB.com

Uploaded By: anonymous

Chapter 17:	Table 17-19				Minimum	Average		Multiple-
Chain	Dimensions of American Standard Roller	ANSI Chain Number	Pitch, in (mm)	Width, in (mm)	Tensile Strength, Ibf (N)	Weight, Ibf/ft (N/m)	Roller Diameter, in (mm)	Strand Spacing, in (mm)
	Chains—Single Strand Source: Compiled from ANSI	25	0.250 (6.35)	0.125 (3.18)	780 (3 470)	0.09 (1.31)	0.130 (3.30)	0.252 (6.40)
	1 1 2 2 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1	35	0.375 (9.52)	0.188 (4.76)	1 760 (7 830)	0.21 (3.06)	0.200 (5.08)	0.399 (10.13)
	stitu	41	0.500 (12.70)	0.25 (6.35)	1 500 (6 670)	0.25 (3.65)	0.306 (7.77)	_
	s In:	40	0.500 (12.70)	0.312 (7.94)	3 130 (13 920)	0.42 (6.13)	0.312 (7.92)	0.566 (14.38)
	lard	50	0.625 (15.88)	0.375 (9.52)	4 880 (21 700)	0.69 (10.1)	0.400 (10.16)	0.713 (18.11)
	itanc	60	0.750 (19.05)	0.500 (12.7)	7 030 (31 300)	1.00 (14.6)	0.469 (11.91)	0.897 (22.78)
	al S	80	1.000 (25.40)	0.625 (15.88)	12 500 (55 600)	1.71 (25.0)	0.625 (15.87)	1.153 (29.29)
	tion	100	1.250 (31.75)	0.750 (19.05)	19 500 (86 700)	2.58 (37.7)	0.750 (19.05)	1.409 (35.76)
		120	1.500 (38.10)	1.000 (25.40)	28 000 (124 500)	3.87 (56.5)	0.875 (22.22)	1.789 (45.44)
	rica	140	1.750 (44.45)	1.000 (25.40)	38 000 (169 000)	4.95 (72.2)	1.000 (25.40)	1.924 (48.87)
		160	2.000 (50.80)	1.250 (31.75)	50 000 (222 000)	6.61 (96.5)	1.125 (28.57)	2.305 (58.55)
		180	2.250 (57.15)	1.406 (35.71)	63 000 (280 000)	9.06 (132.2)	1.406 (35.71)	2.592 (65.84)
		200	2.500 (63.50)	1.500 (38.10)	78 000 (347 000)	10.96 (159.9)	1.562 (39.67)	2.817 (71.55)
STUDENTS-H	UB.com	240	3.00 (76.70)	1.875 (47.63)	112 000 (498 000)	16.4 (2 39 pload	1.875 ded ⁴ B9 ²⁾ and	3.458 วท¥ที่ชีปิธ

STUDENTS-HUB.com

Uploaded By: anonymous₅₉

$$D = \frac{p}{\sin(180^\circ/N)}$$

Figure 17-17

Engagement of a chain and sprocket.

STUDENTS-HUB.com

Uploaded By: anonymous₆₀

17.5 Roller Chain

The chain velocity V is defined as the number of feet coming off the sprocket per unit time. Thus the chain velocity in feet per minute is

$$V = \frac{Npn}{12} \tag{17-30}$$

where N = number of sprocket teeth

p = chain pitch, in

n = sprocket speed, rev/min

The maximum exit velocity of the chain is

$$v_{\rm max} = \frac{\pi Dn}{12} = \frac{\pi np}{12\sin(\gamma/2)}$$
 (b)

Thus the minimum exit velocity is

$$v_{\min} = \frac{\pi dn}{12} = \frac{\pi np}{12} \frac{\cos(\gamma/2)}{\sin(\gamma/2)}$$

STUDENTS-HUB.com

 $d = D\cos\frac{\gamma}{2}$

Uploaded By: anonymous

Chordal speed variation

Now substituting $\gamma/2 = 180^{\circ}/N$ and employing Eqs. (17–30), (*b*), and (*d*), we find the speed variation to be

STUDENTS-HUB.com

Uploaded By: anonymous

- For smooth operation at moderate and high speeds it is considered good practice to use a driving sprocket with at least 17 teeth; 19 or 21 will, of course, give a better life expectancy with less chain noise.
- The most successful drives have velocity ratios up to 6:1, but higher ratios may be used at the sacrifice of chain life.
- Roller chains seldom fail because they high tensile strength; they more often fail because they have been subjected to a great many hours of service. Actual failure may be due either to wear of the rollers on the pins or to fatigue of the surfaces of the rollers.

STUDENTS-HUB.com

Table 17-20	Sprocket			ANSI Cho	in Numbe	r	
Rated Horsepower	rev/min	25	35	40	41	50	60
Capacity of Single-	50	0.05	0.16	0.27	0.20	0.72	1.24
Strand Single-Pitch	50	0.05	0.10	0.57	0.20	0.72	1.24
Roller Chain for a	100	0.09	0.29	0.69	0.58	1.34	2.31
17-Tooth Sprocket	150	0.13*	0.41*	0.99*	0.55*	1.92*	3.32
Source: Compiled from ANSI	200	0.16*	0.54*	1.29	0.71	2.50	4.30
B29.1-1975 information only	300	0.23	0.78	1.85	1.02	3.61	6.20
section, and from B29.9-1958.	400	0.30*	1.01*	2.40	1.32	4.67	8.03
	500	0.37	1.24	2.93	1.61	5.71	9.81
	600	0.44*	1.46*	3.45*	1.90*	6.72*	11.6
	700	0.50	1.68	3.97	2.18	7.73	13.3
	800	0.56*	1.89*	4.48*	2.46*	8.71*	15.0
	900	0.62	2.10	4.98	2.74	9.69	16.7
	1000	0.68*	2.31*	5.48	3.01	10.7	18.3
	1200	0.81	2.73	6.45	3.29	12.6	21.6
	1400	0.93*	3.13*	7.41	2.61	14.4	18.1
	1600	1.05*	3.53*	8.36	2.14	12.8	14.8
	1800	1.16	3.93	8.96	1.79	10.7	12.4
	2000	1.27*	4.32*	7.72*	1.52*	9.23*	10.6
	2500	1.56	5.28	5.51*	1.10*	6.58*	7.57
	3000	1.84	5.64	4.17	0.83	4.98	5.76
	Туре А		Тур	e B		Тур	e C

*Estimated from ANSI tables by linear interpolation.

STUDENTS-HUB.com

Note: Type A-manual or drip lubrication; type B-bath or disk lubrication log log declary stranon ynounds.

Table 17-20

Rated Horsepower Capacity of Single-Strand Single-Pitch Roller Chain for a 17-Tooth Sprocket (Continued)

Sprocket	ANSI Chain Number								
rev/min		80	100	120	140	160	180	200	240
50	Туре А	2.88	5.52	9.33	14.4	20.9	28.9	38.4	61.8
100		5.38	10.3	17.4	26.9	39.1	54.0	71.6	115
150		7.75	14.8	25.1	38.8	56.3	77.7	103	166
200		10.0	19.2	32.5	50.3	72.9	101	134	215
300		14.5	27.7	46.8	72.4	105	145	193	310
400		18.7	35.9	60.6	93.8	136	188	249	359
500	e B	22.9	43.9	74.1	115	166	204	222	0
600	Tyr	27.0	51.7	87.3	127	141	155	169	
700		31.0	59.4	89.0	101	112	123	0	
800		35.0	63.0	72.8	82.4	91.7	101		
900		39.9	52.8	61.0	69.1	76.8	84.4		
1000		37.7	45.0	52.1	59.0	65.6	72.1		
1200		28.7	34.3	39.6	44.9	49.9	0		
1400		22.7	27.2	31.5	35.6	0			
1600		18.6	22.3	25.8	0				
1800		15.6	18.7	21.6					
2000		13.3	15.9	0					
2500		9.56	0.40						
3000		7.25	0						
Туре С					Тур	e C′			
Vote: Type A-	-manual or (drip lubric	ation; type	e B-bath	or disk lu	brication;	type C—o	il-stream 1	ubrication
are based	on the	follow	ing:	mit de	sign to ma	nufacture L	r <mark>for evalı</mark> Jploade	u <mark>ation.</mark> ed By: a	nonyma

She Dava at the Bof or hains are based on the following:

17.5 Roller Chain

Uploaded By: anonymous₆₆

The allowable power H_a is given by:

- $H_a = K_1 K_2 H_{\text{tab}} \tag{17-37}$
- where K_1 = correction factor for tooth number other than 17 (Table 17–22) K_2 = strand correction (Table 17–23)

The horsepower that must be transmitted H_d is given by:

Table 17-22	Number of	K 1	К 1
Tooth Correction Factors, K ₁	Teeth on Driving Sprocket	Pre-extreme Horsepower	Post-extreme Horsepower
1 401010, 11	11	0.62	0.52
	12	0.69	0.59
	13	0.75	0.67
	14	0.81	0.75
	15	0.87	0.83
	16	0.94	0.91
	17	1.00	1.00
	18	1.06	1.09
	19	1.13	1.18
	20	1.19	1.28
	N	$(N_1/17)^{1.08}$	$(N_1/17)^{1.5}$

Table 17–23	Number of Strands	K 2
Multiple-Strand	1	1.0
Factors, K_2	2	1.7
	3	2.5
	4	3.3
	5	3.9
	6	4.6
	8	6.0

STUDENTS-HUB.com

Uploaded By: anonymous₆₉

It is preferable to have an odd number of teeth on the driving sprocket (17, 19, . . .) and an even number of pitches in the chain to avoid a special link.

The approximate length of the chain *L* in pitches is

$$\frac{L}{p} \approx \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{\left(N_2 - N_1\right)^2}{4\pi^2 C/p}$$
(17-34)

The Center to Center distance is given by:

$$C = \frac{p}{4} \left[-A + \sqrt{A^2 - 8\left(\frac{N_2 - N_1}{2\pi}\right)^2} \right]$$
(17-35)

$$A = \frac{N_1 + N_2}{2} - \frac{L}{p}$$

STUDENTS-HUB.com

Uploaded By: anonymous₇₀

(17 - 36)

Table 17-21

Single-Strand Sprocket Tooth Counts Available from One Supplier*

No.	Available Sprocket Tooth Counts
25	8-30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
35	4-45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
41	6-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
40	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
50	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
60	8-60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
80	8-60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120
100	8-60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120
120	9-45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120
140	9-28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96
160	8-30, 32–36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96
180	13-25, 28, 35, 39, 40, 45, 54, 60
200	9-30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72

240 9-30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60

Musserhais Company Ithaca, NY, Type B hub sprockets.

Example: 17.5

بَخَامَعَةُ بُوَلَيْتَظِيَّ BIRZEIT UNIVERSITY

Select drive components for a 2:1 reduction, 90-hp input at 300 rev/min, moderate shock, an abnormally long 18-hour day, poor lubrication, cold temperatures, dirty surroundings, short drive C/p = 25.