# Fundamentals Physics Tenth Edition

Halliday

# Chapter 10\_2

Rotation

STUDENTS-HUB.com

10-3 Relating the Linear and Angular Variables, Example on Module 10 - 3

An astronaut is tested in a centrifuge with radius 10 m and rotating according to  $\vartheta$  = 0.30 $t^2$ . At t = 5.0 s, what are the magnitudes of the:

(a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?

(a) Using Eq. 10-6, the angular velocity at t = 5.0s is  $\omega = \frac{d\theta}{dt}\Big|_{t=50} = \frac{d}{dt} (0.30t^2)\Big|_{t=50}$ 

(b) Equation 10-18 gives the linear speed at t = 5.0s:  $v = \omega r = (3.0 \text{ rad/s})(10 \text{ m}) = 30 \text{ m/s}.$ 

(c) We find first the angular acceleration ( $\alpha$ , because  $a_t = r\alpha$ ) from Eq. 10-8,

$$\alpha = \frac{d\omega}{dt} = \frac{d}{dt}(0.60t) = 0.60 \text{ rad}/\text{s}^2.$$

Then, the tangential acceleration at t = 5.0 s is, using Eq. 10-22,

$$a_t = r\alpha = (10 \text{ m}) (0.60 \text{ rad/s}^2) = 6.0 \text{ m/s}^2.$$

(d) The radial (centripetal) acceleration is given by Eq. 10-23:  $a_r = \omega^2 r = (3.0 \text{ rad/s})^2 (10 \text{ m}) = 90 \text{ m/s}^2$ .

#### STUDENTS-HUB.com







# **10-4 Kinetic Energy of Rotation** (2 of 6)

• Apply the kinetic energy formula for a point particle and sum over all the particles

$$K = \sum \frac{1}{2} m_i v_i^2$$

- different linear velocities (same angular velocity for all particles but possibly different radii )
- Then write velocity in terms of angular velocity:

$$K = \sum \frac{1}{2} m_i (\omega r_i)^2 = \frac{1}{2} (\sum m_i r_i^2) \omega^2$$
, Equation (10-32)

We call the quantity in parentheses on the right side the **rotational inertia**, or **moment of inertia**,  $I = \sum m_i r_i^2$  (rotational inertia)

Copyright ©2018 John Wiley & Sons, Inc

Uploaded By: anonymous

# **10-4 Kinetic Energy of Rotation** (3 of 6)

- It is a constant for a rigid object and given rotational axis
- Caution: the axis for *I* must always be specified:

 $I = \sum m_i r_i^2$  (rotational inertia) Equation (10-33)

Copyright ©2018 John Wiley & Sons, Inc

STUDENTS-HUB.com

Uploaded By: anonymous

# **10-4 Kinetic Energy of Rotation** (4 of 6)

• And rewrite the kinetic energy as:

 $K = \frac{1}{2}I\omega^2$  (radian measure) Equation (10-34)

- Use these equations for a finite set of rotating particles
- Rotational inertia corresponds to how difficult it is to change the state of rotation (speed up, slow down or change the axis of rotation)

Copyright ©2018 John Wiley & Sons, Inc

# **10-4 Kinetic Energy of Rotation** (5 of 6)



Copyright ©2018 John Wiley & Sons, Inc

# **10-4 Kinetic Energy of Rotation** (6 of 6)

#### **Checkpoint 4**

The figure shows three small spheres that rotate about a vertical axis. The perpendicular distance between the axis and the center of each sphere is given. Rank the three spheres according to their rotational inertia about that axis, greatest first.



#### Answer:

They are all equal!

Copyright ©2018 John Wiley & Sons, Inc

STUDENTS-HUB.com

Example on module 10-4:

What is I of a wheel with K of 24400 J, rotating at 602 rev/min?

$$\omega = \frac{(602 \text{ rev/min})(2\pi \text{ rad/rev})}{60 \text{ s/min}} = 63.0 \text{ rad/s},$$

$$K = \frac{1}{2} I \omega^2$$
,  $\Rightarrow I = \frac{2K}{\omega^2} = \frac{2(24400 \text{ J})}{(63.0 \text{ rad/s})^2} = 12.3 \text{ kg} \cdot \text{m}^2$ .

STUDENTS-HUB.com

# 10-5 Calculating the Rotational Inertia (2 of 8)

• Integrating Equation.10-33 over a continuous body:

 $I = \int r^2 dm$  (rotational inertia, continuous body). Equation (10-35)

- In principle we can always use this equation
- But there is a set of common shapes for which values have already been calculated (Table 10-2) for common axes



STUDENTS-HUB.com

### **10-5 Calculating the Rotational Inertia** (4 of 8)

• If we know the moment of inertia for the **center of mass** axis, we can find the moment of inertia for a parallel axis with the **parallel-axis theorem**:

 $I = I_{\rm com} + Mh^2$  Equation (10-36)

Copyright ©2018 John Wiley & Sons, Inc

- Note the axes must be parallel, and the first must go through the center of mass
- This does not relate the moment of inertia for two arbitrary axes

We need to relate the rotational inertia around the axis at *P* to that around the axis at the com.



Uploaded By: anonymous

### **10-5 Calculating the Rotational Inertia** (6 of 8)

#### Checkpoint 5

The figure shows a book-like object (one side is longer than the other) and four choices of rotation axes, all perpendicular to the face of the object. **Rank** the choices according to the **rotational inertia** of the object about the **axis**, **greatest** first.



#### Answer:

(1), (2), (4), (3)

### **10-5 Calculating the Rotational Inertia** (7 of 8)

**Example (10.6)** (a) What is the rotational inertia  $I_{\text{com}}$  about an axis through the center of mass, perpendicular to the rod as shown?  $I = \sum m_{e} T_{1}^{2} = (m) (\frac{1}{2}L)^{2} + (m) (\frac{1}{2}L)^{2}$ 

$$= \frac{1}{2}mL^2.$$

(b) Calculate the moment of inertia for 2<sup>nd</sup> Figure

• Summing by particle:

$$I=m(0)^2+mL^2=mL^2.$$



$$I = I_{com} + Mh^2 = \frac{1}{2}mL^2 + (2m)(\frac{1}{2}L)^2$$
  
= mL<sup>2</sup>.

Copyright ©2018 John Wiley & Sons, Inc





STUDENTS-HUB.com

### **10-5 Calculating the Rotational Inertia** (8 of 8)



Copyright ©2018 John Wiley & Sons, Inc



#### Sample Problem 10.07 Rotational inertia of a uniform rod, integration

(b) What is the rod's rotational inertia *I* about a new rotation axis that is perpendicular to the rod and **through the left end?** 

$$I = I_{\text{com}} + Mh^2 = \frac{1}{12}ML^2 + (M)(\frac{1}{2}L)^2$$
  
=  $\frac{1}{3}ML^2$ . (Answer)

STUDENTS-HUB.com

# **10-6 Torque** (3 of 6)

- The force necessary to rotate an object depends on the angle of the force and where it is applied
- We can resolve the force into components to see how it affects rotation



Copyright ©2018 John Wiley & Sons, Inc

STUDENTS-HUB.com

# **10-6 Torque** (4 of 6)

• Torque takes these factors into account:

 $\tau = (r)(F \sin \phi).$  Equation (10-39)

- A line extended through the applied force is called the **line of action** of the force
- The perpendicular distance from the line of action to the axis is called the **moment arm**
- The unit of torque is the newton-meter, N m
- Note that 1 J = 1 N m, but torques are never expressed in joules, torque is not energy



### **10-6 Torque** (5 of 6)

- Again, torque is positive if it would cause a counterclockwise rotation, otherwise negative
- For several torques, the **net torque** or **resultant torque** is the sum of individual torques

### **10-6 Torque** (6 of 6)

#### **Checkpoint 6**

The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20 cm). All five forces on the stick are horizontal and have the same magnitude. **Rank** the forces according to the **magnitude of the torque** they produce, **greatest** first.



**Answer:** *F*<sub>1</sub> & *F*<sub>3</sub>, *F*<sub>4</sub>, *F*<sub>2</sub> & *F*<sub>5</sub>

### **10-7 Newton's Second Law for Rotation** (2 of 3)

• Rewrite F = ma with rotational variables:

 $\tau_{\rm net} = I \alpha$  Equation (10-42)

• It is torque that causes angular acceleration

The torque due to the tangential component of the force causes an angular acceleration around the rotation axis.



Copyright ©2018 John Wiley & Sons, Inc

Uploaded By: anonymous

STUDENTS-HUB.com

### **10-7 Newton's Second Law for Rotation** (3 of 3)

#### **Checkpoint 7**

The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is to the left of the stick's midpoint. Two horizontal forces,  $\overline{F_1}$  and  $\overline{F_2}$ , are applied to the stick. Only  $\overline{F_1}$  is shown. Force  $\overline{F_2}$  is perpendicular to the stick and is applied at the right end. If the stick is not to turn, (a) what should be the direction of  $\overline{F_2}$ , and (b) should  $F_2$  be greater than, less than, or equal to  $F_1$ ?

#### Answer:

Pivot point  $\vec{F}_1$ 

- (a)  $F_2$  should point downward, and
- (b) should have a smaller magnitude than  $F_1$

### **10-8 Work and Rotational Kinetic Energy** (2 of 5)

• The rotational work-kinetic energy theorem states:

$$\Delta K = K_f - K_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W$$
 Equation (10-52)

• The work done in a rotation about a fixed axis can be calculated by:

$$W = \int_{\theta_i}^{\theta_f} \tau d\theta \qquad \qquad \text{Equation (10-53)}$$

• Which, for a constant torque, reduces to:

$$W = \tau \left( \theta_f - \theta_i \right)$$
 Equation (10-54)

Copyright ©2018 John Wiley & Sons, Inc

### **10-8 Work and Rotational Kinetic Energy** (3 of 5)

• We can relate work to power with the equation:

$$P = \frac{dW}{dt} = \tau\omega \qquad \qquad \text{Equation (10-55)}$$

• Table 10-3 shows corresponding quantities for linear and rotational motion:

## **10-8 Work and Rotational Kinetic Energy** (4 of 5)

#### Table 10-3 Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)

**Pure Rotation (Fixed Axis)** 

| Position            | x                   | Angular position     | θ                             |
|---------------------|---------------------|----------------------|-------------------------------|
| Velocity            | $v = \frac{dx}{dt}$ | Angular velocity     | $\omega = \frac{d\theta}{dt}$ |
| Acceleration        | $a = \frac{dv}{dt}$ | Angular acceleration | $\alpha = \frac{d\omega}{dt}$ |
| Mass                | m                   | Rotational inertia   | Ι                             |
| Newton's second law | $F_{\rm net}=ma$    | Newton's second law  | $\tau_{\rm net} = I\alpha$    |
| Work                | $W = \int F  dx$    | Work                 | $W = \int \tau \ d\theta$     |

# **10-8 Work and Rotational Kinetic Energy** (5 of 5)

| Pure Translation (Fixed Direction) |                       | Pure Rotation (Fixed Axis)  |                            |
|------------------------------------|-----------------------|-----------------------------|----------------------------|
| Kinetic energy                     | $K = \frac{1}{2}mv^2$ | Kinetic energy              | $K = \frac{1}{2}I\omega^2$ |
| Power (constant force)             | P = Fv                | Power (constant<br>torque)  | $P = \tau \omega$          |
| Work-kinetic energy theorem        | $W = \Delta K$        | Work-kinetic energy theorem | $W = \Delta K$             |

Copyright © 2018 John Wiley & Sons, Inc. All rights reserved.