E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

e ‘*‘%) X
BIRZEIT UNIVERSITY

COMP232
Data Structure

Lectures Note: Algorithms

Prepared by: Dr. Mamoun Nawahdah
2016/2017

1

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Math Review

. log(nm) = log n + log m.
. log(n/m) = log n — log m.
log(n") = rlogn.

il o

. log, n = log, n/log, a.

i , n(n+1)
P = ———
=1 E
Z": 2 _ 2n3 +3n? +n _ n(2n+1)(n + l)'
=1 6 6
logn
Z n = nlogn.
i=]
. n+l _ |
Za' = 2 " fora £ 1.
. a-—1
1=0
= 1 1
2y = 1=
g=]
and
221: = 21’1-!-1 il
=0
logn
Y 2 o= gl a1,
1=0
Finally,
= i n+2
— — 2‘—‘ -
i=1 % n

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
What is an Algorithm?

Definition: P ————

e Algorithm is a finite list of well-defined instructions for AL-KHWARIZMI S

accomplishing some task that, given an initial state, will
terminate in a defined end-state.
Euclid’s Algorithm (3005;() SREY
e Used to find Greatest common divisor (GCD) of two positive integers. N
e GCD of two numbers, the largest number that divides both of them

without leaving a remainder.

Euclid’s Algorithm: Born: Uzbekistan

o Consider two positive integers ‘m’ and ‘n’, such that m>n Died: 850 AD, Baghdad, Iraq
o Stepl: Divide m by n, and let the reminder be r.

o Step2:if r=0, the algorithm ends, n is the GCD.

o Step3:Set, m>n,n>r, go backtostepl.

Implement this iteratively and recursively

public static int iteratively (int m, int n){ public static int recursively(int m, int n) {
intr=m%n; if (n==0)
while (r 1= 0) { return m;
m =n; return recursively(n, m % n);
n=r; }
r=m%n;
}
return n;
}
Why Algorithms?

o Gives an idea (estimate) of running time.
o Help us decide on hardware requirements.
o What is feasible vs. what is impossible.
o Improvement is a never ending process.
Correctness of an Algorithm:
e Must be proved (mathematically)
Step1l: statement to be proven.
Step2: List all assumptions.
Step3: Chain of reasoning from assumptions to the statement.
e Another way is to check for incorrectness of an algorithm.
Stepl: give a set of data for which the algorithm does not work.
Step2: usually consider small data sets.
Step3: Especially consider borderline cases.

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Recursion
Definition:

e Afunction that calls itself is said to be recursive.

e Afunction fl is also recursive if it calls a function f2, which under some circumstances calls
f1, creating a cycle in the sequence of calls.

e The ability to invoke itself enables a recursive function to be repeated with different
parameter values.

e You can use recursion as an alternative to iteration (looping).

The Nature of Recursion:
Problems that lend themselves to a recursive solution have the following characteristics:
e One or more simple cases of the problem have a straightforward, non-recursive solution.
e The other cases can be redefined in terms of problems that are closer to the simple cases.
e By applying this redefinition process every time the recursive function is called, eventually
the problem is reduced entirely to the simple case(s), which are relatively easy to solve.

The recursive algorithms will generally consist of an “if statement” with the following form:

if this is a simple case
solve it

else

redefine the problem using recursion

Illustration:

size n (—>) sizen-1 size n-2 — size 2 size 1
problem problem problem problem problem
size ‘l
m
Example:

Solve the problem of multiplying 6 by 3, assuming we only know addition:
= Simple case: any number multiplied by 1 gives us the original number.
= The problem can be split into the two problems:
1. Multiply 6 by 2.
1.1 Multiply 6 by 1.
1.2 Add (Multiply 6 by 1) to the result of problem 1.1.
2. Add (Multiply 6 by 1) to the result of problem 1.

Implement this recursively

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Tracing a Recursive Function:
e Tracing an algorithm’s execution provides us with valuable insight into how that algorithm works.
e By drawing an activation frame corresponding to each call of the function.

e An activation frame shows the parameter values for each call and summarizes the execution of the

call.
multiply(6, 3):
m is 6
n is 3
3 == 1 isfaise
ans is 6 + multiply(6, 2) =
18. return (ans) |
nis2
2 == 1 isfaise
ans 8 6 + multiply(6, 1)
return (ans) |
misé
ES n is1
1 == 1 strue

pans is 6
return (ans)

Recursive Mathematical Functions:

+* Many mathematical functions can be defined recursively.
«* An example is the factorial of n (n!):

= 0Olis1

* pnlisn*(n 1)!, forn>0
«* Thus 4lis 4 *31 which means 4 *3 *2 *1, or 24.

Implement this iteratively and recursively
Tracing the recursive function

STUDENTS-HUB.com Uploaded By: anonymous

Prepared by: Dr. Mamoun Nawahdah

E Data Structure: Algorithms 2016/2017
& nis 3
ans s 3 factorial(2)
[return (ans)
2 nis 2
ans Is 2 2 factorial(l)
roturn (ans)

¥

ana I8 1 1 factorial(0n)

return (ans l‘

is |
a-o
-

1

(ans)

Fibonacci Numbers:
@ () 1 Pair
After one month @ b‘ 1 Pair
After two months @ @I @ @l 2 Pairs
| i amiia @ @l @@ @ 3 Pairs
@)~

After 4 munlh‘@ @ I®l Q‘

Leonardo Bonacci (1170 —1250)

5 Pairs

W

* Problem:
How many pairs of rabbits are alive in month n?

¢ Recurrence relation:
rabbit(n) = rabbit(n-1) + rabbit(n-2)

+»* The Fibonacci sequence is defined as:
= Fibonacci0 is 1
= Fibonaccil is 1
* Fibonacci n is

Fibonaccin 2 + Fibonacci n 1, for n>1

Implement this recursively

Poor Solution to a Simple Problem:
{lgorithm Fibonacci(n)
1 f
return
else
return

7
Uploaded By: anonymous

STUDENTS-HUB.com

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Why is this inefficient? Try Fg

F, is computed 5 times F,
F, is computed 3 times / \
F, is computed 2 times F. F,
F. is computed once / Ny P N
F, is computed once F, F, F, F
/7 N\ 7 N 7/ \ 7 N
F, F, F, F, F, F, F F,
/\N /\ /\ /\
F, F, F, Fy F, | F, F,
/ \
F, F

Self-Check:
+* Write and test a recursive function that returns the value of the following recursive definition:
. f(x)=0 ifx=0
. f(x)=f(x-1)+2 otherwise
What set of numbers is generated by this definition?

Design Guidelines:
¢ Method must be given an input value.
+» Method definition must contain logic that involves this input, leads to different cases.
+* One or more cases should provide solution that does not require recursion.
= else infinite recursion
+* One or more cases must include a recursive invocation.

Stack of Activation Records:
+* Each call to a method generates an activation record.
++ Recursive method uses more memory than an iterative method.
= Each recursive call generates an activation record.

¢ If recursive call generates too many activation records, could cause stack overflow.

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Recursively Processing an Array:

Starting with array(first]:

public static void displayArray(int array[], int first, int last)

{

System.out.print(array[first] + " ");
if (first < last)
displayArray(array, first + 1, last);
}

Starting with array[last]:

public static void displayArray(int array[], int first, int last)

{
if (first <= last)

displayArray(array, first, last - 1);
System.out.print (array[last] + " ");

}
}
Processing array from middle:
(@)
111 1 1
0 1 2 3 4 h) 6
(b)
111 11T 1]
int mid = (first + last) / 2; o 1 2 314 5 6 7

public static void displayArray(int array[], int first, int last)

{
if (first == last)
System.out.print(array[first] + " ");
else
{
int mid = (first + last) / 2;
displayArray(array, first, mid);
displayArray(array, mid + 1, last);
}
}

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Tower of Hanoi
Simple Solution to a Difficult Problem:

O

==

A B c

Original position

bena

Rules:

e Move one disk at a time. Each disk moved must be topmost disk.

e No disk may rest on top of a disk smaller than itself.

e You can store disks on the 2" pole temporarily, as long as you observe the previous two rules.
Tower of Hanoi flash @ https://www.mathsisfun.com/games/towerofhanoi.html

Sequence of moves for solving the Towers of Hanoi problem with three disks:

O @

=" "

A B B A B (
Original position : Step4:Move disk 3fromA 0B
becccsscscscscccssscssssssssssssssscssssancssnsssnns d tecccccccccccccccccccccscccccsccssssccsssnscssssses aaed
O ® ,
H gu W TS D IS D = - - - - H
e ——— ! ’ \
&= e = e ==
; \ B C A 3 (
i Step 1:Move disk 1 from A to B Step 5: Move disk 1 from Cto A
L T T L L L T T .
@ .. @ -
: g U0 TR SN S0 SN R SR D D S S 0 - -~ ’.0’- \‘
. ’ \
P v = i
_— e = | == &=
' A B % A B (
]
: Step 2: Move disk 2 from A to C Step 6: Move disk 2 from C o B
.. J e
® e (D ;
/ S ’ i
! H '
e == =2 |
A B C A B o :
L)
Step 3:Move disk | from B to C Step 7: Move disk 1 from A to B i
I 8 ———

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

The Tower of Hanoi problem can be decomposed into three sub-problems.

Prre— 0O

n =1 disks} 10 =1 disks1

|
I 1 : !
1 | 1 !
1 I 1 !
1 1 I !
I i l - . l :
: . : {, \\ :]
: = | I’ N 1 . :
i 1
— L e i==
A B C A B c
! Original position Step 2: Move disk n from A to B

@ — o —

n—1 disks

i H
1
1 : I 1
1 | I |
I | ! !
"""""""" >! i | o T—
- : o l
i . 1 I . 1
1 : 1 1 |
1= =
A B C A B (&
Step 1: Move the first n — 1 disks from Step 3: Move n - 1 disks from
A to C recursively C to B recursively
e Move the first n-1 disks from A to C with the assistance of tower B.
e Move disk n from A to B.
e Move n-1 disks from C to B with the assistance of tower A.
Solutions:
{/gorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
i f |]
\/4",((/'\.-'; from tar t} .~'.'rl~
e] se
\l,;'., “/-\‘.'_ from start! le 10O ern

10

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Analysis of Algorithms

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to
determine how much in the way of resources, such as time or space, the algorithm will require.

e Space Complexity = memory and storage are very cheap nowadays. ¥
e Time Complexity v Different platforms =» different time. Absolute time is hard to measure as it

depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc.
time is not good measurement. Number of steps is a better one.

Example:

N
>

ol £}

St

* Consider the problem of summing #=1
Come up with an algorithm to solve this problem.

Algorithm A Algorithm B Algorithm C

sum = 0 sum = 0 sum =n * (n +1) /2
for i = 11w n for i =1twn
sum = sum + i {
for j = 11w i
sum = sum + 1

Counting Basic Operations

* A basic operation of an algorithm is the most significant contributor to its total time requirement.

Algorithm A Algorithm B Algorithm C

Additions n nn+1)/2 1
Multiplications 1
Divisions 1
Total basic operations n (n2+n)/2 3

How to calculate the time complexity?

e Measure execution time. x Algorithm for small data size will take small time comparing to a large data.
e Calculate time required for an algorithm in terms of the size of input data. * Does not work as the
same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time
e Determine order of growth of an algorithm with respect to the size of input data. v/

STUDENTS-HUB.com Uploaded By: anonymous

11

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Order of time or growth of time:

Go back to summing result

n, A, B, B

1) Linear 7183/ Quadratic 7183, 82d constant
10) | 8rowth 2052 growth 4105, 104 growth
100) , 7183, 155974, 102%
1000) , 66700, 2983004, 3079
10000) , 411484, 149256917, 2052
100000) , 1903500, 13209223813, 1027

In term of time complexity, we say that algorithm C is better than A and B

Types of Time Complexity

e Best case analysis % too optimistic
e Average case analysis X too complex (statistical methods)
e Worst case analysis v" it will not exceed this

RAM model of computation

We assume that:
e We have infinite memory
e Each operation (+,-,*,/,=) takes 1 unit of time
e Fach memory access takes 1 unit of time
e All data is in the RAM

12

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Bubble Sort:

1. Each two adjacent elements are compared:

00000000

2. Swap with larger elements:

swap

00000 T ©

3. Move forward and swap with each larger item:

00000000
COOCBOOC

4. If there is a lighter element, then this item begins to bubble to the surface:

000 [©000

5. Finally the smallest element is on its place:

OOOOOOO

Make a demo using the following data set

1218|752
Worst case
N

After 1° round:

13

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

After 2" round:

For whole sorting algorithm: 16+12+8+4 for a data size of 5 elements:

=4(4+3+2+1) = 4(n-1+n2+..+2+1) =4 (n-1*n/2)=
2
2*n*(n-1)=> pn +qn+r = p, g, and r are some constant.

Implement and test effectiveness of bubble sort algorithm

for (inti=0;i<arr.length-1; i++) { i=0 j=n-1 n-1
for (int j = 0; j <arr.length-i-1 ; j++) { i=1 j=n-2 n-2
if(arr[j+1]<arr[j]){ : :
temp = arrlj]; : : :
arr[j] = arr[j+1]; i=n-1 j=0 1
arr[j+1] = temp;

}

}

}

14

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
The Big-O Notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to
find an upper bond for this function T(n). Consider a function c;n” € never over take T(n)

C,n such that its greater than T(n) for n>ng . In this case we say that C;n* is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

Tin)=pn’ s qn +r
g
E
| OBSERVATIONS:
| vYn>n,
0. no CoN% 2 pn?+qgn+r

Big Oh O(n?): f(n): there exist positive constants € and Ny such that 0 < f(n) < cn® forall n 2 ng
In general
O(g(n)) : f(n): there exist positive constants € and Ng such that 0 < f(n) < cg(n) forall n2ng

Example 1:
5n’+6 € O(n?) ??? v
Find cn® = ¢=6 and ng=3
= ¢=5.1 no=8

Example 2:
5n+6 € O(n%) ??? v
Find cn’ = ¢=11 and np=1

Example 3:
n*+2n’+4n+8 e O(n?) ??? x
Find cn? > n®+2n*+4n+872?? x

a,nm+a . Nml---oooooooo + a, € O(n™M)
logn<Vn< n< nlogn € n2< n®<2"<n!

What does it mean?
15

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

int[Ja={1,3,7,8,9, 2

4’
al4]
int[]b={5,8,1,.......... 25, 20 }100 Elements
—_— h
Array element access: ©(1) : Constant Time b[98]

I Ts ~ 50ms

= Tye ~100 ms
Array element search: Teearch = O(N) »

B

Aloop inside a loop in an algorithm usually represents a time complexity of
0(n?)

Bubble sort algorithm: R b s L

16

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Asymptotic Analysis

Asymptotic (<u%«) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer
scientists who must determine if a particular algorithm is worth considering for implementation.

e The critical resource for a program is -most often- running time.
e The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its
input grows.
o ¢n (for c any positive constant) = linear growth rate or running time.
o n*> quadratic growth rate

o 2" exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the
algorithm must perform at least that well.

Example:
Assume: Algorithm A: time =15n + 93
Algorithm B: time = 2n%+1 which is faster?
Graph using Excel

800

600
400 15n+93
I’/ 2n* +1
- /l
|
0 \

0246 81012141618

The “break-even point”

We are interested for large n

* For sufficiently large n, algorithm A is faster
* In the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or
highest growth rate that the algorithm can have. = big-O notation.

17

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist
two positive constants ¢ and ng such that T(n) < ¢f(n) for all n > n,.

e Prove that 15n +93is O(n)
We must show +ve ¢ and ng such that 15n + 93 < ¢(n) for n2ng
<provided n=93> =» 15n+n=>» 16n<cn > <providedc=16>
Soforc=16 andny=93 = //proved
Graph using Excel

e Prove that 2n*+1 = O(n?)
Must show +ve ¢, ng such that 2n%+1 < c(nz) forn2ng
2n’+1 <provided n=1>
2n’+n*> & 3n> <provided c=3>
2n’+1 < 3n?
So, ¢=3, ne=1 //proved
Graph using Excel

The lower bound for an algorithm is denoted by the symbol Q, pronounced “big-
Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Q(g(n)) if there exist
two positive constants ¢ and ng such that T(n) 2 cg(n) for all n > ny.

e Prove that 15n+93 is Q(n)
We must show +ve ¢ and ng such that 15n+93 2 ¢(n) for n2ng
<because 93 is +ve>2> c¢(n) =» <provided c=15> < so any ng > 0 will do
So ¢=15, ng=1 // proved

Graph using Excel

e Prove that 2n’+1 is Q(n?)
Must show +ve ¢ and ng such that 2n*+12cn’for n2 No
<because 1 is +ve>
So ¢=2, np=1 // proved

Graph using Excel

18

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
When the upper and lower bounds are the same within a constant factor, we

indicate this by using © (big-Theta) notation.
T(n) = ©(g(n)) iff T(n)=0(g(n)) and T(n)=0q (g(n))

Example: Because the sequential search algorithm is both in O(n) and in Q(n) in the average case,

we say it is @(n) in the average case.

Simplifying Rules
1. If f(n)isin O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
2. If f(n)isin O(kg(n)) for any constant k& > 0, then f(n) is in O(g(n)).
3. If fi(n)is in O(g1(n)) and fa(n) is in O(g2(n)), then fi(n) + fa(n) isin

O(max(g1(n), g2(n))).
4. If fi(n) is in O(g1(n)) and fo(n) is in O(g2(n)), then fi(n)fa(n) is in

(
O(g1(n)g2(n)).

e Rule (2) is that you can ignore any multiplicative constants.

e Rule (3) says that given two parts of a program run in sequence, you need to consider only the
more expensive part.

e Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order
terms to determine the asymptotic growth rate for any cost function.

19

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Order of growth of some common functions:

0(1) < O(log;n) < O(n) < O(n log,n) < O(n?) < O(n%) < 0(2")

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-O analysis:
e Overestimate.
e Analysis assumes infinite memory.
e Not appropriate for small amounts of input.
e The constant implied by the Big-Oh may be too large to be ignored (2Nlog N vs. 1000N)

20

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

Rule 1 — for loops:
The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops:
Analyze these inside out. The total running time of a statement inside a group of nested loops
is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:
These just add (which means that the maximum is the one that counts.

Rule 4 — if/else:
if(condition)
S1
else
S2

The running time of an if/else statement is never more than the running time of the test plus
the larger of the running times of S1 and S2.

Rule 5 — methods call:
If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision) = O(n?)

public static void bubble(int[] arr){
int temp;
for (inti=0;i<arr.length-1; i++) {
for (intj = 0; j <arr.length-i-1 ; j++) {
if(arr[j+1]<arr([j]){
temp =arrl[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}

21

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms

2016/2017

Prepared by: Dr. Mamoun Nawahdah

2- Selection Sort (revision) & O(n?): named selection because every time we select the

smallest item.

public static void selection (int[] arr){
int temp, minindex;
for (inti=0; i< arr.length-1; i++) {
minindex = i;
for (intj = i+1; j <arr.length ; j++) {
if(arr[jl<arr[minindex]){
minlndex=j;
}
}
if(i!= minIndex){
temp = arrli];
arr[i] = arr[minindex];
arr[minindex] = temp;
}
}
}

3- Insertion sort & O(n?):

public static void insertion (int[] arr){
int j, temp, current;
for (inti=1;i<arr.length; i++) {
current = arr[i];
j=i-1;
while (j>=0 && arr[j]>current){
arr[j+1] = arr[j];
=

}
}

}

arr[j+1]=current;

0(n?) sorting algorithms comparison:

(run demo @ http://www.sorting-algorithms.com/)

Bubble Sort

Selection Sort

Insertion Sort

Very inefficient

Better than bubble sort .
Running time is independent .
of ordering of elements

Relatively good for small lists
Relatively good for partially
sorted lists

STUDENTS-HUB.com

22

Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Example:

2lafslefe
zleleie, alrlee

MERGESORT

MERGE

MERGE MERGE
 MERGE MERGE MERGE MERGE

. . - ."!IU"'. - . .

23

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

start=0 | end= A length - 1

Pseudo-code :
MergeSort (A, start, end) MergeSort (A, 0,7) [l
if start < end
middle = Floor[(start + end)/2] middle = 3
MergeSort(A, start, middle) MergeSort (A, 0,3) [l
MergeSort(A, middie+1, end)
Pseudo code: Merge(A, start, middle, end)

Pseudo-code (Merge) :
Merge (A, start, mid, end)

'“'ok idm e n1=mid-stén+1
n, =end - mid
Let left[0..n,] and right[0..n,] be new temp arrays
fori=0ton,-1
left [i] =A[start+1i]

% |eft . right
i j 8 forj= 0ton,1
right[j] =A[mid+1+]]
i.j=0

for k = start to end
ifleft [i] <right[j]
Al[k] = left[i]
i=i+1
else A[k]=right[j]
=i+

Make sure of array boundaries

H.W: implement merge sort your own

24

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Searching elements in an array:

af=5 : o(1)
find(8) : O(n)
Case 1: unordered array: delete (item) : O(n)

3 7 20| 32 45
I 1 !

find (60)
Finding Index

| 52| =3 == ai3=32
LTT“J = 5 wemmp a[5] = 55

(2] -0 b

Case 2: ordered array: -Binary search-

First Search ©on find (item) = O(log,n)
Second Search % n ‘ log,n
Third Search 3 27=n == (-1) = log;n 2 1

. 1024 10
(1) u: Saatbh 2 1048576 (Million) 20
i Search v 4= % 1099511627776 (Trillion) 40

Inserting and deleting items from ordered array

Insert (52)

Insert (item) = O (n)
Search (item) = O (log,n)

Delete (55)
Delete (item) = O (n)

25

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Algorithms 2016/2017 Prepared by: Dr. Mamoun Nawahdah

e —

NI IIEIl STIII]YING”

26

STUDENTS-HUB.com Uploaded By: anonymous

