
 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP232

Data Structure

Lectures Note: Algorithms

Prepared by: Dr. Mamoun Nawahdah

2016/2017

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Math Review

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

What is an Algorithm?

Definition:

 Algorithm is a finite list of well-defined instructions for

accomplishing some task that, given an initial state, will

terminate in a defined end-state.

Euclid’s Algorithm (300BC)

 Used to find Greatest common divisor (GCD) of two positive integers.

 GCD of two numbers, the largest number that divides both of them

without leaving a remainder.

Euclid’s Algorithm:

o Consider two positive integers ‘m’ and ‘n’, such that m>n

o Step1: Divide m by n, and let the reminder be r.

o Step2: if r=0, the algorithm ends, n is the GCD.

o Step3: Set, mn, nr , go back to step 1 .

Implement this iteratively and recursively

public static int iteratively (int m, int n){
 int r = m % n;
 while (r != 0) {
 m = n;
 n = r;
 r = m % n;
 }
 return n;
}

public static int recursively(int m, int n) {
 if (n==0)
 return m;
 return recursively(n, m % n);
 }

Why Algorithms?

o Gives an idea (estimate) of running time.

o Help us decide on hardware requirements.

o What is feasible vs. what is impossible.

o Improvement is a never ending process.

Correctness of an Algorithm:

 Must be proved (mathematically)

Step1: statement to be proven.

Step2: List all assumptions.

Step3: Chain of reasoning from assumptions to the statement.

 Another way is to check for incorrectness of an algorithm.

Step1: give a set of data for which the algorithm does not work.

Step2: usually consider small data sets.

Step3: Especially consider borderline cases.

Born: Uzbekistan

Died: 850 AD, Baghdad, Iraq

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

Recursion

Definition:

 A function that calls itself is said to be recursive.

 A function f1 is also recursive if it calls a function f2, which under some circumstances calls

f1, creating a cycle in the sequence of calls.

 The ability to invoke itself enables a recursive function to be repeated with different

parameter values.

 You can use recursion as an alternative to iteration (looping).

The Nature of Recursion:

Problems that lend themselves to a recursive solution have the following characteristics:

 One or more simple cases of the problem have a straightforward, non-recursive solution.

 The other cases can be redefined in terms of problems that are closer to the simple cases.

 By applying this redefinition process every time the recursive function is called, eventually

the problem is reduced entirely to the simple case(s), which are relatively easy to solve.

The recursive algorithms will generally consist of an “if statement” with the following form:

if this is a simple case

 solve it

else

 redefine the problem using recursion

Illustration:

Example:

Solve the problem of multiplying 6 by 3, assuming we only know addition:

 Simple case: any number multiplied by 1 gives us the original number.

 The problem can be split into the two problems:

1. Multiply 6 by 2.
1.1 Multiply 6 by 1.
1.2 Add (Multiply 6 by 1) to the result of problem 1.1.

2. Add (Multiply 6 by 1) to the result of problem 1.

Implement this recursively

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

Tracing a Recursive Function:

 Tracing an algorithm’s execution provides us with valuable insight into how that algorithm works.

 By drawing an activation frame corresponding to each call of the function.

 An activation frame shows the parameter values for each call and summarizes the execution of the

call.

multiply(6, 3):

Recursive Mathematical Functions:

 Many mathematical functions can be defined recursively.

 An example is the factorial of n (n!):

 0! is 1

 n! is n * (n 1)! , for n> 0

 Thus 4! is 4 *3!, which means 4 *3 *2 *1, or 24.

Implement this iteratively and recursively

Tracing the recursive function

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

Fibonacci Numbers:

 Leonardo Bonacci (1170 –1250)

• Problem:

– How many pairs of rabbits are alive in month n?

• Recurrence relation:

 rabbit(n) = rabbit(n-1) + rabbit(n-2)

 The Fibonacci sequence is defined as:

 Fibonacci 0 is 1

 Fibonacci 1 is 1

 Fibonacci n is Fibonacci n 2 + Fibonacci n 1, for n>1

Implement this recursively

Poor Solution to a Simple Problem:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

Why is this inefficient? Try F6

Self-Check:

 Write and test a recursive function that returns the value of the following recursive definition:

 f(x) = 0 if x = 0

 f(x) = f(x - 1) + 2 otherwise

What set of numbers is generated by this definition?

Design Guidelines:

 Method must be given an input value.

 Method definition must contain logic that involves this input, leads to different cases.

 One or more cases should provide solution that does not require recursion.

 else infinite recursion

 One or more cases must include a recursive invocation.

Stack of Activation Records:

 Each call to a method generates an activation record.

 Recursive method uses more memory than an iterative method.

 Each recursive call generates an activation record.

 If recursive call generates too many activation records, could cause stack overflow.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Recursively Processing an Array:

Starting with array[first]:

Starting with array[last]:

Processing array from middle:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

Tower of Hanoi
Simple Solution to a Difficult Problem:

Rules:

 Move one disk at a time. Each disk moved must be topmost disk.

 No disk may rest on top of a disk smaller than itself.

 You can store disks on the 2nd pole temporarily, as long as you observe the previous two rules.

Tower of Hanoi flash @ https://www.mathsisfun.com/games/towerofhanoi.html

Sequence of moves for solving the Towers of Hanoi problem with three disks:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

The Tower of Hanoi problem can be decomposed into three sub-problems.

 Move the first n-1 disks from A to C with the assistance of tower B.

 Move disk n from A to B.

 Move n-1 disks from C to B with the assistance of tower A.

Solutions:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

Analysis of Algorithms
Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to

determine how much in the way of resources, such as time or space, the algorithm will require.

 Space Complexity  memory and storage are very cheap nowadays. 

 Time Complexity  Different platforms  different time. Absolute time is hard to measure as it

depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc.

time is not good measurement. Number of steps is a better one.

Example:

• Consider the problem of summing

Come up with an algorithm to solve this problem.

Counting Basic Operations

• A basic operation of an algorithm is the most significant contributor to its total time requirement.

How to calculate the time complexity?

 Measure execution time.  Algorithm for small data size will take small time comparing to a large data.

 Calculate time required for an algorithm in terms of the size of input data.  Does not work as the

same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time

 Determine order of growth of an algorithm with respect to the size of input data. 

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

Order of time or growth of time:

Go back to summing result

In term of time complexity, we say that algorithm C is better than A and B

Types of Time Complexity

 Best case analysis  too optimistic

 Average case analysis  too complex (statistical methods)

 Worst case analysis  it will not exceed this

RAM model of computation

We assume that:

 We have infinite memory

 Each operation (+,-,*,/,=) takes 1 unit of time

 Each memory access takes 1 unit of time

 All data is in the RAM

Linear
growth

Quadratic
growth

Constant
growth

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

13

Bubble Sort:

1. Each two adjacent elements are compared:

2. Swap with larger elements:

3. Move forward and swap with each larger item:

4. If there is a lighter element, then this item begins to bubble to the surface:

5. Finally the smallest element is on its place:

Make a demo using the following data set

12 8 7 5 2

After 1st round:

8 7 5 2 12

Worst case

analysis

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

14

After 2nd round:

7 5 2 8 12

For whole sorting algorithm: 16+12+8+4 for a data size of 5 elements:

= 4 (4 + 3 + 2 + 1) = 4 (n-1 + n-2 + …. + 2 + 1) = 4 (n-1*n/2) =

2 * n * (n-1)  pn2 + qn + r  p, q, and r are some constant.

Implement and test effectiveness of bubble sort algorithm

for (int i = 0; i < arr.length-1; i++) {
 for (int j = 0; j <arr.length-i-1 ; j++) {
 if(arr[j+1]<arr[j]){
 temp = arr[j];
 arr[j] = arr[j+1];
 arr[j+1] = temp;
 }
 }
}

i=0
i=1

:
:

i=n-1

j=n-1
j=n-2

:
:

j=0

n-1
n-2

:
:
1

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

15

The Big-O Notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to

find an upper bond for this function T(n). Consider a function c1n2  never over take T(n)

C2n2 such that its greater than T(n) for n>n0 . In this case we say that C2n2 is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

Big Oh O(n2): f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cn2 for all n ≥ n0

In general

O(g(n)) : f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

Example 1:

5n2 + 6  O(n2) ??? 
Find cn2  c=6 and n0=3

 c=5.1 n0=8

Example 2:

5n + 6  O(n2) ??? 
Find cn2  c=11 and n0=1

Example 3:

n3 + 2n2 + 4n + 8  O(n2) ??? 
Find cn2 ≥ n3 + 2n2 + 4n + 8 ??? 

What does it mean?

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

16

Array element access:

Array element search:

Bubble sort algorithm:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

17

Asymptotic Analysis
Asymptotic (مقارب) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer

scientists who must determine if a particular algorithm is worth considering for implementation.

 The critical resource for a program is -most often- running time.

 The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its

input grows.

o cn (for c any positive constant)  linear growth rate or running time.

o n2
  quadratic growth rate

o 2n
  exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the

algorithm must perform at least that well.

Example:

Assume: Algorithm A: time = 15n + 93

 Algorithm B: time = 2n2 + 1 which is faster?

Graph using Excel

We are interested for large n

* For sufficiently large n, algorithm A is faster

* In the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or

highest growth rate that the algorithm can have.  big-O notation.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

18

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist

two positive constants c and n0 such that T(n) ≤ cf(n) for all n > n0.

 Prove that 15n + 93 is O(n)

We must show +ve c and n0 such that 15n + 93 ≤ c(n) for n ≥ n0

<provided n= 93>  15n+n  16n ≤ cn  <provided c = 16>

So for c=16 and n0 = 93  // proved

Graph using Excel

 Prove that 2n2+1 = O(n2)

Must show +ve c, n0 such that 2n2+1 ≤ c(n2) for n ≥ n0

2n2+1 <provided n=1>

2n2+ n2  3n2 <provided c=3>

2n2+1 ≤ 3n2

So, c=3 , n0=1 // proved

Graph using Excel

The lower bound for an algorithm is denoted by the symbol Ω, pronounced “big-

Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Ω(g(n)) if there exist

two positive constants c and n0 such that T(n) ≥ cg(n) for all n > n0.

 Prove that 15n+93 is Ω(n)

We must show +ve c and n0 such that 15n+93 ≥ c(n) for n ≥ n0

<because 93 is +ve> ≥ c(n)  <provided c=15>  so any n0 > 0 will do

So c=15, n0=1 // proved

Graph using Excel

 Prove that 2n2+1 is Ω(n2)

Must show +ve c and n0 such that 2n2+1 ≥ cn2 for n ≥ n0

<because 1 is +ve>

So c=2, n0=1 // proved

Graph using Excel

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

19

When the upper and lower bounds are the same within a constant factor, we

indicate this by using Θ (big-Theta) notation.

T(n) = Θ(g(n)) iff T(n) = O(g(n)) and T(n) = Ω (g(n))

Example: Because the sequential search algorithm is both in O(n) and in Ω(n) in the average case,

we say it is Θ(n) in the average case.

Simplifying Rules

 Rule (2) is that you can ignore any multiplicative constants.

 Rule (3) says that given two parts of a program run in sequence, you need to consider only the

more expensive part.

 Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order

terms to determine the asymptotic growth rate for any cost function.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

20

Order of growth of some common functions:

O(1) ≤ O(log2n) ≤ O(n) ≤ O(n log2n) ≤ O(n2) ≤ O(n3) ≤ O(2n)

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-O analysis:

 Overestimate.

 Analysis assumes infinite memory.

 Not appropriate for small amounts of input.

 The constant implied by the Big-Oh may be too large to be ignored (2N log N vs. 1000N)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

21

 Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

Rule 1 — for loops:

The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops:

Analyze these inside out. The total running time of a statement inside a group of nested loops

is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:

These just add (which means that the maximum is the one that counts.

Rule 4 — if/else:

if(condition)

 S1

else

 S2

The running time of an if/else statement is never more than the running time of the test plus

the larger of the running times of S1 and S2.

Rule 5 — methods call:

If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision)  O(n2)

public static void bubble(int[] arr){
 int temp;
 for (int i = 0; i < arr.length-1; i++) {
 for (int j = 0; j <arr.length-i-1 ; j++) {
 if(arr[j+1]<arr[j]){
 temp = arr[j];
 arr[j] = arr[j+1];
 arr[j+1] = temp;
 }
 }
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

22

2- Selection Sort (revision)  O(n2): named selection because every time we select the

smallest item.

public static void selection (int[] arr){
 int temp, minIndex;
 for (int i = 0; i < arr.length-1; i++) {
 minIndex = i;
 for (int j = i+1; j <arr.length ; j++) {
 if(arr[j]<arr[minIndex]){
 minIndex=j;
 }
 }
 if(i!= minIndex){
 temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
 }
}

3- Insertion sort  O(n2):

public static void insertion (int[] arr){
 int j, temp, current;
 for (int i = 1; i < arr.length; i++) {
 current = arr[i];
 j=i-1;
 while (j>=0 && arr[j]>current){
 arr[j+1] = arr[j];
 j--;
 }
 arr[j+1]=current;
 }
}

O(n2) sorting algorithms comparison:

(run demo @ http://www.sorting-algorithms.com/)

Bubble Sort Selection Sort Insertion Sort

Very inefficient

 Better than bubble sort

 Running time is independent
of ordering of elements

 Relatively good for small lists

 Relatively good for partially
sorted lists

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

23

Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Example:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

24

Pseudo code:

Make sure of array boundaries

H.W: implement merge sort your own

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

25

Searching elements in an array:

Case 1: unordered array:

Case 2: ordered array: -Binary search-

Inserting and deleting items from ordered array

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

26

Uploaded By: anonymousSTUDENTS-HUB.com

