CHAPTER 10 |

Inferences About

Normal Models

10.1 The Distributions of Certain Quadratic Forms

A homogeneous polynomial of degree 2 in n variables is called
a quadratic form in those variables. If both the variables and
the coefficients are real, the form is called a real quadratic form.
Only real quadratic forms will be considered in this book. To
illustrate, the form X? + X, X, + X? is a quadratic form in the two
variables X, and X,; the form X; + X3 + X% — 2X, X, is a quadratic
form in the three variables X,, X,, and X;; but the form
X, — 1+ (X;— 2= X} + X} — 2X, — 4X, + 5 is not a quadratic
form in X, and X,, although it is a quadratic form in the variables
X,—land X, — 2.

Let X and S? denote, respectively, the mean and the variance of a
random sample X, X,, ..., X, from an arbitrary distribution. Thus

" _ o+ X\
nS2=Z(Xi_X)2=Z(X,-—XI+X2+ + n)
| 1

n
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Sec. 10.1]" The Distributions of Certain' Quadratic Forms 447

X+ XD

Xyt KK+ X, X))

is a quadratic form in the n variables X, X;, . .., X,. If the sample
arises from a distribution that is N(u, ¢?), we know that the
random variable nS?/a? is x2(n — 1) regardless of the value of . This
fact proved useful in our search for a confidence interval for ¢’ when
u is unknown.

It has been seen that tests of certain statistical hypotheses require
a statistic that is'a quadratlc form. For instance, Example 2, Section

9.2, made use of the statistic Z X2, which is a quadratic-form in the

variables X, X5, . .., X,. Later in this'chapter, tests of other statistical
hypotheses will be mvestlgated and it will be seen that functions of
statistics that are 'quadratic forms will be needed to carry out the tests
ih an expedltlous manner. But first we shall make a study of the
distribution of certain quadratic forms in normal and 1ndependent
random variables.

The following theorem will be proved in Section 10.9.

Theorem 1. Let Q= Q, + Qs+ -+ + Qs _1 + Oy, where Q. Q.
, O« are k + | random variables that are real quadratic forms in n
independent random variables which are normally distributed with the

means W, fy, ..., 4, and the same variance o'. Let Q]d?
Q./d% ..., Q«_,/6* have chi-square distributions with degrees of free-
domr,r,...,r._,, respectively. Let Q, be nonnegative. Then:

@) Q.,..., Q are independent, and hence
(b) Qi/d? has a chi-square distribution withr — (r,+ -+ +r,_)) =1
degrees of freedom.

Three examples illustrative of the theorem will follow. Each of
these examples will deal with a distribution problem that is based
on the remarks made in the subsequent paragraph. :

- Let the random variable X have a distribution that is N(u, ¢?).
Let a and b denote positive integers greater than 1 and let
n = ab. Consider a random sample of size n = ab from this normal
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distribution. The observations of the random sample will be denoted
by the symbols

X, X ooy Xy oo, Xy
Xa, Xoo ooy Xy ooy Xy
Xila XiZ’ L ) Xus ts A,il)
Xo, Xao ooy Xy ooy Xu

In this notatlon the first subscnpt indicates the row, and the
second subscnpt indicates the column in which the observation
appears. Thus Xj; is in row i/ and column j,i='1,2,...,a and
j=12,...,b By assumption these n.= ab random variahles are
independent and each has the same normal distribution with
mean u and variance ¢’. Thus, if, we wish, we may consxder each row
as being a random sample of size b from the given distribution; and we
may consider each column as being a random sample of size a from
the given distribution. We now define @ + b + | statistics. They are

55,

)?_Xn+"'+X|b+"'+Xa|+"'+Xab i=1j=

and

$ x,
-— X|j+X2j+"'+X~ i=|
X.j-——' a = a ’

The statistic X is the mean of the random sample of size n-= ab the
statistics X, , Xz - _X are, respectively, the means of the rows;
and the statistics X, X ,, . .., X, are, respectively, the means of the
columns. Three examples illustrative of the theorem will follow.

Uploaded By: anonymous



Sec. 10.1] The Distributions of Certain Quadratic Forms 449

- Example 1. Consider the variance S? of the random sample of size n = ab.
We have the algebraic identity

 ab§* = Z Z X, —X_) )

i=1j=1

=% Y- F)+ @ - R

-3 ﬁ RS A AR

et j=
+2'Z“§ (X, — X)X, - X))
The last term of the right-hand member of this identity may be written
2% [(,7 -%) 3 (- )?)] =23 (R, - X)0X, - bX)]1 =0,
and the term | .
£y @-%y

may be written
by (X, — X%
=]
Thus
a b _ a _ _
abS’=yY Y (X;—X.)V+b ) (X, — X )
i=1

i=lj=1
or, for brevity,

0=0,+0,.
Clearly, Q, Q,,and O, are quadratic forms in the n = ab variables X;. We shall
use the theorem with k = 2 to show that Q, and Q, are independent. Since S?
is the variance of a random sample of size n = ab from the given normal
distribution, then abS?%/o? has a chi-square distribution with ab — 1 degrees of
freedom. Now

(Xy
g _ i ,Z:u
o & o’
For each fixed value of i, Z (X; — X,)}/b is the variance of a random

j=1
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450 Inferences About Normal Models [Ch. 10

sample of size b from the given normal distribution, and, accordingly,

Z (X,; — X, )*/o* has a chi-square distribution with b — 1 degrees of freedom.
Because the X; are independent, Q, /o? is the sum of a independent random

variables, each having a chi-square distribution with » — 1 degrees of freedom.
Hence Q,/0? has a chi-square distribution with a(b — 1) degrees of freedom.

Now Q,=b Y (X, —X_.)*=0. In accordance with the theorem, 0, and
i=1

Q, are independent, and (,/o* has a chi-square distribution with
ab—1—a(b— 1) =a — 1 degrees of freedom.
Example 2. InabS*replace X, — X by (X, — X’_j) + (,7_1- — X )toobtain
b a — _ _
abS’= 3 Y [(X;— X))+ (X,;— X)),

j=1i=1

or

@S =¥ 5 =X +a ) K- L)

Jj=1li=1 j=1
or, for brevity,

Q=0+ Q..
It is easy to show (Exercise 10.1) that 0,/0° has a chi-square distribution with
b(a — 1) degrees of freedom. Since Q, = a Z (X, — X_)* 20, the theorem

enables us to assert that Q, and Q, are mdependent and that Q,/0® has a
chi-square distribution with ab— 1 — b(a — 1) = b — 1 degrees of freedom.

Example 3. In abS? replace X;—X_ by (X, - X )+(X,—X )+

i

(X; - X, — X + X_) to obtain (Exercise 10. 2)

S =b ¥ X - Y+a¥ X, X
i=1 J=1

+ZZ( X+X)2

Jj=1li=1

or, for brevity,

0=0,+0,+0s

where Q, and Q, are as defined in Examples 1 and 2. From Examples 1 and
2,0/d% Q,/d% and Q,/6* have chi-square distributions withab — 1,a — 1, and
b — 1 degrees of freedom, respectively. Since Qs > 0, the theorem asserts that
0,;, Qs, and Qs are independent and that Qs/o* has a chi-square
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Sec. 10.1] The Distributions of Certain Quadratic Forms 451

distribution w1th ab —l—(@a-1)—-(b- 1) =(a— l)(b - 1) degrees of
freedom.

Once these quadratic form statistics have been shown to be independent,
a multiplicity of F-statistics can be defined. For instance,

Qu/lF(b—1] . Q. Jb-1)
Osfloba— D]~ Qs/b(a— 1]
has an F-distribution with # — 1 and b(a — 1) degrees of freedom; and
Qlle?Gd-1 Q-1
Qs/lo*@a— )b —1)] Qs/a=1b-1)
has an F-distribution with b — 1 and (@ — 1)(b — 1) degrees of freedom. In

the subsequent sections it will be seen that some likelihood ratio tests of certain
statistical hypotheses can be based on these F-statistics.

EXERCISES

10.1. In Example 2 verify that Q = Q, + Q, and that Q,/o” has a chi-square
distribution with b(a — 1) degrees of freedom.

10.2. In Example 3 verify that Q = 0, + Q, + Q.

10.3. Let X;, X, ..., X, be a random sample from a normal dlstnbutlon
N(u, 6%). Show that )

S (- Xp = ):(X Xy +

i= 1 i=2

_‘i”)z’ .

. where X = Xn: X;/n and X’ = i X;/(n—1).
i=1 i=2

Hint: Replace X,— X by (X,—X")— (X, — )—(’)/n Show that
Z (X, — X’)?/o* has a chi-square distribution with n — 2 degrees of

=2
freedom. Prove that the two terms in the right-hand member are
independent. What then is the distribution of :
| fn — V)X, — XY
. ) . g2 :

10.4. LetX,j,,,i-l a j=1,...,b;k=1,...;c, bearandom sample
of 81zc n = abc from a normal dls’tnbutlon N(u, d’). Let X =

) Z S Xp/nand X, = ¥ ): X, /be. Show that

k=lj=1i=1 K=1j=1

5 ): Z(X,,k—x )= Z ): 3 (X~ X, )1+bcz(x -X_)

i=1j=1k=1 i=mlj=1lkm=]
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: Ca b — .
Show that ) Y Y (X, — X..)/¢® has a chi-square distribution with
i=lj=l k=1

a(bc ='1) degrees of freedom: Prove that the two terms in the right-hand
member are independent. What, then, is the distribution of

be Z X, —X_ )™ Furthermore let X ;. Z Z X, /ac and X,

k=1i=1

Z Xy/c: Show that
k=1

i i i X — XY

i=lj=1km=1

a b c _
=X X X Xu—X.)

I=1j=1k=1
+bc Y X - X )2+ac2(X, - Xy
i=1 j=

b —
+e ) XXy —Xi - X, +X )

Show that the four terms in the right-hand member, when divided by o2,
are independent chi-square variables with ab(c — 1), a—.1, b~ 1, and
(@ — 1)(b — 1) degrees of freedom, respectively.

10.5. Let X,, X;, X;, X, be a random sample of size n = 4 from the normal
4 —
distribution N(0, 1). Show that ) (X, — X)* equals
i=1

X, — Xp) + [X; — (X, + X3)/2F + [X,— (X, + X2 + X3)/3]
2 3/2 4/3
and argue that these three terms are independent, each with a chi-square
distribution with 1 degree of freedom.

10.2 A Test of the Equality of Several Means

Consider b independent random variables that have normal
distributions with unknown means y,, u,, . . . , iy, respectively, and
unknown but common variance o¢’. Let X,;, X, ..., X, represent a
random sample of size a from the normal dlstnbutlon W1th mean J,
and variance o7, j=1,2,...,b. It is desired to test the composite
hypothesis Hy: py = p; = - - = u, = u, pu unspecified, against all
possible alternative hypotheses H,. A likelihood ratio test will be used.
Here the total parameter space is

Q={([.l,,[,l2,...,[,tb,0‘2)2 ——00<[,tj<00, 0<O'2<OO}
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Sec. 10.2] A Test of the Equality of Several Means 453

and
(D={(ll|»lv‘2a---a#b,0'2)3 —0 < U =Pp=

=m=u< o, 0<o’<ow}.
The likelihood functions, denoted by L(w) and L(Q) are, respectively,

abj2 —
L) = (ﬁ) exp | —35 3. . (- u)’]

j li=|

and
1 \*? R
— —— 2
LQ) = (21!02) exp | "% Zl ’ZI #,)]
Now
b a
x,~ -
6lnL(w)_j§|iZ:|( =4
oy o’
and

01n L(w) ab 1 )
5(0'2) = 20. 26* jzl 'Zl (xU ”) :

If we equate these partial derivatives to zero, the solutions for u and
a? are, respectively, in o,

Z Z (x;—Xx..) 0))

j=1li=1
_U,

ab

and these values maximize L(w). Furthermore,
dIn L(Q) ,; Gy = 1)
o - o> ’

j=12,...,b,
and

din L(Q b
g(d'z () ) - —; 2q* ;ZI :zl (xu ”j)z.
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If we equate these partial derivatives to zero, the solutions for
, is, and @ are, respectively, in Q,

$x
a -
2)

IPNCTS:
j=1i=1 =w,

ab
and these values maximize L({2). These maxima are, respectively,

Hi, Has - - -

b a
- —ab)2 ab Z Z (xij_i--)2
ab j—l i=
L(®)= exp
2n Zl 2 (x;— %, )2 2 zl Z (x;—X%..)
| == i j=1i=1
— ~1ab{2
— ab / e—ab2
2n z Z (x;—x. )2
B J=1i=1

and
ab/2
L(ﬁ)= b aab e,
2n Z Z Xij j-l)z
j=li=
Finally, < ab2
(xu—j.j)z

b a
1o L(®) _ j§ i;
L) i Z

(xij_x-..)z

In the notation of Section 10.1, the statistics defined by the

functions X and v given by Equations (l) of this section are
(X,, Y )y _0

I D
"o Siisiab J=1i= ab’

while the statistics defined by the functlons Xy X9,...,%, and w

given by Equations (2) in this section are, respectively, X ;=) X,/a
=1
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Sec. 10.2] A Test of the Equality of Several Means 455

b a -
J=12,...,b, and Qsfab= Y Y (X;— X ;)/ab. Thus, in the

j=ti=1
notation of Section 10.1, %% defines the statistic 0;/Q.

We reject the hypothesis H, if A < 1,. To find 4, so that we have
a desired significance level a, we must assume that the hypothesis H,
is true. If the hypothesis Hj is true, the random variables Xj; constitute
a random sample of size n = ab from a distribution that is normal with
mean y and variance ¢”. This being the case, it was shown in Example

oo
2, Section 10.1, that Q = Q; + Q,, where Q, =a ), (X ; — X_)’ that

j=1
Q; and Q, are independent; and that Q,/¢? and Q,/¢? have chi-square
distributions with b(a — 1) and b — 1 degrees of freedom, respectively.
Thus the statistic defined by A¥* may be written

o 1
0:+0s 1+040;

The significance level of the test of H, is

a=Pr|—— < A¥*. H,

T+ 0./0;
[ Qb —1) ]
= , H b
Plo@—1i=¢
where
b(a 2/ab __
b— ’1" /
But

_Qulo*b—1D] Q)b 1)
Qs/lo*ba — 1)]  Qs/lb(a — 1)]
has an F-distribution with b — 1 and b(a — 1) degrees of free-
dom. Hence the test of the composite hypothesis Hj: u; =
U, = - - = u, = u, u unspecified, against all possible alternatives may
be based on an F-statistic. The constant ¢ is so selected as to
yield the desired value of a.

Remark. It should be pointed out that a test of the equality of the ¥ means
M, Jj=1,2,...,b, does not require that we take a random sample of size a
from each of the b normal distributions. That is, the samples may be of
different sizes, say a,, a,, . . . , a,. A consideration of this procedure is left to
Exercise 10.6.-
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Suppose now that we wish to compute the power of the test of H,
against H, when H, is false, that is, when we do not have
= py = - - - = p, = p. It will be seen in Section 10.3 that when H, is
true, no longer is O,/ a random variable that is yX(b — 1). Thus we
cannot use an F-statistic to compute the power of the test when H, is
true. This problem is discussed in Section 10.3.

An observation should be made in connection with maximizing a
likelihood function with respect to certain parameters. Sometimes it is
easier to avoid the use of the calculus. For example, L(2) of this section
can be maximized with respect to y;, for every fixed positive a2, by
minimizing

b a
= Z Z uj)z
with respect to y;, j=1,2, ..., b. Now z can be written as

7= i z": [(x; — X))+ (x; — w)P

j=li=1

b a b
= .Z‘. .Z, =X +a} c;— '

J=1

Since each term in the right-hand member of the preceding equation
is nonnegative, clearly z is a minimum, with respect to y;, if we take
[lj=i.j,j= 1,2,. . .,b.

EXERCISES

10.6.*Let X,;, X5...., X,, represent independent random samples of
sizes g; from normal distributions with means u; and variances a'z
Jj=1, 2 , b. Show that

b

- - b - -
Z Z X;— X )= Z Z (X, — X ;) + _Zl aj(X.j—X..)z,

j=1i=1 j=li=1

or Q'=Q}+Q; Here ¥. =Y 3 X,,/Z o and X,= 3 X,a,

j=li=l Q=1

m=py=-=p, show that Q'/o? and Q;/o* have chi-square
distributions. Prove that Q3 and Q; are independent, and hence Q;/s? also
has a chi-square distribution. If the likelihood ratio A is used to test
Hy:p =p;=---=pu,=pu, u unspecified and ¢ unknown, against all
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Sec. 10.2] A Test of the Equality of Several Means 457
possible alternatives, show that 4 < Ay is equivalent to the computed F > ¢,

where
b
(/Zl a; — b)QZ

(b —1Qs
What is the distribution of F when Hj is true?

=

10.7. Consider the T-statistic that was derived through a likelihood ratio
for testing the equality of the means of two normal distributions
having common variance in Example 2 in Section 9.3. Show that 7% is
exactly the F-statistic of Exercise 10.6 with a, = n, a, = m, and b=2.
Of course, X,,...,X,, X are _replaced with X;,..., X, X, and
Y,..., Y, Yby Xz,,.. s Xoms X

10.8. In Exercise 10.6, show that the linear functions X, — X jand X, — X
are uncorrelated.
Hint: Recall the definitions of X and X _ and, without loss of generality,
we can let E(X,) = 0 for all i, j.

10.9. The following are observations associated with independent random
samples from three normal distributions having equal variances and
respective means y;, iy, i;.

I II III
0.5 2.1 3.0
1.3 33 5.1
-1.0 0.0 1.9
1.8 2.3 24
25 42

4.1

Compute the F-statistic that is used to test Hy: y; = u, = i;.

10.10. Using the notation of this section, assume that the means satisfy the
condition that y =y, + (b— D=y —d=py—d="'-+ = p,— d. That
is, the last 5 — 1 means are equal but differ from the first mean y,, provided
that d # 0. Let independent random samples of size a be taken from the b
normal distributions with common unknown variance ¢°.

(a) Show that the maximum likelihood estimators of u and d are /i = X
and

b — —
PRVEDESE

b
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(b) Using Exercise 10.3, find Qg and Q, = cd? so that, when d = 0, Q,/d*
is x%(1) and

a b _
z Z Xy—X.)P=0:+ 0+ 0.

i=1j=1

(c) Argue that the three terms in the right-hand member of part.(b), once
divided by ¢°, are independent random variables with chl-square
- distributions, provided that d = 0.

(d) The ratio 0,/(Q; + Q,) times what constant has an F-distribution,
provided that d = 0?7 Note that this F is really the square of the
two-sample T used to test the equality of the mean of the first
distribution and the common medn of the other distributions, in which
the last 5 — 1 samples are combined into one.

10.3 Noncentral y* and Noncentral F

Let X;, X,, ..., X, denote independent random variables that are
N(u,a?),i=1,2,...,n and let ¥ =Y X?/a’. If each p, is zero, we
i

know that Y is ¥’(n). We shall now investigate the distribution of Y
when each y; is not zero. The m.g.f. of Y is given by

M) =E [exp (t z": g)_

n X2\
=|lE t— 1.
[ (5,
Consider

X 1 ixt (g — W)
low ()] [ e[ -5 on

The integral exists if 7 < 3. To evaluate the integral, note that

Lx? B (x; — )’ _ _xiz(l —21) | 2ux _ H
o’ 207 207 202 247

oy l-u/ _w ’
(1-20 22 \' 1=}
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Accordingly, with ¢ < ;, we have

Elex ﬁ = ex —fﬂf T
P\ )|~ P c(1-201) ¢./2n

1 -2t TN
xexp| — 27 xi_l—2t dx;.

If we multiply the integrand by /1 — 2¢, r < 1, we have the integral
of a normal p.d.f. with mean p,/(1 — 2¢) and variance ¢%/(1 — 2¢). Thus

. DAY IR i
cxP 0'2) B /1_2,exP (1 =20

and the m.g.f. of Y = i X?/d? is given by
i

NI

M) = Pl ———— <

I
a—20mPlea_—2g |’

A random variable that has an m.g.f. of the functional form

1 8/(1 — 2r)
(1 —=2p"7 4 ’
where t<§, 0 <0, and r is a positive integer, is said to have a
noncentral chi-square distribution with r degrees of freedom and
noncentrality parameter 6. If one sets the noncentrality parameter
0 = 0, one has M(¢) = (1 — 26)~"*, which is the m.g.f. of a random
variable that is y*(r). Such a random variable can appropriately be
called a central chi-square variable. We shall use the symbol x*(r, 6) to
denote a noncentral chi-square distribution that has the parameters r
and 0; and we shall say that a random variable is y*(r, ) when that
random variable has this kind of distribution. The symbol x*(r, 0) is

M@ =

equivalent to x’(r). Thus our random variable Y = ) X7/g? of this

section is x’(n, Y ul /a-z). If each y; is equal to zero, then Y is x*(n, 0)
1

or, more simply, Y is yX(n).

The noncentral chi-square variables in which we have interest are
certain quadratic forms, in normally distributed variables, divided by
a variance ¢°. In our example it is worth noting that the noncentrality
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parameter of i)ff/ol, which is z"“p,?/az, may be computed by
| i

replacing each X, in the quadratic form by its mean y;,,i=1,2,...,n.
This is no fortuitous circumstance; any quadratic form Q =
Q(X,, ..., X,) in normally distributed variables, which is such that
Q/a?is x’(r, 8), has 0 = Q(uy, wy, - . . , u,)/o% and if Q/o? is a chi-square
variable (central or noncentral) for certain real values of u,, s, - . ., iy,
it is chi-square (central or noncentral) for all real values of these means.

It should be pointed out that Theorem 1, Section 10.1, is valid
whether the random variables are central or noncentral chi-square
variables.

We next discuss a noncentral F-variable. If U and V are in-
dependent and are, respectively, y*(r,) and x*(r;), the random variable
F has been defined by F = r,U/r, V. Now suppose, in particular, that
Uis xX(r,, ), Vis x’(r,), and that U and V are independent. The random
variable r,U/r, Vis called a noncentral F-variable with r, and r, degrees
of freedom and with noncentrality parameter 6. Note that the
noncentrality parameter of F is precisely the noncentrality parameter
of the random variable U, which is yX(r,, 6).

Tables of noncentral chi-square and noncentral F are available in
the literature. However, like those of noncentral ¢, they are too bulky
to be put in this book.

EXERCISES

10.11. Let Y, i=1,2,...,n, denote independent random variables that
are, respectively, xXr.,8,), i=1,2,...,n Prove that Z=)Y, is

1
Xz(z i, Z Gf)
1 ]

10.12. Compute the mean and the variance of a random variable that is
x(r, ).

10.13. Compute the mean of a random variable that has a noncentral
F-distribution with degrees of freedom r, and r, > 2 and noncentrality

parameter 6.

10.14. Show that the square of a noncentral T random variable is a non-
central F random variable.
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Sec. 10.4] Multiple Comparisons 461

10.15. Let X, and X, be two mdependent random variables. Let X and
Y =X, + X, be yXr,, 6,) and x*(r, 0), respectively. Here r, <r and 0, < 6.
Show that X, is y’(r — r,, 6 — 8)).

10.16. In Exercise 10.6, if u,, p,,...,u, are not equal, what are the
distributions of Q3/o?, Q4/d% and F?

10.4 Multiple Comparisons

Consider b independent random variables that have normal
distributions with unknown means y,, u,, .. ., 4, respectively, and
with unknown but common variance ¢°. Let k,, k,, . . . , k, represent

b known real constants that are not all zero. We want to find a
b -~

confidence interval for ) k;u;, a linear function of the means
1

Wy, My, - . ., iy. TO do this, we take a random sample X, Xy, ..., X,

]
of size a from the distribution N(y;, 6%), j=1,2,. .., b. If we denote

Y X;la by X, then we know that X j is N(u;, o%/a), that

=1 .

Y (X; — X j)*a* is x’(a — 1), and that the two random variables are

i=1

independent. Since the independent random samples are taken from

the b distributions, the 2b random variables X, za: (X, — X _)Y/d?,
_ =l

j=1,2,...,b, are independent. Moreover, X ;, X ,,..., X, and

(X i X X, - X7

b a
Y Y ———
f=1i=1
b _
are independent and the latter is y’[b(a — 1)]. Let Z =) k; X ,. Then
1
b b
Z is normal with mean ) k; u; and variance (Z kf)a’/a, and Z is
| 1
independent of

| b

V= he—1 &

Y (X~ X1
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Hence the random variable

b _ b
Z, kX, — Z k;y

(b k,?)al/a ikj;\—’_j — zb:kjuj
1 1

viee /(—z k})wa

has a r-distribution with b(a — 1) degrees of freedom. A positive
number ¢ can be found in Table IV in Appendix B, for certain values
ofa,0 < a < 1,suchthatPr(—c < T < ¢) = | — a. It follows that the
probability is 1 — o that

boS b 7 b _ b %
¥ij.j'—C (;k});s;kjyjszl:ij.j+c (Zk});.

The experimental values of X pJ=1,2,...,b,and V will provide a

T=

b
100(1 — o) percent confidence interval for ) k;u;.
. 1

b
It should be observed that the confidence interval for ) k;u;
1

depends upon the particular choice of k,, k5, . . ., k;. It is conceivable
that we may be interested in more than one linear function of

Bis M2, - - 5 My suchasyz—ul,;:s— () + w)/2, 0 py + - - - + py. We

can, of course, find for each ) k;u; a random interval that has a
1 b

preassigned probability of including that particular ) k;u;. But how
1

can we compute the probability that simultaneously these random
intervals include their respective linear functions of u,, y,, . . ., 4,? The
following procedure of multiple comparisons, due to Scheffé, is one
solution to this problem.

The random variable

b -
_; X,—- l‘j)2
ala

is y¥b) and, because it is a function of X ,,..., X, alone, it is
independent of the random variable

1 b a —_
V=b(a— l)jz Z (XU_XJ)z'

=1i=]
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Sec. 10.4] Multiple Comparisons 463

Hence the random variable
b

a Z (i.j" I‘j)z/b
F=-"1=

V

has an F-distribution with b and b(a — 1) degrees of freedom. From
Table V in Appendix B, for certain values of a, we can find a constant
dsuch that Pr(F<d)=1—-aor

b o 4

j=1
b _

Note that ) (X ; — u)* is the square of the distance, in b-dimen-
j=1

signal_spaée, from the point (uy, y,, ..., ) to the random point
(X, X3 ..-,X,s) Consider a space of dimension b and let
(t, ta, ..., t;) denote the coordinates of a point in that space.
An equation of a hyperplane that passes through the point

(}ll, Hasy « . o I“b) 1S given by
ki(ty — ) + ky(ta — ma) + - - - + kp(th — ) = 0, (1)
where not all the real numbers k;, j=1,2,..., b, are equal to zero.
The square of the distance from this hyperplane to the point
(t| - X_|, t2 S X_z, . eoay tb = X_b) iS
[kl(/‘_,.l - #l) + kz()?.z - #2) + -+ kb(i.b - I-ll,)]2 (2)
kKi+ki+---+K , '
From the geometry of the situation it follows that )’ X ;— W) isequal
1

to the maximum of expression (2) with respect to k|, k,, . . ., k,. Thus
b et

the inequality ) (X ; — u,)* < (bd)(V/a) holds if and only if
1

l:'il kj(i g l‘j)]

b
Yk
j=1

for every real k,,k,, ..., k,, not all zero. Accordingly, these two

equivalent events have the same probability, 1 —a. However,
inequality (3) may be written in the form

b _ b b %
;k,-X.,-—Xk,-n,- = bd(Zk})E.
1
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Thus the probability is 1 — a that simultaneously, for all real
ki, k2, ..., ks, not all zero,

ikff’.,-—\/bd(sz) i si /bd(ik})%. @

Denote by A4 the event where inequality (4) is true for all real
ki, - .., k;, and denote by B the event where that inequality is true for
a finite number of b-tuples (k,, . . ., k;). If the event 4 occurs, certainly
the event Boccurs. Hence P(A) < P(B).Inthe applications one is often

interested only in a finite number of linear functions Zk ;. Once

the experimental values are available, we obtain from (4) a confidence
interval for each of these linear functions. Since P(B) > P(4) = |1 — a,
we have a confidence coefficient of at least 100(1 — o) percent that the
linear functions are in these respective confidence intervals.

Remarks. If the sample sizes, say a,, a,, . . ., a,, are unequal, inequality
(4) becomes
b _ b k? b b _ b k?
YhX;— [bdy 2V < Thu<YkX,+ [bdy 2V, @)
1 1 4 | | 1 %
where
il b 9 _
> X, Y- Ky
- iml j=li=
X;= a V= b d
7
Y(a—1)
|

b
and d is selected from Table V with b and ) (a; — 1) degrees of freedom.
1

Inequality (4') reduces to inequality (4) when g, = a, = - - - = a,. R
Moreover if we restrict our attention to linear functions of the form Z

with Zk =0 (such linear functions are called contrasis), the radical in

mequahty (4') 1s replaced by

bk,?
\/d(b— 1)‘1;7,- V.

b
where dis now found in Table Vwithb — 1and ) (a; — 1) degrees of freedom.

|}
In these multiple comparisons, one often finds that the length of a
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Sec. 10.4] Multiple Comparisons 465

confidence interval is much greater than the length of a 100(1 — ) percent
b
confidence interval for a particular linear function ) k;u;. But this is to be

1
- expected because in one case the probability 1 — a applies to just one event,
and in the other it applies to the simultaneous occurrence of many events.
One reasonable way to reduce the length of these intervals is to take a larger
value of o, say 0.25, instead of 0.05. After all, it is still a very strong statement
to say that the probability is 0.75 that all these events occur.

EXERCISES

10.17. If A,, A,, . . ., A, are events, prove, by induction, Boole’s inequality
&
P(4,uA,u---ud,) <) P(A). Then show that
I

k
PAY N AT N - n AP 21 =) P(4).
]

10.18. In the notation of this section, let (k;, kn, ..., kp), i=1,2,...,m,
represent a finite number of b-tuples. The problem is to find simultaneous

b
confidence- intervals for ) k;u;, i=1,2,...,m, by a method different
j=1

from that of Scheffé. Define the random variable T; by

(‘i kijf.j—’i kijllj)/ /(Xb:klzj)V/a, i=1,2,...,m.

(a) Let theevent A* be givenby —¢; < T, <c,i=1,2,...,m. Find the

b
random variables U, and W, such that U; < ) k;u; < W;is equivalent

to A*. 7=
(b) Select ¢, such that P(4*) =1 — a/m; that is, P(4,) = «/m. Use the
results of Exercise 10.17 to determine a lower bound on the probability
that simultaneously the random intervals (U,, W)), ..., (U,, Wy)

b b
include Y kju, ..., Y knu;, respectively.
j=1 j=1

(c) Leta=3,b =6, and a = 0.05. Consider the linear functions u, — y,,
H2 — M3, M3 — May e — (s + 6)/2, and (u + pp + - - - + pe)/6. Here
m = 5. Show that the lengths of the confidence intervals given by the
results of part (b) are shorter than the corresponding ones given by
the method of Scheffé, as described in the text. If m becomes
sufficiently large, however, this is not the case.
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10.5 The Analysis of Variance

The problem considered in Section 10.2 is an example of a method
of statistical inference called the analysis of variance. This method
derives-its name from the fact that the quadratic form abS?, which is
a total sum of squares, is resolved into several component parts. In this
section other problems in the analysis of variance will be investigated.

LetX,,i=1,2,...,aandj=1,2,...,b,denote n = ab random
variables that are independent and have normal distributions with
common variance ¢°. The means of these normal distributions are

a b
dy=pu+ o+ B, where Y a;=0 and ) B, =0. For example, take
. | 1

a=2, b=3, ﬂ=5, a|=1, a, = —1, ﬂ|= 1, ﬂ2=0, and ﬂ3= —1.
Then the ab = six random variables have means

=1, ti2 = 6, P =3,
P =5, Ui = 4, M3 = 3.

Had we taken B, = f, = B; = 0, the six random variables would have
had means

By =6, pi2 =6, tiy = 6,

Ha = 4, H = 4, Has = 4.
Thus, if we wish to test the composite hypothesis that

Hin = Mz ="""= lp,

Ha = P = """ = Uz,

B = Hg2 = * " * = Ugp,
we could say that we are testing the composite hypothesis that
B, = B, = - - = B, (and hence each ; = 0, since their sum is zero). On

the other hand, the composite hypothesis

By = U2 = " = Uy
Bia = Up="""= Uz,
Hip = Hop =" ° = Hap,s
is the same as the composite hypothesis that ) =, =---=a,=0.
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Sec. 10.5] The Analysis of Variance 467

Remarks. The model just described, and others similar to it, are widely
used in statistical applications. Consider a situation in which it is desirable to
investigate the effects of two factors. that influence an outcome. Thus the
variety of a grain and the type of fertilizer used influence the yield; or the
teacher and the size of a class may influence the score on a standard test. Let
X; denote the yield from the use of variety i of a grain and type j of fertilizer.
A test of the hypothesis that f, = §, = - - - = , = 0 would then be a test of
the hypothesis that the mean yield of each variety of grain is the same
regardless of the type of fertilizer used.

a b
There is no loss of generality in assuming that Z a; = 2 B; = 0. To see this,

let By =y +af + B;. Write o’ = X a//a and ﬂ Eﬂ,/b We have y,j
W+ +B)+ (@ —a)+ B —B)=p+a,+p, where Za,= L ;=

To construct a test of the composite hypothesis H,: f, =
p. = -- = B, = 0 against all alternative hypotheses, we could obtain
the corresponding likelihood ratio. However, to gain more insight
into such a test, let us reconsider the likelihood ratio test of
Section 10.2, namely that of the equality of the means of b distributions.
There the important quadratic forms are Q, Q5, and Q,, which are
related through the equation Q = Q, + Q5. That is,

b a a b -
abS* = '21 _Z| (1\71 - X’)z + .Zl _Zl (Xij - X.j)z;
J=11= i=1j=
so we see that the total sum of squares, abS?, is decomposed into a sum
of squares, Q,, among column means and a sum of squares, Q,, within
columns. The latter sum of squares, divided by n = ab, is the m.1. . le. of
a?, provided that the parameters are in ; and we denote 1t,_l~)\y o3 . Of
course, S? is the m.le of ¢? under w, here denoted by 2. So the
likelihood ratio A = (a3 / 62 )™ is a monotone function of the statistic

_ Q-1
Qs/[b(a — 1)]
upon which the test of the equality of means is based.
To help find a test for Hy: g, = f,="--= B, =0, where y; =

1 + o; + B;, return to the decomposition of Example 3, Section 10.1,
namely Q = Q, + Q, + Qs. That is,

abS = Zzw —EF+ Y Y (X, -k

i=1j=1 i=1j =1

) Z( — X - X+ XN

i=lj=1
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thus the total sum of squares, abS? is decomposed into that among

rows (Q,), that among co@ztm (Q4), and that remaining (Qs). It is

interesting to observe that 63 = Q/ab is the m.l.e. of 6% under Q and
a Qe+ Q) (Xu— X,

o, = -—-—-——-ZZ

i=lj=1

is that estlmator under . A useful monotone functlon of the likeli-
hood ratio 4 = (an/aw )"”’2 is :

Q-1

Qsfi(a — )6 — D]’ f

which has, under H,, an F-distribution withb — 1 and (a — 1)(b — 1)
degrees of freedom. The hypothesis H, is rejected if F > ¢, where
a = Pr (F = ¢; Hy).

If we are to compute the power function of the test, we need
the distribution of F when H, is not true. From Section 10.3 we
know, when H, is true, that Q,/¢? and Q;/d? are independent (central
or noncentral) chi-square variables. We shall compute the non-
centrality parameters of Q,/¢” and Qs/a’> when H, is true. We have
E(X,) = p+ o+ f, EX,) = + o, EX ) = p + fjand EX.) =
Accordmgly, the noncentrality parameter of Q,/d” is

b b
a:;‘(},t+ﬂj—u)2 a.ZI B

a’ o’

and that of Qs/¢? is

b a
Z‘ _Zl uto+p—p—ai—u—pfi+uy
ji=li= ’
= 0.
0.2
Thus, if the hypothesis H, is not true, F has a noncentral F-distribution

with b — 1 and (@— 1)(b = 1) degrees of freedom and noncentrality

parameter a Z B:/o. The desired probabilities can then be found in

tables of the noncentral F-distribution.

A similar argument can be used to construct the F needed to test
the equality of row means; that is, this F is essentially the ratio of the
sum of squares among rows and Q;. In particular, this Fis defined by

Q,/(a —1)

F= G- DG -1
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Sec. 10.5) The Analysis of Variance 469

and, under Hy:a, =a,="--*=a, =0, has an F-distribution with
a— 1 and (a — 1)(b — 1) degrees of freedom.

The analysis-of-variance problem that has just been discussed is
usually referred to as a two-way classification with one observation per
cell. Each combination of i and j determines a cell; thus there is a total
of ab cells in this model. Let us now investigate another two-way
classification problem, but in this case we take ¢ > |1 independent
observations per cell.

Let X, i=1,2,...,a, j=1,2,...,b, and k=1,2,...,c,
denote n = abc random variables which are independent and which
have normal distributions with common, but unknown, variance o>.
The mean of each Xp,.k=1,2,...,¢,18 u,, = u+ a; + B; + vy, where

z 2, =0, Zﬂ,—O Zy,,—O and - Zy,,—O For example, take

a—2b—3p—5a|-—la2 lﬂl_1ﬂ2_0ﬂ3 —Lyn=1,
2= 1L93= —2,924 = —1,y5, = —1,and y,; = 2. Then the means are

By = 89 B2 = 7’ B3 = 3,9
b =4, U = 3, P23 = 3.
Note that, if each y; = 0, then

=T, 2 = 6, iz =3,

Uy =3, ta = 4, Uz = 3.
That is, if y; = 0, each of the means in the first row is 2 greater than
the corresponding mean in the second row. In general, if each y; = 0,
the means of row i, differ from the corresponding means of row i, by
a constant. This constant may be different for different choices of 7, and
i,. A similar statement can be made about the means of columns j; and
J»- The parameter y; is called the interaction associated with cell (i, j).
That is, the interaction between the ith level of one classification and
the jth level of the other classification is ;. One interesting hypothesis
to test is that each interaction is equal to zero. This will now be
investigated.

From Exercise 10.4 of Sectlon 10.1 we have that

Z z Z (Xuk X...)2 bc z (X —-X )2+ac Z (X _X )2

i=lj=1k=1 i=1

ﬂMo-
A

X, - X —-X,+X_)

i=1j=1
a b ¢ —

+ 3 Y Y XMu~X;)5
i=|j=1k=1
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that is, the total sum of squares is decomposed into that due to row
differences, that due to column differences, that due to interaction, and
that within cells. The test of

.Hoz'y,'j=0, i=l,2,...,a, j=1,2,...,b,

against all possible alternatives is based upon an Fwith (a — 1)(b — 1)
and ab(c — 1) degrees of freedom,

[ ; ); Xy, = Xi.. — X ;. + X’...)z]/ (CERMCERY

[zzm,*—xy 7] fabee -

The reader should verify that the noncentrality parameter of this

F-distribution is* equal to ¢ Z Z v5/0*. Thus F is central when

j=li=1

Hy:y,=0,i=1,2,...,a,j=1,2,...,b,is true.

EXERCISES
10.19. Show that

b ICAS AR b 3 ot - X —%,+%)y+ay (X, — K

10.20. If at least one y,, # 0, show that the F, which is used to test that each
interaction is equal to zero, has noncentrality parameter equal to

¢ 3 Z?.’,/ff’

j=li=1

10.21. Using the background of the two-way classification with one
observation per cell, show that the maximum likelihood estimators of a;,
B, and p are 4;=X, —X_, fi=X,— X_, and ji=X_, respectively.
Show that these are unblased estimators of their respective parameters
and compute var (d;), var (ﬁ,), and var (j).

10.22. Prove using the assumptions of this section, that the linear functions
X,— X, —X,+ X_and X, — X_ are uncorrelated.

10.23. Given the following observations associated with a two-way
classification with a = 3 and b = 4, compute the F-statistics used to test
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Sec. 10.6] A Regression Problem 471

the equality of the column means (#, = 8, = ; = f, = 0) and the equality
of the row means (a, = a, = a; = 0), respectively.

Row/Column | 2 3 4

1 31 42 27 49
2 27 29 18 30
3 40 46 30 39

10.24. With the background of the two-way classification with ¢ > 1
observations per cell, show that the maximum likelihood estimators

- of the parameters are & =X, — X, ﬁj =X, - X, P = Xy —
X..— X, +X._,and =X _.Show that these are unbiased estimators of
the respective parameters. Compute the variance of each estimator.

10.25. Given the following observations in a two-way classification with
a=3, b=4, and ¢ =2, compute the F-statistics used to test that all
interactions are equal to zero (y; = 0), all column means are equal (§; = 0),
and all row means are equal (a; = 0), respectively.

Row/Column 1 2. 3 4

1 3.1 42 27 49
29 49 32 45
2 27 29 18 30
29 23 24 37
3 40 46 30 39

44 50 25 42

10.6 A Regression Problem

There is often interest in the relation between two variables, for
‘example, a student’s scholastic aptitude test score in mathematics and
this same student’s grade in calculus. Frequently, one of these
variables, say x, is known in advance of the other, and hence there is
interest in predicting a future random variable Y. Since Y is a random
variable, we cannot predict its future observed value Y =y with
certainty. Thus let us first concentrate on the problem of estimating
the mean of Y, that is, E(Y). Now "E(Y) is usually a function
of x; for example, in our illustration with the calculus grade,
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472 Inferences About Normal Models [Ch. 10

say Y, we would expect E(Y) to increase with increasing mathematics
aptitude score x. Sometimes E(Y) = u(x) is assumed to be of a given
form, such as linear or quadratic or exponential; that is, u(x) could be
assumed to be equal to a + fx or a + fBx + yx? or ae®*. To estimate
E(Y) = u(x), or equivalently the parameters a, f, and y, we observe the
random variable Y for each of n possibly different values of x, say
X\, X3, ..., X,, Which are not all equal. Once the n independent
experiments have been performed, we have n pairs of known numbers
(x15 31)s (X2, ¥2)s -« - -, (Xn, ya). These pairs are then used to estimate the
mean E(Y). Problems like this are often classified under regression
because E(Y) = u(x) is frequently called a regression curve.

Remark. A model for the mean like @ + fx + yx?, is called a linear model
because it is linear in the parameters, a, f, and y. Thus a¢®** is not a linear model
because it is not linear in & and . Note that, in Sections 10.1 to 10.4, all the
means were linear in the parameters and hence linear models.

Let us begin with the case in which E(Y) = u(x) is a linear function.
The n points are (x;, y,), (x3, y2), - - . , (Xp, ¥n); SO the first problem
is that of fitting a straight line to the set of points (see Figure 10.1).
In addition to assuming that the mean of Y is a linear function,
we assume that, Y|, Y,,..., Y, are independent normal variables
with respective means a + f(x; — x), i=1,2,...,n, and unknown
variance ¢?, where X = X x;/n. Their joint p.d.f. is therefore the

y (x.y,)
95 —

90

80

FIGURE 10.1

STUDENTS-HUB.com Uploaded By: anonymous



Sec. 10.6] A Regression Problem 473

product of the individual probability density functions; that is, the
likelihood function equals

L, B, ") = ‘" L_exp {_Ly.- — —zgfx, - jlz}

nf2 .
, - (ﬂ;—i) exp {—# i; [y — a ~ Blx, — j]z}

To maximize L(a, 8, 6%), or, equivalently, to minimize

i i — a — B(x; — X)P
—In L(z, ﬂ,a2)=gln(2nal)+"' = :

we must select « and f to minimize
He, p)= Y. [~ a ~ B, ~ DF.

Since |y, — a — B(x; — X)| = |y, — u(x;)| is the vertical distance from the
point (x;, y;) to the line y = u(x), we note that H(a, B) represents the
sum of the squares of those distances. Thus selecting « and f so that
the sum of the squares is minimized means that we are fitting the
straight line to the data by the method of least squares.

To minimize H(x, ), we find the two first partial derivatives

B 3% e B - DU

and 3
H(g; h_, 3 i~ @ = Blx — D~ = D]

Setting dH(a, f)/0x = 0, we obtain
Z y,--na—ﬂ.Zi(x.-—ﬂ=0-

Since
‘Zl (x; — —) =0,
we have that -
Y yy—na=0
i=1 ,
and thus _
a=Y.
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The equation dH(a, f)/0f = 0 yields, with a replaced by y,
2 (.Vi-;)(x.'—f)—ﬁ.zl (x;—XxP*=0

i=

or, equivalently,

Z (Yi— D(x— %) 2 Yi(x; — %)
B='=I _ =,="| .
> (= X) 'ZI (x; — x)*

i=1

To find the maximum likelihood estimator of ¢2, consider the partial
derivative

. Y — — . — X 2
A-inL@po)] o &0 A
() T 26 2(a?)?

Setting this equal to zero and replacing « and g by their solutions &
and f, we obtain

o --Z [Y;— 4 — f(x, — P

r-l

Of course, due to invariance, o =
Since d is a linear function of independent and normally distributed
random variables, & has a normal distribution with mean

E@) = E G 3 Y,-) = T B

1 n
= Y [e+ Blxi —X)] =a,
=1 .
and variance

var (d) = i (%) var(Y) = %
|

i=

The estimator /3 is also a linear function of Y|, Y, ..., Y, and hence
has a normal distribution with mean

¥ (- DET) -
Ef) =—;
Z (x;, — X)?
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¥ (o= Bla+ B -

i(x,-—x2
i=1
a.i (x,-—)—c)-+-)3i(x,~—--x2
— i=]| _ i=1 =ﬂ
Z (xi—;)2
and variance = 3 ,
var(ﬁ)=i =X | var(y)
i=1 Z(xi_x2
i=1
z”:(x,.—x2
L I S A
I:i (xi___x 2] -§| (x,—jz

It can be shown (Exercise 10.27) that

3 -a—p -9 = ¥ (@- 2+ E-Hlx—D
+[Y:—d — f(x; — Y’
=nd—aft +(f— PP 3. (x,— X + nar.
or, for brevity, =
0=0+0,+ 0.
Here Q, Q,, O0,, and Q; are real quadratic forms in the variables
Y, —a— B(x; — x), i=1,2,...,n

In this equation, Q represents the sum of the squares of #» independent
random variables that have normal distributions with means zero and
variances ¢2. Thus Q/c? has a chi-square distribution with » degrees
of freedom. Each of the random variables \/;(ai —a)/e and

/i(x,-—?r)’(ﬁ — p)/o has a normal distribution with zero mean
1

and unit variance; thus each of Q,/6* and Q,/c* has a chi-square
distribution with 1 degree of freedom. Since @, is nonnegative, we
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have, in accordance with the theorem of Section 10.1, that Q,, Q,, and
Q, are independent, so that Q,/0? has a chi-square distribution with
n—1—1=n—2 degrees of freedom. Then each of the random
variables

O L) A T
JO:/F*n=2)] /& /(n—2)

and
¥ (x, — 7 - B)] / o )
_ [ 1 _ f—B
N R Y

has a r-distribution with n — 2 degrees of freedom. These facts
enable us to obtain confidence intervals for « and . The fact that ng?/¢?
has a chi-square distribution with n — 2 degrees of freedom provides
a means of determining a confidence interval for 2. These are some
of the statistical inferences about the parameters to which reference was
made in the introductory remarks of this section.

Remark. The more discerning reader should quite properly question
our constructions of T, and 7, immediately above. We know that the squares
of the linear forms are independent of Q, = nd?, but we do not know, at this
time, that the linear forms themselves enjoy this independence. This problem
arises again in Section 10.7. In Exercise 10.47, a more general problem is
proposed, of which the present case is a special instance.

EXERCISES

10.26. Students’ scores on the mathematics portion of the ACT examination,
x, and on the final examination in first-semester calculus (200 points
possible), y, are given.

(a) Calculate the least squares regression line for these data.

(b) Plot the points and the least squares regression line on the same graph.

(c) Find point estimates for «, f, and .

(d) Find 95 percent confidence intervals for . and f under the usual
assumptions. -
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x y X y
25 138 20 100
20 84 25 143
26 104 26 141
26 112 28 161
28 88 25 124
28 132 31 118
29 90 30 168
32 183

10.27. Show that
3 [¥i—a— Bl — DF =@ —af + - BP 3 (xi— %

i=1

+ijn—d—mm—aﬁ

10.28. Let the independent random variables Y,,Y,,..., Y, have,
respectively, the probability density functions N(fx;, y’x2),i=1,2,...,n,
where the given numbers x,, x,, . . . , X, are not all equal and no one is zero.

L Find the maximum likelihood estimators of f and .

10.29. Let the independent random variables Y, . . ., Y, have the joint p.d.f.
1 " 1 & -
L@Jmﬁ=@;j un{iyngw—ﬂm—xw}

where the given numbers x,, x,, . . ., x, are not all equal. Let Hy: f =0 («
and ¢? unspecified). It is desired to use a likelihood ratio test to test H,
against all possible alternatives. Find 4 and see whether the test can be based
on a familiar statistic.

Hint: In the notation of this section show that

$m—ﬁ=&+ﬁ$m—ﬂ.

10.30. Using the notation of Section 10.2, assume that the means g, satisfy
a linear function of j, namely y;, = ¢ + d{ j — (b + 1)/2]. Let independent
random samples of size a be taken from the b normal distributions with
common unknown variance ¢
(a) Show that the maximum likelihood estimators of ¢ and d are,

respectively, ¢ = X and

b — -—
S -G+ )&, - X.)
a=‘;=l

_iu—w+nm2
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(b) Show that

$ f -y 5 8 [n-x-a(-2)]

i=1j= i=1j=1
b 2
+d Y a('—u).
j=1 2

(c) Argue that the two terms in the right-hand member of part (b), once
divided by ¢* are independent random variables with chi-square
distributions provided that d = 0.

(d) What F-statistic would be used to test the equality of the means, that
is, Hy:d=0?

10.7 A Test of Independence

Let X and Y have a bivariate normal distribution with means y, and
W2, positive variances o7 and 2, and correlation coefficient p. We wish
to test the hypothesis that X and Y are independent. Because two jointly
normally distributed random variables are independent if and only
if p =0, we test the hypothesis H,: p =0 against the hypothesis
H,:p#0. A likelihood ratio test will be used. Let (X, Y)),
(X3, ), .., (X,, Y,) denote a random sample of size » > 2 from the
bivariate normal distribution; that is, the joint p.d.f. of these 2#nrandom
variables is given by _

SO, yIf(x2, 32) -+ - f(Xns Ya)-
Although it is fairly difficult to show, the statistic that is defined by the
likelihood ratio A is a function of the statistic '

4

S (X - B(Y,- )

R = .
Y &-B Y (- Py

This statistic R is called the correlation coefficient of the random
sample. The likelihood ratio principle, which calls for the rejection
of H, if 2 < A, is equivalent to the computed value of |R| > c. That
is, if the absolute value of the correlation coefficient of the sample
is too large, we reject the hypothesis that the correlation coefficient
of the distribution is equal to zero. To determine a value of ¢ for
a satisfactory significance level, it will be necessary to obtain the
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Sec. 10.7} A Test of Independence 479

distribution of R, or a function of R, when H, is true. This will now
be done.
IzetX|—X|,X2—x2,..,: X x,,,n>2 wherex|, X3y« x,,and

x= Z x;/n are fixed numbers such that Z (x; — Xx)* > 0. Consider the

condmonal pdf. of Y,,Y,...,Y, given that X, =x, X;,=
X35 ..., X, =X,. Because Y, Y,, ..., Y, are independent and, with
p = 0, are also independent of X, X,, . .., X,, this conditional p.d.f.
is given by

LoV 2::(}’1 — W)
() |

Let R. be the correlation coefficient, given X, =x,, X, =
X2y sy X,, = X,, SO that

S (¥, Py ;I(x,—‘)(r.-—?) 3 (= DY,

i=1

' / Z (xl _ -)2 - iil (x; — -)2 - ‘2::' (x; — 3)2

is like f of Section 10.6 and has mean zero when p = 0. Thus, referring
to T, of Section 10.6, we see that

R/E(Y, = Y)//E(x — %) _R/n-2
- = = — J1— R
Y {¥i— ¥ — [R/2(Yi = VP12 — 315 — B}

(n — 2)Z(x; — X)* (1)
has, given X, =x,,..., X, = x,, a conditional z-distribution with
n — 2 degrees of freedom. Note that the p.d.f., say g(z), of this
t-distribution does not depend upon x,, X,, .. ., x,. Now the joint

pd.f. of X}, X;,..., X, and RJn - 2/\/1 — R?, where

Z(X N, -9

\/Z X; — X) Z (Y, — Y)2

is the product of g(r) and the joint p.d.f. of X\, X, ..., X,.
Integration on x,,X;,...,X, yields the marginal p.d.f. of
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R\[ - 2/\/ 1 — R? because g(r) does not depend upon x,, X, . . . , X,
it is obvious that this marginal p.d.f. is g(z), the conditional p.d.f. of

Rc\/n — 2/\/ 1 — R2. The change-of-variable technique can now be
used to find the p.d.f. of R.

~ Remarks. Since R has, when p = 0, a conditional distribution that does
not depend upon x,, x3, . . ., X, (and hence that conditional distribution is, in
fact, the marginal distribution of R), we have the remarkable fact that R is
independent of X,, X,, ..., X,. It follows that R is independent of every
functionof X,, X,, . . ., X,alone, that is, a function that does not depend upon
any Y. In like manner, R is independent of every function of Y, Y,,..., Y,
alone. Moreover, a careful review of the argument reveals that nowhere did
we use the fact that X has a normal marginal distribution. Thus, if X and Y
are independent, and if Y has a normal distribution, then R has the same
conditional distribution whatever be the distribution of X, subject to the

condition Y (x; — X)* > 0. Moreover, if Pr ["Z (X, — X)*> 0] =1, then R
1 1
has the same marginal distribution whatever be the distribution of X.

If we write T = Ry/n — 2//1 — R?, where T has a -distribution
with n —2 > 0 degrees of freedom, it is easy to show, by the
change-of-variable technique (Exercise 10.34), that the p.d.f. of R is
given by

I'l(n — 1)/2]
_ — -2, - 1,
TOre = 2/2] (1 ) l<r< o

=0 elsewhere.

g(r)

We have now solved the problem of the distribution of R,
when p=0 and n > 2, or, perhaps more conveniently, that of

R\/n—2//1 ~ R%. The likelihood ratio test of the hypothesis
H, : p = 0 against all alternatives H, : p # 0 may be based either on the

statistic R or on the statistic R\/n — 2/\/ 1 — R* =T, although the
latter is easier to use. In either case the significance level of the test is
« = Pr(|R| = ¢\; Hy) = Pr(|T] = ¢;; Hp),

where the constants ¢, and ¢, are chosen so as to give the desired value
of a.

Remark. Itisalso possible to obtain an approximate test of size a by using

the fact that
_1 1+ R
W = 21n (] — R)
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has an approximate normal distribution with mean § In [(1 + p)/(1 — p)] aqd'
variance 1/(n — 3). We accept this statement without proof. Thus a test of
H,: p = 0 can be based on the statistic

Z _2In[(1 + R)/(1 — R)] —31n[(l + p)/(1 = p)]

S/ =3) ’

with p =0 so that 3in[(1 + p)/(1 — p)] = 0. However, using W, we can
also test hypotheses like H,: p = p, against H,: p # p,, where p, is not
necessarily zero. In that case the hypothesized mean of W is

1
lIn t+ Po .
2 1 —p,

EXERCISES

10.31. Show that

-~

S X-B(- P S XY, n¥¥
! 1

R=\/$(x—f)2$(n— ?)’=\/($A?—nﬁ)(iﬁ—n?’)

1

10.32. A random sample of size n = 6 from a bivariate normal distribution
yields a value of the correlation coefficient of 0.89. Would we accept or
reject, at the 5 percent signficance level, the hypothesis that p = 0?

10.33. Verify Equation (1) of this section.
10.34. Verify the p.d.f. (2) of this section.

10.8 The Distributions of Certain Quadratic Forms

Remark. It is essential that the reader have the background of the
multivariate normal distribution as given in Section 4.10 to understand
Sections 10.8 and 10.9.

Let X;, i=1,2,...,n, denote independent random variables
which are N(u,o?), i=1,2,...,n  respectively. Then

0 =Y (X, — w) /ot is x*(n). Now @ is a quadratic form in the X, — y;
1

and @ is seen to be, apart from the coefficient —1, the random variable
which is defined by the exponent on the number ¢ in the joint
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‘p;d.f. of X, X;, ..., X, We shall now show that this result can be
generalized.

Let X,, X,, ..., X, have a multivariate normal distribution with

p.d.f.
—p)V7I(x - ll)]

“——-—'——l exp |: —_ (X
@ry,/IV| 2

where, as usual, the covariance matrix V is positive definite. We shall
show that the random variable Q (a quadratic form in the X; — u,),
which is defined by (x — p)’'V~'(x — p), is y’(n). We have for the
m.g.f. M(¢f) of Q the integral

¢ s x ..__..—_.__.1
L, L, @ry/IV|

X exp [t(x —wWV'(x—p) -

(x—p)V'(x—p
2

[ i

.[ J (2n)"/2J|7

X exp [_(x — ) V~'(x — w1 - 21)] dx, - - - dox,.

2

With V- positive definite, the integral is seen to exist for all real values
of 1 < 1. Moreover, (1 —2)V~', r <1, is a positive definite matrix
and, since [(1 — 20V~ = (1 — 20)"|V~Y, it follows that

1 exp [_(x —p)yV'(x —p)(1 — 2t)]
Qn"2/IVI/( — 21y 2

can be treated as a multivariate normal p.d.f. If we multiply our
integrand by (1 — 2", we have this multivariate p.d.f. Thus the
m.g.f. of Q is given by
1 1
M(t) = 120" t <3,
and Q is y*(n), as we wished to show. This fact is the basis of the
chi-square tests that were discussed in Chapter 6.
The remarkable fact that the random variable which is defined by
(x — p)’V-!'(x — p) is y%(n) stimulates a number of questions about
quadratic forms in normally distributed variables. We would like to
treat this problem in complete generality, but limitations of space
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Sec. 10.8] The Distributions of Certain Quadratic Forms 483

forbid this, and we find it necessary to restrict ourselves to some special
cases.

Let X, X;,...,X, denote a random sample of size n from a
distribution which is N(0, ¢?), 6> > 0. Let X’ = [X,, X3, . . ., X,] and let
A denote an arbitrary n x nreal symmetric matrix. We shall investigate
the distribution of the quadratic form X’AX. For instance, we know

that X'L,X/o? = X'X/a> = 3 X?/? is ¥*(n). First we shall find the

| 6 0
m.g.f.of X’AX/o?. Then we shall investigate the conditions that must
be imposed upon the real symmetric matrix A if X’AX/a” is to have a
chi-square distribution. This m.g.f. is given by

(® 00 f* Q0 n / , ,
M) = ( 1 )exp XX xx)dx,---dx,,

. ) \e/2m \ & 27

(0 foc n o 1 — 2rA -
— 1 exp __L_zt_lf dx, - - - dx,,

J ) g./2n L 20

where I =1,. The matrix I — 2¢A is positive definite if we take |/|
sufficiently small, say |{| < A, A > 0. Moreover, we can treat

1 . [ _x(- 2:A)x]‘
Qry /(I - 2tA)~'¢? P 24’

as a multivariate normal p.d.f. Now |(I — 2rA)~'0?'2 = o”/|I — 21A|'2.
If we multiply our integrand by [T — 2tA|'?2, we have this multivariate
p.d.f. Hence the m.g.f. of X’AX/a? is given by

MO =1-2A""2  |]<h 1)
It proves useful to express this m.g.f. in a different form. To do this,
let a,, a,, ..., a, denote the characteristic numbers of A and let L
denote an »n xn orthogonal matrix such that L’AL=
diag[a,, a,, . . ., a,]- Thus
3 1 — 2ta| 0 ¢t 0 ]
) 0 l — 2102 = 0
LI(I - 2[A)L = . o .
i 0 0 coo 1 —2ta, )

Then
[T (1 — 2ta) = |L'(X — 2(A)L| = [ — 2/A.
i=1
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Accordingly, we can write M(¢), as given in Equation (1), in the form
n —172
M) = [H (1 - 2ta,)] , |t] < A. (2)
i=1

Let r, 0 < r < n, denote the rank of the real symmetric matrix A.
Then exactly r of the real numbers a,, a,, ..., a,, say a,, .. ., a,, are
not zero and exactly n — r of these numbers, saya, . ., . . ., a,, are zero.
Thus we can write the m.g.f. of X’AX/a? as

M(0) = [(1 — 2ta,)(1 — 2tay) - - - (1 — 2ta,)]~'~.

Now that we have found, in suitable form, the m.g.f. of our random
variable, let us turn to the question of the conditions that must be
imposed if X’AX/a? is to have a chi-square distribution. Assume that
X’AX/qg? is yX(k). Then

M@ =[(1 —2ta,)(1 —2tay)) - (1 —2ta,)]""2 = (1 — 20)~+2,
or, equivalently,
(1 —2ta))(1 — 2tay) - - - (1 — 2ta,) = (1 — 21), 1] < A.

Because the positive integers r and k are the degrees of these
polynomials, and because these polynomials are equal for infinitely
many values of t, we have k =r, the rank of A. Moreover, the
uniqueness of the factorization of a polynomial implies that
a,=a,="--=a, = l. If each of the nonzero characteristic numbers
of a real symmetric matrix is one, the matrix is idempotent, that is,
A% = A, and conversely (see Exercise 10.38). Accordingly, if X’AX/o?
has a chi-square distribution, then A2 = A and the random variable is
x’(r), where r is the rank of A. Conversely, if A isof rank r,0 <r <n,
and if A>= A, then A has exactly r characteristic numbers that are
equal to one, and the remaining n — r characteristic numbers are equal
to zero. Thus the m.g.f. of X’AX/o? is given by (1 — 21)~"*, t < 3, and
X’AX/a? is xX(r). This establishes the following theorem.

Theorem 2. Let Q denote a random variable which is a quadratic
form in the observations of a random sample of size n from a distribution
which is N(0, 6®). Let A denote the symmetric matrix of Q and let r,
0 < r < n, denote the rank of A. Then Q/a? is x’(r) if and only if A> = A.

Remark. If the normal distribution in Theorem 2is N(u, ¢?), the condition
A’ = A remains a necessary and sufficient condition that Q/¢? have a
chi-square distribution. In general, however, Q/g? is not yr) but, instead,
Q/6? has a noncentral chi-square distribution if A= A. The number
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Sec. 10.8] The Distributions of Certain Quadratic Forms 485

of degrees of freedom is r, the rank of A, and the nonoentrality parameter is
p'Ap/o?, where p’ = [u, i, ..., u]. Since pAp = u Za,,, where A =[a;},

then, if u # 0, the conditions A? = A and Z a; = Oare necessary and sufficient

conditions that Q/a? be central yX(r). Moreover, the theorem may be extended
to a quadratic form in random variables which have a multivariate normal
distribution with positive definite covariance matrix V; here the necessary and
sufficient condition that Q have a chi-square distribution is AVA = A.

EXERCISES

10.35. Let 0 = X\ X, — X;X,, where X, X,, X, X, is arandom sample of size
4 from a distribution which is N(0, ¢%). Show that Q/a? does not have a
chi-square distribution. Find the m.g.f. of Q/d*.

10.36. Let X' =[X,, X;] be bivariate normal with matrix of means
B’ = [u, ] and positive definite covariance matrix V. Let
X XX, X;

=2 :
C=i—p Poni-,» 2=

Show that Q, is ¥*(r, 0) and find r and 8. When and only when does Q, have
a central chi-square distribution?

10.37. Let X’ = [X), X, X;] denote a random sample of size 3 from a
distribution that is N(4, 8) and let

A=

= O N|=-
—
= O M=

Jusiify the assertion that X’'AX/o? is ¥%(2, 6).

10.38. Let A be a real symmetric matrix. Prove that each of the nonzero
characteristic numbers of A is equal to 1 if and only if A2 = A.
Hint: Let L be an orthogonal matrix such that L'AL=
diag[a,, a,, . . ., a,] and note that A is idempotent if and only if L’AL 1is
idempotent.

10.39. The sum of the elements on the principal diagonal of a square matrix
A is called the trace of A and is denoted by tr A.
(a) If Bis n x m and C is m x n, prove that tr (BC) = tr (CB).
(b) If A is a square matrix and if L is an orthogonal matrix, use the result
of part (a) to show that tr (L’AL) = tr A.
(c) If A is a real symmetric idempotent matrix, use the result of part (b)
to prove that the rank of A is equal to tr A.
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10.40. Let A = [a;] be a real symmetric matrix. Prove that )" }" 4}, is equal to

the sum of the squares of the characteristic numbers of jA.
Hint: If L is an orthogonal matrix, show that ) ) a} =

tr (A?) = tr (L’A’L) = tr [(L’AL)(L’AL)]. i

10.41. Let X and S? denote, respectively, the mean and the variance of a

random sample of size n from a distribution which is N(0, ¢?).

(a) If A denotes the symmetric matrix of nX%, show that A = (1/n)P, where
P is the n x n matrix, each of whose elements is equal to one.

(b) Demonstrate that A is idempotent and that the tr A = 1. Thus nX?/¢?
is 2%(1).

(c) Show that the symmetric matrix B of nS?is I — (1/n)P.

(d) Demonstrate that B is idempotent and that tr B = n — 1. Thus n5?%/¢”
is y%(n — 1), as previously proved otherwise.

(e) Show that the product matrix AB is the zero matrix.

10.9 The Independence of Certain Quadratic Forms

We have previously investigated the independence of linear
functions of normally distributed variables (see Exercise 4.132). In this
section we shall prove some theorems about the independence of
quadratic forms. As we remarked on p. 483, we shall confine our
attention to normally distributed variables that constitute a random
sample of size n from a distribution that is N(0, ¢%).

Let X,, X3, ..., X, denote a random sample of size n from a
distribution which is N(0, o). Let A and B denote two real symmetric
matrices, each of order n. Let X’ = [X,, X;, . .., X,] and consider the
two quadratic forms X’AX and X'BX. We wish to show that these
quadratic forms are independent if and only if AB = 0, the zero matrix.
We shall first compute the m.g.f. M(1,, t,) of X'AX/o? and X'BX/d”.
We have

(T [
g ! —0o0 —

(tl X’Ax t;X'BX X'X
exp +

g

2 o’ 20
1 )n ] E. N on
o /2n/ J_, o ‘
x'(I—21A — 2t,B)x
exp| — g7

)dX| ‘ "dx,,.
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The matrix I — 24,A — 21,B is positive definite if we take |¢;]| and |z,
sufficiently small, say |t,] < h,, |t,] < h,, where h,, h, > 0. Then, as on
p. 483, we have

M(t,, 1) = [1 — 2t,A — 21,B|~'7, 6] < by, |t2] < hy.

Let us assume that X’AX/c> and X'BX/o? are independent (so that
likewise are X’AX and X'BX) and prove that AB = (. Thus we assume
that

M(1,, ;) = M(1,, 0)M(0, 1,) ¢))
for all ¢, and ¢, for which |t;] < h;, i = 1, 2. Identity (1) is equivalent to
the identity

I—20A—2LB=1-20AI1-20B|, |tl<h, i=1,2. 2

Let r > 0 denote the rank of A -and let g, a,, ..., a, denote the r
nonzero characteristic numbers of A. There exists an orthogonal
matrix L such that :

B a, 0_ "'O: 7
00 4 --- 0 10
! [
. . . 1
L'AL= | @ - =[-6“-:-g]=c
1 i
0 O a, :
i 0 0

for a suitable ordering of a,, a, . , a,. Then L’'BL may be written
in the identically partitioned form

] _D.

22
The identity (2) may be written as

L'BL = [Pl_'
IL'|L — 24,A — 26,B||L| = [L'[I — 24 AlIL|IL'|I — 25,B|[L|, (2')

A

- -

21

or as ¥
I —24,C — 26,D| = [I — 21,C||I — 21,D|. Q)

The coefficient of (—2¢,) in the right-hand member of Equation (3) is
seen by inspection to be g,a, - - - a,|I — 21,D). It is not so easy to find
the coefficient of (—2¢,) in the left-hand member of Equation (3).
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Conceive of expanding this determinant in terms of minors of order r
formed from the first r columns. One term in this expansion is the
product of the minor of order r in the upper left-hand corner, namely,
, — 2¢,C,, — 2t,D,,|, and the minor of order n — r in the lower
right-hand corner, namely, |I,_, — 2t,D,,|. Moreover, this product is
the only term in the expansion of the determinant that involves
(—2t,). Thus the coefficient of (—2t,)" in the left-hand member of
Equation 3)isa,a; - - - a,|1,_, — 2t,D,,|. If we equate these coefficients
of (—2t,), we have, for all 1,, |t,| < h,,

I —26,D| = [I,_, — 26,Dy,|. Q)

Equation (4) implies that the nonzero characteristic numbers of the
matrices D and D,, are the same (see Exercise 10.49). Recall that the
sum of the squares of the characteristic numbers of a symmetric matrix
is equal to the sum of the squares of the elements of that matrix (see
Exercise 10.40). Thus the sum of the squares of the elements of matrix
D is equal to the sum of the squares of the elements of D,,. Since the
elements of the matrix D are real, it follows that each of the elements
of D,,, D|,, and D,, is zero. Accordingly, we can write D in the form

Thus CD = L’ALL’BL = 0 and L’ABL = 0 and AB = 0, as we wished
to prove.

To complete the proof of the theorem, we assume that AB = 0. We
are to show that X’AX/c¢? and X’BX/¢? are independent. We have, for
all real values of ¢, and 1,,

ad—-24A)71-24,B)=1-—21,A — 21,B,
since AB = 0. Thus
I —2t,A — 26,B| = 1 — 2¢,A|[l — 21,B).
Since the m.g.f. of X’AX/a? and X’BX/a? is given by
M@, ) =1-20A=26B]""2, jtl<h, i=1,2,

we have
M(t, 1) = M(1,, 0)M(0, 1),

and the proof of the following theorem is complete.
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Theorem 3. Let Q, and Q, denote random variables which are
quadratic forms in the observations of a random sample of size n from
adistribution which is N(0, 6*). Let A and B denote, respectively, the real
symmetric matrices of Q, and Q,. The random variables Q, and Q, are
independent if and only if AB = 0.

Remark. Theorem 3 remains valid if the random sample is from a
distribution which is N(y, ¢?), whatever be the real value of u. Moreover,
Theorem 2 may be extended to quadratic forms in random variables that have
a joint multivariate normal distribution with a positive definite covariance
matrix V. The necessary and sufficient condition for the independence
of two such quadratic forms with symmetric matrices A and B then
becomes AVB=0. In our Theorem 2, we have V =d’l, so that
AVB = A¢’IB = ¢’AB = 0.

We shall next prove Theorem 1 that was stated in Section 10.1.

Theorem 4. Let Q=0+ -+ Qi_,+ Q, where Q,
Oi...,0k_1, Qrarek + 1 random variables that are quadratic forms
in the observations of a random sample of size n from a distribution which
is N(0, ¢?). Let Q/a* be xX(r), let Q;/a* be YX(r)),i= 1,2, ...,k —1,and
let Q, be nonnegative. Then the random variables Q,, Q,, ..., Qx are
independent and, hence, Q\/c* is Y (r=r —r,— - —rc_))-

Proof. Take first the case of k =2 and let the real symmetric
matrices of 0, Q,, and Q, be denoted, respectively, by A, A,, A,. We
are given that Q = Q, + Q,or, equivalently, that A = A, + A,. Weare
also given that Q/a? is ¥*(r) and that Q, /o is x*(r,). In accordance with
Theorem 2, p. 484, we have A’ = A and A? = A,. Since @, > 0, each
of the matrices A, A,, and A, is positive semidefinite. Because A’ = A,
we can find an orthogonal matrix L such that

If then we multipl;' both members of A = A, + A, on the lefi'by L’ and
on the right by L, we have

L'o
[-’--:-6] =L'AL + L'AL.

Now each of A, and A;, and hence each of L’A,L and L’A,L istpositive
semidefinite. Recall that, if a real symmetric matrix is positive
semidefinite, each element on the principal diagonal is positive or
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zero. Moreover, if an element on the principal diagonal is zero, then
all elements in that row and all elements in that column are zero. Thus
L’AL = L’A,L + L’A,L can be written as

0.0 0.,0f LO.0

Since A = A,, we have
G, |
(L,A|L)2 = LIAIL = [—[i' -:- -:I.

If we mulfiply both members of Equation (5) on the left by the matrix
L’A,L, we see that

BARRANEEN

Loo] Lo o 0 10/

or, equivalently, L'A,L = L’A,L + (L’A,L)(L’A,L). Thus (L'A,L) x
(L’A,L) = 0and A A, = 0. In accordance with Theorem 3, Q, and Q,
are independent. This independence immediately implies that Q,/c? is
x’(r, = r — r|). This completes the proof when k = 2. For k > 2, the
proof may be made by induction. We shall merely indicate how this
can be done ‘vby using k = 3. Take A = A, + A, + A;, where A? = A,
A’=A,, A2=A,, and A; is positive semidefinite. Write
A=A + (Az A=A+ B,, say. Now A2= A, A2=A,, and B, is
positive semldeﬁnlte In accordance with the case of k = 2, we have
AB, =0, so that B2 B,. With B, = A, + A,, where B =B,,
A= Az, it follows from the case of k = 2 that A;A; = 0 and Al = A,.

lf we regroup by writing'A = A, + (A, + A;), we obtain A A; = 0, and
SO on.

Remark. In our statement of Theorem 4 we took X,, X5,..., X, to be
observations of a random sample from a distribution which is N(0, ¢%). We
did this because our proof of Theorem 3 was restricted to that case. In fact,

if Q’, Q. ..., Q0;: are quadratic forms in any normal variables (including
multivariate normal variables), if Q' = Q|+ --- + O, if @', 07, ..., @i,
are central or noncentral chi-square, and if Q; is nonnegative, then 01, . . ., Oi

are mdcpendent and @ is either central or noncentral chi-square.

This section will conclude wnth a proof of a frequently quoted
theorem due to Cochran. ~
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Theorem 5. Let X, X,, .. .+ X, denote a random sample from a
distribution which is N(0, 6%). Let the sum of the squares of these
observations be written in the form

iH=Q+Qﬁ~~+g,

where Q; is a quadratic form in X,, X,, . . ., X,, with matrix A; which
hasrankr, j=1,2,..., k. The random variables Q,, Q,, . .., O, are
k

independent and Qj/a*is Y r),j=1,2,...,k, if and only if Z r=mn.
k n : k

Proof. First assume the two conditions Y r,=nand ) X; =) Q,
| | 1

to be satisfied. The latter equation implies that I=A, +
A,+---+ A, Let B,=1— A.. That is, B; is the sum of the matrices
A,, ..., A exclusive of A;. Let R, denote the rank of B;. Since the rank
of the sum of several matrices is less than or equal to the sum of the

k ,
ranks, we have R, <Y r,— r,= n —r,. However, I = A, + B;, so that
| | .

n<r,+R and n—r,< R, Hence R,=n—r;. The characteristic
numbers of B, are the roots of the equation |B; — Al = 0. Since
B, =1 — A,, thisequation can be written as [ — A; — AI| = 0. Thus we
have [A; — (1 — A)I| = 0. But each root of the last equation is one minus
a characteristic number of A,. Since B, has exactly n — R, =r,;
characteristic numbers that are zero, then A, has exactly r;characteristic
numbers that are equal to 1. However, r; is the rank of A;. Thus each
of the r, nonzero characteristic numbers of A;is 1. That is, A’ = A, and
thus Q,/6%is ¥’(r)),i = 1,2, . .., k. In accordance with Theorem 4, the
random variables Q,, Q,, . . ., O, are independent.
To complete the proof of Theorem S, take

;ﬁ=@+gﬁn~+g, ,
let 0,,0,,...,0, be independent, and let Q,/0* be x(r),

k k k n
j=1,2,...,k. Then ) Qj/e? is XZ(Z’rj). But } Q,/6* =) X}/o? is
’ k 1 ( 1 ! ‘ 1
x(n). Thus ) r; = n and the proof is complete.
. 1

EXERCISES

10.42. Let X,, X,, X; be a random sample from the normal distribution
N(0, ¢%). Are the quadratic forms X} + 3X,X,+ X;+ X, X; + X} and
X} —2X,X, + X2 — 2X, X; — X; independent or dependent?
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1043. Let X, X;,..., X, denote a. random sample of size n from a
distribution which is N(0, 6%). Prove that i X? and every quadratic form,
which is nonidentically zero in X, X,, . . .l, X,, are dependent.

10.44. Let X,, X,, X;, X, denote a random sample of size 4 from a
distribution which is N(0, ¢?). Let Y = ﬁ::aiX,-, where q,, a;, a,, and q, are

real constants. If Y? and Q = X, X, — X, X, are independent, determine a,,
a,, a3, and a,.

10.45. Let A be the real symmetric matrix of a quadratic form Q in the
observations of a random sample of size n from a distribution which is
N(0, 6%). Given that Q and the mean X of the sample are independent.
What can be said of the elements of each row (column) of A?

Hint: Are Q and X? independent?

10.46. Let A, A,,...,A, be the matrices of k> 2 quadratic forms
01, 0,, ..., Qi in the observations of a random sample of size n from a
distribution which is N(0, 7). Prove that the pairwise independence of these
forms implies that they are mutually independent.

Hint: Show .that AA; =0, i#j permits Elexp (4,0, +
L0, + - - - + 4.0,)] to be written as a product of the moment-generating
functions of Q,, Q,, ..., Ok

10.47. Let X' =[X,, X,,..., X,], where X, X,,..., X, are observations
of a random sample from a distribution which is N(0, ¢?). Let
b’ =[b,, b,, . . ., b,] be a real nonzero matrix, and let A be a real symmetric
matrix of order n. Prove that the linear form b’X and the quadratic form
X'AX are independent if and only if b’A = 0. Use this fact to prove that
b’X and X’AX are independent if and only if the two quadratic forms,
(b’X)> = X'bb’X and X'AX, are independent.

10.48. Let Q, and Q, be two nonnegative quadratic forms in the observations
of a random sample from a distribution which is N(0, ¢%). Show that
another quadratic form Q is independent of Q, + Q, if and only if Q is
independent of each of @, and Q;.

Hint: Consider the orthogonal transformation that diagonalizes the
matrix of Q, + Q,. After this transformation, what are the forms of the
matrices of Q, Q,, and Q, if Q and Q, + Q, are independent?

10.49. Prove that Equation (4) of this section implies that the nonzero
characteristic numbers of the matrices D and D,, are the same.
Hint: Let A = 1/(21,), t, # 0, and show that Equation (4) is equivalent
to|D — Al =(—4)Y|Dy — AL, _,|.

10.50. Here Q, and Q, are quadratic forms in observations of a random
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sample from N(0, 1). If O, and Q, are independent and if @, + Q, has a
chi-square distribution, prove that Q, and Q, are chi-square variables.

10.51. Often in regression the mean of the random variable Y is a linear
function of p-values x,, x,, ..., x,, say Bix; + B.x; + - - - + B,x,, where
B = (B, B, ..., B,) are the regression coefficients. Suppose that n values,
Y =(Y,Y,...,Y,), are observed for the x-values in X = (x;), where X
is an n X p design matrix and its ith row is associated with
Y,i=1,2,...,n Assume that Y is multivariate normal with mean Xp
and covariance matrix ¢’lI, where I is the i x n identity matrix.

(a) Note that Y,, Y,,..., Y, are independent. Why?

(b) Since Y should approximately equal its mean Xp, we estimate B by
solving the normal equations X'Y = X’Xp for p. Assuming that X'X is
nonsingular, solve the equations to get f = (X’X) 'X’Y. Show that
has a multivariate normal distribution with mean p and covariance
matrix ¢’(X'X)"".

(c) Show that

(Y — XB)(Y — XB) = B — BY(X'X)(B — B) + (Y — XB)'(Y — XP),
say Q = Q, + O, for convenience.

(d) Show that Q,/¢? is x*(p).

(e) Show that Q, and Q, are independent.

() Argue that Q,/a? is x’(n — p).

(2) Find c so that ¢Q,/Q, has an F-distribution.

(h) The fact that a value d can be found so that Pr (cQ,/Q, <d)=1—a
could be used to find a 100(1 — &) percent confidence ellipsoid for P.
Explain.

(i) If the coefficient matrix B has the prior distribution that is multivariate
normal with mean matrix f, and covariance matrix X,, what is the
posterior distribution of B, given f?

10.52. Say that G.P.A.(Y)is thought to be a linear function of a “coded™ high
school rank (x,) and a “coded” American College Testing score (x;),
namely, B, + B.x, + Bix;. Note that all x, values equal 1. We observe the
following five points:

X X, X3 Y
1 1 2 3
1 4 3 6
1 2 2 4
1 4 2 4
1 3 2 -4

(a) Compute X'X and § = (X'X)~'X'Y.
(b) Compute a 95 percent confidence ellipsoid for B’ = (8,, B, B3).

STUDENTS-HUB.com Uploaded By: anonymous



494 Inferences About Normal Models |Ch. 10

ADDITIONAL EXERCISES

10.53. Let u,, u,, u, be, respectively, the means of three normal distributions
with a common but unknown variance g% In order to test, at the a = 5
percent significance level, the hypothesis Hj: uy = u, = p; against all
possible alternative hypotheses, we take an independent random sample of
size 4 from each of these distributions. Determine whether we accept or
reject H, if the observed values from these three distributions are,
respectively,

X: 5 9 6 8
Xy 11 13 10 12
X, 10 6 9 9

10.54. The driver of a diesel-powered automobile decided to test the quality
of three types of diesel fuel sold in the area based on mpg. Test the null
hypothesis that the three means are equal using the following data. Make
the usual assumptions and take a = 0.05.:

Brand A: 38.7 39.2 40.1 389
Brand B: 41.9 423 41.3
Brand C: 40.8 41.2 39.5 389 403

10.55. We wish to compare compressive strengths of concrete corresponding
to a = 3 different drying methods (treatments). Concrete is mixed in batches
that are just large enough to produce three cylinders. Although care is
taken to achieve uniformity, we expect some variability among the b = 5
batches used to obtain the following compressive strengths. (There is little
reason to suspect interaction and hence only one observation is taken in

each cell.)
Batch
Treatment B, B, B B, B;
A, 52 47 44 51 42
A, 60 55 49 52 43

A, 56 48 45 44 38

(a) Use the 5 percent significance level and test H oz. =o= at3 =0
against all alternatives.

(b) Use the 5 percent significance level and test H, Bi=58=
B> = Bs = Bs = 0 against all alternatives.
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10.56. With a =3 and b =4, find g, «, B, and y,, if y;,i=1,2,3 and
j=1,2,3,4, are given by

6 7 7 12
10 3 11 8
8 5 9 10

10.57. Two experiments gave the fdllowing results:

n X y 5 S

100 10 20 5 8 0.70
200 12 22 6 10 0.80

Calculate r for the combined sample.

10.58. Consider the following matrices: Yisn x 1,Bisp x 1,Xisn x pand
of rank p. Let Y be N(XB, ¢°I). Discuss the joint p.d.f. of p = (X'X)"'X'Y
and YI — X(X'X)~'XTY/c.

10.59. Fit y = a + x to the data

by the method of least squares.

10.60. Fit by the method of least squares the plane z = a + bx + cy to the
ﬁVC pOiﬂtS (x’ ¥y, Z): (_ l’ _21 5), (05 _25 4): (0! 03 4)5 (1, 0, 2)’ (2! 1, 0)-

10.61. Let the 4 x 1 matrix Y be multivariate normal N(XB, ¢’I), where the
4 x 3 design matrix equals

11 2
1 —1 2
X=1, o -3
I 0 -1

and B is the 3 x | regression coefficient matrix. A
(a) Find the mean matrix and the covariance matrix of § = X'X)"'X'Y.
(b) If we observe Y’ to be equal to (6, 1, 11, 3), compute P.

10.62. Let the independent normal random variables Y,, Y5, ..., Y, have,
respectively, the probability density functions N(u, y’x?), i=1,2,...,n,
where the given x,, x,, . . ., X, are not all equal and no one of which is zero.

Discuss the test of the hypothesis H,:y = 1, u unspecified, against all
alternatives H, : y # 1, # unspecified.
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10.63. Let Y,, Y,, ..., Y, be nindependent normal variables with common
unknown variance o’ Let Y; have mean fx;, i=1,2,...,n, where
Xy, X3, ..., X, are known but not all the same and f is an unknown
constant. Find the likelihood ratio test for H,: =0 against all
alternatives. Show that this likelihood ratio test can be based on a statistic
that has a well-known distribution.

10.64. Consider the multivariate normal p.d.f. f(x; p, £) where the known
parameters equal either p,, I, or p,, X,, respectively.
(a) IfX, = L,is known to equal X, classify X as being in the second of these
distributions if

f(x; my, X) <k
Sfx; ny, X) -
otherwise, X is classified as being from the first distribution. Show that

this rule is based upon a linear function of X and determine its
distribution. This allows us to compute the probabilities, of

misclassification.
(b) If £, and I, are different but known, show that
T Tp >
fx;p, E)) <k
f(x'; "29 z2)

can be based upon a second degree polynomial in X. When either E,
or L, is the correct covariance matrix, does this expression have a
chi-square distribution?
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CHAPTER 1 ]. |

Nonparametric

Methods

11.1 Confidence Intervals for Distribution Quantiles

We shall first define the concept of a quantile of a distribution of
a random variable of the continuous type. Let X be a random variable
of the continuous type with p.d.f. f(x) and distribution function F(x).
Let p denote a positive proper fraction and assume that the equation
F(x) = p has a unique solution for x. This unique root is denoted by
the symbol £, and is called the quantile (of the distribution) of order
p. Thus Pr (X < £,) = F(¢,) = p. For example, the quantile of order 3
is the median of the distribution and Pr (X < &y5) = F(&ys) = 3.

In Chapter 6 we computed the probability that a certain random
interval includes a special point. Frequently, this special point was a
parameter of the distribution of probability under consideration.
Thus we are led to the notion of an interval estimate of a parameter.
If the parameter happens to be a quantile of the distribution, and if we
work with certain functions of the order statistics, it will be seen that
this method of statistical inference is applicable to all distri-

497
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