AN ‘@5 el

BIRZEIT UNIVERSITY

Queues

Dr. Abdallah Karakra

Computer Science Department
COMP242

Wednesday, May 17, 2023

Review

A stack Is a last in, first out (LIFO) data
structure

— ltems are removed from a stack in the reverse
order from the way they were inserted

What about Queue?

Wednesday, iday 17, 2023 Abdallah Karakra

Queue

A queue Is a first in, first out (FIFO) data
structure

— Items are removed from a queue in the same
order as they were inserted

(First item inserted Is the first item removed,
second inserted Is second removed, third Is
third, etc.) S e

Wednesday, iday 17, 2023 Abdallah Karakra

Some Everyday Queues

Wednesday, iday 17, 2023 Abdallah Karakra

Queues In computer science

1 Operating systems:
« gueue of print jobs to send to the printer

O Programming:
« modeling a line of customers or clients
 storing a queue of computations to be performed in order

U Real world examples:
« people on an escalator or waiting in a line
« cars at a gas station (or on an assembly line)

Wednesday, iday 17, 2023 Abdallah Karakra

Operation
enqueue(’)
enqueue(3)
dequeue()
enqueue(7)
dequeue()
front()
dequeue()
dequeue()
isEmpty()
enqueue(9)
enqueue(7)
size()
enqueue(3)
enqueue(5)
dequeue()

Queue Example

Output

0
()

(S, 3)
(3)
(3,7)
(7)

(7)

()

()

()

(9)
(9,7)
(9,7)
(9,7, 3)
9,7,3,5)

Operations

* add (enqueue): Add an element
to the back.

* remove (dequeue): Remove the
front element.

“ peek() or front(): Examine the
front element

* ISEmpty()

(7,3,53)

Abdallah Karakra

Wednesday, iday 17, 2023

Array implementation of queues

A queue is a first in, first out (FIFO) data structure

4 This is accomplished by inserting at one end (the rear) and
deleting from the other (the front)

R

front = -1 o 1 2 3 4 5 6 7

rear = -1

e/

Empty queueArray

If (front==-1 && rear == -1) // Empty queue

Wednesday, iday 17, 2023 Abdallah Karakra

Array implementation of queues

d Enqueue (17)

One Element Inside queueArray
rear = 0

Wednesday, iday 17, 2023 Abdallah Karakra

Array implementation of queues

d Enqueue (17)
d Engqueue (23)

o 1 2 3 4 5 6 7

f Two Elements Inside queueArray

Wednesday, iday 17, 2023 Abdallah Karakra

Array implementation of queues

nqueue (17)
d Enqueue (23)
d Enqueue (97)
d Enqueue (44)

% 1 2 3 4 5 b [
17 | 23 | 97 | 44 QueueArray

front = © —j L rear = 3

U To insert: put new element in location 4, and set rear to 4
U To delete: take element from location O, and set front to 1

Wednesday, iday 17, 2023 Abdallah Karakra

front = © rear =
R i
Initial queue: 17 | 23 | 97 | 44
After insertion: | 17 | 23 | 97 | 44 | 333
After deletion: 23 | 97 | 44 | 333
front 1 —j L rear =

Wednesday, iday 17, 2023

Array implementation of queues

Abdallah Karakra

Array implementation of queues

23 | 97 | 44 (333

front = 1 J L

rear

7

Suppose we need to add 11,
22,
33,
44 to this queue

 Notice how the array contents “crawl” to the right as elements are
Inserted and deleted

 This will be a problem after a while!

Wednesday, iday 17, 2023 Abdallah Karakra

Implementation of queues: Circular
arrays

 We can treat the array holding the queue elements as circular
(joined at the ends)

44 | 23 | 97 | 44 |333 |11 | 22 | 33 | queueArray

rear = @ _-——j

front = 1

« Elements were added to this queue in the order 11, 22, 33, 44 and
will be removed in the same order

« Use: front = (front + 1) % queueArray.length;
and: rear = (rear + 1) % queueArray.length;

Wednesday, iday 17, 2023 Abdallah Karakra

Implementation of queues: Circular

arrays

 We can treat the array holding the queue elements as
circular (joined at the ends)

r N
|I Ill
_+ @ 1 2 3 4 5 6 S
44 | 23 | 97 | 44 |333 |11 | 22 | 33 | queueArray
rear = @ _-——j
front = 1

If ((rear+1) % queueArray.length ==front) // Full queue

Wednesday, iday 17, 2023 Abdallah Karakra

Queue: Array-Based Implementation

Queue Class

public class Queue ({
private int front;
private int rear;
private int maxSize; //queueArray size
private Object [] queueArray;

public Queue (int maxSize) {

front=rear=-1; //empty queue
this.maxSize=maxSize;
queueArray= new Object [maxSize];

}
/* Methods go here */

Wednesday, iday 17, 2023 Abdallah Karakra

Queue: Array-Based Implementation

public void enQueue (Object element) ({
if (isFull())
System.out.println ("Queue 1is full");
else if (isEmpty()) {

front++;
rear++;
queueArray[rear] = element;
}
else
{
rear = (rear + 1) % maxSize;
queueArray[rear] = element;

Wednesday, iday 17, 2023 Abdallah Karakra

Queue: Array-Based Implementation

public Object deQueue() {
Object element = null;
if (isEmpty())
System.out.println ("Queue 1is empty"),

else if (front == rear)

{
element = queueArray[front];
front = rear = -1;

}

else {
element = queueArray|[front];
front = (front + 1) % maxSize;

}

return element;

Wednesday, iday 17, 2023 Abdallah Karakra

Queue: Array-Based Implementation

public boolean isEmpty () {// return true if the queue is empty

return (front==-1 && rear==-1);

}

public boolean isFull(){ // return true if the queue is full
return ((rear+l)$% maxSize == front);

}

Wednesday, iday 17, 2023 Abdallah Karakra

Queue: Array-Based Implementation

public Object front() {//returns front
if (isEmpty()) {

System.out.println ("Error: cannot return front from empty queue') ;
return null;

return queueArray|[front];

Wednesday, iday 17, 2023 Abdallah Karakra

Queue implementation: H.W

| Kow | CAY FuL
THE AUSWER

You have one week to do the following

O Write a java function called print, to print the elements in queue
from front to rear.

public void print();

Hint:

1. You have to find number of elements in queue
2. Use the formula (front+i) % maxSize (circularly form)

Q Write a java function called clear, to clear the queue.

Public void clear ();

Wednesday, iday 17, 2023 Abdallah Karakra

Queue- Linked list Implementation

Recall:
Queue is a list with the restriction that insertion can be performed at one end
(rear) and deletion can be performed at other end (front).

L L i
00
\/ joo 200 300
2 (100 —> | 4-|aP| —> [& | O g
Normal 3
implementation |1. Cost of insertion/ removal at head side is O(1) .
of linked list 2. Cost of insertion/ removal at tail side is O(n) .

Wednesday, iday 17, 2023 Abdallah Karakra

Queue- Linked list Implementation

Recall:

enqueue
dequeue
front

isEmpty

= Should take a constant time O(1)

From the previous figures and in normal implementation of the linked list:
1. Cost of insertion/ removal at head side is O(1) .
2. Cost of insertion/ removal at tail side is O(n) .

The requirement both of these operations must take a
constant time O(1)

Wednesday, iday 17, 2023 Abdallah Karakra

Queue- Linked list Implementation

A list with the restriction that insertion can be performed at one end (rear) and
deletion can be performed at other end (front).

(o0 4S°l back(tail)
d pointer in the
Voo 200 300 350 bso linked list
2 [P —> | F-|aR| —> | & [5°| —> | F[9%°| —> |9 O—_I_
(/ .
"

" -

ge%ueue, s DEE)
Enquexe - o(L)

Wednesday, iday 17, 2023 Abdallah Karakra

Queue- Linked list Implementation

Node class

public class Node {
public Object element;
public Node next;

public Node (Object element) {
this (element, null);

J

public Node (Object element, Node next) {
this.element = element;
this.next = next;

Wednesday, iday 17, 2023 Abdallah Karakra

Queue- Linked list Implementation

Linked List class
public class LinkedListQueue {

private Node front, rear;

public LinkedListQueue () {
front = rear = null;

/* Methods go here */

Wednesday, iday 17, 2023 Abdallah Karakra

Queue implementation: H.W

| Kow | CAY FuL
THE AUSWER

You have one week to do the following

O Write a java code to implement all the following queue functions
based on Link list.

enqueue
dequeue
front

isEmpty

Make sure the time for the above functions should be a constant time O(1)

Hint:

You have to use two references one points to the front of the list called front

and the other points to the tail of the list called rear (or vice versa based on your
Implementation).

Wednesday, iday 17, 2023 Abdallah Karakra

O Which data structure represents a waiting line and limits insertions to be made at the

Extra Exercises

back of the data structure and limits removals to be made from the front?

a. Stack.

b. Queue.

c. Binary tree.
d. Linked list.

O Fill the table below (Efficiency of the Queue Implementations)

Array Queue

Linked List Queue

enqueue

o (1)

0 (1)

dequeue

peek() Or front()

Space efficiency

Wednesday, iday 17, 2023

Abdallah Karakra

Extra Exercises

O Consider the following sequence of Queue operations:
enqueue(d), enqueue(h), dequeue(), enqueue(f), enqueue(s), dequeue(), dequeue(),

enqueue(m).

Assume the Queue is initially empty, what is the sequence of dequeued values, and
what would be the final state of the queue? (Identify which end is the front of the queue.)

Wednesday, iday 17, 2023 Abdallah Karakra

Question?

“Success is the sum of small efforts, repeated day in and day out.”
Robert Collier

Wednesday, iday 17, 2023 Abdallah Karakra

References:
1. Dr.David G. Sullivan Lecture Notes
2. Anwar Mamat Lecture Notes
3. Marty Stepp and Hélene Martin Lecture Notes

Wednesday, iday 17, 2023 Abdallah Karakra

	Slide 1: Queues
	Slide 2: Review
	Slide 3: Queue
	Slide 4: Some Everyday Queues
	Slide 5: Queues in computer science
	Slide 6: Queue Example
	Slide 7: Array implementation of queues
	Slide 8: Array implementation of queues
	Slide 9: Array implementation of queues
	Slide 10: Array implementation of queues
	Slide 11: Array implementation of queues
	Slide 12: Array implementation of queues
	Slide 13: implementation of queues: Circular arrays
	Slide 14: implementation of queues: Circular arrays
	Slide 15: Queue: Array-Based Implementation
	Slide 16: Queue: Array-Based Implementation
	Slide 17: Queue: Array-Based Implementation
	Slide 18: Queue: Array-Based Implementation
	Slide 19: Queue: Array-Based Implementation
	Slide 20
	Slide 21: Queue- Linked list Implementation
	Slide 22: Queue- Linked list Implementation
	Slide 23: Queue- Linked list Implementation
	Slide 24: Queue- Linked list Implementation
	Slide 25: Queue- Linked list Implementation
	Slide 26
	Slide 27: Extra Exercises
	Slide 29: Extra Exercises
	Slide 30: Question?
	Slide 31: References: 1. Dr.David G. Sullivan Lecture Notes 2. Anwar Mamat Lecture Notes 3. Marty Stepp and Hélène Martin Lecture Notes

