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Preface

Ever since the first fabrication of the laser in 1960, there has been a tremendous
growth in the fields of optics and photonics with extremely important applications
in many diverse areas from optical amplifiers to laser physics, fiber optics to optical
communications, optical data processing to holography, etc. These applications have
as background the phenomena of wave propagation, interference, diffraction and
polarisation. Although there are many text books in this area, we feel that the concepts
get better understood if the students work out a large number of problems. This
book is a collection of problems (and their solutions) starting from basic phenomena
in optics to their applications and we hope that this book will help students to get
a better understanding of Optics and Photonics. The book is divided into many
chapters covering various aspects of optics and photonics and each chapter has a
number of problems followed by their solutions, placed at the end of the chapter.
This will enable the student to refer to the solutions when necessary and at the same
provide an opportunity to solve some or all of these problems by himself or herself
before consulting the solutions.

For over 40 years, we have been teaching courses related to optics and photonics
at [IT Delhi — these courses have been taught both at the undergraduate as well as at
the postgraduate level. A large number of problems have emerged from the teaching
of these courses.

The topics covered in the present edition have been included, keeping in mind the
needs of students pursuing B Sc and M Sc Physics, apart from courses like B Tech.

Our Objective

* To make learning and understanding smoother for the students.
* Identify important topics of the subject and the basic concepts underlying
these.

+ Arranging them chapterwise giving the fundamental formulae, which are
ultimately the key to solving problems.

Features of the Book

1. A Quick Review — Important formulae and topics discussed in every chapter.

2. Includes latest applications in the field.

3. Questions and Answers — Important concepts further enumerated in question
and answer format.

4. Problems based on principles, concepts and numericals — Over 400 numericals
covering a wide range of difficulty provided with final answers.
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Xii Preface

5. Objective Type Questions/ Multiple Choice Questions for better understanding
of the concepts and principles.

Chapter Organisation

The book is divided into 24 chapters. Each chapter begins with a quick review on the
important concepts and principles, helping students understand the chapter better.

Chapter 1 deals with Matrix method in paraxial optics. Chapter 2 elucidates
Fermat’s principle, Snell’s law and the ray equation. Chapters 3, 4, and 5 will make
students understand Optical instruments, Aberrations, and Huygens’ principle and
applications, respectively.

The concept of interference has been divided into two parts-division of wave front
has been dealt in Chapter 6 whereas Division of amplitude has been discussed in
Chapter 7. Chapter 8 explains Multiple beam interferometry. Chapters 9 and 10
are based on Fraunhofer diffraction.

Chapters 11, 12, 13, 14, and 15 deal with Fresnel diffraction, Fourier optics
and holography, Polarisation I: Basics and double refraction, Polarisation II: Jones
vectors and Jones matrices, and Wave equation and its solutions.

Topics like Group velocity and Pulse dispersion, Basic laser physics, Basic
concepts of Fiber optics and ray optics consideration in multimode fibers, Basic
waveguide theory and Concept of modes, and Single mode fibers in fiber optics have
been explained in Chapters 16, 17, 18, 19, and 20.

The last four chapters in this book i.e., Chapters 21 to 24 help in understanding
concepts of integrated optics, electro-optic effect, acousto-optic effect, and nonlinear
optics.

In addition, the book also contains a number of multiple choice questions and
references along with suggested readings at the end of the book.
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Feedback

We have tried to work out each and every problem very carefully; nevertheless, if
there are any errors (or any suggestions), we will be very grateful if they are pointed
out to us. Also we would greatly appreciate suggestions for introducing new problems
(and solutions) in the book. We will acknowledge the same when we introduce
them in future editions. Our email addresses are ajoykghatak@gmail.com and
ktrajan@gmail.com.

Publishers’ Note

Do you have a feature request? A suggestion? We are always open to new
ideas (the best ideas come from you!). You may send your comments to
tmh.sciencemathsfeedback@gmail.com (don’t forget to mention the title and author
name in the subject line).

Piracy-related issues may also be reported.
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Matrix Method in Paraxial
Optics

i? A Quick Review }i

In the paraxial approximation, rays remain close to the optical axis and are assumed
to make small angles with the axis. Such a ray is initially specified by a 2 X 1 matrix

with elements A, and x;
A
X

where x| represents the distance from the axis and the parameter A is defined by the
following equation:

A=nsina (1)

which represents the product of the refractive index and the sine of the angle that the
ray makes with the z axis (see Fig. 1.1).

M
|
i
I
1

D M/

Fig. 1.1 In a homogeneous medium, the ray travels in a straight line.

1.1 || EFFECT OF TRANSLATION

If a ray is initially specified by a 2 x 1 matrix with elements A, and x;, then after
propagating through a distance D in a homogeneous medium of refractive index ny,

the final ray is given by
A
(=)=
x2 'xl
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2 Problems and Solutions in Optics and Photonics
1 0
where, T= 3)
Diny 1

The matrix 7 is known as the translation matrix and represents the effect of
translation through a distance D in a homogeneous medium of refractive index #;.

12 | EFFECT OF REFRACTION

Consider a ray incident on a spherical surface (of radius R) separating two media
of refractive indices n; and n, (see Fig. 1.2). If (X, x") and (1", x”) represent the
coordinates of the ray at 4" (just before refraction), and at 4” (just after refraction),

then
2{// l,
(X”J - m(x,] (4)
1 -P
where, R = ( } Q)
0 1
=mh-m
and P R (6)

is known as the power of the refracting surface. The 2 x 2 matrix R characterises
refraction through the spherical surface. Note that

detR =detT=1 (7

We will be using the analytical geometry sign convention so that the coordinates
on the left of the point P are negative and coordinates on the right of P are positive
(see Figs. 1.2 and 1.3).

Fig. 1.2 Imaging by a spherical refracting surface separating two media of refractive indices ny and n.
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Matrix Method in Paraxial Optics 3

(a) (b) (© (d)
R, >0 R, <0 R <0 R, >0
R, <0 R,>0 R, <0 Ry>0

Fig. 1.3  Signs of R; and R, for different types of lenses.

In general, an optical system made up of a series of lenses can be characterised by
the refraction and translation matrices. If a ray is specified by (1’, x") when it enters
an optical system and is specified by (A7, x”) when it leaves the system (points P and
Q in Fig. 1.4), then we can, in general, write

(”’j (l)
=S, ®)
X X

)

where the matrix S =

Fig. 1.4 The object point Ois at a distance —D; from the first refracting surface. The paraxial image is
assumed to be formed at a distance D, from the last refracting surface.

is called the system matrix and is determined solely by the optical system. We must
note that:

The quantities b and ¢ are dimensionless. The quantities a and P have the dimension
of inverse length, and the quantity d has the dimension of length. In general, the units
will not be given; however, it will be implied that @ and P are in cm ! and dis in cm.

We consider an object point O is at a distance —D; from the first refracting surface.
The paraxial image is assumed to be formed at a distance D, from the last refracting
surface (see Fig. 1.4). Thus,

R A B
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_ b+aD, -a A (11)

Thus, Xy =(bDy +aD; Dy —cDy —d)A; + (¢ —aDy)x; (12)

For a ray emanating from the axial object point (i.e., for x; = 0) the image plane is
determined by the condition x, = 0. Thus, for the image plane we must have

bD2 +aD1D2—cD1 -d=0 (13)

b c d

2 ig-S -4 9 14
o Dl ¢ D2 D1D2 ( )

which would give us the relationship between the distances D and D,. When D; =
oo, Dy = = Corresponding to the image plane, we have
a

[Azjz b+aD, —a A (15)
X) 0 c—abD, | x

Xy =(c—aD,)x;

For x, # 0, we obtain

Consequently, the magnification of the system M (= x,/x;) would be given by

M=22=¢_aD, (16)
X
Further, since
b+aD, —a | _,
O C— aD2
’ 1 1
we obtain b+aD, = c—aD, = 17
13 | UNIT PLANES

The unit planes are two planes, one each in the object and the image space, between
which the magnification M is unity; i.e., any paraxial ray emanating from the unit
plane in the object space will emerge at the same height from the unit plane in the
image space. Thus, if d,; and d,, represent the distances of the unit planes from the

refracting surfaces (see Fig. 1.5)1 we obtain from Eq. (17)

b+ad, = —— =1 (18)
c—ad,,
or, dy = =2 (19)
a

R Obviously, if we consider U; as an object plane, then U, is the corresponding image
plane.
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Matrix Method in Paraxial Optics 5

c—1

du2 =

a

(20)

Hence, the unit planes are determined completely by the elements of the system
matrix S. It will be convenient to measure distances from the unit planes. Thus, if
u is the distance of the object plane from the first unit plane and v is the distance of
the corresponding image plane from the second unit plane (see Fig. 1.5), we obtain

and

le— —1 —>]

1-b
D, —u+d1—u+7

c—1
D2 :U+du2:U+—
a

@n

(22)

l—— O —

— / \ _

1 = e
~—d,, s -
—DI D,
x lex \ / 4/ : /
Object  First Unit Second Unit Image
Plane Plane Plane Plane

Fig. 1.5 U; and U, are the two unit planes. A ray emanating at any height from the first unit plane will
cross the second unit plane at the same height.

Now, from Eq. (13) we have

d+cD,

= 2
27 b +aD, @3)
Substituting for D and D, from Eq. (21) and (22), we get
c—1 d+cu+c(->b)a
v+ =
a b+au+(1-05b)
or, Y= ad —bc+c(au+1)—(c=1)(1+ au)
a a(l+ au)
B a(l+ au) @4)
where we have used the condition that
detS =bc—ad=1 (25)
On simplification, we obtain
1 1
s, @ (26)

STUDENTS-HUB.com
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6 Problems and Solutions in Optics and Photonics

Thus, 1/a represents the focal length of the system if the distances are measured
from the two unit planes.

PROBLEMS g

1.1 (a) Consider imaging by a spherical surface (of radius of curvature R)
separating two media of refractive indices n; and n,. If (4, x;) and (4,,
x,) represent the coordinates of the ray at O, and at / (see Fig. 1.2), show

that

WE

1y

1420
n

[1+&j_l
n n

-P

ny

M

-2)

j 27

(b) Using the above result derive the following equation determining the

paraxial image

)

o
v u

_ =

n
R

(28)

1.2 Obtain the system matrix for a thick lens, and derive the thick lens and the thin
lens formulae.
1.3 In continuation of the previous problem, determine the positions of the unit
planes for a thick double convex lens with |R| = |R,|.
1.4 (a) Obtain the elements of the system matrix of a combination of two thin
lenses of focal lengths £ and f; separated by a distance .
Consider a system of two thin convex lenses of focal lengths 10 cm and
30 cm separated by a distance of 20 cm in air (see Fig. 1.6). Determine
the system matrix elements and the positions of the unit planes. Assume
a parallel beam of light incident from the left. Determine the positions of
the unit planes and determine the image point. Using the unit planes draw

STUDENTS-HUB.com

(b)

the ray diagram.

U,

N

1
]
1
I
1
1
I
I
I
1
1
1

1
1
I
1
I
I
)

=]
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Matrix Method in Paraxial Optics T

1.5 Consider a thick biconvex lens whose magnitudes of the radii of curvature of
the first and second surfaces are 45 cm and 30 cm respectively. The thickness
of the lens is 5 cm and the refractive index of the material of the lens is 1.5.
Determine the elements of system matrix and positions of the unit planes and
determine the image point of an object at a distance of 90 cm from the first
surface.

1.6 Consider a hemisphere of radius 20 cm and refractive index 1.5. If H; and H,
denote the positions of the first and second principal points, then show that
AH; = 13.3 cm and that H, lies on the second surface as shown in Fig. 1.7.
Further, show that the focal length is 40 cm.

H, H, £

Fig. 1.7

1.7 Consider a thick lens of the form shown in Fig. 1.8; the radii of curvature of
the first and second surfaces are —10 ¢cm and +20 cm respectively and the
thickness of the lens is 1.0 cm. The refractive index of the material of the lens
is 1.5. Determine the positions of the principal planes.
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8 Problems and Solutions in Optics and Photonics

1.8

1.9

1.10

Consider a sphere of radius 20 cm of refractive index 1.6. Find the positions
of the paraxial focal point and the unit planes.

Consider a lens combination consisting of a convex lens (of focal length
+15 cm) and a concave lens (of focal length —20 cm) separated by 25 cm.
Determine the system matrix elements and the positions of the unit planes.
For an object (of height 1 cm) placed at a distance of 27.5 cm from the convex
lens, determine the size and position of the image.

Consider a system of two thin lenses as shown in Fig. 1.9. For a 1 cm tall
object at a distance of 40 cm from the convex lens, calculate the position and
size of the image.

T
o
(=)

f— 8 —
| 40 |

fe—14.5 —

Fig. 1.9 A combination of two thin lenses.

1.1

STUDENTS-HUB.com

(i% SOLUTIONS

(a) Let (44, x7), (A, X"), (A7, x”) and (A,, x,) represent the coordinates of
the ray at O, A" (just before refraction), 4” (just after refraction), and /
respectively (see Fig. 1.2). Thus,

E)- (o 00
()

o,
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Matrix Method in Paraxial Optics 9

Simple manipulations give

Jy 1+ T -P
1
X2 v fuy _u _o i\
(b) Using the above equation we obtain
o1 Pu)_u _oP
Xy = n (1+ " ) nl}tﬁ-(l n )xl 30)

For a ray emanating from an axial object point (i.e., for x; = 0) the image
plane is determined by the condition x, = 0. Thus in the above equation,
the coefficient of A; should vanish and therefore

o g(H&)
ny ny m
or, M M_p_Mm™n 31)
v u R

which is the equation determining the paraxial image. Hence, on the
image plane

A 1+ L -P
F A IR
2 o 1-22|{x
n
giving 5 = (1 - ﬁ)xl (33)
n
Thus, the magnification is given by
m=2-1_22 (34)
X n
which on using Eq. (31) gives
- mv (35)
nyu

1.2 Let us consider a lens of thickness 7 and made of a material of relative
refractive index 7 (see Fig. 1.10). Let R and R, be the radii of curvature of the
two surfaces. The ray is assumed to strike the first surface of the lens at P and
emerge from point Q; let the coordinates of the ray at P and Q be

STUDENTS-HUB.com

(’11] and (AZJ (36)
X Xy

where A, and A, are the optical direction cosines of the ray at P and Q; x| and
x, are the distances of points P and Q from the axis (see Fig. 1.10). The ray,
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10 Problems and Solutions in Optics and Photonics

in propagating from P to Q, undergoes two refractions [one at the first surface
(whose radius of curvature is R;) and the other at the second surface (whose
radius of curvature is R,)] and a translation through a distance? 7 in a medium
of refractive index #n. Thus

A, I =R 1 0)1 -R\A
(37)
Xy 0 1 Ntlh 1T)AO 1 \x
n—1 1-n n—1
where, P = z and P,= =— (38)

2 Sy,

Fig. 1.10 A paraxial ray passing through a thick lens of thickness t.

represent the powers of the two refracting surfaces. Thus, our system matrix

is given by
5 b -a) (1 =R)(1 0)1 -A
-d ¢ 0 1 Ne/m 1){0 1

Pt
& _p-n[1-Lg)
- " (39)
i
n n

Thus for a thick lens, the parameters of the system matrix are
Pt
n

s oe=1-Lp; a=-L (o
n n

a=P +P2(1—1}1); b=1-
n
To calculate the focal length, we note from Eq. (26) that

1 t
7 =a=P1+P2(1—;P1)

% Notice that since we are dealing with paraxial rays, the distance between P and Q is
approximately 7.
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1 1 1Y) (n=1%t
Thus, —=mn-1|=-—— |+ 41
S ( )(Rl Rz) nRR, @b
For a thin lens, £ — 0 and the system matrix takes the following form:
s=|! AR (42)
0 1
Thus for a thin lens,
a=P1+P2 b=1 c=1 d=0 (43)
Substituting the above values of a, b, ¢, and d in Eq. (13), we obtain
Dz +(P1 +P2)D1D2—D1 =0
1 1
or, D_2 — Fl = Pl + P2
1 1
=n-1)| —-— 44
(n )( - j (44)
1 1 1
or, —_— == (45)
D, D f 1
where f= L (n-1 ST (406)
’ A+ P, R R,

represents the focal length of the lens. Equation (45) is the well-known thin
lens formula. Thus for a thin lens, the system matrix takes the following form:

1.3 For a thick lens one obtains [using Egs. (19), (20) and (40)]

g, =Bt 1
"' n R+ B[l-(/n)R]
and d, = ! A

n R+ PB[l-(t/n)PR]

For a thick double convex lens with |R| = |R,|

P =P, = an
where, R = |R;| = |R;|. Thus,
t 1 1
R LT
“n R
and du2=—L;--—L
n tn—1 2n
n R

@7

(48)

(49)

(50)

(51

(52)
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where we have assumed # << R which is indeed the case for most thick lenses.
The positions of the unit planes are shown in Fig. 1.11.

R
’

’

s N o8

Fig. 1.11  Unit planes of a thick symmetric biconvex lens.

1.4 (a) The system matrix is given by (see Fig. 1.6)

t 1 1 t
(l_fz) ‘(fl 7 _ﬁfz)

= (53)
‘ (1—i)
A
Thus, the elements of the system matrix are
1 1 t t t
a=—+——-——-; b=1-—; c=1-—; d=-t (54)
h o N 12 h
(b) Sincef{=10cm, f,=30cm, ¢=20cm
20 1 1 20
_ (%) 5550
20 (1—@)
10
1 _2
=13 30
20 -1
Thusa= -1, b=L c=_1, d=—20; d, =22 =10em; d,=

c—1 15 3 a

—— =-30 cm and the first convex lens is in the middle of the two unit
a

planes (see Fig. 1.6). f= % =15cm.
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Now, ——m = =g

For u =—e0, v =f=15 cm (distance measured from the second unit plane).
The final image is virtual and is 15 cm away (on the left) from the second

lens.
1.5 Ry=45cm,R,=-30cm,t=5cm,n=1.5
n—-1_1 1-n 1
Py = =— d pP= =—
TR 90 MY TR T 60
represents the power of the two refracting surfaces. Thus,
t 11 Pt 17
=P +Py[1-— = — =0.02716; b=1- —— = — =0.9444
t 26 t 10
=1-—P == =09630; d=——=——
TR 2T ’ 03
_1-b 1 405 .
d, = P 13 X T = 2.0455 cm;
_c—1 _ 405
dp = P <1l = 1.3636 cm
Now, 1 - L1 =90 -2.0455 = ~92.0455 cm. Thus
v u f
1 _ _ .
P =0.02716 93,0455 =0v=61.37cm (from the second unit plane)

Thus, the image will be at a distance of 61.37 — 1.3636 = 60 cm from the
second surface (see Fig. 1.12).

[ e B | B e e e o Do

90 cm 60 cm—>
2.046 cm 1.364 cm
R, =+45cm ! ! R, =-30cm
| Sem |

Fig. 1.12  Figure for Problem 1.5.
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1.6 Ry=o, R,=-20cm, ¢=20cm, n=1.5

n 1-n 1
P = = P = = =
1 Rl 0 and ) R2 20 0.025
a=P1+P2(1—LPl)=P2=O.025; p=1- Bt _2
n n 3
‘ ¢ 200
—1_-tp—q. g=-L_-_=Y
¢ n b7 n 15
1-b -1
dy=dg=—2=3 _1333em; dy=d,=5"-=0
a 3 a

Thus the first nodal (and unit) plane is at a distance of +13.33 cm from the
plane surface and the second nodal (and unit) plane lies on the second surface.
Further, for u = — oo, the equation

1

1 _ _
— —— =abecomes v =
v ou

=40 cm

Q|

which is the focal length.
1.7 Ri=-10cm, R,=+20cm, t=1.0cm, n=1.5

n—1 1 n—1 1

P = =—— =-0.05;, P,=-— =—— =-0.
1 R 20 0.05; P, R 0 0.025
_ t ) _q_ Bt
a=P +P,|1-—P | =-0.07583; b=1-—= =1.0167
n n
_ t . _t _ 1 _
c=1- =P =1.0333; d=-—=—-— =-0.6667
n n 1.5
dy =10 _10220em: d,= <=1 <0440 cm
a
1.8 We can easily calculate P; = 0.03, P, = 0.03 and since 7 =40 cm and n = 1.6,
we get
b=0.25, a=0.0375, d=-25 and c¢=0.25.
Alternatively, one can multiply the matrices to obtain
Second surface Refraction at Transmission Refraction at the
to image second surface through glass first surface

)

1 (1-1.6)20 10 1 —(1.6-1)/20
0 1 401.6 1 0 1

(1 0)(025 —0.0375
v 1) 25 025
(025 ~0.0375
25+0.250 0.25-0.03750
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Thus at the image plane, the ray coordinates are
A 0.25 —-0.0375 A
X, 254+0.25v 0.25-0.03750) \ %

Xy = (25 +0.250) A, + (0.25 — 0.03750)x,

To determine the focal distance v, consider a ray incident parallel to the axis
for which 4; = 0. The focal plane would be that plane for which x, is also zero.
This gives us

This gives us

0.03750=0.25 or v=6.7cm

(see Fig. 1.13). The system matrix elements are
1
A
b =025 c=0.25 d=-25cm

=0.0375cm! = f=26.7cm

a

F
Uk_véjcm_’

40 cm

Fig. 1.13  Imaging by a sphere of radius 20 cm and refractive index 1.6

The unit planes are given by

1-b

d, = =20cm

-1
and d, = ca =-20 cm

Thus, both the unit planes pass through the center of the sphere. In this
example, we cannot use the approximation ¢ << R.
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19 fi=+15cm  f,=-20cm t;,=25cm
Thus, we readily get [see Solution to Problem 1.4(a)]

-1 _1 ) -_2 s
a= 7 7 20 3 d=-25
and d, = l;b =-12.5cm dp= c;l = —%Ocm

Thus, the distance of the object from the first unit plane is given by

u=-275-(-12.5)=-15cm (see Fig. 1.14).

+15 -20

f«—15 cm—=

f—27.5cm——

| 25cm |
fe— 40/3 —

Fig. 1.14  Figure for Problem 1.9.

Since f=+10 cm, we get
v=30cm

which represents the distance of the image plane from the second unit plane.
Thus, the image is at a distance of 30 — 50/3 = 40/3 cm from the concave lens.
The magnification is given by

M=2=23

R |Q

1.10 Let v be the distance of the image plane from the concave lens. Thus the
matrix, which when operated on the object column matrix gives the image
column matrix, is given by

Concave lensto  Concave Convex lensto ~ Convex Object to
image lens concave lens lens convex lens

(Y L) 6 6 b
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(1 0)(22 o001
v 1){+32 0.6
[ 22 0.01
229+32 0.6+0.0lv

The image plane would correspond to

32+220v =0
or, v=-14.5cm
i.e., it is at a distance of 14.5 cm to the left of the concave lens. If we compare
this with Eq. (45), we obtain
32 1

M=0.6+0.01v=0.6-0.01 (—) =+—
2.2 2.2
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Fermat's Principle, Snell's
Law and Ray Equation

k A Quick Review ?

21| FERMAT’S PRINCIPLE

Fermat’s principle states that the actual ray path between two points is the one for
which the optical path length is stationary with respect to variations of the path.

s .[nds -0 1)

A—B
Using Fermat’s principle one can derive Snell’s law of refraction (see Problem 2.1):
nysin ¢ = nysin @, 2

where ¢, is the angle of incidence and ¢, the angle of refraction (see Fig. 2.1).

0,

ny (> ny) ny (<ny) (3

n nl
o | 9 o | &

(a) (b)

Fig. 2.1 (a) Foraray incident on a denser medium, the ray bends towards the normal and the angle of
refraction is less than the angle of incidence. (b) For a ray incident on a rarer medium, the ray
bends away from the normal and the angle of refraction is greater than the angle of incidence.
In each refraction, the Snell’'s law nysin ¢4 = npsin ¢ is obeyed.

We assume that the refractive index depends only on the x-coordinate. Such an
inhomogeneous medium can be thought of as a limiting case of a medium consisting
of a continuous set of thin slices of media of different refractive indices — [see
Fig. 2.2(a)]. At each interface, the light ray satisfies Snell’s law and one obtains

nlsin ¢1 :nzsin ¢2:n3sin ¢3: (3)
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Thus, in the limiting case of a continuous variation of refractive index [see
Fig. 2.2(b)], the product

n(x)sin @(x) = n(x)cos O(x) =n;cos 6, = B 4
is an invariant of the ray path; we will denote this invariant by B In the above equation

0(x) is the angle that the ray makes with the z-axis. The value of this invariant may be
determined from the fact that if the ray initially makes an angle 6, (with the z-axis) at

a point where the refractive index is 7, then the value of f3 is n;cos 6.

X
n 4 \ 94
%/
ny 0%, -
7 5 dx
n 2 Y 92 o=
" ? .

Fig.2.2 (a) In alayered structure, the ray bends in such a way that the product n;sin ¢4 = npsin ¢, =
nssin ¢s = ... remains constant. (b) For a medium with continuously varying refractive index,
the ray path bends in such a way that the product n(x)sin ¢(x) [= n(x)cos 6(x)] remains
constant.

N H RAY EQUATIONS IN INHOMOGENOUS MEDIA

Equation (4) can be used to derive the ray equation which can be written in either of
the following forms (see Problem 2.4):

2 2
(?) A )
B
d*x 1 dn?
or, ? = ﬁﬁ (6)

The above equations represent rigorously correct ray equations when the refractive
index depends only on the x-coordinate.

PROBLEMS g

2.1 Obtain the laws of refraction (i.e., Snell’s law) from Fermat’s principle.

2.2 Consider a spherical refracting surface SPM separating two media of
refractive indices n; and 7, (see Fig. 2.3). The point C represents the center
of the spherical surface SPM. Consider two points O and Q such that the
points O, C and Q are in a straight line. Calculate the optical path length OSQO
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in terms of the distances x, y, r and the angle 0 (see Fig. 2.3). Use Fermat’s
principle to find the ray connecting the two points O and Q. Also, assuming
the angle 6 to be small, determine the paraxial image of the point O.

Fig.2.3 SPM is a spherical refracting surface separating two media of refractive indices n
and n,. C represents the center of the spherical surface.

2.3 Consider a set of rays, parallel to the axis, and incident on a paraboloidal
reflector (see Fig. 2.4). Show, by using Fermat’s principle, that all rays will
pass through the focus of the paraboloid; a paraboloid is obtained by rotating a
parabola about its axis. This is the reason why paraboloidal reflectors are used
to focus parallel rays from a distant source, like in radio astronomy.

B

Fig. 2.4 All rays parallel to the axis of a paraboloidal reflector pass through the focus after
reflection (the line ACB is the directrix). It is for this reason that antennas (for
collecting electromagnetic waves) or solar collectors are often paraboloidal in shape.
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2.4 Assume the refractive index to depend only on the x-coordinate. Use Snell’s
law [Eq. (4)] to derive the ray equation [Eqs (5) and (6)].
2.5 Solve the ray equation in a homogeneous medium for which n(x) is a constant.
2.6 (a) Obtain the ray paths in a medium characterised by the following refractive
index variation

n(x) =ng+kx (7

Assume that at z =0, the ray is launched at x = x; making an angle 6;, with
the z-axis; thus

x(z=0) =x;
and ﬂ =tan 0,
dz z=0

(b) Assume that k= 1.234 x 10° m ' and rays are launched atx =x; =1.5m,
where n(x;) = 1.00026. Plot the ray paths when the angle that the ray
makes with the horizontal axis are +0.2°,0°,-0.2°,—-0.28°, - 0.3486° and
—-0.5°.

2.7 (a) Consider an optical waveguide characterised by the refractive index
distribution is usually written in the form:

2
n’(x) =n? [1— 2A(£ﬂ , |x|<a CORE
a

=nd=n}(1-2A), |x|>a CLADDING )

The region |x| < a is known as the core of the waveguide and the region
|x| > a is known as the cladding. Assuming that at z = 0, x = 0, show that
for n, < B < ny, the ray paths are sinusoidal.

(b) Derive an expression for the periodical length z, of the sinusoidal path.

(c) Assume n; =1.5, A=0.01 and a = 20 um; if 6, is the angle that the ray
makes with the z axis at x = 0, calculate the values of z, corresponding to
6, =4°,8.13° and 20°.

2.8 In continuation of the previous problem, for n, < B < ny, the ray path (inside
the core) of a parabolic index waveguide is given by

x =xgpsin [z 9
where, Xo = % n?— B (10)
\2A
v=m— (11)
Y
and r=% (12)
B

Calculate the time taken by a ray to traverse a certain length through the
parabolic index waveguide; such a calculation is of considerable importance
in fiber optic communication systems (see Sec. Eq. (17) of Chapter 18).
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2.9 Discuss the ray paths in a medium characterized by the following refractive
index variation

nz(x) =n} x<0

=n?—gx x>0 (13)
Obtain the ray path for a ray incident on the origin (x = 0, z = 0) making an
angle 6, with the z-axis.
2.10 Consider a refractive index variation which saturates to a constant value as
X —> oo:
(X)) =n+ni(l—e ™), x>0 (14)
with ny = 1.000233, n, =0.45836 and «a=2.303 m! (15)

Calculate the angle at which the ray should be launched at x = 0.43 m, so that
it becomes horizontal at x = 0.2 m.

€ /> SOLUTIONS

2.1 To obtain the laws of refraction, let PQ be a surface separating two media
of refractive indices 7; and n, as shown in Fig. 2.5. Let a ray starting from
the point A4, intersect the interface at R and proceed to B along RB. Clearly,
for minimum optical path length, the incident ray, the refracted ray and the
normal to the interface must all lie in the same plane. To determine that
point R for which the optical path length from A4 to B is a minimum, we drop
perpendiculars AM and BN from 4 and B respectively on the interface PQ. Let
AM=h;, BN = h, and MR = x. Then since 4 and B are fixed, RN = L — x, where
MN = L is a fixed quantity. The optical path length from 4 to B, by definition,
is

Lop =m AR+ myRB= m[x* + It + my\[(L —x)* + I (16)
4
1o
n
i O L=
M N "
P L T
| X R ! ) 0
0, i
'y
(%
B
| L :

Fig.25 A and B are two points in media of refractive indices ny and n,. The ray path
connecting A and B will be such that nysin ¢1= n,sin ¢,.
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To minimise this, we must have

dL,,
— =0 17
T A7)
ie. o mlmy) (18)
Crh (- R
Further, as can be seen from Fig. 2.5
sin ¢; = =
| = —
2+
and sin ¢2 = (L—_x)
(L—x)*+1
Thus, Eq. (18) becomes
nysin @ = nysin ¢, (19)

which is the Snell’s law of refraction.
From the triangle SOC (see Fig. 2.3) we have

OS =[(x+r)’ + 1 —2(x +r)rcos 6]
5 172
[x2+2rx+2r2—2(xr+r2)(1_%):|
2 1/2
x[l+ rxer 92} =x+ %r2(1+l)92

%2 roox

i

ll

where we have assumed 6 (measured in radians) to be small so that we may
use the expression

2
cosezlfe—

and also make a binomial expansion. Similarly, by considering the triangle
SCQ we would have
SO =y— lr2(l_l)92
2 roy

Thus, the optical path length OSQ is given by
Lop =nm oS + l’l2SQ

= (mx +nyy) + lr2 |:ﬂ+n—2—u}92 (20)
2 x oy r
For the optical path to be an extremum, we must have
Lop _go 2| My Mg @1)
do x oy r
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Thus, unless the quantity inside the square brackets is zero we must have
0 = 0 implying that the only ray connecting the points O and Q will be the
straight line path OPQ which also follows from Snell’s law because the ray
OP hits the spherical surface normally and should proceed undeviated.

On the other hand, if the value of y was such that the quantity inside the
square brackets was zero, i.e., if y was equal to y such that

n n ny—n
Too M _TaTm

Yoo ox r =

then dL,/d6 would vanish for all values of 6; of course, 6 is assumed to be
small — which is the paraxial approximation. Now, if the point / corresponds to
PI=y, (see Fig. 2.3) then all paths like OSI are allowed ray paths implying that
all (paraxial) rays emanating from O will pass through 7 and 7 will therefore
represent the paraxial image point. Obviously, all rays like OS7 (which start
from O and pass through /) take the same amount of time in reaching the point
L

We should mention that Eq. (22) is a particular form of the equation
determining the paraxial image point

22 iy = g2 (23)

with the sign convention that all distances measured to the right of the point P
are positive and those to its left negative. Thus u =—x, v =+y and r = +R.

In order to determine whether the ray path OPQ corresponds to minimum
time or maximum time or stationary, we must determine the sign of asz(,p/dG2

which is given by
2
d Lop _ r2|:n_1+n_2_n2_nl:| _ }"2}'1 l:l_L:l
do? x oy Ly v

Obviously, if y > y, (i.e., the point Q is on the right of the paraxial image
point /) a’zLop/dQ2 is negative and the ray path OPQ corresponds to maximum
time in comparison with nearby paths and conversely. On the other hand,
if y = yy, dzLop/a’B2 will vanish implying that the extremum corresponds to
stationarity.

2.3 Consider a ray PQ, parallel to the axis of the parabola, incident at the point
O (see Fig. 2.4). In order to find the reflected ray, one has to draw a normal at
the point Q and then draw the reflected ray. It can be shown from geometrical
considerations that the reflected ray QS will always pass through the focus S.
However, this procedure will be quite cumbersome and as we will show below,
the use of Fermat’s principle leads us to the desired results immediately.

In order to use Fermat’s principle we try to find out the ray connecting
the focus S and an arbitrary point P (see Fig. 2.4). Let the ray path be PQ’S.
According to Fermat’s principle the ray path will correspond to a minimum
value of PQ’ + Q’S. From the point Q" we drop a perpendicular Q’L’, on the
directrix AB. From the definition of the parabola it follows that Q’L" = Q’S.
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Thus,
PO +Q'S=PQ"+ Q'L
Let L be the foot of the perpendicular drawn from the point P on AB. Then,
for PQ’ + Q’L’ to be a minimum, the point Q should lie on the straight line
PL, and thus the actual ray which connects the points P and S will be PQ +
OS where PQ is parallel to the axis. Therefore, all rays parallel to the axis
will pass through S and conversely, all rays emanating from the point S will
become parallel to the axis after suffering a reflection.
2.4 If ds represents the infinitesimal arc length along the curve, then

(ds)* = (dx)* + (dz) (24)
2 2
ds\ _ ﬂ )
or, (E) (dz +1 (25)
Now, if we refer to Fig. 2.2(b), we find that
dz _ i
= cos 0 (o (26)
Thus Eq. (25) becomes
2 2
(ﬂ) G 27)
dz BZ

For a given n(x) variation, Eq. (27) can be integrated to give the ray path x(z);
however, it is often more convenient to put Eq. (27) in a slightly different form
by differentiating it with respect to z:

dx d*x 1 dn? dx

haxda x _ L dn ax
dz g;? Bz dx dz
2 2
or, e %)
dz 2B° 9x

Equations (27) and (28) represent rigorously correct ray equations when the
refractive index depends only on the x-coordinate and we may use either of
them to determine the ray paths.

2.5 In a homogeneous medium for which n(x) is a constant. In such a case, the
RHS of Eq. (28) is zero and one obtains

d*x _
22 =0
dz
Integrating the above equation twice with respect to z, we obtain
x=Az+B

which is the equation of a straight line, as it ought to be in a homogeneous
medium.
2.6 Consider the refractive index variation

n(x) =ng+kx (29)
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For the above profile, the ray equation [Eq. (28)] takes the form
d’x _ 1 dn* _ k

=—=—=—[nyt+k

dz* 232 dx BZ Lo + k]

2
or, X _ x) (30)

dz
where X=x+20 and k= k, 3D

> - k B

Thus, the ray path is given by

x(2) = —”70 +Cie* + Cpe ™ (32)

where the constants C; and C, are to be determined from initial conditions.
We assume that at z = 0, the ray is launched at x = x; making an angle 8; with
the z-axis; thus

x(z=0) =x,
dx _
and = o tan 6,

1 1
0 200 400 600 800 1000 1200

—— z(m)

Fig.2.6 Ray paths in a medium characterised by a linear variation of refractive index [see
Eq. (7)] with parameters as given in Problem 6(b). The object point is at a height of
1.5 m and the curves correspond to +0.2°, 0°, -0.2°, —0.28°, —-0.3486° and —0.5°.
The shading shows that the refractive index increases with x.

Elementary manipulations would give us

c - l[xl + Ly + mysin el)] (33)
2 k
_ 1 1 .
and G = E[XI + E(n0 — mysin Ol)] 34)
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where ny = ng + kx; represents the refractive index at x = x; and we have used
the fact that

B =nycos 6, (35)
Now, k= 1.234 x 10 m ! and n(x;) = 1.00026 where x; = 1.5 m; thus ny =
1.0002415. Figure 2.6 shows the ray path as given by Eq. (32) for 6, =+0.2°,
0°,-0.2°,-0.28°, —-0.3486° and —0.5°.
2.7 (a) Inthe core of the waveguide, we write the refractive variation as

n(x) =ni—y*x* (36)
where, y=n- iA

We will use Eq. (27) to determine the ray paths. Equation (27) can be

written as
_[ Lz = J_rij'dz (37)
V- P
Substituting for n’(x), we get
J.L - rjdz (38)
xg —x?
_ L2 2
where, Xy = ¥ n—p 39)
Y
and r== (40)
B
Writing x = xysin 6 and carrying out the straightforward integration, we
get
x =t xysin[I'(z —zp)] (41)

We can always choose the origin such that z, = 0 so that the general ray
path would be given by

x =xxpsinl'z (42)

(b) Forn; =15, A=0.01, a =20 um, we get n, = 1.485 and y= 1.0607 x
10* m™". Obviously, rays will be guided in the core if 7, < B < n;. When

ﬁ = n,, the ray path will become horizontal at the core-cladding interface.

For B < ny, the ray will be incident at the core-cladding interface at an
angle greater than the critical angle and the ray will be refracted away.
Thus, we may write

ny, < B <n; = Guided rays
[~3 <my =  Refracting rays (43)

In Fig. 2.7, the ray paths shown correspond to 6; = 4°, 8§.13° and 20°;
the corresponding values of B are approximately 1.496 (>n,), 1.485
(= ny) and 1.410 (<n,)—the last ray undergoes refraction at the core-
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2.8

STUDENTS-HUB.com

cladding interface. It may be readily seen that the periodical length z, of

the sinusoidal path is given by
2n _ 2macos 6,

g =L =
\2A

L b

(44)

Thus for the two rays shown in Fig. 2.7 (with 8; = 4° and 8.13°) the values

of z, would be
0.8864 mm and 0.8796 mm

respectively. Indeed, in the paraxial approximation, cos 0; = 1 and all rays

have the same periodic length.

Cladding

core

— z (mm)

Fig. 2.7 Typical ray paths in a parabolic index medium for parameters as given in Problem

7(c) for @y = 4°, 8.13° and 20°.

The ray path (inside the core) is given by

x =xpsinlz

(45)

where x; and I" have been defined earlier. Let d7 represent the time taken by

aray to traverse the are length ds:
_ds
c/n(x)

nw % - p

[see Eq. (26)] we may write Eq. (46) as

Since,

dr = é nz(x)dz
[ni - y*x*)dz

or, dr = [n12 - }/zx%) sin’ Iz]ldz

%z|‘ %zl” %

(46)

(47)
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where in the last step we have used Eq. (45). Thus, if 7(z) represents the time
taken by the ray to traverse a distance z along the waveguide then

22 2.2 7
T(2) = n—Lsz— ¥ %o J.l cos (2) dz
¢ cB 2
0
2.2
D U T 2} Y’x 1
= —|n—-= +—=-—=sin2I"
cﬁ[nl SV |2 2B 2T sin 2Tz
2 32
1 o w2 i =p) .
or, 1(2) = —=|[n{ + z+——=sin2lz 48
@ = g5l + Bz = (48)
where we have used Eq. (39).
When /~3 = n; (which corresponds to the ray along the z-axis)
1(2) = —— (49)
c/ny

which is what we should have expected as the ray will always travel with
speed c¢/n;. For large values of z, the second term on the RHS of Eq. (48)
would make a negligible contribution to 7(z) and we may write

2

11~ ny

T = — e
o 2o
Now, if a pulse of light is incident on one end of the waveguide, it would
in general excite all rays and since different rays take different amounts of
time, the pulse will get temporally broadened. Thus, for a parabolic index

waveguide, this broadening will be given by

At=1(B=ny) (B =n)

(50)

PRV
or, Ar= Z2Tm) om0 (51)
2c my 2c
where in the last step we have assumed
2 2
2n m
Forn; = 1.5and A = 0.01, we get
AT = 0.25 ns/km (53)
2.9 In the region x >0, " (x) decreases linearly with x and Eq. (23) takes the form
dx _ 8
dz2 232

STUDENTS-HUB.com

The general solution of which is given by

x(2) = ——E- 2Kzt K, (54)
4p
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Consider a ray incident on the origin (x = 0, z = 0) as shown in Fig. 2.8.
Thus
K, =0 and ﬁ =n;cos 6; (55)
dx

Further, —-
dz z=0

=K1 =tan 01 (56)

Thus, the ray path will be given by

x(z) = (tan 6,)z z<0
gz
= -——=(z-z 0<z<z
— (2—20) 0 57)
——gTZg(Z—Zo) 2>z
4p
2
where, zp = —sin 26,

Thus in the region 0 < z < z, the ray path is a parabola. Typical ray paths
are shown in Fig. 2.8, the calculations corresponds to

nm=15g=01m"

and different rays corresponds to

— x(m)

-2 0 2 4 6

— z(m)

Fig. 2.8 Parabolic ray paths (corresponding to 6; = 20°, 30°, 45° and 60°) in a medium
characterised by refractive index variation as given in Problem 2.9. The ray paths in
the region x < 0 are straight lines.
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2.10 Now, at x=0.43 m, n(x) =n; = 1.0642 and at x = 0.2 m, n(x) = 1.03827. Thus,
if 8; represents the angle that the ray makes with the z-axis at the launching
point, then

nycos 6, =1.03827 x cos 0
implying
6,=13°

Further, since the ray becomes horizontal at x = 0.2 m, the value of the
invariant is given by B = 1.03827.
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31| THE EYE

The eye can be considered an optical instrument which forms images of external
objects on the retina. The interior part of the eye is a liquid having a refractive
index of 1.33 (equal to that of water). The eye lens is a double convex lens having a
refractive index of about 1.4. The ciliary muscles permit the change of the power of
the eye lens which allows us to accommodate and focus objects at different distances.
In fact since the cornea is a curved surface it also acts like a lens and has a power of
about 43 Diopters. The eye lens has a nominal power of 17 Diopters. The distance
from the cornea to the retina is about 24 mm.

32 | MAGNIFYING GLASS
The magnifying power of a magnifying glass is defined by

M= angle subtended by the virtual image formed by the lens 0
angle subtended by the object when located at a

distance 25 cm from the eye

Visual acuity (VA) is defined and measured in terms of the smallest angular size
of the character that can be recognized by the eye. The smallest recognizable letter
should subtend an angle of 5 minutes of arc from the eye and each element of the
letter should subtend an angle of 1 minute of arc. The normal VA is 1 minute of arc
which is approximately equal to 2.9 x 10~ radians.

3.3 |\ COMPOUND MICROSCOPE

Figure 3.1 shows a compound microscope consisting of an objective lens of focal
length £, and eye piece of focal length f,. A real image of the object placed very close
to the focus of the objective is formed by the objective and the eye piece provides for
angular magnification.

The lateral magnification provided by the objective lens is
hy L

A

@)
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Fig. 3.1 A compound microscope consisting of an objective and an eye piece. The objective forms a
real image and the eye piece magnifies the image so that the eye can resolve the details.

The quantity L represents the distance between the back focus and the position
of the image and is often referred to as the tube length. In standard microscopes L =

160 mm.
Similarly the angular magnification of the eye piece is given by
254
M, = 3
7 A3)

where we have used the fact that the least distance of distinct vision is 254 mm and
the focal length is in mm.
Thus, the overall magnification of the compound microscope is given by

Ahﬂ@Mf—%£X¢4 (4)
34 | TELESCOPE

Figure 3.2 shows a telescope in which parallel rays from a far off object are focused
by an objective of focal length £, and the image formed by the objective is then
magnified by the eye piece of focal length f,. The angular magnification of the
telescope is given by

m=-to ()

Je

vl

Fig. 3.2 A telescope consisting of an objective lens and an eye piece. Parallel rays from a distant
object get focused on the focal plane of the objective and the eye piece provides for
magnification of the image.
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PROBLEMS g

3.1 Consider a compound microscope formed using an objective of focal length
20 mm and an eye piece of focal length 30 mm. (a) What would be the
magnification of the microscope assuming a tube length of 160 mm? (b) What
will be the corresponding distance of the object from the objective?

3.2 Consider a telescope formed using an objective of focal length 20 cm and
eye piece of focal length 2 cm. (a) What should be the distance between the
objective and the eye piece? (b) What will be the angular magnification of the
telescope?

3.3 Consider a camera with a lens of focal length 150 mm. (a) For /# numbers of
/716 and f/8, what should be the diameters of the aperture openings? (b) If the
exposure time required for a picture taken with f/8 is 1 s, then what exposure
time would be appropriate for the same picture taken with //16? The quantity
f# is the ratio of the focal length to the diameter of the lens and is referred to
as the F-number.

3.4 Consider a magnifying glass of focal length 5 cm. An object is placed in front
of the lens so that the magnified virtual image is formed at the distance of
25 cm from the lens. What will be the corresponding magnification?

3.5 Consider a compound microscope made up of an objective lens of focal
length 3 cm and an eye piece lens of focal length 5 cm. The distance between
the objective and the eye piece is 20 cm. Obtain the magnification of the
microscope assuming that the final image is formed at a distance of 25.4 cm
from the eye.

3.6 Consider a telescope with an objective lens of focal length 25 cm and an eye
piece with a focal length of 5 cm. If the telescope is used to view an object
kept at a distance of 1 m, obtain the angular magnification of the telescope.

3.7 Consider a microscope with an objective having a focal length of 3 mm and a
tube length of 160 mm. If the eyepiece has a magnification of 10, obtain the
overall magnification of the microscope.

3.8 Consider a microscope with objective and eye piece of focal lengths 6 cm and
the distance between the objective and the eye piece of 206 mm. If the final
image formed by the eye piece is assumed to be at infinity to allow for relaxed
viewing, obtain the overall magnification of the microscope. Obtain also the
distance of the object from the objective of the microscope.

3.9 An astronomical telescope is to be constructed using an objective and an
eye lens to achieve a magnification of 20 and having a distance between the
objective and the eye lens of 254 mm. (a) What should be the focal lengths of
the objective and the eye lens? (b) If the diffraction limited resolution of the
image formed by the telescope is to be resolvable by the eye, what should be
the diameter of the objective? Assume an eye pupil diameter of 4 mm.

3.10 A person wishes to read a board with letters of height 1 cm placed at a distance
of 1000 m. What telescope magnification would be required?

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Optical Instruments 35
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3.1 (a) Using Eq. (4) we obtain for the magnification of the microscope as

160 254
20 X 30 ~9

(b) For the given set of parameters, the distance of the image from the
objective would be L + £, = 180 mm. Using the standard lens formula we
obtain for the object distance from the objective to be 22.5 mm.

3.2 (a) The distance between the objective and the eye piece should be equal
to the sum of the focal lengths of objective and the eye piece and hence
should be 22 cm.

(b) The angular magnification of the telescope would be 10.

3.3 (a) Since f# is the ratio of focal length to diameter, the diameter of the

aperture for /716 and f/8 would be 9.375 mm and 18.75 mm respectively.

(b) Since the exposure depends on the area of the aperture, with the halving
of diameter when changing from f/8 to f/16, the required exposure time
would increase by a factor of 4. Thus, the required exposure time for /716
would be 4s.

3.4 For the virtual image to be formed at a distance of 25 cm from the lens, the

object must be placed at a distance u given by

1 1,1
—_— = — + —
u 5 25
giving u = 4.17 mm. Hence, the magnification is given by
-2
M=9177¢

3.5 For the virtual image to be formed at a distance of 25.4 cm from the eye piece,
the image formed by the objective should be at a distance u, from the eye

piece, where
1 1

—_— = — 4 —

1
u, f, 254

e

This gives us u, = 4.2 cm. Since the distance between the objective and the
eye piece is 20 cm, the image formed by the objective lies at a distance of
20 — 4.2 = 15.8 cm from the objective. For this, the distance u, of the object
from the objective should be

1

1
15.8

=

[

which gives us u, = 3.7 cm. Hence, the magnification of the objective is M, =
15.8/3.7 = 4.3. The magnification of the eye piece is M, =25.4/4.2 = 6. Hence,
the overall magnification of the microscope is M= M, X M, = 25.8.
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3.6 From the lens formula we find that the image formed by the objective will
lie at a distance of 33.33 cm from the objective. For the eye piece to form
the image at a distance of 25.4 cm, the distance of the image formed by the
objective from the eye piece must be 4.2 cm. Thus, the overall magnification

. 3333 254
will be M= 100 X 10 =2

If the height of the object placed at a distance of 1 m from the objective
is 1 cm, then the angle subtended by the object at the eye would be 0.01
radians. The final image subtends an angle of 2/25.4 = 0.078 radians. Hence,
the angular magnification of the telescope is 7.8.

3.7 For atube length of 160 mm and an objective focal length of 3 mm, the overall
magnification is 160/3 x 10 = 533.3.

3.8 If the final image is at infinity, then the real image formed by the objective
should be at the front focus of the eye piece, i.e., at a distance of 6 mm from
the eye piece. Thus, the angular magnification of the eye piece is 250/6 =
41.67. Since the distance of the image from the objective lens is 200 mm
and the focal length of the objective is 6 mm, the distance of the object from
the objective is 6.19 mm. Thus, the magnification of the objective would be
200/6.19 = 32.31. Hence, the overall magnification of the microscope is 1346.

3.9 (a) The magnification of the telescope is the ratio of the focal lengths of the

objective and the eye lens. Hence,

M=—To_ 5

e
Also the distance between the objective and the eye lens should be
equal to the sum of the focal lengths of the objective and the eye lens.
Hence,
fot /. =254 mm

Solving the above two equations, we obtain f, = 12.1 mm and f, =
241.9 mm.

(b) The height of the image (/;) produced by the objective at the limit of
resolution is given by

_1.22f,

===

o

h;

The angle subtended by this image on the eye when it lies at the front
focal plane of the eye piece is 4;/f,. For this to be resolvable by the eye,
we must have

ﬁ _ 1.224
fe deye
Thus we obtain
_Jo
do - Zdeye

which gives us d, = 80 mm.
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3.10 The angle subtended by the object at the eye is 1073 radians. This angle should
be increased to 5 minutes of arc or 15 x 10 radians to be recognizable.
Hence the required magnification is 150.
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4.1 || CHROMATIC ABERRATION

Let us consider a parallel beam of white light incident on a thin convex lens as shown
in Fig. 4.1. Since blue light gets refracted more than red light, the point at which the
blue light would focus is nearer the lens than the point at which the red light would
focus. Thus, the image will appear to be coloured. The difference in the focal lengths
corresponding to red and blue colours is approximately given by (see Problem 4.1):

nb_n

= m
n—1

where n, and n, represent the refractive indices for the blue and red colours
respectively and n = (n;, + n,)/2. Equation (1) gives rise to what is known as chromatic
aberration (see Problems 4.2-4.5).

|
\
v

Fig. 41  When white light consisting of a continuous range of wavelengths is incident on a lens, then
each wavelength refracts by different amounts; this leads to chromatic aberration.

42 || SPHERICAL ABERRATION

Let a beam of light parallel to the axis be incident on a thin lens [see Fig. 4.2(a)].
The light rays after passing the lens bend towards the axis and cross the axis at some
point. If we restrict ourselves to the paraxial region, then we can see that all rays
cross the z-axis at the same point which is at a distance f, from the lens; f, is known
as the paraxial focal length of the lens. If one does not restrict to the paraxial region,
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then in general, rays which are incident at different heights on the lens, hit the axis
at different points. For example, for a convex lens, the marginal rays (which are
incident near the periphery of the lens) focus at a point closer than the focal point of
paraxial rays [see Fig. 4.2(a)]. Similarly, for a concave lens, rays which are incident
farther from the axis appear to be emerging from a point which is nearer to the lens
[see Fig. 4.2(b)]. The point at which the paraxial rays strike the axis (Fp) is called
the paraxial focus and the point at which the rays near the periphery strike is called
the marginal focus (F),). The distance along the axis between the paraxial image
point and the image corresponding to marginal rays (i.e., rays striking the edge of
the lens) is termed longitudinal spherical aberration. Similarly, the distance between
the paraxial image point and the point at which the marginal ray strikes the paraxial
image plane is called the lateral spherical aberration [see Fig. 4.2(a)]. The image on
any plane (normal to the z-axis) is a circular patch of light; however, as can be seen
from Fig. 4.2(a), on a plane AB the circular patch has the least diameter. This is called
the circle of least confusion. It may be mentioned that for an object lying on the
axis of a cylindrically symmetric system (like a system of coaxial lenses), the image
will suffer only from spherical aberration. All other off-axis aberrations like coma,

astigmatism, etc., will be absent.
Lateral
spherical
4 aberration

1B Fp
M o 7
Jp—Iu

Longitudinal
spherical
aberration

(a)

(b)

Fig. 4.2 (a) For a converging lens the focal point for marginal rays lies closer to the lens than the
focal point for paraxial rays. The distance between the paraxial focal point and the marginal
focal point is known as the longitudinal spherical aberration and the radius of the image at
the paraxial focal plane is known as the lateral spherical aberration. The combined effect of
defocusing and spherical aberration leads to the formation of a circle of least confusion, where
the image would have the minimum diameter. (b) The spherical aberration of a diverging lens.
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The calculation of the spherical aberration even for a single spherical refracting
surface is quite cumbersome (see, e.g., Ref. Sm1), we just give the final results:

2
A - (ny— my) z(l+Lj X(_”z_"rnlJrljhz @
(1 ”2_”1] R 2z, mZzg R
2ny | — + —=——

Zy mR

where R represents the radius of curvature of the surface, n; and #n, represent the
refractive indices of the media on the left and right of the spherical surface (see
Fig. 4.3). For a plane surface R = e, Eq. (2) reduces to Eq. (24) with n = n,y/n;.

Normal

Fig. 4.3 The aplanatic points of a spherical refracting surface.

In a similar manner, for a set of rays incident parallel to the axis, one can show that
the coefficient of spherical aberration of a thin lens made of a material of refractive
index » and placed in air, with the surfaces having radii of curvatures R; and R,

would be given by
2
__J(n-1 1 1 1
A=~ p»e X {_(Rz PJ {Rz P(n+l)}+ Rf] 3)
where, P= -J17 = |:(n - l)(RL1 - RLZH 4)

represents the power of the lens. The coefficient 4 is such that when it is multiplied
by the cube of the height of the ray at the lens, one obtains the lateral spherical
aberration. Thus, the lateral spherical aberration for rays hitting the lens at a height
h would be

_ i _J@=DK L) 1
Slat_Ah ——TX[—[R—Z—PJ {R—Z—P(}'I+1)}+R—l3:l (5)
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The longitudinal spherical aberration (which represents the difference between
the marginal focal length and the paraxial focal length) would be given by

Slong = Ahzf 5
_ =D/ L_(L_”_“)(L_L) ©
2n* R13 R, / R, f
For a converging lens, Sjo,, Will always be negative implying that the marginal

rays focus closer to the lens. For a thin lens of given power (i.e. of a given focal
length), one can define a quantity ¢, called the shape factor, by the following relation:

_ R+ R

R-R (7

where R, and R, are the radii of curvatures of the two surfaces. For a given focal
length of the lens, one can control the spherical aberration by changing the value
of g. This procedure is called bending of the lens. Figure 4.4 shows the variation of
spherical aberration with g forn=1.5, f=40 cm (i.e., P=0.025 cm_l) and 2=1cm.
It can be seen that for values of g = 0.7, the (magnitude of the) spherical aberration is
minimum (but not zero). Thus, by choosing proper values of the radii, the spherical
aberration can be minimised. It may be mentioned that the value ¢ = +1 implies
R, =0 and hence it corresponds to a plano-convex lens with the convex side facing
the incident light. On the other hand, for a plano-convex lens with the plane side
facing the incident light R| = eo and ¢ =—1. Thus, the spherical aberration is dependent
on how the deviation is divided between the surfaces.

0.10

) - ( <&

-0.30*-

Fig. 4.4 Variation of spherical aberration and coma with the shape factor of a thin lens with n = 1.5,
f=40 cmand h =1 cm. For calculating the coma we have assumed tan =1, i.e., rays make
an angle of 45° with the axis.
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For a parallel beam of rays incident on a lens and inclined at angle with the z-axis
(see Fig. 4.5), one can show that the coma in the image is given by (see, e.g., Ref.
Gh2):

Coma

_ 3(n—1)fh2tan6Xl(n—l)(2n+l)_(nz—n—l)_i:l )

2 nR Ry n*R} R}

In Fig. 4.4 we have plotted the variation of coma with the shape factor ¢. It can
immediately be seen that for a lens with ¢ = 0.8, coma is zero. Also both spherical
aberration and coma are close to a minimum for a plano-convex (with the convex
side facing the incident light) for which ¢ = 1.0. As such, plano-convex lenses are
extensively used in eyepieces.

Fig. 4.5 Parallel rays (inclined at an angle 6 with the axis) incident on a thin lens.

PROBLEMS g

4.1 Show that the chromatic aberration for a thin lens is given by Eq. (1).

4.2 Consider an optical system of two thin lenses made of different materials
placed in contact with each other. For example, one of the lenses may be made
of crown glass and the other of flint glass. Show that for the lens combination
to have the same focal length for the blue and red colours, we must have

o o

84+2 =0 ©)
S r
where, w="2"" and = nb,_ i (10)
n—1 n—-1

are known as the dispersive powers. Since @ and @’ are both positive, fand f*
must be of opposite signs.
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4.3 An achromatic doublet of focal length 20 cm is to be made by placing a
convex lens of borosilicate crown glass in contact with a diverging lens of
dense flint glass. Assuming n, = 1.51462, n, = 1.52264, n; = 1.61216 and
nj = 1.62901, calculate the focal length of each lens; here the unprimed and
the primed quantities refer to the borosilicate crown glass and dense flint glass
respectively.

4.4 Consider a separated doublet consisting of two thin lenses of focal lengths fand
/" and separated by a distance ¢. Calculate the focal length of the combination
and show that the chromatic aberration is very small if the distance between
the two lenses is equal to the mean of the focal lengths. (This is indeed the
case for the Huygens’ eyepiece).

4.5 An achromatic cemented doublet of focal length 25 c¢cm is to be made from
a combination of an equiconvex flint glass lens (n;, = 1.50529, n, = 1.49776)
and a crown glass lens (n, = 1.66270, n,. = 1.64357). Calculate the radii of
curvatures of the different surfaces and the focal lengths of each of the two
lenses.

4.6 Rays parallel to the axis are incident on a spherical refracting surface of radius
R separating media of refractive index »; and n,. Assume n;= 1.0, n, = 1.5 and
R =10 cm; the height x may be assumed to be 0.0001 cm, 1.0 cm, 2.0 cm and
3.0 cm.

Write a small program to obtain the exact point at which the refracted ray
will intersect the axis as a function of the height x of the incident ray. Discuss
the longitudinal spherical aberration of the image.

4.7 Consider a point object in front of a plane refracting surface. Obtain the
paraxial image point and calculate the aberration in the image when we
consider rays which hit the refracting surface at a height 4.

4.8 Consider a plane glass slab of thickness d made of a material of refractive index
n, placed in air. By simple application of Snell’s law obtain an expression for
the spherical aberration of the slab.

4.9 Consider a spherical refracting surface of radius R. Show that for a point 4
[see Fig. 4.3] such that

n +n,

R (11)

20
n
the spherical aberration is zero. Notice that both z, and R are negative
quantities.

4.10 Calculate the longitudinal spherical aberration of a thin plano-convex lens
made of a material of refractive index 1.5 and whose curved surface has a
radius of curvature of 10 cm, for rays incident at a height of 1 cm. Compare
the values of the aberration when the convex side and the plane side face the
incident light.

4.11 Consider a lens made up of a material of refractive index 1.5 with a focal length
25 cm. Assuming /# = 0.5 cm and 6 = 45°, obtain the spherical aberration and
coma for the lens or various values of the shape factor ¢ and plot the variation
in a manner similar to that shown in Fig. 4.4.
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¢/~ SOLUTIONS

4.1 The focal length of a thin lens is given by

1 1 1
—=(n—1)(———j (12)
S R Ry
If a change of n by 6n (the change of n is due to the change in the wavelength
of the light) results in a change of f by df'then we obtain by differentiating the

above equation
_of :5,,,(L_L] _én 1

12 R R, n-1f
5f = — jfl (13)

which represents the chromatic aberration of a thin lens. If n;, and n,. represent
the refractive indices for the blue and red colours respectively, then

ny—n

n—1

Jr=tp = ( ’) (14)
would represent the chromatic aberration.

4.2 We consider an optical system of two thin lenses made of different materials
placed in contact with each other. For example, one of the lenses may be made
of crown glass and the other of flint glass. We will find the condition for this
lens combination to have the same focal length for the blue and red colours.
Let n,, n, and n, represent the refractive indices for the material of the first
lens corresponding to the blue, yellow and red colours respectively. Similarly,
np, ny and n/ represent the corresponding refractive indices for the second
lens. If f; and f}, represent the focal lengths for the first and the second lens
corresponding to the blue colour, and if F, represents the focal length of the
combination of the two lenses (placed in contact), then

1 1 1 1 1 ’ 1 1
—=—+—,=(nb—1)(———]+(nb—1) )

Ey fy S R R Rl R
where R and R, represent the radii of curvatures of the first and second surface

for the first lens and, as before, the primed quantities refer to the second lens.
Thus, we may write

1 _m-11 m-11

TS Ny by (16)
where, % =(n— 1)(%1— R%) (17)
L [l L
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™ ; " ) (19)

v ’—
=N, N =

fand f” represent the focal lengths of the first and second lens corresponding
to a mean colour which is around the yellow region. Similarly, the focal length
of the combination corresponding to the red colour would be given by

1 n,—ll+n;—1L
F, n=1f n-=1f

(20)

For the focal length of the combination to be equal for blue and red colours,
we must have

m-11 m-11 n-11 n-11

”

n—-1f wn-1f n-1f n-1f
or D+P —p @1)
s ny—n ny —n,
where, o= L and o= 22—+ (22)
n—1 n—1

are known as the dispersive powers.
Since ® and @’ are both positive, fand 1~
must be of opposite signs for the validity
of Eq. (21). A lens combination which
satisfies Eq. (21) is known as an achromatic
doublet (see Fig. 4.2). It may be mentioned
that if the two lenses are made of the same
material, then @ = ®" and Eq. (9) would
imply f = —f”; such a combination will
have an infinite focal length. Thus, for an
achromatic doublet the two lenses must be Fig. 4.6 An achromatic doublet.
of different materials.

Crown Flint

ny+n,  1.52264+1.51462

43 n= = = 1.51
3= 5 51863
o mhtnl 1629014161216 _ oo
2 2
152264 —1.51462
Thus, 0= ST = 0.01546
, _ 1.62901-1.61216 _
and O = e — 002715

Substituting in Eq. (9), we obtain

0.01546 + 0.02715

7 70

[~

or, =-0.56942

’

~
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Now, for the lens combination to be of focal length 20 cm we must have

.11
77 T 20
or L -056942] = -
’ A 20
or, f=20x%x0.43058 =8.61 cm
, S
-] __i51
and /= 0s60m em

4.4 We consider two thin lenses of focal lengths f'and f” separated by a distance ¢
(see Fig. 4.7). The focal length of the combination F, would be

1 11 t

R (23)
LA A
o /7
t
Fig. 4.7 The separated doublet.
The focal length of the first lens would be given by
1 1 1
—=m-1)| —-— 24)

with a similar expression for % If Af and An represent the changes in the

focal length and in the refractive index due to a change in the wavelength, then
by differentiating Eq. (12), we obtain

Thus, differentiating Eq. (23), we obtain

AF A At At Af

AT T
__An + An’  t At An

(n=0f @=-Df" f@E-Df [ (n-1f
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o, ot
VARV A
where, as before, @ and ®’ represent the dispersive powers. Consequently,
for the combination to have the same focal length for blue and red colours we

(0+ o) 25)

should have
o o t ,
-t = 7 (w to )
S
or, t = M (26)
0+ o

If both the lenses are made of the same material, then = @’ and the above
equation simplifies to )
t= u (27)
2
implying that the chromatic aberration is very small if the distance between
the two lenses is equal to the mean of the focal lengths.
4.5 For the equiconvex flint glass lens

1.50529 and n,.=1.49776
ny, + n,

ny

Thus, n=

= 1501525 and = ”b;”’ ~0.00501

Similarly, for a crown glass lens

n,=1.66270 and n/=1.64357

I+ ’ _
Bl ~ 1654035 and o = "2
2 2

For the system to be achromatic

o , o _ 0.00501 , 0.01157 f
—+—= = + — = = =-0.433
fof A s /

Now, for the lens combination to be of focal length 25 cm, we must have

Thus, n = L =0.01157

0=

1,1 1 1 1
—t+— == —[1-0433]= — =14.2
Frp S5 = gl 1= 55 =/=142cm
= ' =-32.8cm
Now Lo (n-1 N I (n- l)l, when we have assumed R, = —R;.
f R R Ry
Thus

Ry =2(n-1)=2x0.5015x 142 = 14.2 cm
Ry =-R=-142cm = R{=-142cm

L, (11 11 1

= — = - -2 = = 7
7 (Rl sz B R (w-DOf
1 1 1
L, Rj~—42

= R, 142 0654x328 2T heem
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4.6 ¥

Fig. 4.8 A parallel beam of light is incident on a spherical surface separating two media of
refractive indices ny and n,. The point C represents the center of curvature of the
refracting surface.

Referring to Fig. 4.8, we may write

sin ¢y = 1;
R nsin ¢
ny sin ¢ = n, sin ¢, = ¢, = sin”! [%j
o= ¢ 2
. sing, sina _sina

In ABCI: I~ CB R o ins

Thus, 01=oc+CI=R+R.—2=R(1+.—2j
sin o sin o

The distance Ol is represented by v. A simple MATLAB program is given
below. We cannot take x = 0 — we take it to be a small number. The program
corresponds to n; = 1.0, ny=1.5, R =10 cm and x is measured in cm.

clear all;

clc;

nl=1.0;

n2=1.5;

r=10.0;

x=0.00001;

phil=asin (x/r);
phi2=asin (x*nl/ (r*n2));
alpha=phil-phi2;
v=r*(l.+ (sin(phi2)/sin(alpha)))
x=1.0;

phil=asin (x/r);
phi2=asin (x*nl/ (r*n2)) ;
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alpha=phil-phiZ2;

v=r* (l.+ (sin(phi2)/sin(alpha)))
x=2.0;

phil=asin (x/r);
phi2=asin (x*nl/ (r*n2));
alpha=phil-phiZ2;

v=r* (l.+ (sin(phi2)/sin(alpha)))
x=3.0;

phil=asin(x/r);
phi2=asin (x*nl/ (r*n2));
alpha=phil-phiZ2;

v=r*(1l.+ (sin(phi2)/sin(alpha)))

The answer comes out as v = 30.0000 cm, v = 29.9332 cm, v = 29.7312 cm
and v = 29.3891 cm respectively which shows the longitudinal spherical
aberration of the image.

The paraxial formula

gives us

4.7

Fig. 4.9 Refraction at a plane surface.

Let the plane of the refracting surface be chosen as the plane z = 0. Let P
be the object point. The z-axis is chosen to be along the normal (PO) from the
point P to the surface. The plane z = 0 separates two media of refractive indices
n; and n, (see Fig. 4.9); in the figure we have assumed n, > n;. Consider a ray
PM incident on the refracting surface (from the object) at a height /# as shown
in the above figure. The refracted ray appears to emerge from the point Q. We
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assume the origin to be at the point O. Let the z-coordinates of the points P
and Q be z; and z; respectively. Obviously, both z, and z; would be negative
quantities and the distances OP and OQ would be —z; and —z; respectively
(see Fig. 4.9). We have to determine z; in terms of z,. From Snell’s law we

know that
sin o =n sin 8 (28)
where ocand f3 are the angles that the incident and refracted rays make with the
z-axis and
n=22 (29)
m

Now, from Fig. 4.9 we have
—z; =hcot f= _h 1-sin’p

sin 8
or, z) = — .nh 1- %sinza (30)
Sin & n
where we have used Eq. (28). Since
sin o = b 31
W+ zg
we obtain
5 12
nh ;2 . 2172 1 h
=102+ l-———r 32
21 h( o) { 2(h2+z§} (32)
1/2
2 1/2 2 2 -1
or, 71 =-nlz| |1+ — l-—=—|1+— (33)
ZO n ZO ZO

The value of z; given by the above equation is an exact expression in terms
of z;. It can at once be seen that the image distance, z;, is a complicated
function of the height A, at which the ray strikes the refracting surface. In the
limit of 4 — 0, i.e., for paraxial rays, we get

zy = —nlz| (34

which is the expression for the image distance in the paraxial region. To the
next order of approximation, assuming |4/zy| << 1, we get

h? W
z1 ==nlzo| |1+ — || 1 - ——
! ol |: 225:” 2nzz§}

o
= —n|zy| {1 + 223112 (n —1)} (35)
Thus the aberration is given by
Az =— 2:|220|("2_ 1) (36)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Aberrations 51
The above equation gives the longitudinal spherical aberration. The negative

sign implies that the nonparaxial rays appear to emanate from a point which is
farther away from the paraxial image point.

4.8

<—d—>

Fig. 4.10  Figure for Problem 4.8

The object is assumed to be at the point O and the ray (undergoing refraction
at height /) appears to come from the point / as shown in the figure. Now,

OS =dtanr
Thus, BQ =BS+S8Q=h+dtanr.
Further, sini = N and sini=nsinr
\/hz-i- u’
. h h
= SN 7 = ——————= = tanr =
n’h*+ n*u? \/(n2 )] W+ n*u®

BQO h+dtanr
Now, IB = ™=
tan i hiu

_Ulh+ dh
h =) 1+ n*u?

-1/2
S R

nu n2u2

which is an exact expression. For h/u <<'1

d (P=1)h*d
BT e
2152
Thus, the spherical aberration is = — M
2n°u?
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4.9 For zy =
m

R, one of the factors in Eq. (2) vanishes and the spherical

aberration is zero. Indeed, it can be rigorously shown that all rays emanating

from the point 4 appear to diverge from the point B.

4.10 When the convex side is facing incident light [see Fig. 4.11(a)]

—_—

7

R, =+10cm

(@)

and

Thus,

Lo J=D

T2x1.5x%x1.5
~-2917x 107 cm™

——-P(n+1
R~ P+

=

1
+10><10><10}

R,=-10cm
/ ’

Thus, Sjong = AR’ f=-2.917x 107 x 1 X 1 x20 =-0.058 cm

(a) When the plane side is facing incident light [see Fig. 4.11(b)]

Ry=00, Ry=-10cm, h=1 cm. Obviously, f=20cmand P= 1

Thus, A=

=-0.01125 cm™
Thus, Siong = Ah*f=-0.225 cm

4.11 We first note that

1
f
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2x15x%1.5

—cm™L

20

2.5
___Eﬁ+ﬂ

1

R, (n—-Df
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1 1

_+_
_BtR R R 11 g

Also. “CR-R 11 R R (-Df

1 __@+) 1 (g-D
Thus, R = 2n=1/ and R 20=1)f
The longitudinal spherical aberration is given by

Slong :Ahzf
__ =0/ | (@) [ g-1 _LT
2n* 8- 2D f f

_{ g-1 _(n+1)}}
2(n=1f S

Similarly, the expression for coma is given by
_3(n-1B

Coma — fh2 tan® 6
h 5= (n—l)(2n+1)_n2—n—1_i
WhETS nRR, 112R12 R22

_|=n@n+l) (-1 (P-n-D(g+1)*  n(g-1’
4n(n-1)>%f? 4n*(n-1)7°f? 4(n-1)7>f>
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Huygens’ Principle and its
Applications

k A Quick Review ?

51| INTRODUCTION

Huygens’ theory is essentially based on a geometrical construction which allows us
to determine the shape of the wavefront at any time, if the shape of the wavefront at
an earlier time is known. According to Huygens’ principle, each point of a wavefront
is a source of secondary disturbance and the wavelets emanating from these points
spread out in all directions with the speed of the wave. The envelope of these wavelets
gives the shape of the new wavefront. In Fig. 5.1, S5, represents the shape of the
wavefront (emanating from the point O) at a particular time which we denote as = 0.
The medium is assumed to be homogeneous and isotropic. Let us suppose we want
to determine the shape of the wavefront after a time interval of Az. Then, with each
point on the wavefront as center, we draw spheres of radius v A¢, where v is the speed
of the wave in that medium. If we draw a common tangent to all these spheres, then
we obtain the envelope which is again a sphere centered at O. Thus, the shape of the
wavefront at a later time Az is the sphere S7.S5.

Fig. 5.1  Huygens’ construction for the determination of the shape of the wavefront, given the shape
of the wavefront at an earlier time. S; S, is a spherical wavefront centered at O at a time, say
t=0. §1S; corresponds to the state of the wavefront at a time At, which is again spherical
and centered at O. The dashed curve represents the backwave.
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Let us consider spherical waves emanating from the point source O and striking
the obstacle A (see Fig. 5.2). According to the rectilinear propagation of light (which
is also predicted by corpuscular theory) one should obtain a shadow in the region PO
of the screen. This is not rigorously true and one does obtain a finite intensity in the
region of the geometrical shadow. However, at the time of Huygens, light was known
to travel in straight lines and Huygens explained this by assuming that the secondary
wavelets do not have any amplitude at any point not enveloped by the wavefront.

o T <y

Fig. 5.2 Rectilinear propagation of light. O is a point source emitting spherical waves and A is an
obstacle which forms a shadow in the region PQ of the screen.

In order to explain diffraction phenomena, Fresnel modified the principle and
postulated that the secondary wavelets mutually interfere. The Huygens’ principle
along with the fact that the secondary wavelets mutually interfere, is known as the
Huygens—Fresnel principle. This principle can be used to understand diffraction
phenomena from different apertures (see Chapters 9-11).

PROBLEMS g

5.1 Use Huygens’ principle to obtain Snell’s law.

5.2 Obtain the law of reflection using Huygens’ principle

5.3 Consider a point source placed in front of a spherical surface of radius of
curvature R separating media of refractive indices #; and n, (see Fig. 5.5). Use
Huygens’ principle and obtain the relationship between the object distance u
and image distance v.

5.4 From the formula for refraction at a single interface, obtain the lens formula.

5.5 Consider a vibrating source moving through a medium with a speed V. Let the
speed of propagation of the wave in the medium be v. Show that if /"> v then
a conical wavefront is set up whose half-angle is given by

0 =sin' (%) ()
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5.6 Use Huygens’ principle to study how a plane wavefront incident along the
z-direction on an inhomogenous medium with a refractive index variation
given by

(6 y) =ni=7? (2457 @
will get modified.

5.7 Use Huygens’ principle to study the reflection of a spherical wave emanating

from a point on the axis at a concave mirror of radius of curvature R and
obtain the mirror equation

2
- 3)
5.8 Consider a plane wave incident obliquely on the face of a prism. Using

Huygens’ principle, construct the transmitted wavefront and show that the
deviation produced by the prism is given by

O0=i+t-4 “

where 4 is the angle of the prism, i and ¢ are the angles of incidence and
transmittance.

€ /> SOLUTIONS

5.1 Let S5, be a surface separating two media with different speeds of propagation
of light v; and v, as shown in Fig. 5.3. Let 4B, be a plane wavefront incident
on the surface at an angle i; 4B, represents the position of the wavefront at an
instant 7 = 0.

-

)

-

Fig. 5.3 Refraction of a plane wavefront A;B; by a plane interface S;S, separating two media
with different velocities of propagation of light v; and v, (< v4); i and r are the angles
of incidence and refraction respectively. A,C,B, corresponds to the shape of the
wavefront at an intermediate time . Notice that r< i.
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Let 7 be the time taken for the wavefront to travel the distance BB3. Then
BB; = v17. In the same time the light would have travelled a distance 4745
= 0,7 in the second medium. (Note that the lines 4,45, B; B3, etc. are always
normal to the wavefront; these represent rays in isotropic media). It can easily
be seen that the incident and refracted rays make angles i and » with the
normal. In order to determine the shape of the wavefront at the instant 7 = 7
we consider an arbitrary point C; on the wavefront. Let the time taken for the
disturbance to travel the distance C;C, be 7;. Thus, C;C, = v,7;. From the
point C, we draw a secondary wavelet of radius v,(7— ;). Similarly from the
point 4; we draw a secondary wavelet of radius v,7. The envelope of these
secondary wavelets is shown as A3C3B5. The shape of the wavefront at the
intermediate time 7; is shown as 4,C,B, and clearly B1B, = C;C, = v;7; and
AIAZ = 0,7. In the right-angled triangles BzCzB3 and C3C2B3, ZBzc'QBg =1
(the angle of incidence) and £C,B5C; = r (the angle of refraction). Clearly,

sini  B,By/C,B; vy m
sinr C,G3/C,B; vy, n

or, nysini =mn, sinr &)

which is known as the Snell’s law.

5.2

Fig. 5.4 Reflection of a plane wavefront AB incident on a plane mirror. A'B’ is the reflected
wavefront; i and r correspond to angles of incidence and reflection respectively.

Let us consider a plane wave 4B incident at an angle i on a plane mirror as
shown in Fig. 5.4. We consider the reflection of the plane wave and try to
obtain the shape of the reflected wavefront. Let the position of the wavefront
at 1 =0 be 4B. If the mirror was not present, then at a later time 7 the position
of the wavefront would have been CB’, where BB’ = PP’ = AC = vt and v
is the speed of propagation of the wave. In order to determine the shape of
the reflected wavefront at the instant 7 = 7, we consider an arbitrary point P
on the wavefront AB and let 7; be the time taken by a disturbance to reach
the point P from P. From the point P,, we draw a sphere of radius v(7 — 7).
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We draw a tangent plane on this sphere from the point B’. Since BB; = PP,
= o1y, the distance BB’ will be equal to PP, [= v(t — 17)]. If we consider
triangles P,P;B’ and B;P;B’ then the side P;B’ is common to both and since
PP’ = B’B,, and since both the triangles are right-angled triangles, ZP,B’P;
= ZB1PB’. The former is the angle of reflection and the latter is the angle of
incidence. Thus, we have the law of reflection; when a plane wavefront gets
reflected from a plane surface, the angle of reflection is equal to the angle of
incidence and the reflected wave is a plane wave.

5.3 Let us consider spherical waves (emanating from the point P) incident on the
curved spherical surface SBS’. Let the shape of the wavefront at the time =0
be ABC [see Fig. 5.5(a)]. In the absence of the spherical surface, the shape of
the wavefront at a later time 7 would have been 4,B;C; where A4, = BBy =
CC, = v, 7. We consider an arbitrary point Q on the wavefront ABC and let 7;
be the time taken for the disturbance to reach the point O’ (on the surface of
the spherical wave); thus QQ’ = v,7;. In order to determine the shape of the
refracted wavefront at a later time 7, we draw a sphere of radius v,(7 — 77)
from the point Q'. We may draw similar spheres from other points on the
spherical surface; in particular, the radius of the spherical wavefront from the
point B, which is equal to BB, will be v,7. The envelope of these spherical
wavelets is shown as 4;B,C; which, in general, will not be a sphere. However,
a small portion of any curved surface can be considered as a sphere and in
this approximation we may consider 4,8,C; to be a sphere whose center of
curvature is at the point M. The spherical wavefront will, therefore, converge
towards the point M and hence the point M represents the real image of the
point P. In actual practice the refracted wave will not be a spherical wave and
hence it will not converge to a single point; this fact is responsible for the
aberrations (see Chapter 4).

We adopt a sign convention in which all distances, measured to the left of
the point B, are negative and all distances measured to the right of the point B
are positive. Thus,

PB =—u 6)
where u itself is a negative quantity. Further, since the point M lies on the right
of B, we have

BM=v @)
and similarly, BO =R ®)
where O represents the center of curvature of the spherical surface.

In order to derive a relation between u, v and R we use a theorem in
geometry, according to which,
(4,G)* = GBx (2R — GB) )

where G is the foot of the perpendicular on the axis PM [see Fig. 5.5(b)]. In
Fig. 5.5(b) the diameter B’OB intersects the chord 4;GC; normally. If GB <<
R, then

(4,G)* = 2R(GB)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Huygens’ Principle and its Applications 59

Consider the spherical surface SBS” [see Fig. 5.5(a)] whose radius is R.
Clearly,

(4,G)* = (2R — GB)GB
~2R(GB) (10)

where we have assumed GB << R. Similarly by considering the spherical
surface 4,B,C (whose center is at the point M) we obtain

(4,6)° = 20(GB,) (11
where v = BM = B, M. In a similar manner,

(4,G)* = 2(-u)GB, (12)

ny(>ny)

0e

(b)

Fig. 5.5 (a) Refraction of a spherical wave ABC (emanating from the point source P) by a
convex spherical surface SBS’” separating media of refractive indices ny and n,
(>ny). A1B,Cy is the refracted wavefront, which is approximately spherical and
whose center of curvature is at M. Thus M is the real image of P. O'is the center of
curvature of SS’. (b) The diameter B’OB intersects the chord A;GC; normally.
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Since u is a negative quantity, (AlG)2 is positive.

Now, BB, =v1t and BB, =0,T
Therefore, ﬁ .Y
BBZ '02 nl
or, nlBBl = n2B32
or, }’ll(BGJ"GBl) :I’ZZ(BG—GBz)
{(AIG)Z B (AIG)Z} B {(AIGY B (AIGV}
o " T2R 2u ] ™| 2R 20

where we have used Eqgs (10), (11) and (12). Thus,
L _m_m=n
vu R
which may be rewritten in the form
H_h, Mmh

v u R

(13)

(14)

(15)

5.4 We assume a thin lens made of a material of refractive index n, to be placed
in a medium of refractive index n; (see Fig. 5.6). Let the radii of curvatures
of the first and the second surface be R; and R, respectively. Let v” be the
distance of the image of the object P if the second surface were not present.

STUDENTS-HUB.com

Then,
n )
m
R, \Rz
P 0 P
| —Uu —v |

Fig. 5.6 A thin lens made of a medium of refractive index n, placed in a medium of refractive
index ny. The radii of curvatures of the two surfaces are R; and R,. Pis the image (at
a distance vfrom the point O) of the point object P (at a distance - u from the point O).

(16)

(Since the lens is assumed to be thin, all the distances are measured from
the point O). This image now acts as an object to the spherical surface R, on
the left of which is the medium of refractive index #, and on the right of which
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is the medium of refractive index #;. Thus, if v is the distance of the final
image point from O, then

noon (m—m)
pl R (17

Adding Eqs (12) and (13), we obtain

momo_ o (L __ 1
. (12 nl)(Rl sz (18)
11 _1
or, P 7 (19)
1 (nz—nl)( 11 )
where, — = == 7 20
S n R R, 20)

5.5 Let at # = 0, the source be at the point Py moving with a speed V in the
x-direction (see Fig. 5.7). We wish to find out the wavefront at a later time 7.
The disturbance emanating from the point P, traverses a distance v 7 in time 7.
Thus, from the point Py we draw a sphere of radius v7. We next consider the
waves emanating from the source at a time 7; (<7). At time 7; let the source
be at the position Py; consequently,

P()Pl:VTl

Fig. 5.7 Generation of a shock wavefront by a vibrating particle Py moving with a speed V, in
a medium in which the velocity of propagation of the wave is v (< V).

In order to determine the shape of the wavefront at 7, we draw a sphere of
radius v(7— 77) centered at Py. Let the source be at the position Q at the instant
7. Then,

P()Q:VT

We draw a tangent plane from the point O, on the sphere whose origin is the
point P;. Since
PIL :U(T— Tl) and PIQ: V(T— Tl)
AL _ v

sin @ = ——

RO =7 (independent of ;) (21)
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Since 6 is independent of 7, all the spheres drawn from any point on the
line PyQ will have a common tangent plane. This plane is known as the shock
wavefront and propagates with a speed v.

It is interesting to point out that even when the source is not vibrating, if its
speed is greater than the speed of sound waves, a shock wavefront is always
set up. A similar phenomenon also occurs when a charged particle (like an
electron) moves in a medium with a speed greater than the speed of light
in that medium. The emitted light is known as Cerenkov radiation. If you
ever see a swimming pool type reactor, you will find a blue glow coming out
from it; this is because of the Cerenkov radiation emitted by the fast moving
electrons.

5.6 Figure 5.8 shows the plane wavefront incident along the z-axis on the
inhomogeneous medium. Since the refractive index decreases as x and y
increase, the speed of the secondary wavelets emanating from portions of the
incident wavefront will increase as we move away from the axis. Let us try to
determine the shape of the wavefront at a time A¢; given that the wavefront at
t=0is a plane wavefront 4;B; (see Fig. 5.8). We will have to draw spheres of
radius v(x, y) At, centered at (x, y), where v(x, y) is the velocity of the wave
at the point (x, y), which increases as x and y increase. Thus the radii of the
spheres increase as we move away from the axis and if we draw a common
tangent to all these spheres then the resulting wavefront is shown in Fig. 5.8
as A,B,. It is at once evident that the wavefront which was initially plane has
now become curved. If we again use the same procedure, then the shape of
the wavefront at time 2A¢ (say) is shown as 43 B5. Thus, it is evident that in
the present case the wavefront is getting focused. It should be borne in mind
that since we are considering an inhomogeneous medium, the refractive index
varies continuously with position. For the above construction to be valid, At
should be small so that during this short interval the secondary wavelets may
be assumed to be spherical.

X X

n

]

Fig.5.8 The focusing of an incident plane wavefront in an inhomogeneous medium
characterised by a refractive index variation given by Eq. (2).
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5.7 Figure 5.9 shows the spherical mirror GOG’ of radius of curvature R and a
point source placed at a distance u from the mirror. Spherical waves from the
object point P are incident on the mirror. For the object position drawn in the
figure, by the time the spherical wavefront reaches the point O the remaining
portion of the wavefront is still to reach the mirror. The portion at O gets
reflected and when the incident wavefront reaches point G on the mirror,
the reflected wave has already travelled to the point marked M. Now in the
absence of the mirror the wavefront would have proceeded to the point S.
Thus, OS = OM.

Now, using the same approximation as in Problem 5.5, we have
(GN)* =2R x (NO)
(GNY* =2u x (NS)
(GNY* =20 x (NM)

where we have assumed PO = u, QO =v and RO = R.

Also, NS =NO + 0S
and NM =NO—-OM=NO-0S
From the above equations we obtain,

1 .1 2

— ===

u v R

Gl

Fig. 5.9 Huygens’ construction for reflection at a spherical mirror.
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Wavefront

iﬁ A Quick Review }l

When two or more light waves superpose at any point in space then the total electric
field is a superposition of the electric fields of the two waves at that point and depending
on their phase difference, they may interfere constructively or destructively. This
phenomenon of interference leads to many interesting applications.

Consider two coherent point sources S| and S, vibrating in phase. Let y; and y, be
the corresponding displacements produced at the point P (see Fig. 6.1):

Fig. 6.1 Young's arrangement to produce interference pattern.

y1 =acos ot =Re[e'™ )
and yy =acos (0t — ¢) =aRe[e' @~ 9] ¥))
where, o= 27” (S,P—S,P) 3)

is the phase difference between the two displacements and we have assumed the
amplitude of the two displacements to be same; this will be very nearly true if the
point P is far away from S; and S,. Simple algebra will show that the resultant

displacement will be given by

(9
il wt—=
y=yi+y=2aRe {e (w ZJcos %} 4
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Thus, the intensity distribution will be

I =41, cos® (%) (5)
and therefore the resultant intensity will be maximum (= 41,) when
SP—S\P=ni; n=0,1,2,3... (Maxima) (6)
The resultant intensity will be zero when
S,P—S,P = (m%)z; n=0,1,2,3... (Minima) )

and we will obtain an interference pattern similar to that shown in Fig. 6.1. When the
point P is far away so that we can put S,P + S|P = 2D, the interference fringes will
be straight lines with fringe width given by

AD

where the distances D and d are defined in Fig. 6.1.

PROBLEMS g

6.1 Inthe Young’s double-hole experiment (see Fig. 6.1), the distance between the
two holes is 0.5 mm, A=5 x 10> cm and D = 50 cm. What will be the fringe
width?

6.2 Figure 6.2 represents the layout of Lloyd’s mirror experiment. S is a point
source emitting waves of frequency 6 X 10" sec”!. 4 and B represent the
two ends of a mirror placed horizontally and LOM represents the screen. The
distances SP, P4, AB and BO are 1 mm, 5 cm, 5 cm and 190 cm respectively.
(a) Determine the position of the region where the fringes will be visible
and calculate the number of fringes. (b) Calculate the thickness of a mica
sheet (» = 1.5) which should be introduced in the path of the direct ray
so that the lowest fringe becomes the central fringe. The velocity of light

is 3 x 10" cm/sec. [Ans. (a) 2 cm, 40 fringes, (b) 38 um]
L
S.
B T T 10
5 A B
M
Fig. 6.2
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6.3 (a) In the Fresnel’s biprism arrangement, show that d = 2(n — 1) ao where
a represents the distance from the source to the base of the prism (see
Fig. 6.3), « is the angle of the biprism and #» the refractive index of the
material of the biprism.
(b) Inatypical biprism arrangement b/a =20 and for sodium light (1= 5893A)
one obtains a fringe width of 0.1 cm; here b is the distance between the
biprism and the screen. Assuming n = 1.5, calculate the angle a.

[Ans. =0.71°]

» R

P

¢ L

Fig. 6.3 Fresnel’s biprism arrangement. Cand L represent the positions of the crosswires and
the eyepiece respectively. In order to determine d one introduce a lens between the
biprism and the crossswires; Ly and L, represent the two positions of the lens where
the slits are clearly seen.

6.4 Inthe Young’s double hole experiment a thin mica sheet (» = 1.5) is introduced
in the path of one of the beams (see Fig. 6.4). If the central fringe gets shifted
by 0.2 cm, calculate, the thickness of the mica sheet. Assume d = 0.1 cm, and
D =50cm.

Fig. 6.4 If a thin transparent sheet (of thickness f) is introduced in one of the beams, the fringe
pattern gets shifted.

6.5 In order to determine the distance between the slits in the Fresnel biprism
experiment, one puts a convex lens in between the biprism and the eye piece.
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Show that if D > 4 f'one will obtain two positions of the lens where the image
of the slits will be formed at the eye piece; here f'is the focal length of the
convex lens and D is the distance between the slit and the eye piece. If d; and
d, are the distances between the images (of the slits) as measured by the eye

piece, then show that d = ,/d,d, . What would happen if D <4

6.6 In the Young’s double hole experiment, interference fringes are formed using
sodium light which predominantly comprises of two wavelengths (5890 A
and 5896 A). Obtain the regions on the screen where the fringe pattern will
disappear. You may assume d = 0.5 mm and D = 100 cm.

6.7 If one carries out the Young’s double hole interference experiment using
microwaves of wavelength 3 cm, discuss the nature of the fringe pattern if
d=0.1 cm, 1 cm and 4 cm. You may assume D = 100 cm. Can you use Eq. (8)
for the fringe width?

6.8 In the Fresnel’s two mirror arrangement (see Fig. 6.5) show that the points
S, S and S, lie on a circle and S;S, = 2b6 where b = MS and 6 is the angle
between the mirrors.

Fig. 6.5 Fresnel's two mirror arrangement.

6.9 In the double hole experiment using white light, consider two points on
the screen, one corresponding to a path difference of 5000 A and the other
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corresponding to a path difference of 40000 A. Find the wavelengths (in the
visible region) which correspond to constructive and destructive interference.
What will be the colour of these points?

6.10 (a) Consider a plane which is normal to the line joining two point coherent
sources S; and S, as shown in Fig. 6.6. If S|P — S,P = A, then show that

y= i (@~ A)"2 [4D* +4Dd + (d* - A*)]"?
:§ d—D)(d+A)

where the last expression is valid for D >> d.

y
P
§‘ §1 0
-d D
b

Fig. 6.6 S;and S, represent two coherent sources.

(b) For A=0.5 um, d=0.4 mm and D =20 cm; S;0 — S,0 = 800 A. Calculate
the value of S|P — S, P for the point P to be first dark ring and first bright
ring.

[Ans. 0.39975 mm, 0.3995 mm)]

6.11 In continuation of the above problem calculate the radii of the first two dark
rings for (a) D =20 cm and (b) D =10 cm.

[Anms. (a) =0.71 cm and 1.22 cm]

6.12 In continuation of the previous problem assume that d = 0.5 mm, 4 = 5 X

107° cm and D = 100 cm. Thus the central (bright) spot will correspond to n =

1000. Calculate the radii of the first, second and third bright rings which will

correspond to » =999, 998 and n = 997 respectively.

6.13 Using Maxwells equations one can show that when a plane wave is incident
from a medium of refractive index »; on a medium of refractive index n,, the
amplitude reflection and transmission coefficients are given by

__sin 6 cos 6, — sin 6, cos 0,
sin 6, cos 6, + sin 6, cos 6,

2n cos 6, 2cos 6;sin 0,
and t= == :
nycos 0, + ncos B,  sin 6, cos 6, + sin 6, cos 6,

where 6, and 0, are the angles of incidence and of refraction respectively;
the above expressions are valid when the electric field lies in the plane of
incidence. Show that they satisfy Stokes’ relations.

6.14 Assume a plane wave incident normally on a plane containing two holes
separated by a distance d. If we place a convex lens behind the slits, show that
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the fringe width, as observed on the focal plane of the lens, will be fA/d where
fis the focal length of the lens.

6.15 In the previous problem, show that if the plane (containing the holes) lies in
the front focal plane of the lens, then the interference pattern will consist of
exactly parallel straight lines. However, if the plane does not lie on the front
focal plane, the fringe pattern will be hyperbolae.

6.16 In the Young’s double hole experiment calculate //1,,,,, where I represents the
intensity at a point where the path difference is A/5.

6.17 Consider two plane waves incident on a screen as shown in Fig. 6.7. Calculate
the fringe pattern on the screen.

Fig. 6.7 Superposition of two plane waves on LL".

6.18 Consider the interference pattern produced on PP’ by the superposition of a
plane wave incident normally and a spherical wave emanating from the point
O (see Fig. 6.8). Show that the interference pattern will consist of circular
fringes.

Spherical wave
emanating from O

P

— 0 —> Z
Incident P
plane wave -~ D —

Fig. 6.8 Superposition of a plane wave and a spherical wave emanating from the point O.
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6.19 Consider light from two distant stars incident on two slits S; and S, as shown
in Fig. 6.9. Calculate the resultant intensity distribution on the screen.

S/

a

s” / Screen
Fig. 6.9
6.20 A pair of point sources, S, S’ emitting a
wavelength of 500 nm with a spectral width AA,
and separated by a distance of 1 mm are placed as § L i’_ ___________ B

shown in the figure. What is the condition on A4
so that one can observe an interference pattern
around the point P, given that the screen is placed
at a distance of 1 m from the midpoint of the
sources?

6.21 In the Young’s double-hole experiment, interference fringes are formed using
sodium light, which predominantly comprises two lines at 5890 A and 5896 A.
Obtain the region on the screen closest to the axis where the fringe pattern will
disappear. You may assume d =5 mm and D = 20 cm.

6.22 In a Young’s double hole experiment, in front of each slit we place a polariser.
What will be the contrast of the interference pattern if (a) if the polarizer pass
axes are perpendicular to each other and (b) if the pass axes are oriented at 45°
with respect to each other?

6.23 In a Young’s double hole experiment, the source S (see Fig. 6.1) is placed
off axis at a distance a from the axis. If the distance of S from the screen
containing the two slits is L (L >> a, d), what is the position of the zero order
fringe on the screen?

f}é SOLUTIONS

AD  5x107° x50
6.1 = e 0.03 =0.05 cm.

6.2 (a) LLAO = ZSAP {Angle of incidence = angle of reflection}

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Interference—Division of Wavefront 71

ZNBO = ZSBP (see Fig. 6.10)

Fig. 6.10

=  LO =0A4tan LLAO = OA tan LSAP =195 (%) =39cm

NO = OB tan ZNBO = OB tan £SBP = 190 (%) ~19cm
3x10"
Thus, LN=2cm.NowZ,=£=X—14=5><10’Scm.
V. 6x10
Also, d=S85"=2mm; D=200cm
5%107° x 200
Therefore, Fringe width = = % =02 0.05 cm
e N 2
No. of fringe = B = 005 = 40.
(b) For central fringe at N, we should have
SN+(m—1)t=SN
or S’N—SN =(n-1)t=0.5¢
But S'N SN = ON- %
Th 05t=19x£:>t=38 m
us, : 9% 200 u

6.3 (a) DF and EF are normals to the surface (see Fig. 6.11). Thus, £LDAE +
LDFE=n= ZDFE=1— 0

sin i

Also, sin 0

that sin 8 = 6 and all angles are measured in radians. Further

i
=n=0= P where all angles are assumed to be small so

sin ¢ 1 B o= i) )
Snt —n:>t~n¢—n(oc— )=n a—; =no—i
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Now, i+ w—-6+t+m—o=2nx
Thus, S=i+tt—-a=i+tnoa—i-o
or O0=(n-1)o.

where o has been assumed to be very small.

Fig. 6.11

If all rays are assumed to suffer the same deviation 6 [= (n — 1) ] then
for small angles, the virtual image of S will be at S; as shown in the figure
above (Fig. 6.12). Thus,

SS;=ad=a(m-1)o and S;S=d=2an-1)a

In the figure, AH’, BH” and SH are all parallel lines.

AMbta)  Abta) ’1(3“)

®) p=— 2(n-Daa  2(n-Ha
b
’1(2“) 5.893x107°% 21

Therefore, o=

= = 1 ~ <]
2i-1)B 27%05%0.1 0.0124 radians = 0.71°.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Interference—Division of Wavefront T3

6.4 Shift, A= g(n— 1)

= 02 =%(O.5)t:>t=8x 10 cm = 8 pum.

2

b .Q

>
| >

o° U i ) 7
fe— x — b | I y X —|
I D | | D |
(a) (b)
Fig. 6.13
In the first case u = —x. Thus,
1 1 1 1 1 1 1
f v u y x D-x x
= Dx—x*=Df=x*~Dx+Df=0

The above equation will have real roots if D> > 4Df = D > 4f
In case (a) the distance between two image points will be

dy=dx >
X
Similarly, in case (b) the distance between two image points will be
x
d, =dx —
? y
Thus, dydy =d* = d= Jdd,

6.6 Let A; = 5.896 x 107 cm and A, = 5.890 x P
107 em. Thus, A; > A,. For the point P (see
Fig. 6.14) to correspond to a maximum intensity
for A, and minimum intensity for A,, we must
have S,e

S v

A=S2P—S1P=nﬂ.1= (n"'%)lz

Thus, A_A_

Fig. 6.14

MA, _ 5.890x5.896x107""
24— 1,) 2x6x1078

Since A is comparable to d(= 0.05 cm), we must use the accurate expression
to calculate y.

= S,P—S,P = ~0.029 cm.
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6.7

6.8

6.9

STUDENTS-HUB.com

A 12 N
y== X [D +Z(d —A)} =+72 cm

S, P — S1P can never exceed d. Thus for d=0.1 cm and d= 1 cm, the maximum

values of S,P — S|P are 3% and %; thus even one dark fringe will not be

observed. For d = 4 cm, the maximum value of S,P — S;P will be 1.33 4 so
only one dark (hyperbolic) fringe will be observed on either side of the central
maximum. Obviously, the central bright fringe will always occur at y = 0
corresponding to A = 0.

Obviously since S is the virtual image of S (formed by the mirror M; M), MS
= MS;. Similarly, MS = MS,. Thus if we draw a circle of radius MS (with M as
the center) then S} and S, will lie on this circle. Further, if the angle between
the mirrors is 6, then angle between the reflected rays (MB and MD) will be
20. Thus, the arc length S5, = 26b.

The visible region corresponds to 4000 A < A <7000 A

(a) Path difference A = 5000 A. Now, for constructive interference, A = nA
i.e.; constructive interference will occur for

Z,=é; n=1,2,3, ...
n

=5000 A, 2500 A, 1667 A, ...

Only A = 5000 A lies in the visible region. Similarly, destructive
interference will occur for

A= T n=0,1,2,...
n+ 5
=10000 A, 3333 A, 2000 A, ...
Thus, no wavelength (in the visible region) corresponds to destructive
interference.
(b) Path difference A = 40000 A. Constructive interference will occur for
A

A=— n=12,..
n

= 40000 A, 20000 A, 13333 A, 10000 A, 8000 A, 6667 A,
5714 A, 5000 A, 4444 A, 4000 A, 3636 A, ...

Thus, A= 6667 A, 5714 A, 5000 A, 4444 A and 4000 A (which lie in
the visible region) would have constructive interference.
Destructive interference will occur for

=6154 A, 5333 A, 4706 A, 4211 A, ...
for n=06, 7, 8 and 9 respectively.
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6.10 (a) S\P=[(D+d?+y "% $P=[D*+y*"* (seeFig. 6.15)

Y
P
S S.
ol 02 0]
P
D=10cm

'/

N

¥y (cm)

-2 0 2 -2 0 2
— x(cm)

Fig.6.15 (a) S; and S, represent two coherent sources, (b) and (c) show typical interference fringes
observed on the screen PP” when D =20 cm and D = 10 cm respectively.

Therefore, S;P — S,P = A implies [(D + d)> + y*]"? = A + [D* + 2
D*+2Dd+d* +)? = N+ D*+y* + 2A[D* + ]2
[2Dd + (d* — A = 2A) [D* +17]
4D*d*+ 4Dd(d* - A) + (d* — ) = 4N°D* + 4A%y?
4N = 4D (d* - )+ 4Dd(d* — ) + (d* - A

y= i(a’2 ~A)"?[4D* +4Dd + (d* - &))"

G el

z% d=A)d+A) [whenD>>d]
(¢) The central point O is such that S;0 — S,0 = 0.4 mm = 800 A; thus O will
be a bright point. For the first dark ring
S1P—S,P=799.52=0.39975 mm
and for the first bright ring
SiP — S,P =799 = 0.39950 mm.
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6.11 For the first dark ring, A=0.39975 mm

Thus, d—A %=2.5>< 10*mm; d+A=2d=0.8mm

200 4
= \2.5%x10 0.8 =
= y 039975 X X 7.07 mm

for the second dark ring, A =798.54 = 0.39925 mm and

d—A :%zisx 10 mm
N b= % 75%1074x 0.8 = 12.2 mm

(b) For D= 10 cm; y = 3.54 mm and 6.1 mm respectively.
Typical interference fringes are shown in Fig. 6.15.
6.12 d=05mm, A=5x 107 mm; D = 1000 mm. For the first, second and third
bright rings
SiP—8SP=9992,9984 and 9974
d =0.5mm= 100021
Thus d—A=A1,22 and 3 Arespectively.

D D
y = X\/(d— A)(d+A) = X\/zd(d— A)

=447 mm, 63.2 mm, 77.4 mm

. sin 6, cos 6, — sin 6, cos 6,
6.13 Since r=— -
sin 6, cos 6, + sin 6, cos 0,

For a plane wave incident from a medium of refractive index #, on a medium
of refractive index #;, the amplitude reflection and transmission coefficients
are given by (we just have to interchange 6, and 6, because 6, is now the
angle of incidence and 0, the angle of refraction

L _ Sin 0, cos 6, — sin 6, cos 6, _
sin 6, cos 6, + sin 6, cos 6,

This is one of the Stokes relations. Further since

B 2cos 6;sin 6,
sin 6, cos 6, + sin B, cos 9,

we will have
2cos 6,sin 6,

sin 8, cos 8, + sin 6, cos 6,

’

Simple algebra will show that
L+’ =t

which is the other Stokes relation.
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6.14 For the nth bright fringe (see Fig. 6.16)

0.0005 (mm)
Fig. 6.16  Interference pattern on the screen LL’ for 6; = 6,= /6 and A = 5000 A. The fringes
are parallel to the x-axis.
% \
]
g
<t
N 2
4 (mm)
(b)
Fig. 6.17 Typical interference fringes observed on the screen PP’
dsin 6 = nA A
or y, =ftan 0= %
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Thus the fringe width is = %
Also, see Problem 10.13. Show that when the radiuses of the two holes
become extremely small, we will obtain the result obtained here.

6.15 Ifthe holes lie on the front focal plane then we will have plane waves coming
out of the lens and when two plane waves (propagating in different directions)
interfere we will have straight line interference pattern. However, if the plane
(containing the holes) does not coincide with the front focal plane then the two
real (or virtual) images can be assumed to be two point sources and the fringe
pattern will be hyperbolae.

6.16 1=41,cos’ /2 where § = 27”(S2P - 8§P)= %A, with A representing the

path difference. Thus, /,,,,, = 4 Iy. Further, when A = %, o= 2?”, giving
A cos’ % = (.65

max

6.17 The wave vectors of the two waves are given by
ky = —yk sin 6, + Xk cos 6,
and k, =+yksin 6, + Xk cos 6,
where k = 27/A and 0, and 0, are the angles defined in Fig. 6.7. Thus, the
electric fields of the two waves are described by the equations
El = EO] COS (kl r— a)t)
= Eq; cos (—ky sin 0 + kz cos 6, — wr)
and E, =Ey cos (ky - r— oX)
= FEy cos (ky sin 6, + kz cos 6, — wt)
where we have assumed both electric fields are along the same direction (say

along the x-axis). If we further assume that £y, = Eyp = Egand 6, = 6, = 0,
then the resultant field is given by

E = E; cos (ky sin 0) cos (kz cos 0 — wf)
Thus, the intensity distribution on the photographic plate LL’is given by
1=41, cos’ (ky sin 6)

and the fringe pattern will be strictly lines (parallel to the x-axis) with fringe
width given by
A
p= 2sin 6

Figure 6.16 shows the interference pattern as will be observed on the screen
LL’for 6 = /6 and A= 5000 A. Thus, 8= A= 0.005 mm.
6.18 The plane wave will be given by

E| =Eycos(kz— wt+ ¢)
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and the spherical wave will be given by

4

E, = . cos (kr — 1)

where r is the distance measured from the point O which is assumed to be the
origin. Now, on the plane PP” (z = D)

2 2
+
r=(x2+y2+D2)1/2zD[l+x DEV }
2 2
x"+y
= +—
bP*=3b

where we have assumed x, y << D. On the plane z = D, the resultant field will

be given by
E:E1+E2 AO
- il LI - }
= Eycos (kD — wt + ¢) + Dcos[kD+2D(x +y7)— ot
2
o _ 1o 14 4 k 2, 2
=—Fs+ —| = — —_— -
Thus, <(E°) 2E0 2(D) +E0Dcos[2D(x + %) ¢}

If we assume that

i.e., the amplitude of the spherical wave (on the plane PP’) is the same as the
amplitude of the plane wave then

(Ez) = 2E§ cos? (%(x2 + yz) - %(]))

and we would obtain circular interference fringes as shown in Fig. 6.17.

6.19 Consider a parallel beam of light (from a distant source S” like a star) incident
(at an angle 6) on two slits S} and S, as shown in Fig. 6.9. Obviously the path
difference between the waves emanating from the slits S; and S, will be given

by
XS, =dsin 6
Therefore the intensity distribution on the screen due to S” will be given by
_ 29
1 =1,cos )
2r
where, 6= T [XS, + S,P — S| P]

= 27” [(S,P— S, P) + d sin 6]

_2nfxd
= [D+dsm9}
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Thus, the intensity distribution (due to light coming from the distant source

S’) will be given by
I’ =1, cos’ (%[% + dsin GD

Similarly, if there is light incident from another distant source S” (at an
angle ¢) then the corresponding intensity distribution on the screen will be

given by
I” = I, cos’ (% [% —dsin ¢D

The resultant intensity distribution will be given by
I1=r+r

6.20 When the path difference between the two interfering waves becomes equal
to the coherence length, then the fringe contrast would be very poor. For a
pair of wavelengths separated by a wavelength spacing AA, the fringe contrast
would become poor when the path length is equal to 2212AM. For the given
arrangement, the path difference for fringes appearing around P is d. Hence,
for good contast fringes, we must have

).«2
AL << 7 0.125 nm

6.21 The closest point to the axis is when the maximas and minimas of the fringes
produced by 589 nm will coincide with the minimas and maximas of the
wavelength 589.6 nm. This will happen when

M D
X0 —md =1.16 cm

6.22 (a) If'the polariser pass axes are perpendicular to each other, then we will not

observe any interference pattern on the screen.

(b) If the pass axis of one of the polariser is oriented at 45° to the other
polarizer, then only the polarisation component parallel to the polarisation
state of light emerging from the other slit will form interference pattern.
This will lead to poorer contrast in the interference pattern.

6.23 When the source S is placed away from the axis, the fringe pattern will
get displaced due to additional phase difference generated between waves
reaching S; and S, from S. Assuming L >> q, the path difference between the
waves reaching S; and S, from S would be approximately given by d(a/L).
Hence the zero order fringe would appear at a distance x, from the axis such

that
Xod _ ad
D L
_a
or, Xg = LD
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* A Quick Review *

1. Consider a thin film of refractive index n, and thickness d as shown in
Fig. 7.1. The optical path difference between the waves reflected from the
upper surface of the film and from the lower surface of the film is given by

A =2nydcos 6’ (1)

where 6’ is the angle of refraction as shown in Fig. 7.1.

LI

Fig. 7.1  Waves reflected from the lower surface of the film traverse an extra path than the
waves reflected from the upper surface of the film.

2. If we consider a thin film of refractive index 7, and thickness d coated on a
medium of refractive index #, placed in air, then light waves at a wavelength
Ao incident normally on the film will undergo reflection at both the upper and
lower interfaces. If the reflectivities at the interfaces are not large, then we can
neglect multiple reflections of the light waves multiple. The path difference
between the two reflected waves (one reflected from the upper surface and one
from the lower surface) would be

A =2myd ()
If we assume that 1 < n, < n,, then when
A=miym=1,2,3,... 3)
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we would have constructive interference and for
A=(m+%)lo;m=l,2,3,... )

we would have destructive interference. If the refractive index of the film is
the geometric mean of the refractive indices of the two media surrounding the
film, then the amplitudes of the two interfering beams are almost equal and
we would have complete destructive interference. This is the principle behind
anti-reflection coatings. The required minimum film thickness is

d:ﬁ
4n,

©)

3. Figure 7.2 shows an arrangement for observing Newton’s rings. Light from
an extended source S is allowed to fall on a thin film of air formed between
the plano-convex lens AOB and the plane glass plate POQ. M represents a
traveling microscope. The optical path difference between the waves reflected
from the lower surface of the lens and the upper surface of the glass plate is
2nt where n is the refractive index of the air film and ¢ is the thickness of the
film. For near normal incidence (and considering points very close to the point
of contact), whenever the thickness of the film is satisfies the condition

2nt=(m+%)/10;m=0,1,2,3,... (6)

we will have maxima. Similarly the condition
2nt =mhg;, m=0,1,2,3,... (7)

will correspond to maxima. These conditions lead to the formation of Newton’s
rings (as viewed from the microscope).

o

P 0 Q
Fig.7.2  An arrangement for observing Newton’s rings. Light from an extended source S is

allowed to fall on a thin film formed between the plano-convex lens AOB and the
plane glass plate POQ. M represents a traveling microscope.
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PROBLEMS g

7.1 A glass plate of refractive index 1.6 is in contact with another glass plate of
refractive index 1.8 along a line such that a wedge of 0.5° is formed. Light of
wavelength 5000 A is incident vertically on the wedge and the film is viewed
from the top. Calculate the fringe spacing. The whole apparatus is immersed
in an oil of refractive index 1.7. What will be the qualitative difference in the
fringe pattern and what will be the new fringe width?

7.2 Two plane glass plates are placed on top of one another and on one side a
cardboard is introduced to form a thin wedge of air. Assuming that a beam of
wavelength 6000 A is incident normally, and that there are 100 interference
fringes per centimeter, calculate the wedge angle.

7.3 Consider a nonreflecting film of refractive index 1.38. Assume that its
thickness is 9 x 10~° cm. Calculate the wavelengths (in the visible region) for
which the film will be nonreflecting. Repeat the calculations for the thickness
of the film to be 45 x 107° cm. Show that both the films will be nonreflecting
for a particular wavelength but only the former one will be suitable. Why?

7.4 In the Newton’s rings arrangement, the radius of curvature of the curved side
of the plano-convex lens is 100 cm. For A =6 x 107° cm what will be the radii
of the 9th and 10th bright rings?

7.5 In the Newton’s rings arrangement, the radius of curvature of the curved
surface is 50 cm. The radii of the 9th and 16th dark rings are 0.18 ¢cm and
0.2235 cm. Calculate the wavelength. [Ans. 5015 A]

7.6 In the Newton’s rings arrangement, if the incident light consists of two
wavelengths 4000 A and 4002 A calculate the distance (from the point of
contact) at which the rings will disappear. Assume that the radius of curvature
of the curved surface is 400 cm. [Ans. 4 cm]

7.7 In the above problem if the lens is slowly moved upward, calculate the height
of the lens at which the fringe system (around the center) will disappear.

[Ans. 0.2 mm)]

7.8 An equiconvex lens is placed on another equiconvex lens. The radii of
curvature of the two surfaces of the upper lens are 50 cm and those of the
lower lens are 100 cm. The waves reflected from the upper and lower surface
of the air film (formed between the two lenses) interfere to produce Newton’s
rings. Calculate the radii of the dark rings. Assume A= 6000 A.

[Ans. 0.0447/m cm]

7.9 In the Michelson interferometer arrangement, if one of the mirrors is moved
by a distance 0.08 mm, 250 fringes cross the field of view. Calculate the
wavelength. [Ans. 6400 A]

7.10 In the Michelson interferometer experiment, calculate the various values of 6’
(corresponding to bright rings) for d=5 x 10 cm. Show that if d is decreased
t04.997 x 107> cm, the fringe corresponding to m =200 disappears. What will
be the corresponding values of 8’2 Assume A =5 x 10~ cm.
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7.11 Asoap film surrounded by air has an index of refraction of 1.34. Under normal
illumination, if a region of the film reflects strongly a wavelength of 804 nm,
what is the minimum thickness of the film?

7.12 A microscope lens of refractive index 1.55 is to be coated with a MgF, film (n =
1.38) to increase transmission of normally incident yellow light (A = 5500 A).
What should be the minimum thickness of the film deposited on the lens?

7.13 The Michelson interferometer experiment is performed with a source that
consists of two wavelengths: 4882 A and 4886 A. Through what distance does
the mirror have to be moved between two positions of disappearance of the
fringes?

7.14 White light is reflected normally from a soap film of uniform thickness in air.
An interference maximum is observed at 0.6 um and a minimum at 0.45 um
with no minimum or maximum in between. Assuming » = 1.33 for the film,
calculate the thickness of the film.

7.15 Newtons rings are observed under white light illumination. What will be the
colour of the innermost ring?

7.16 As a soap bubble evaporates, one can see a change of colour. What colour will
the soap bubble appear when it is about to burst?

% SOLUTIONS

. . A e O5Sxm 3
7.1 Fringe width = _2”f¢ ;0=0.5 130 radians = 8.73 X 107" radians.
When n, = 1 s 3
10™ 1y
p=—210 00286 mm 7 "y
2x8.73x10” 1.6
When n,= 1.7 Fig. 7.3
5x107° 3
= ————— ~1.68x107cm=0.0168 mm
2x1.7x10

In the first case, phase change will occur when light is incident from air to the
glass of refractive index 1.6; thus bright fringe will occur when

1
2 =|m+—=
nety (m 2)2,

where #is the thickness of the (air) film. On the other hand, when n,= 1.7, no
phase change will occur at either of the reflections and bright fringe will occur

when
2npty= mA.
lcm
72 B=——=0.01
B=Too om
2 A 6x107

=0.003 radians = 0.17°.

NOWﬂ=2—Z>¢

ne " 2nB  2x1x0.01
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7.3 The film will be non-reflecting when [see Eq. (4)]
2npd = A= (m+%)/10, m=1,2,...

Qm+1)

= Ao = m=0,1,2,...

For ny=1.38 and d = 9 X 107% cm, the film is non-reflecting when

4,968 x 107> cm

A= m 1 = 4968 A, 1660 A

visible uv

for m = 0 and 1. Only the first wavelength (4968 A) lies in the visible region.
For ny=1.38 and d = 45 x 107 cm, the film is nonreflecting when

_ 24.84x10°em

A 2m+1

= 24840A,8280A, 4968A,3549A, 2760 A
[ —
R visible uv

Thus only 2 wavelengths are in the visible region; actually 3549 A is
almost in the ultraviolet region. Thus, both films will be nonreflecting for Ay =
4968 A; but the first film will be preferable because for the second case, the
film will have high reflection for a wavelengths between 3549 A and 4968 A.

7.4 R=100cmand A=6x 107> cm. If r,, represents the radius of the mth bright
right ring then:

r,2,,=(m—%)),R; m=1,2,3,... or m--0.077461’m—%cm

Thus, the radii of the 9th and 10th bright rings will be given by
rg=0226cm and rjy=0.239 cm.

Dis—Dj _ (0.447)* = (0.36)*

7.5 )‘=4(16—9)R X7 %30 cm = 5015 A.
7.6 A, =4000 A, A, =4002 A. The height ¢ at which the fringes disappear will be
given by
-5 -5
&_ﬁ:litz M, =4X10 ><4.002;<10 i~ 0000 6L
Mo Ay 2 44— A) 4%2x10

The distance from the point of contact will be given by

PP =2Rt = r=.2x400x0.02 =4 cm.

7.7 The height ¢ will be given by
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7.8 24R =12
R, =50cm
fe— Ty —> R2= 100 cm
For dark ring
Fig. 7.4
2t2R2 = 7"31

1 1
= 2(t4 +t =r2[—+—}=m/l
(1 2) m R1 Rz

RR 50 x 100
2 _ 1 _ -5 _ -3 2
= i mlR1+R2 mx6x107 x 130 (2% 10" m) cm
= 7, =0.0447Jm cm
7.9 2(dy —dy) =250
l=%5‘808cm=6.4x10_5cm=64002\

7.10 The condition for a bright ring is given by

1 (m+%)l (m+%)
2dcos 6= (m+5)l = O=cos||—=—|=cos'|~—=L

2d 200

The central fringe corresponds to 2d =10 x 10~ ¢m = 200 A which will be
dark. Thus the first, second and third bright rings will be given by

6 =cos ' [—133(')5], cos™! [—13205} and cos™' [—197’5}
=4.05°,7.02° and 9.07°.

corresponding to m = 199, 198 and 197 respectively. If we decrease d to
4.997 x 107* cm, then the central fringe will correspond to

2d=9.994x 10> cm = 199.88 1

and will be neither bright nor dark. Obviously, the m = 200 fringe disappears!

7.11 For maximum reflection the waves reflected from the two surfaces of the soap
film must be in phase. Since there is a phase difference of p between the waves
due to the phase change on reflection from a denser medium, the wavelength
corresponding to maximum reflectivity would be

2—71-2m= T
Ao
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where 7 is the refractive index of the film and ¢ its thickness. Substituting the
values given in the problem we obtain the thickness of the soap film to be # =
150 nm.

7.12 The required thickness would be A¢/4n which on substitution of the values
gives us a thickness of 99.6 nm.

7.13 The maximas for a wavelength A; correspond to

21
A

1

2(Ad)=2mm;m=0,1,2,...

where Ad is the difference in length of the two arms of the interferometer.
Thus starting from Ad = 0, for the values of Ad given below the maximas of
wavelengths A; and A, will again coincide when

2—7t2(Ad) =2mm;

A

2% 5 (Ad) =2(m + D7
2’2

Subtracting one equation from the other, we obtain

Ad= _ A
24— 2y)
which gives us Ad = 0.298 mm.
7.14 The phase difference between the two reflected waves at A; = 0.6 um should
be an odd multiple of 7. Hence,

2% ot =Qm+ )

)

Since at A, = 0.45 wm there is a minimum and there are no other maximas or
minimas in between we should have

2T 2t =@m+ 27
2
From the above two equations we obtain for the thickness of the soap film

t ~338 nm.

7.15 Since the radii of the rings are proportional to the wavelength, starting from
the central dark fringe, the first bright fringe of blue colour will have a smaller
radius than that of red colour. Hence the innermost fringe will be bluish in
colour.

7.16 When a soap bubble is about to burst, it will have the smallest thickness. Since
there is a phase change of 7 on reflection at the air-bubble interface, the bubble
will appear black as it is about to burst.
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Interferometry

i‘ A Quick Review }i

MULTIPLE REFLECTIONS FROM A
PLANE PARALLEL FILM

Consider the incidence of a plane wave on a film of thickness / (and of refractive
index ny) placed in air. The wave will undergo multiple reflections at the two
interfaces. We assume that the reflectivities of the two surfaces are equal and given
by R; then the intensity transmittance of the film would be given by

8.1 ‘

1
T=——— M
1+ Fsin? (—)
2
dxn,hcos 0,
where, o= i—”A = % 2)
0 0

represents the phase difference accumulated during one back and forth propagation
of the wave through the film (see Fig. 8.1) with 6, representing the angle made by the
waves inside the film. Further,

A= Zl’lfh COS Of (3)
S /1
6 {3
= — L —
h . Screen
— s —

Extended
source

Fig. 8.1 The Fabry-Perot etalon.

is the corresponding path difference and

=28 ()
(I1-R)
is called the coefficient of finesse. Note that when
0=2mnr; m=1,2,3,... 5)
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then 7= 1 and all the incident light gets transmitted. If R is close to unity, then the
transmittance drops very quickly as & changes. The changes in d could be brought
about by changes in the thickness of the medium between the two highly reflecting
surfaces (see Problem 8.2) or by changes in the wavelength of the incident radiation
or the angle of illumination (see Problem 8.4). Thus in transmission, this produces
very sharp interference fringes. This interference phenomenon is referred to as
multiple beam interference. The Fabry Perot interferometer and the Fabry Perot
etalon are based on this principle; the Fabry-Perot interferometer consists of two
plane glass (or quartz) plates which are coated on one side with a partially reflecting
metallic film' (of aluminum or silver) of about 80% reflectivity. These two plates
are kept in such a way that they enclose a plane parallel slab of air between their
coated surfaces. If the reflecting glass plates are held parallel to each other at a fixed
separation, we have what is known as a Fabry-Perot etalon. Equations (2) and (5)
may be combined to give

2nghcos 6y =mAg; m=1,2,3,... (6)
If Ad represents the FWHM (full width at half maximum) then
2(1-R
AS = 4 = ¥ (7

“VF R

where we have assumed Ad << 1, which is true in almost all cases. We assume

normal incidence (6,= 0) and write /2 = A, + x. We also assume Ay = 5 x 107 cm and

hy= 10 cm; thus

5=2800007 (1 + i)
ho

(see Problem 8.2). Figure 8.2 shows the variation of the transmission coefficient 7

with x for different values of F.

1 -
=== F=100
. — F=1000
I I i i
I I i
05 i il i
I ) 1 ! 1 !
] [k 1 ! I !
il il i
[} 8=1800,000 7 ;||: 5= 800,002 7 }||:6= 800,004 7
J \ 1 J \

Fig. 8.2 The variation of the transmission coefficient T with x for a monochromatic beam incident
normally on a scanning Fabry-Perot interferometer; the solid curve corresponds to F = 1000
and the dashed curve corresponds to F = 100.

! In the visible region of the spectrum, silver is the best metal to coat with (the reflectivity is

about 0.97 in the red region and decrease to about 0.90 in the blue region). But beyond the
blue region, the reflectivity falls rapidly. Aluminum is usually employed below 4000 A.
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82 | MODES OF THE FABRY-PEROT CAVITY

We consider a polychromatic beam incident normally (6, = 0) on a Fabry-Perot
etalon with air between the reflecting plates—see Fig. 8.3. In terms of the frequency

C

= ®)
7 1500 MHz

V=

-— ) —>

<7000 MHz — —V

—_— Y

Fig.8.3 A beam having a spectral width of about 7000 MHz (around v; = 6 x 10" Hz) is incident
normally on a Fabry-Perot etalon with h =10 cm and n;= 1. The output has 5 narrow spectral
lines.

Equation (6) tells us that transmission resonance will occur when
c
V=Vpmmoy 9

where m is an integer. The above equation represents the different (longitudinal)
modes of the Fabry-Perot cavity.

83 | RESOLVING POWER

The resolving power of a Fabry-Perot interferometer is given by

. 1% Thv F
Resol P =|—] == 1
esolving Power = |-~ - (10)
or, in terms of the wavelength
A Th\F
Resolving Power = A_)(zo = 7 (11)

PROBLEMS g

8.1 Consider a beam having a central frequency of

v=Vvy=6x10"Hz
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and a spectral width? of 7000 MHz incident on a Fabry-Perot cavity (see
Fig. 8.3). Assume 4 = 10 cm, calculate the frequencies of the output beam and
the corresponding mode numbers.

8.2 In a scanning Fabry-Perot interferometer, we vary the separation 4 between
the mirrors and measure the intensity variation on the focal plane of the lens L
as shown in Fig. 8.4. We write

h=hy+x (12)
~ hy —=
] Photodetector
| vid
o L
x

Fig. 8.4 A scanning Fabry-Perot interferometer. The intensity variation is recorded (by a
photodetector) on the focal plane of the lens L.

Consider a monochromatic beam (v = vy= 6 X 10 Hz) incident normally
on the interferometer with 4y = 10 cm and n, = 1. Calculate and plot the
intensity variation at the point P as a function of x.

8.3 Consider a Fabry-Perot etalon with n,= 1, =1 ¢cm and F = 400. Calculate the
reflectivity of each mirror.

8.4 In continuation of the previous problem, plot the intensity variation with 6 for
Ao =15000 A and 4999.98 A.

8.5 Calculate the resolving power of a Fabry-Perot interferometer made of
reflecting surfaces of reflectivity 0.85 and separated by a distance 1 mm at 4
=4880 A.

8.6 Calculate the minimum spacing between the plates of a Fabry-Perot
interferometer which would resolve two lines with A4y =0.1 A at A, = 6000 A.
Assume the reflectivity to be 0.8.

8.7 Consider a monochromatic beam of wavelength 6000 A incident (from am
extended source) on a Fabry-Perot etalon with n,= 1, 2= 1 cm and F = 200.
Concentric rings are observed on the focal plane of a lens of focal length
20 cm.

(a) Calculate the reflectivity of each mirror.

2 For vy = 6 X 10" Hz, A = 5000 A and a spectral width of 7000 MHz would imply
M| Av  7x10°
Qo | v 6x10%
width of 7000 MHz (around V= 6 X 10 Hz) implies a wavelength spread of only
0.06 A.

~12x107 giving Ay = 0.06 A. Thus a frequency spectral
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(b) Calculate the radii of the first four bright rings. What will be the
corresponding value of m?

(c) Calculate the angular width of each ring where the intensity falls by half
and the corresponding FWHM (in mm) of each ring.

8.8 Consider now two wavelengths 6000 A and 5999.9 A incident on a Fabry-Perot
etalon with the same parameters as given in the previous problem. Calculate
the radii of the first three bright rings corresponding to each wavelength. What
will be the corresponding values of m? Will the lines be resolved?

8.9 Consider a monochromatic beam of wavelength 6000 A incident normally on
a scanning Fabry-Perot interferometer with n,= 1 and F* = 400. The distance
between the two mirrors is written as # = hy + x. With hy = 10 cm, calculate

(a) The first three values of x for which we will have unit transmittivity and
the corresponding value of m.
(b) Also calculate the FWHM A# for which the transmittivity will be half.
(c) What would be the value of A% if F was 200?
[Ans. (a) x = 200 nm (m = 333334),
500 nm (m = 333335); (b) Ak = 8 nm]
8.10 In continuation of the previous problem, consider now two wavelengths
Ao(= 6000 A) and A+ AA incident normally on the Fabry-Perot interferometer
with n,= 1, F = 400 and /o = 10 cm. What will be the value of A4 so that T'=
1/2 occurs at the same value of / for both the wavelengths.
8.11 Consider a laser beam incident normally on the Fabry-Perot interferometer as
shown in Fig. 8.4.
(a) Assume /5 =0.1 m,c=3 X 108 m/s, v=v,=5 X 10 571 Plot T as a
function of x (~100 nm < x < 400 nm) for F =200 and F = 1000.
(b) Show thatif v=(vy£p 1500 MHz; p=1, 2,...) we will have the same T
vs. x curve; 1500 MHz is known as the free spectral range (FSR). What
will be the corresponding values of 6?

-1

8.12 When a parallel beam of light is normally incident on a FP interferometer
(with air between the highly reflecting surfaces) the intensity distribution at
the output of the interferometer is as shown below.

(a) Determine the separation between the reflecting surfaces of the
interferometer.

(b) If the minimum transmission is 0.0025, what is the reflectivity of the
mirrors?

A (mm)

Fig. 8.5

8.13 Show that in the system of fringes formed in transmitted light by multiple
reflection (i.e., in the system of fringes formed in a Fabry-Perot interferometer),
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the ratio of the intensity of the maxima to that mid way between two maxima is
(1+R*/(1-R).

f}é SOLUTIONS

8.1 The frequency spacing of two adjacent modes would be given by

_c _
8v= 1 = 1500 MHz

For an incident beam having a central frequency of
V=1V,=06X 10" Hz
and a spectral width® of 7000 MHz the output beam will have frequencies
Vo, Vot OV and vy £20V
as shown in Fig. 8.3. One can readily calculate from Eq. (8) that the five lines

correspond to
m =399998, 399999, 400000, 400001 and 400002.

8.2 Since v=v,=6X 10" Hz, hy=10 ¢cm, ny= 1 and cos 6,= 1, we get

5= 47Vl + )
C

= 800000 7 (1 + i)
hO

Thus, transmittivity resonances will occur for
6= 2800000 7, 800002 7, 800004 , ...

which will occur when
x=0,250 nm, 500 nm,...

respectively. The two curves in Fig. 8.2 correspond to F = 100 and F = 1000.
Notice that the transmission resonances become sharper as we increase the
value of F.

8.3 From the equation

_ 4R
(1-R)?

we readily obtain
R-2(142\R+1=0 = R=-1+2-2[F+1
F F F

F =400 implies R = 0.905; i.e., each mirror of the etalon has about 90%
reflectivity.

3 For vy =6 x 10'* Hz, Ay = 5000 A and a spectral width of 7000 MHz would imply

AL, 7x10°

TO = % = ox 107 =~ 1.2 x 107 giving A4y = 0.06 A. Thus a frequency spectral
0

width of 7000 MHz (around V,= 6 X 10'* Hz) implies a wavelength spread of only

0.06 A.
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8.4 In Fig. 8.6 we have plotted the intensity variation with 6 for A, = 5000 A and
4999.98 A. The actual fringe pattern (as obtained on the focal plane of a lens
of focal length 25 cm) is shown in Fig. 8.7. Now, for

)u() = )‘1 = 5000 A
— A=1,=5000 A
—— A=1,=4999.98 A
1
z
=
0.5r
0 W)
0.1 0.2 0.3 0.4 0.5 0.6

— 0 (degrees)

Fig. 8.6 The variation of intensity with 6 for a Fabry-Perot interferometer with n; = 1, h =
1.0 cm and F =400, corresponding to 4 = 5000 A (= 44) and Ay =4999.98 A (= A,).

Q

N\ /.

Fig. 8.7 The (computer generated) ring pattern as obtained (on the focal plane of a lens) in a
Fabry-Perot etalon with n;=1, h=1.0 cm and F = 400, corresponding to Ao =5000A
(= A1) and A9 =4999.98 A (= A,).

Equations (2) and (5) give us

O = cos (40000)
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Thus, bright rings will form at
6, = 0°,041°; 0:57°, 0.70%,...

corresponding to m = 40000, 39999, 39998, 39997, ... respectively. This is
shown as the thick curve in Fig. 8.6. On the other hand, for

lo = 12 =4999.98 A

= -1 —m
we get O = cos (40000.16)

Thus bright rings will form at
0, =0.162°, 0.436°, 0.595°,...

corresponding to m = 40000, 39999 and 39998 respectively. This is shown
as the thin curve in Fig. 8.6. The corresponding ring patterns as obtained on
the focal plane of the lens is shown in Fig. 8.7. From the figure, we can see
that the two spectral lines having a small wavelength difference of 0.02 A are
quite well resolved by the etalon. In the figure, the central bright spot and the
first ring corresponds respectively to A, = 5000 A and A, = 4999.98 A; both
corresponding to m = 40000. The next two closely spaced rings correspond to
m = 39999 for the two wavelengths.

85 h=1mm=0.1 cm; 1=4.88x 107 cm;

R=085=F=—K __|51

(I-R)
. _L_ﬂ'h\[ﬁ~ 5
Resolving Power = AL 2 = 0.8 x10°.

8.6 R=0.8= F=280; A1=0.1 A. Thus,

A 6x107°  mxhx80
AL 0.1x1078 6x107°

= hpin=0.13 cm.

87 A=6x10°cm,n,=1,h=1cmand F =200
(@ 1-R?* - F=4R=1-2R+R*=0.02R
= R*-202R+1=0= R ~0.868

(b) Bright rings will occur when

6=cos! m =cos ! [—m ]
2nyh 33333.333

Thus, the first four bright rings will correspond to m = 33333, 33332,
33331 and 33330; the corresponding values of 6, are approximately
0.256°, 0.512°, 0.678° and 0.810° respectively. The corresponding radii
will be approximately

f0 =0.89 mm, 1.79 mm, 2.36 mm and 2.83 mm

respectively; in the above equation 6, has to be in radians.
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(c) We write it = cos 6. Thus,
A

c . 6
AU = ———==5sin OAO= =~1.35x10
nvhJF ThNF
-6 -5
= AQ = wradians =~ 7'735,—XI0degrees
sin 0 sin @

=0.017°, 0.0087°, 0.0066°, 0.0055°.

8.8 For A, = 6000 A, the results have been obtained in the previous problem. For

8.9

(b)

STUDENTS-HUB.com

Ao =5999.9 A bright rings will occur when

6 =cos ! mh | cosl[—m }
2nch 33333.889

=0.418° 0.610°,0.754° and 0.875°.

for m = 33333, 33332, 33331 and 33330, respectively. If we compare the
above values and the values of 6 obtained for =6 x 10~ ¢cm with the values

of A6, we can easily see that the lines are well resolved.
1

ﬁ; o= 4—n.nthOS 9/
1+ F'sin (E)

T= 7

Ao =6 X 107 cm, n, =1, h = hy + x with by = 10 cm and for normal

incidence 6,= 0; thus for 7= 1, we must have
__4Ar
6x107°

6
m=0 114 X | =333333333 14+ 2
3 ho h()

x 10 x 1+i)=2m7t
[

Thus for x = 0, m is not an integer and 7' # 1. The first maximum will occur

when
10° x
= 4= |1+
m =33333 3( ho]
or, 2=106%=>xz2><10><10*6cm=200nm

The second and third maxima will occur when

6
m =333335 = &(Hi) = %=~ 500 nm
3 hy

3 108 x
and m =333336= —| 14+ -— | = x =800 nm
. 3 hy
respectively.
The FWHM is given by
)1
AS=4sin!| —
kd
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For normal incidence, 6 = 1—” h (ny =1). Thus,
0

4r . 1
Ab=—-—h=4sin | —
Ao [ﬁ}
1
=

NG

(c) For F=200, Ah=13.5 nm.

8.10 If Ah represents the FWHM (see Fig. 8.8),

8.11

STUDENTS-HUB.com

then for AO = /11

4

AS = ——
A

M

nF

Ah =4 sin”! [ﬁ} —\/4?

= Ah=

97

A
Ah = 7" sin”! [—} ~95nm for F=400

1 .
For the T = ) point to occur at the same
value of 4, we must have

Ah = Al
h h
where, Ahy = _v_iAvl = TIIA)H
h A A
Thus, —tAA =~— = AL =
A ! nJF : ThF
-5\2
or, Ady = M
7 X 10 X /400
4r
o= l_onf(ho +x) cos 6,
T =1, when
dmm = 8= —Y 0.1 x | 1+ | 233333333 x 27 | 142
3% 10 ho h

X
of, m=33333333|1+-
( hoj

Thus

~57x102em=57x10*A

0

m =333332,333333, 333334 and 333335 for

x =—400 nm, —100 nm, +200 nm and +500 nm

respectively. Obviously, 7= 1 when

Ax _
ho

4ry

pe _
c

h() X v

2pr = Ax=

300p
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where, p = +1, £2, +3,.... Similarly, if we change the frequency by Av such
that

dnAv
X hy =2pn = Av=-F -
2hy

p % 1500 MHz

then we will have the same T vs. x curve; the value of 6 will change by 2p.
8.12 (a) Ifthe adjacent wavelengths of maximum transmission are given by A; and
s, then we have

2nyd =mA;=(m+ 1),
Eliminating m from the two equations we obtain d ~ 0.32 mm.
(b) The minimum transmittivity is given by 1/(1 + F). Using this equation we
can obtain the value of F and thus the reflectivity as 0.905.

8.13 The maximum transmission of a Fabry-Perot interferometer is unity while the
minimum corresponds to 1/(1 + F). Using the expression for the coefficient of
Finesse, we obtain the desired result.
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iﬁ A Quick Review }i

9.1 H FRAUNHOFER DIFFRACTION BY A SINGLE SLIT

A plane wave (of wavelength A) is incident normally on a long narrow slit (of
width b) and the Fraunhofer diffraction pattern is observed on the focal plane of the
lens as shown in Fig. 9.1. The resultant field on the focal plane of the lens is given by

Screen

Lens Diffraction
pattern

Ao
C\é: N <

Q\a(\e o4 S

/

Nl
[V 4

)

~— Long narrow slit

\
\
il

(b)

Fig. 9.1 Diffraction of a plane wave incident normally on a long narrow slit of width b. Notice that the
spreading occurs along the width of the slit.
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E=A%cos(wt—ﬁ) 1
B- n’bs}in@ 2

where,
and 0 is the angle of diffraction along the width of the slit. The corresponding

intensity distribution on the focal plane of the lens is given by (see Fig. 9.2)

Amplitude distribution

Intensity distribution

A AN

</ \/ - vzﬂ 3,;\///%_.

(a)
3

)r'

y=tan

(b)
(a) The intensity distribution corresponding to the single slit Fraunhofer diffraction pattern.

Fig. 9.2
(b) Graphical method for determining the roots of the equation tan 5= §3.

-2
=1, Sl;f @)
where, [, represents the intensity at = 0. The intensity is zero when
4)

B=mr = bsinO=mA;m=+1,+2,+3,...
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The maxima correspond to the roots of the transcendental equation [see Fig.
9.2(b)]:

tan B =3 (5)
which occur at B=143x, f=2.46m,... (6)

9.2 H FRAUNHOFER DIFFRACTION BY MULTIPLE SLITS

We next consider a plane wave (of wavelength 1) incident normally on N parallel
slits, each of width b, and the distance between two consecutive slits is assumed to be
d (see Fig. 9.3). The resultant field on the focal plane of the lens is given by

E =438 [cos(ar— B) + cos(ar— B—®p) + ...+ cos {wr— B (N— 1)®,)]

B
_sinf sinNy a1
_A_ﬁ Siny cos[a)t B 2(N 1)<I)1} 7
where, y = % - ”d;‘ne @®)
Al O
3
AR

_L P

U

Fig. 9.3 Fraunhofer diffraction of a plane wave incident normally on a multiple slit.

The corresponding intensity distribution on the focal plane of the lens is given by

sin®f sin> Ny
B> sin’y

I :IO (9)

Principal maxima occur when,
y=mr = dsin@=mA,m=0,+1,£2,13,... (10)

Between two principal maxima, the intensity vanishes when,

=p—]\’f;p=il,iz,i3,... but p#0,+N,+2N,+3N,... (11)

These are referred to as secondary minima. In a diffraction grating, N is usually a
very large number, as such there are many minima between two principal maxima.
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In addition, there are few diffraction minima which Returning to Eq. (9), we see that
for N =1 we obtain the single slit diffraction pattern. For N =2 we obtain

sin’f

I =4I, 7 cos’y (12)
which is a product of the single slit diffraction pattern and the two point interference
pattern.

93 | RESOLVING POWER OF A GRATING
The resolving power of a grating is based on the Rayleigh criterion (see Fig. 9.4) and
is given by .
R = H =mN (13)

where N represent the total number of lines in the grating and m represents the order
of the spectrum.

Fig. 9.4 The Rayleigh criterion for the resolution of two spectral lines.

9.4 H DIFFRACTION BY A CIRCULAR APERTURE

A plane wave is incident normally on a circular aperture (of radius @) and a lens
whose diameter is much larger than that of the aperture is placed close to the aperture
as shown in Fig. 9.5.

Lens

% Airy

pattern

Lens

> =5 :
Circular
aperature
—=0—] T

/%/%

Fig. 9.5 Experimental arrangement for observing the Fraunhofer diffraction pattern by a circular aperture.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Fraunhofer Diffraction: | 103

The Fraunhofer diffraction pattern is observed on the focal plane of the lens.
Because of the rotational symmetry of the system, the diffraction pattern will consist
of concentric dark and bright rings; this diffraction pattern (as observed on the
back focal plane of the lens) is known as the Airy pattern (see Fig. 9.6) and the
corresponding intensity distribution is given by (see Problem 9.9)

2
2
=1, [—Jl(v)} (14)
%
_2n .
where, v = Tasm 6 (15)
a=0.5 mm a=10.25 mm

1 mm

1 mm 1 mm

Fig. 9.6 Computer generated Airy patterns; (a) and (b) correspond to @ = 0.5 mm and a = 0.25 mm
respectively at the focal plane of a lens of focal length 20 cm (4 = 0.5 um).

a being the radius of the circular aperture, A the wavelength of light and 6 the angle
of diffraction; /; is the intensity at 8 = 0 (which represents the central maximum)
and J;(v) is known as the Bessel function of the first order. On the focal plane of the
convex lens

o (2 + yy2
where f'is the focal length of the lens. For those not familiar with Bessel functions,
we may mention that the variation of J;(v) is somewhat like a damped sine curve [see
Fig. 9.7] and although J;(0) = 0, we have

(16)

[

2J.
L 2@ (17)

v—>0 O

similar to the relation .
Le 20Xy (18)

x—0 X
Other zeros of J;(v) occur at

v =3.832,7.016, 10.174,... (19)
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J,@)
0.5
10.174
| | | | | / | /
O / \ \\8 \7 |
3.832 7.016
Fig. 9.7 The variation of J;(v) with .
2
2J,(v)
v
1
0.5
3.832 7.016
| \ \ 1 | |
0 4 8 12
—_ [ = ‘2T7r a sin 9]

Fig. 9.8 The intensity variation associated with the Airy pattern.

In Fig. 9.8 we have plotted the function
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which represents the intensity distribution corresponding to the Airy pattern. Thus,
the successive dark rings in the Airy pattern [see Fig. 9.6] will correspond to

V= 2Tﬂasin 0=3.832,7.016, 10.174, ... (20)
. 3.8324 7.0164
= 21
or sin O ra 2ma 21

If f represents the focal length of the convex lens, then the

3.8324f T7.016Af
2na ~ 2ma

Radii of the dark rings = f'tan 6= (22)
where we have assumed 6 to be small so that tan 8 = sin 6. In Figs. 9.6(a) and (b)
we have shown the Airy patterns corresponding to the radius of the circular aperture
being 0.5 mm and 0.25 mm respectively; both figures correspond to A = 5000 A and
/=20 cm. Thus,

Radius of the first dark ring =0.12 mm and 0.24 mm

corresponding to @ = 0.5 mm and 0.25 mm respectively.

9.5 H LIMIT OF RESOLUTION

Consider two point sources, such as stars (so that we can consider plane waves
entering the aperture) being focused by a telescope objective of diameter D. Each
point source will produce its Airy pattern as schematically shown in Fig. 9.9. The
diameters of the Airy rings will be determined by the diameter of the objective, its
focal length and the wavelength of light. According to the Rayleigh criterion for the
two objects to be resolved, the central spot of one pattern should fall on the first dark
ring of the second, and this would happen when the angular separation of the two
distant objects is given by

(23)

Fig. 9.9 The image of two distant objects on the focal plane of a convex lens. If the diffraction patterns
are well separated, they are said to be resolved.
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PROBLEMS g

9.1 A plane wave (A = 5000 A) falls normally on a long narrow slit of width
0.5 mm. Calculate the angles of diffraction corresponding to the first three
minima. Repeat the calculations corresponding to a slit width of 0.1 mm.
Interpret physically the change in the diffraction pattern.

[Ans. 0.057°, 0.115°, 0.17°; 0.29°, 0.57°, 0.86°]

9.2 A convex lens of focal length 20 cm is placed after a slit of width 0.6 mm. If
a plane wave of wavelength 6000 A falls normally on the slit, calculate the
separation between the second minima on either side of the central maximum.

[Ans. =0.08 cm]

9.3 In the above problem calculate the ratio of the intensity of the principal

maximum to the first maximum on either side of the principal maximum.
[Ans. ~21]

9.4 Acircular aperture of radius 0.01 cm is placed in front of a convex lens of focal
length of 25 cm and illuminated by a parallel beam of light of wavelength
5x 107> cm. Calculate the radii of the first three dark rings.

[Ans. 0.76, 1.4, 2.02 mm]

9.5 Consider a plane wave incident on a convex lens of diameter 5 cm and of
focal length 10 cm. If the wavelength of the incident light is 6000 A, calculate
the radius of the first dark ring on the focal plane of the lens. Repeat the
calculations for a lens of same focal length but diameter 15 cm. Interpret the
results physically. [Ans. 1.46 x 10~*cm, 4.88 X 107 cm]

9.6 Consider a set of two slits each of width b = 5 x 1072 cm and separated by
a distance d = 0.1 cm, illuminated by a monochromatic light of wavelength
6.328 x 107> cm. If a convex lens of focal length 10 cm is placed beyond the
double slit arrangement, calculate the positions of the minima inside the first

diffraction minimum. [Ans. 0.0316 mm, 0.094 mm]
9.7 Show that when b = d, the resulting diffraction pattern corresponds to a slit of
width 2b.

9.8 Show that the first order and second order spectra will never overlap when the
grating is used for studying a light beam containing wavelength components
from 4000 A to 7000 A.

9.9 Consider a diffraction grating of width 5 cm with slits of width 0.0001 cm
separated by a distance of 0.0002 cm. What is the corresponding grating
element? How many orders would be observable at A = 5.5 x 107 ¢cm?
Calculate the width of principal maximum. Would there be any missing
orders?

9.10 For the diffraction grating of the above problem, calculate the dispersion in
different orders. What will be the resolving power in each order?

9.11 A grating (with 15,000 lines per inch) is illuminated by white light. Assuming
that white light consists of wavelengths lying between 4000 and 7000 A,
calculate the angular widths of first and the second order spectra.
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9.12 A grating (with 15,000 lines per inch) is illuminated by sodium light. The
grating spectrum is observed on the focal plane of a convex lens of focal
length 10 cm. Calculate the separation between the D; and D, lines of sodium.
(The wavelengths of D; and D, lines are 5890 and 5896 A respectively.)

9.13 Calculate the resolving power in the second order spectrum of a 1 inch grating
having 15,000 lines.

9.14 Consider a wire grating of width 1 cm having 1000 wires. Calculate the
angular width of the second order principal maximum and compare the value
with the one corresponding to a grating having 5000 lines in 1 cm. Assume
A=55x10"cm.

9.15 In the minimum deviation position of a diffraction grating the first order
spectrum corresponds to an angular deviation of 30°. If 1 = 6 x 107 cm,
calculate the grating element.

9.16 Calculate the diameter of a telescope lens if a resolution of 0.1 seconds of arc
is required at A =6 x 10~ cm.

9.17 Assuming that the resolving power of the eye is determined by diffraction
effects only, calculate the maximum distance at which two objects separated
by a distance of 2 m can be resolved by the eye. (Assume pupil diameter to be
2 mm and A= 6000 A.)

9.18 A pinhole camera is essentially a rectangular box with a tiny pinhole in front.
An inverted image of the object is formed on the rear of the box. Consider
a parallel beam of light incident normally on the pinhole. If we neglect
diffraction effects then the diameter of the image will increase linearly with
the diameter of the pinhole. On the other hand, if we assume Fraunhofer
diffraction, then the diameter of the first dark ring will go on increasing as we
reduce the diameter of the pinhole. Find the pinhole diameter for which the
diameter of the geometrical image is approximately equal to the diameter of
the first dark ring in the Airy pattern. Assume A = 6000 A and a separation of
15 cm between the pinhole and the rear of the box. [Ans. 0.47 mm)]

9.19 Calculate the Fraunhofer diffraction pattern produced by a double slit
arrangement with slits of widths b and 3b, with their centers separated by a
distance 6b.

9.20 Plot the function

sin2Ny

sin? Y
for N=15 and N = 12 and find the values of y corresponding to the secondary
minima.

9.21 Assuming ideal conditions, estimate the linear separation of two objects on
the surface of the moon that can just be resolved by an observer on the earth
using naked eye assuming a pupil diameter 5 mm. Assume a wavelength of
550 nm.

9.22 Show that for a diffraction grating with d = 2b, where b is the width of each
slit and d is the spacing between the slits, all even order diffraction maxima
will be absent in the diffraction pattern.
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9.23 A grating with 200 lines (slits) per millimeter and of width 2 cm is fully
illuminated by light consisting of wavelengths 600 nm and 600.1 nm.

(a) What is the lowest diffraction order where the two wavelengths will be
resolved?

(b) If the slits are of width 3 um in the grating, then calculate the ratio of
intensities of the 600 nm wavelength in the second order to that in the
first order.

9.24 For a diffraction grating illuminated normally by a plane wave of wavelength
535 nm, the highest order spectrum observed is equal to five. If there is a
principal maximum along a diffraction angle of 35°, find the period of the
grating?

9.25 Find the distance between the images of the two stars which are just resolved
by a lens of focal length 3 m and diameter 10 cm. (Assume A = 5500 A).
Assuming the diameter of the pupil of the human eye to be 5 mm, show
whether the two images can be resolved by the eye or not when viewed from
a distance if 25 cm from the focal plane of the lens.

9.26 Consider a telescope having an objective of diameter 5 cm and focal length
30 cm.

(a) What is the minimum angular resolution of the telescope? (Assume A =
0.5 pm.b).

(b) Assuming an eye pupil diameter of 4 mm, calculate the focal length of
the eye piece required to fully utilise the objective resolution.

(c¢) What is the corresponding angular magnification of the telescope?

9.27 A parallel laser beam with a diameter of 2 mm and a power of 10 W falls on a
convex lens of diameter 25 mm and focal length 10 mm. If the wavelength of
the laser beam is 500 nm, estimate the average intensity at the focused spot.

9.28 Parallel light from 2 incoherent light sources of equal intensity falls on a long
narrow slit of width ‘a’ and the Fraunhofer diffraction pattern is observed on
the back focal plane of a lens. If the two sources are just resolved, calculate the
drop in intensity (with respect to the maximum) midway between the maxima.

€/ SOLUTIONS

9.1 For minima bsin 8,,=mA = 6,= sin”! (%ﬂ,j

Thus, for 5 =0.05 cm for 5=10.01 cm
o = sin | 2107 ) _ 0 0570 o1 = sin | 2107 ) _ 050
! 005 | ! 001 | =
6, =sin! 10107 ~0.115° 6, =sin! 10107 ~0.57°
2 005 | = 2 001 | =
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-5 -5
o [00 oar om0 oo

9.2 Second minima occurs at sin 8= 24 = 0=2x 107 rad.
a

Therefore, the angular separation between the two ‘second’ minima, lying on
either side of central maxima = 4 x 10~ rad. Thus, on the screen
The separation between the two minima =4 x 107 %20=0.08 cm.

.2
03 1=1,5" 8 B-Thine
p? A
First maximum occurs at §= 1.43 . If /; is the intensity at the first maximum
then
I, (1437w

)
I sin®(1.437)
9.4 Radii of the dark rings
_ 3.832Af 7.016Af 10.174Af
2ma °  2ma ’  27@a

=0.076 cm, 0.14 cm, 0.202 cm

3.832Af  3.832x6x107°x10
D 5w

=1.46x 10~ cm.
3.832x6x107°x10

157
=488 x 107> cm.

In the second case the beam gets diffracted to a lesser extent because the
lens offers a larger aperture for the same wavelength.

r =ftan 6

9.5 Radius of the first dark ring =

For D = 15 cm, Radius of the first dark ring =

9.6 For N =2, the interference term is given by

.2
31r.1 jV)/ =4coszy
sin“y )
7dsin 0
where, Y = 7

Interference minima will occur when
+1)2
sin 6= m—2 = (m+l)M
d 2 0.1

Thus sin 6=3.164 x 10~* and 9.492 x 10™* for m =0 and 1 respectively. Thus,
x=ftan 6= 0.0316 mm and 0.094 mm

.2 )
sm2ﬂ o’ B=1, sin 22[3
B B

~ 6328 %107 (m + %)

sin® 23
2By’

4
2 =y
X7 o

)
9.7 I=41, 51;2/3 cos>y=4l,
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9.8 The first and second order maxima are given by dsin 6, , = A and 24 respec-
tively. For the visible regions of 4
4%x10°<dsin;,<7x10° and 8x107° <dsin 6,<14x107°

Clearly 6, and 6, are disjoint for any value of d. The second and third order
spectra will overlap.

9.9 The grating element is d = 0.0002 cm.

Now dsin 6,, = mA = mT/l=sin 6,<1
-4

. ped 2X10°
A 55%10°

Thus, we observe only three orders at A =75.5 x 10> cm.

The number of lines in the grating = > CE: = 25000, thus, the width of
principal maximum will be given by 2% 10" cm
5x107
A8, = A _ 5.5%x10 . (6, = 0)
Ndcos6, 25000 x2x10
=1.1x107 rad
Missing orders correspond to the following two equations being simultane-
ously satisfied bsin 8, = nA and dsin 6,, = mA with 6, = 6,,. Thus, % = % =
m = 2n, so every second principle maxima would be absent.
9.10 dsin6,=mA; d=2 x 10~ cm = sin 6,= %, %, % =0.275, 0.55, 0.825

form=1,2 and 3. Thus, 6,, = 15.96°, 33.37°, 55.59°.

Dispersion 2 = " _ 5551075, 12x10*and 2.7x 10~* radians/A

AL dcos 0,
for m =1, 2 and 3 respectively.
R = mN = 25000, 50000 and 75000 for the first, second and third order

respectively.
. 4%107° 107
001 d= 2% 1 69x 10 em = sin g = 2= <10 _TX10
15000 d  1.693x10" 1.693 10~
=0.236 t0 0.413
= 6, =13.7° t024.4° = AG, = 10.7°
107 14%107°
sing, = 24 - 8107 WXA0T 49340 0.827

d  1.693x107*  1.693x107*

= 6, = 28.20° to 55.79°
= A8 =27.6°
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9.12 dsin 91,2 = 11’2

89%107°
d= 2% _1693x 10" cm = sin 6 = o1 3479
15000 1.693x 10
= 6, ~2036°
Thus,
AG~ — ~ L % 6x 107 = 3.78 x 10~* radians
dcos 6 1.693x107% % 0.937

= separation =fAf=3.78 X 10 cm
9.13 R=2N=30000.

_lem 3 . _2A _ _
9.14 d= 1000 10~ ¢cm = sin 6, d 102 0.1
Now, the width of principal maxima A6, = #osem
y) 5%107° s
= A6, = = =5.02x 107 rad
" Nayi-sin’e, 1000x1070.99
If N =5000 lines, d=2 % 10~% cm
22 10°*
=22 = =05 ~ 0.866
= sin6, d T x 10 = cos 6,
5x107° s
AB, = =577x1
= 6, 0.866 5.77x 107" rad
-5
9.15 2dsin & = 1= d= 10 o 116x10 % em.
2 2 X sin 15°

1224 _ 0.1 T _ -7 -
9.16 D 3600 < 180 4.85x107" = D =150 cm.

9.17 Let the distance be x.

N 1220 _ 2 o im=2x10"m A=6x10"m
D X
2

= —= x2x 1073 = 5.5 km
1.22x6x10”

=

Thus, two objects (separated by 2 m) at a distance of about 5 km should be
resolvable by the eye.
9.18 The first dark ring in the Airy pattern occurs at
g~ 1222
D
The diameter of the first dark ring =2 X 15X 6=
Thus the required condition is

2x15x1.22%x6x107°
D

2x15x1.22%x6x107°
D

D =
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2 mm 1 mm
0.6 mm 0.35 mm
0.07 mm

0.15 mm

Fig.9.10 The image formed in a pinhole camera for different diameters of the pinhole.
[Ref: http://www.cs.berkeley.edu/~daf/book/chapter-4.pdf]

= D =0.047cm =047 mm (see Fig. 9.10)

9.19 AC= 6b—&+é = 5b (see Fig. 9.11)

The field at the angle O is
E =afcos wt + cos(wt— @) +
+ cos(wt— (n—1)@)] + a[cos (wt
_(Dl) +COS(COt— ¢_(Dl) + ...
+cos(wt—Bn—1)¢— D))]

_sinng/2 1
a Sin ¢/2 cos[(ot 2(n 1)¢}

+3aMcos|:(ot—%(3n—l)¢—(Dl}

3sin ¢/2
sin 8 q)) sin33 D
= -B+L |+
A B cos(a)t ﬁ+2 34 3B
COS(a)t—3ﬁ—d>1 +%)
1 _mbsin® _ 2r .
where f= Enq)— — D = T 5bsin 0 Fig, 0.1

~ 108

Thus, £ Asli;lﬁ [cos(a)t—ﬂ ) gcos(wt 138+ (gﬂ

= As[i;nﬁ [Clcos(a)t+ )+ C2s1n( ﬂ

where, C; =cos B+ (3 —4sin’B)cos 138
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and C, =sin B+ (3 — 4sin’ B)sin 13

-2
sin
1=1I, 2/3 (CT+C3)
9.20 See Fig. 9.12
sin’ Ny
sin’ Y
N=5
20 |
10 1+
I I 1 1
-2r - 0 b4 2r
(a)
N=12
100
50
1 I L L
-2r -7 0 /4 2r
—_— }/
(b)

Fig.9.12  The variation of the function sin?(Ny)/sin?y with yfor N=5 and 12. As N becomes
larger, the function would become more and more sharply peaked at y=0, + m,
+2m, +3m,....

9.21 The angular separation that can be resolved is given by

_ 1222 0.67x107°
d 5x107

0 =0.13x 1073

Assuming the distance of moon from the earth to be given by 3.84 x 10° km,
the linear separation that can be resolved comes out to be 3.84 x 10° % 0.13 x
107 = 50 km.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

114  Problems and Solutions in Optics and Photonics

9.22 The intensity pattern in a diffraction grating is given by Eq. (9). In this case
since d = 2b, we have B = y/2. Even order grating spectra correspond to y=
2mnr(m=1,2,3...). For these angles we would have f=ma(m=1,2,3...).
For these values of b, the diffraction term gives zero and hence all even orders
will be absent. Note that along these directions the amplitudes of all the slits
add constructively but there is no diffracted amplitude along these directions
as they coincide with the diffraction minima of each slit.

9.23 (a) The number of illuminated slits equals 200 x 20 =4000. Using the formula
for the resolving power of the grating we find that m > 1.5. This means
that the two lines will be resolved in all orders other than the first order.

(b) The ratio of the intensities in the second order to first order will be given

_ (nbsing, | whsin 6,
SNy ————— —_—
I 2 y 2
I mhsin 6, 0 nhsin 6,
2 ) 2

where 60, and 6, are the angles at which the first order and the second order
spectra appear. Note that the interference term got cancelled in taking the
ratio. Now the angles at which the two orders appear satisfy the following
equations:

dsin 0, = 4
dsin 6, =2A
Also from the values given in the problem, d =5 um and b = 3 um.
Using these values in the equation for the ratio we obtain
I

I

=0.096

9.24 1t is given that the maximum order seen is 6. Hence, the value of d must lie
between 5A and 6A which implies that 2.675 um < d < 3.21 um. Now since
there is an order appearing at 35°, we must have

0.535
sin 35°

=~0.93m

The value of m satisfying the condition on d is 3. Hence this must be the third
order and in such a case the value of d will be 2.799 um.
9.25 The separation between the two spots will be

_1.224
d
The angle subtended by the two spots on the eye placed at a distance of
25 cm will be 0.805 x 10~ rad. The resolving power of the eye for an opening
of 5 mm is 1.34 x 10~* rad. Hence the eye will not be able to resolve the two
images although they are resolved by the telescope.

£=20.13 ym
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9.26 (a) The angular resolution of the telescope will be

1224 _ 1.22x05x107°
d 5x1072
(b) The angular resolution of the eye will be

g _ 1224 _1.22x05x10°°
Y d 4x1073

O = ~1.22x 107 rad

~1.525x 10 *rad

(c) The required angular magnification is 1.525/0.122 ~ 12.5.

9.27 The radius of the focused spot would be a ~ 3.05 um. Thus, the intensity of the
focused spot would be Plwa® ~3.4x 10" W/m?.

9.28 The diffraction pattern of a single slit with a single source is given by Eq. (3).
The two sources would be just resolved when the maximum of one falls on
the first zero of the other pattern. Since the first zero appears at sin 6= A/b, the
intensity midway would be
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The Diffraction Integral

K A Quick Review ?

For an electromagnetic wave propagating in the +z direction, the transverse
components of the electric field (£, or E)) satisfy the scalar wave equation
2

Viy =epo— (1
If we assume the time dependence of the form e '’ and write
y=U(x,y,2)e " (2)
we would obtain
VIU+KU=0 (3)
where, k= wfeu, = % 4)

and U represents one of the Cartesian components of the electric field. The solution
of Eq. (3) can be written as

+o0 00
U(x, y, Z) = J J F(kx’ ky) ei(kxx-#kyy%-kzz) dkxdky (5)

—00 —00

where, ky =t (K2~ K2 k2 (6)
For waves making small angles with the z axis we may write
k}+k;
N PR T RPN PR S

k= \Jk* =k —k; ~k[l e ] @)

If we use the above approximation, we obtain (see Problem 10.1)

U(x,y,2) = m%é”‘z ”U(é, 1, 0) exp [;—k{(x &2+ (y- n)z}} d&dn  (3)
V4

where the integral is over the area of the aperture on the plane z = 0 (see Fig. 10.1).
The above equation can be rewritten in the form

1 ik ik
U3 = e e w0 [Ju@ no

exp {;'—’;(52 + nz)} e agdn - (9)
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_ 2mx _2rmy
where, u=— and U= (10)

are known as spatial frequencies. Both Egs. (8) and (9) are usually referred to as the
Fresnel diffraction integral. In the next chapter we will use the above integrals to
calculate the Fresnel diffraction pattern. Now, if we assume z to be so large that the
function

ik g2 2
exp{zz«f n )}
[inside the integral in Eq. (9)] can be replaced by unity, then we would obtain
Ulx, 3, 2) = == exp {2 (2 + %) HU(&, n,0)e T ggan (1)
iAz 2z
which represents the Fraunhofer diffraction pattern. The integral on the right hand
side is the two dimensional Fourier transform of the function U(&, 1, 0). Thus

Eq. (11) gives the very important result that the Fraunhofer diffraction pattern is the
Fourier transform of the aperture function.

P(x,,z)

Fig. 10.1 A plane wave incident normally on an aperture. The diffraction pattern is observed on the

screen SS'.
PROBLEMS g

10.1 Start with Eq. (5), use Eq. (7) and derive Eq. (8).

10.2 Consider a plane wave incident normally on a long narrow slit of width b
(along the £-axis) placed on the aperture plane (see Fig. 10.2). For such a case,
we will have

vEno-4 fg<t

(12)
-0 |g>2

for all values of 1. Calculate the corresponding Fraunhofer diffraction pattern.
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Screen

Diffraction
pattern

Incident
ane wave \ \
; \\\\\\\\\ Long narrow slit

—Z

Fig. 10.2  Diffraction of a plane wave incident normally on a long narrow slit of width b. Notice
that the spreading occurs along the width of the slit.

10.3 Consider a plane wave incident normally on two long narrow slits each of

width b (along the &-axis) separated by distance d (see Fig. 10.3). For such a
case, we will have

_y _4d_b _d_.b da_»b a.b
U, n,0)=4 2 2<§< 2+2andfor2 2<,§<2+2

=0 elsewhere

(13)

for all values of 1. Calculate the corresponding Fraunhofer diffraction pattern.

Screen

Diffraction
pattern

Incident
plane wave

Fig. 10.3 Diffraction of a plane wave incident normally on two long narrow slits of width b.
Notice that the spreading occurs along the width of the slit.

10.4 (a) Inthe previous problem, choose the origin at the bottom of the first slit so
that

(14)

U, n0)=4 0<E<bandford<&é<d+b
=(0 elsewhere

for all values of 1. Show that there will only be change of phase and the
corresponding intensity distribution will remain the same.

(b) Assume d = b and physically interpret the final result.
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10.5 Extend the analysis of the previous problem to N equidistant slits each of
width b so that

UE n0)=4 0<é<byd<éE<d+b;..;(N-Dd<&éE<(N-Dd+b (15)
=0 elsewhere

for all values of 1. Show that there will only be change of phase and the
corresponding intensity distribution will remain the same.
10.6 Consider a plane wave incident normally on a rectangular aperture of width b
(along the &-axis) and width a (along the n-axis) placed on the aperture plane.
For such a case, we will have
b a
UE n0) =4 [¢< 5 and || < 5 16)
=0 everywhere else
for all values of 1. Calculate the corresponding Fraunhofer diffraction pattern.
10.7 Assume a plane wave with A =5 x 107> cm incident normally on a rectangular
aperture of dimensions 0.2 mm X 0.3 mm. A convex lens (of focal length
20 cm) is placed immediately after the aperture. The screen is at the focal
plane of the lens. Calculate the positions of the first three maxima and minima
on the x-axis (implying ¢ = 0) and also on the y-axis (implying 6 = 0).
10.8 In continuation of Problem 10.4, we consider two slits of unequal widths so
that

U, n,0)=4 0<§<b1andford<§<d+b2} (17

=0 elsewhere

for all values of 1. Obtain an expression for the Fraunhofer diffraction pattern.
(b) Assume d = b and show that the final result will correspond to a single slit of
width b; + b,.
10.9 Consider a plane wave incident normally on a circular aperture of radius a
(see Fig. 10.4). Calculate the corresponding Fraunhofer diffraction.

Fig. 10.4(a) Diffraction of a plane wave incident on a circular aperture of radius a.
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n

M(&, )
p
(0

Fig. 10.4(b) Cylindrical coordinates (p, ¢) on the plane of the circular aperture.

10.10 The Fraunhofer diffraction pattern of a circular aperture (of radius 0.5 mm) is
observed on the focal plane of a convex lens of focal length 20 cm. Calculate
the radii of the first and the second dark rings. Assume A= 5.5 x 107 cm.

10.11 A long narrow single slit of width a =50 um Glass plate
is covered by a thin slide of glass of E/
refractive index 1.5 and thickness 0.5 umso I Ia/ 2

that it covers half the slit as shown in the —— E
figure.
Calculate the corresponding Fraunhofer
diffraction pattern for an incident wavelength of 0.5 pm.
10.12 Obtain the Fraunhofer diffraction pattern of a pair of rectangular apertures as
shown below.

AL AL

b b
///4 /7
Fig. 10.5
10.13 Consider a pair of circular apertures of radii a as %
shown in the figure. Obtain the Fraunhofer diffraction
pattern of such an aperture. Fig. 10.6
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10.14 Consider four identical circular apertures of radii a as d

shown in the figure. Obtain the Fraunhofer diffraction

pattern of such an aperture. f
10.15 The Fraunhofer diffraction pattern of a rectangular

aperture is observed on the back focal plane of a lens.

Show, without actual integration, that if the aperture is

displaced by a distance x( along the x-direction, there Fig. 10.7

would be no change in the observed intensity pattern.
10.16 Obtain the Fraunhofer diffraction pattern of an annular aperture shown below.

10.17 A long narrow slit of width 4 is illuminated
obliquely by a plane parallel beam at an angle 6,
with the axis as shown in the figure. Obtain the
corresponding Fraunhofer diffraction pattern
and the positions of maxima and minimum.

@ SOLUTIONS

10.1 For waves making small angles with the z axis we may write

k2 + k?
kz=,/k2—kf—kj zk{l— Zkzy} (18)

Substituting in Eq. (5) we obtain

ikz . k3+k)%
U2 = [ [Pk k) exp il ok = =0 202 ||, (19)

Thus, the field distribution on the plane z = 0 will be given by

TR G dk, (20)

Ux,y,z=0) = J. F(ky, ky) e
Thus, U(x, y, z=0) is the Fourier transform of F(k,, k). The inverse transform
will give us
1

Flko k) = 5 o7 ”U (& n,0) e 5TED ggan @1
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Substituting the above expression for F'(k,, k,) in Eq. (19), we get

ikz
UGny.2) = < [[u & no i dgan 22)
4r

—oo

2 ik _£\2
i | R @

and we have used the following integral

+oo ) 2
[ eerebran = \/g exp {f—a} (24)

+eo ik?
Similarly, L = J exp [ik, (y — m)] exp {—2—£ z} dk,

2 ik a2
]

1 ikz
Thus, Ux,y,z) = M—zek I U(& n,0)

too ik?
where, I = J. exp [iky (x — &) exp | — 2—22 dk,

exp [% =8+ (- n)z}] didn  (26)
10.2 If we use Eq. (12) in Eq. (11), we obtain

X . +b/2 i +oo |
Ux,y,2) = Mize'kz exp {% (x* + y2 )} j_ e e dé J_ e Mdn  (27)

b/2
Now 5(0) = j e (28)
’ 2r J-
+0/2 ubl2 _ _—iubl2 .
—iué _ 1 —iué +b/2 _ 2 € —e _ sin B
and j eMdg = — | == oy =g @9
o b mbx mhsin
=0, _ JIOX,
where, B= > e 7 (30)
and sin 6= 2; 9 representing the angle of diffraction along the x-direction.

Thus

U,y,z) = %eikz exp {;—];(xz +y2)}(8i2ﬁj27r5(v) (31)

Because of the & function, the intensity is zero except on the x-axis (see
Fig. 10.2); thus the intensity distribution along the x-axis will be

sin’ 8
ﬁZ

We thus obtain the single slit diffraction pattern.

1=1, (32)
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10.3 If we use Eq. (13) in Eq. (11) we obtain

A ke Sk 2 o e ion
Ux,y,z) ¢ exp{zz (x*+y )} GJ._N e 'dn (33)
d b d b
272 272
where, G- e M gE+ J e gE (34)
d b d b
373 272

Carrying out the straight forward integrations, we get

G=b # ("+e M= (b %) (2 cos y) (35)

h ud wdx 7mdsin 6
where =—="=

’ YT Tz A
Once again, the intensity is zero except on the x-axis and the intensity
distribution along the x-axis will be

(36)

.2
Slzzﬁ (4 cosy) G7)

I:IO

22

The term {SIZZ

J represents the diffraction pattern produced by a single slit

and the term coszy represents the interference pattern produced by 2 point
sources separated by distance d.
10.4 (a) Instead of Eq. (34), we will have

b d+b
G = '[e"'"‘5 dE+ j o gE (38)
0 d

Carrying out the integrations we get

G = (e—iﬁ b sizﬁj (1 + ¢ id?)
or, G = (e_iﬂ b%j (€772 cos ) (39)

where, f and y have defined through Egs. (30) and (36). Thus, the
expression for G is the same as given by Eq. (35) except for (unimportant)
phase factors. The intensity distribution will therefore be the same as
given by Eq. (37).
nhsin 6

A

G = (e"'ﬁ b%)(e”’ 2cos y)=e 2P (21; %j

(b) When d= b, we will have y= 3=

and
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The corresponding intensity distribution will be given by

sin? 28
=l
(2B)
And we will have single slit diffraction pattern corresponding to a single slit
of width 2.
10.5 Instead of Eq. (38), we will now have
b d+b (N-1)d+b
G = je"'"f dE+ j o GE .+ j e g (40)
0 d (N-1)d

Carrying out the integrations, we get

G = (e—iﬁ b _Sﬂj (142 4 | 4 ritN=Dud2y

iNud/2 SIN (N—Ud)
. : —iNu
= e"ﬁbsmﬁ — 2
ﬁ e—md/2 . (ud)
sin|—-
2
_( By sin B iV =Dy sin Ny
B siny
Thus, the corresponding intensity distribution will be
I sin® B sin’ Ny
0 B> sin’
14

] represents the diffraction pattern produced by a

(41)
.2

sin
where the first term (—2

sin?
single slit and the second term | ——
sin” y
produced by N equally spaced point sources.

J represents the interference pattern

bsin 0
(b) When d = b, we will have y= = S/lm and
sin? B sin®> NB ,sin? Nj
I=ly— 75 N —— 5~
B~ sin"p (NB)
and we will have single slit diffraction pattern corresponding to a single slit of

width Nb.

10.6 The Fraunhofer diffraction of a plane wave incident normally on a rectangular
aperture will be given by

_ A ik ik 2 o | (T2 e *al2 ion
U, y,z) = 2.¢ exp {22 (x“+y )}I \ e déj—a/z e Tdn (42)
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where we have chosen the origin to be at the center of the rectangular aperture.
Carrying out the integration as in the previous section we obtain

_ Aba . ik 2 o\|(sinB)(siny
U(x,y, z) Tz exp {22 (x"+y )}( B )[ 7 ) (43)
where f is given by Eq. (30),

:%:MNEasin(b (44)

2 Az A
and sin ¢ = X; ¢ representing the angle of diffraction along the y-direction.
z
Thus, we may write for the intensity distribution

sin? y sin? B
2 2
v B
The above equation represents the Fraunhofer diffraction pattern by a
rectangular aperture. The intensity distribution due to a square aperture (a = b)
is shown in Fig. 10.10; the figure corresponds to @ =5 =0.01 cm, z = 100 cm,
and we have assumed A =35 x 107 cm.

1(P) =1y (45)

350
300f

250F

200F

4 cm

150F

100F

s0f
(a) i

O:I....|....|....|....|....|....|....r.
0 50 100 150 200 250 300 35
4 cm

(®)

Fig. 10.10 (a) A square aperture of side 0.01 cm. (b) The corresponding (computer generated)
Fraunhofer diffraction pattern on a screen at a distance of 100 cm from the aperture;
A=5x10"cm.

10.7 Along the x-axis, minima will occur at b sin 6= mA or at

STUDENTS-HUB.com

_ i a mAf  m
x =ftan 0= fsin 0——b =20 (cm)

=0.05, 0.10, 0.15,... cm
Along the y-axis, minima will occur at b sin 8= mA or at

_ e mAf  m
y =ftan 0= fsin 9——a =30 (cm)

=0.033,0.067, 0.1,... cm
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10.8 (a) Instead of Eq. (38), we will have
d+b,

G = ?e_iué dé+ J. e dE
0

d

_ | -iB Sinﬁl) ( —iud _—if Sinﬁzj
=leMb——|+t|e™e b ———=
[0 >

1 2
where, 3, = % ub;and B,= % ub,. The corresponding intensity distribution
(on the x-axis) will be proportional to

. 2
‘ p A sin reh sin B3,
B,

where ¢= B, — B, — ud
10.9 Obviously on the plane of the circular aperture, it will be convenient to choose
cylindrical coordinates [see Fig. 10.4(b)]

E=pcosp and nN=psing (46)

Further, because of the circular symmetry of the system the diffraction
pattern will be of the form of concentric circular rings with their centers at the
point O’. Consequently, we may calculate the intensity distribution only along
the x-axis (i.e., at points for which y = 0) and in the final result replace x by

\/xz + . Now, when y =0

v=0 and sinf= g 47)
where 0 is the angle that OP makes with the z-axis. Thus,
u= 2/1 Y —ksin@ (48)

and Eq. (11) becomes

alm
= A ﬂ —ik p sin 6 cos ¢
Up) = exp{ - }j ¢ pdpde (49)
4 kr 00 kasin 6
— ikz kr —ifcos
Thus, U(P) = ¢ exp{ 2 } (sin 07 J 4 dCJ i§cos ¢ g

4 " 2 kasin 6

_ A ikz IKT

e exp{ }(k jé WO (50
where {= k p sin 0 and use has made of the following well known relation’

2r
WO =5 [ 5 dp s1)
0

I The identities associated with Bessel functions can be found in most books on

mathematical physics; see, e.g., Ref. Arl, Irl, Gh4; Ref. Abl gives detailed tables of
Bessel functions.
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If we further use the relation
dic (I () = CIp(D) (52)

then Eq. (36) becomes

uwp) = lﬂ.iz e exp {%} (ksf%@z [CJI(C)] ﬁasme
= iiiz e exp {%} na’ [@} (53)
where v = kasin 6. Thus, the intensity distribution would be given by
1) =1y {@T (54)
where I, is the intensity at the point O’ [see Fig. 10.4(a)]. This is the famous
Airy pattern.
a=0.5mm a=0.25 mm

I mm

1 mm Il mm ——

Fig. 10.11 Computer generated Airy patterns; (a) and (b) correspond to a= 0.5 mm and a =
0.25 mm respectively at the focal plane of a lens of focal length 20 ¢cm (1 = 0.5 um).

10.10 The radii of the dark rings are given by

_ 3.832Af 7.016Af 10.174Af
" 2ma ° 2ma ° 2ma
=~ (0.134 mm, 0.246 mm, 0.356 mm

r, =ftan 0

10.11 The glass slide introduces an additional phase difference of 27”(;1 -t=nrm

between the portion that traverses the glass slide and the portion of the
wavefront that passes through the slit that is not covered by the slide. Thus,
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the Fraunhofer diffraction pattern of the given aperture would be proportional

to
al2 a
Je—iu§ dé— J‘ e—iuf dé
0 al2

Integrating and simplifying we obtain the intensity variation in the Fraunhofer
diffraction pattern to be given by sin? (%) Note that in this case the intensity
on the axis (corresponding to u = 0) is zero.

10.12 Let the center of the first aperture (4;) be chosen as the origin and let the line
connecting the two apertures be along the x-axis. Then the coordinates of the
origin of the second aperture (4,) would be (d, 0, 0). Thus, the Fraunhoffer
diffraction due to the pair of apertures would be proportional to

Fuo) = [[ & me o agan (55)
where u= % and v= %

And the integral is performed over the two apertures. Hence, we have

Fu,0) = [[emes o dgdn + [[ o5 dean
4 4,

In the second integral we replace £ by {= & — d and since the two apertures
are identical, the limits of integration of (&, 1) in the first integral and the limits
of integration of (&, 1) in the second integral would be the same and both
integrals would represent the Fraunhofer diffraction integral of a rectangular
aperture (see Eq. 45). Thus, we obtain

_ind, SIn B siny
F(u,v) =A[1 +¢ 4] =—E—L

B v
where A is the amplitude at the center of the diffraction pattern produced by a
single rectangular aperture and 8 = ua/2, = vb/2 with angles of diffraction
6 and ¢ along the x- and y-directions respectively. Hence the intensity pattern
would be proportional to

N2/ N2
F(u,v) =4I, cos” mxd (sm ﬁ) (sm y) (57)

(36)

Az B y

10.13 Let the center of the first aperture (4,) be chosen as the origin and let the line
connecting the two apertures be along the x-axis. Then the coordinates of the
origin of the second aperture (4,) would be (d, 0, 0). Thus, the Fraunhofer
diffraction due to the pair of apertures would be given by Eq. (55). For the two
apertures, the integral is performed over the two apertures. Hence, we have

Flu,v) = Jje_i(”'s HO) & i + j j T IWE+ O e g

4 4
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In the second integral we replace £ by = £ — d and since the two apertures
are identical, the limits of integration of (&, 7)) in the first integral and the
limits of integration of (&, 1) in the second integral would be the same and
both integrals would represent the Fraunhofer diffraction integral of a circular
aperture of radius a (see Solution 10.9). Thus, we obtain

2J, (U):l

. (58)

F(u,v) =A[1 + e_i”d][
where 4 is the amplitude at the center of the diffraction pattern produced by
a single circular aperture and where v = kasin 6. Thus the intensity pattern
observed would be proportional to

2
2J
F(u, v) =41, cos’ i (ﬂ) (59)
2 %
10.14 Proceeding in an identical fashion as in Problem 10.13 we will obtain for the
intensity pattern
2
2J.
F(u,v) = 161, cos’ —”2i cos? % (#) (60)

10.15 The Fraunhofer diffraction pattern is given by the Fourier transform of the
aperture function (see Eq. (55)). Now if the aperture is displaced by distances
xo and y, along the x- and y-directions respectively then the corresponding
Fraunhofer diffraction pattern will be given by

Fu,0) = [[ 1601 —y)e 6 dean
_ e—i(ux0+vy0) J.J-f(g’ O') e—i(u§+ v0) dCdO' (61)

Thus, the Fraunhofer diffraction pattern differs from the pattern of the
undisplaced aperture only by a phase factor. Hence, the intensity patterns of
the undisplaced and the displaced apertures will be identical.

10.16 For an aperture shown in the figure, the Fraunhofer diffraction pattern is given
by

ka, sin 6

v=c [ J@)ds (62)

kay sin 6

where { = kasin 6. Carrying out the integration as in the case of a circular
aperture, we obtain for the intensity pattern,

Iy [2J,(kaysin®) , 2J,(kkaysin 8)
1(0) = 1 2 _ 2 1 2 63
S [ kaysin@  ©  kkaysin 0 (63)

where [ represents the intensity along the axis and K= a;/a,. Note that k=0
corresponds to a circular aperture.
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10.17 Assuming the slit width to be along the x-axis, we can write for the incident

plane wave will have a phase distribution given by e~ *sinb o the plane of
the slit. Hence, the Fraunhofer diffraction pattern will be given by

b/2 ‘
Fu) = J'e+zk§sm00e7iu5 dﬁ
-b/2

On integrating and simplifying we obtain the intensity pattern as

. . . 2
_ | sin{mb(sin 6 —sin 6,))/ A}
1) I"{ mh(sin 6 — sin 6;)/ A (©4)
The principal maximum will appear at 6 = 6, and the zeroes will correspond
to
. . A
(sin@—sinBy) =tm D (65)
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iﬁ A Quick Review §i|

i1 | FRESNEL DIFFRACTION INTEGRAL

If U(x, y, 0) represents the amplitude and phase distribution on the plane z = 0, then
the field as it propagates along the +z direction, is given by

Ut = e ([ 0o -2 07 |avar @)
iz 2z
The RHS of the above equation is known as the Fresnel diffraction integral and

represents the diffraction pattern in the Fresnel approximation. Often we will write
the above integral as

Ut 2) =z [JUEn 0o i 87+ - [ azan

In both equations, the integral is over the area of the aperture on the plane z = 0 (see
Fig. 11.1).

dédn

WAL

Fig. 11.1 A plane wave incident normally on an aperture. The integration in Eq. (2) is carried out over
the area of the aperture.
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12 | DIFFRACTION OF A GAUSSIAN BEAM

Consider a Gaussian beam propagating along the z-direction whose amplitude

distribution on the plane z = 0 is given by

+
U(x, y,0) =Aexp|:— N

(€)

implying that the phase front is plane at z = 0. From the above equation it follows that
at a distance w, from the z-axis, the amplitude falls by a factor 1/e (i.e., the intensity
reduces by a factor 1/¢%). This quantity wy is called the spot size of the beam. If we
substitute Eq. (3) in Eq. (2) and carry out the integration we would obtain

U,y z) = ﬁexp[

where, = Mz
Wy
O =kz+
_ L |_
and R(2) =z(l+—2j—z
Y

Y
2 A2z?
w(z) =woAll+7° =wy I+==
k

mEHE )

“)

)

(6)

O

®)

where R (z) represents the radius of curvature of the phase front (see Solution 11.9).

13 | FRESNEL INTEGRALS

The Fresnel integrals are defined by the following equations:

T

C(T) = J‘COS(% ﬂu2) du

0

T

and S(1) = J‘sin(%nuz)du

0

©)

(10)

Since the integrands are even functions of 7, the Fresnel integrals C(7) and S(7) are

odd functions of 7.

C(-7)=—C(1) and S(-7)=-5(1)

+o0

(11)

2 . .
Further, J. exp {i%}da = ’—i;:'/Z =262 = 2™ =1 +i (12)

)
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Also,

Thus,

+oo

—o0

Jex iﬂ'-—u2
Pl

C(e=) = 5

S (o).

}du =2 Dcos(%nuzjdu + i'[sin(%nuzjdu}
0 0

=2[C(e0) + §(=)]
1_

To summarise, the Fresnel integrals have the following important properties:

C(e0) = S(eo) =

1
29

C(0)=S(0)=0

C(-7)=-C(t) and S(-7)=-S(7)

(13)
(14)

The values of the Fresnel integrals for typical values of 7 are tabulated in
Table 11.1.

Table 11.1 Table of Fresnel Integrals (adapted from Ref. Ab1;
more accurate values can be found there)

T C(1) S(t) T C(t) S(t)
0.0 0.00000 0.00000 2.6 0.38894 0.54999
0.2 0.19992 0.00419 2.8 0.46749 0.39153
0.4 0.39748 0.03336 3.0 0.60572 0.49631
0.6 0.58110 0.11054 3.2 0.46632 0.59335
0.8 0.72284 0.24934 3.4 0.43849 0.42965
1.0 0.77989 0.43826 3.6 0.58795 0.49231
1.2 0.71544 0.62340 3.8 0.44809 0.56562
1.4 0.54310 0.71353 4.0 0.49843 0.42052
1.6 0.36546 0.63889 4.2 0.54172 0.56320
1.8 0.33363 0.45094 44 0.43833 0.46227
2.0 0.48825 0.34342 4.6 0.56724 0.51619
2.2 0.63629 0.45570 4.8 0.43380 0.49675
2.4 0.55496 0.61969 5.0 0.56363 0.49919

oo 0.5 0.5

11.4 I‘ THE STRAIGHT EDGE DIFFRACTION PATTERN

Consider a plane wave incident normally on a straight edge as shown in Fig. 11.2;
from the figure it is obvious that there will be no variation of intensity along the
x-axis and, therefore, without any loss of generality, we may assume the co-ordinates
of an arbitrary point P (on the screen) to be (0, y), where the origin has been assumed
to be on the edge of the geometrical shadow.

Thus, using Eq. (2), we get

STUDENTS-HUB.com

“+o00

UP) = %e""z fac

famexp| 212+ -1
0

(15)

Uploaded By: Jibreel Bornat



The McGraw-Hill companies

134 Problems and Solutions in Optics and Photonics

\§\

Fig. 11.2 Diffraction of a plane wave incident normally on a straight edge.

The corresponding intensity variation on the screen is given by (see Problem 11.15)

1|t > :
1(P) =51y E—C(Uo) + E—S(Uo) (16)
where, vy =-— % y 17)
2..
i,

: ;
2
— TN
Fig. 11.3  The intensity variation corresponding to the straight edge diffraction pattern.

and C(vy) and S(vy) are the Fresnel integrals. The intensity variation is shown in
Fig. 11.3 which is an universal curve. The first three maxima occur at vy = —1.22,
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—2.34 and —-3.08 where /= 1.371, 1.201; and 1.15 /, respectively. And, the first three
minima occur at vy =—1.87,—2.74 and —3.39 where /= 0.778 1, 0.843 I, and 0.872 [,
respectively. The actual (computer generated) intensity distribution corresponding to
the straight edge diffraction pattern is shown in Fig. 11.4.

Fig. 11.4 Computer generated intensity distribution corresponding to the straight edge diffraction

pattern.
PROBLEMS g

11.1 Consider a uniform plane wave

U(x, y, 0) = 4 for all values of x and y
Substitute in Eq. (2) and evaluate the integral to obtain
U(x, y, z) = Ae'™ (18)

as it indeed should be for a uniform plane wave.

11.2 Consider a plane wave incident normally on a circular aperture of radius a.
Using Eq. (2), calculate the intensity variation on the z axis; i.e., forx =y = 0.
Interpret the result physically in terms of Fresnel half period zones.

11.3 A plane wave (1= 6 X 10~ ¢m) is incident normally on a circular aperture of
radius a.

(a) Assume a = 1 mm. Calculate the values of z (on the axis) for which
maximum intensity will occur. Plot the intensity as a function of z and
interpret physically. Repeat the calculations for A = 5 x 10 c¢m and
discuss chromatic aberration of a zone plate.
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(b) Assume z= 50 cm. Calculate the values of @ for which minimum intensity
will occur on the axial point. Plot the intensity variation as a function of
a and interpret physically.

11.4 Consider a plane wave incident normally on an opaque circular disc of radius
a. Using the results of the Problem 11.2, calculate the intensity variation on
the z axis; i.e., forx =y =0.

11.5 (a) Consider a plane wave of wavelength 6 X 107° cm incident normally on a
circular aperture of radius 0.01 cm. Calculate the positions of the brightest
and the darkest points on the axis.

(b) What would happen if the circular aperture is replaced by a circular disc
of the same radius?

11.6 Consider a circular aperture of diameter 2 mm illuminated by a plane wave.
The most intense point on the axis is at a distance of 200 cm from the aperture.

Calculate the wavelength. [Ans. 5 % 107 cm]
11.7 A plane wave of intensity /; is incident

normally on a circular aperture as shown in \\ 2

the Fig. 11.5. The point P (at a distance b ~— b+3

from the center of the circular aperture) is S
on the axis and the distance of the point P - S P
to the periphery of the circular aperture is

b+ % What will be the intensity on the

axial point P?
11.8 Consider the propagation of a Gaussian ]
beam as given by Eqgs (3)-(8). Show that Fig. 11.5

(a) The intensity of the propagating Gaussian beam is given by

2 2
1(x,9,72) = 1Jf‘;/2 exp {_ 2(9;27;«;)} (19)

(b) The diffraction angle is given by 26, where
A
tan 0 =~ —— 20
an — (20)
Interpret the result physically.
+ oo
(c) Evaluate the integral JJ[ (x, v, z) dxdy and show that it is independent of

— oo

z. Interpret the result physically.

11.9 In Eq. (8), show that R(z) represents the radius of curvature of the phase
front'.

I Using these results, in Problems 17.3 and 17.4, we will discuss the condition for a

Gaussian beam to resonate between two mirrors; this condition is very useful in the
design of the resonator in a laser.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Fresnel Diffraction 137

11.10 Consider a Gaussian beam with A = 0.5 um. Calculate the spot size of the
beam at z = 10 m for wy = 1 mm and for wy= 0.25 mm; here w, represents the
spot size at z = 0 where the phase front is plane. Interpret the result physically.

11.11 (a) The output of a He-Ne laser (A= 0.6328 pum) can be assumed to be Gaussian
with plane phase front. For wy = 1 mm and wy = 0.2 mm, calculate the beam
diameter at z = 20 m. (b) Repeat the calculation for A= 0.5 um and interpret
the results physically.

11.12 A Gaussian beam is coming out of a laser. Assume A = 0.6 um and that at
z =0, the beam width is 1 mm and the phase front is plane. After traversing
10 m through vacuum what will be (a) the beam width and (b) the radius of
curvature of the phase front.

11.13 Consider a resonator consisting of a plane mirror and a concave mirror of
radius of curvature R (see Fig. 11.6). Assume
A =1 pum, R = 100 cm and the distance
between the 2 mirrors to be 50 cm. Calculate S
the spot size of the Gaussian beam. R

11.14 The output of a semiconductor laser can

50 cm =
be approximated described by a Gaussian 2]
function with two different widths along the Fig. 11.6
transverse (wr) and lateral (w;) directions as
2 2
X Y
Y(x,y) =4 exp [— o —2] @1
WL wWr

where x and y represent axes parallel and perpendicular to the junction plane.
Typically wr= 0.5 um and w; = 2 um. Discuss the far field of this beam
(see Fig. 11.7 below).

Fig. 11.7

11.15 (a) Thefield at the screen corresponding to the straight edge diffraction pattern
is given by Eq. (15). Show that the corresponding intensity variation on
the screen is given by

1 1 > 1 :
I(P) = =1Iy|{=- —— 22
® = 3| {3 - cwp) +{3 - 500)] @2)
(b) Show that for a large positive value of y, the intensity will be 1, and for

a large negative value of y the intensity will tend to zero. Interpret the
results physically.
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(c) Find the intensity at the edge of the geometrical show (y = 0).

(d) Use Table 11.1 to plot the intensity distribution for —4 < vy <+ 4 and show
that the first three maxima occur at vy = —1.22, —2.34 and —3.08 where
1=1.371, 1.201; and 1.151, respectively. Similarly show that the first
three minima occur at vy = —1.87, —=2.74 and —3.39 where [ = 0.778 I,
0.843 [, and 0.872 I, respectively.

11.16 In the straight edge diffraction pattern (see Fig. 11.8 below), assume A, =
5000 A and d = 100 cm. Write approximately the values of /I, at the points O,
P(y=0.5mm), Q(y= 1.0 mm) and R(y =-1.0 mm) where O is at the edge
of the geometrical shadow.

d
Straight R
edge

Fig. 11.8

11.17 Consider a straight edge being illuminated by a parallel beam of light with
A= 0.6 um. Calculate the positions of the first two maxima and minima on a
screen at a distance of 50 cm from the edge.

11.18 In a straight edge diffraction pattern, one observes that the most intense
maximum occurs at a distance of 1 mm from the edge of the geometrical
shadow. Calculate the wavelength of light, if the distance between the screen
and the straight edge is 300 cm. [Ans. =4480 A]

11.19 In a straight edge diffraction pattern, if the wavelength of the light used
is 6000 A and if the distance between the screen and the straight edge is
100 cm, calculate the distance between the most intense maximum and the
next minimum. Find approximately the distance in centimeters inside the
geometrical shadow where 7/, = 0.1. [Ans. y = 0.027 cm]

11.20 The electric field distribution of a light wave is given by (on a plane z = 0)

E(x) =A cos (@)
a
Show that the intensity distribution in the Fresnel diffraction pattern is
given by
I(x) = A% cos® (@)
a
Notice that the intensity distribution in the transverse plane is independent
of z.

11.21 A Gaussian beam (at a wavelength of 1 um) traveling along the z-direction
is found to have a converging spherical phase front of radius of curvature of
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10 m at a certain position and a diverging spherical phase front of radius of
curvature 10 m at a distance of 2 m from it. Obtain the minimum spot size of
the beam and its position.

11.22 Consider a circular aperture of radius 0.4 mm illuminated normally by a plane
wave of wavelength 500 nm. Obtain the position of the brightest and darkest
point along the axis.

@ SOLUTIONS

11.1 If we substitute the expression for U(x, y, 0) in Eq. (1), we obtain

A 1 KXZ 1 KYZ
U(x,y,z)=M—Ze’kz jezz dx J.ezz dy

where, X=x — &and Y=y — n. If we now use the integral

n —(Xx2+ﬁxd _\/; ﬁz 23

—o0

_ A i PF_ZZ /”_22
Ut.y,2) = 7€ [ —ikM —ik}

or, U(x, y, z) = Ae'** (24)
as it indeed should for a uniform plane wave.

11.2 We assume the circular aperture to be placed on the plane z= 0. In Eq. (2), we
substitute x =y = 0 to obtain

U0, 0,z) ~ Mize"kz ” exp [% &+ n2)] dédn

we would get

where we have assumed u (&, 17, 0) = 4 and the integration is over the aperture;
thus in carrying out the above integration, we must have (52 + 172) <d®. We use
polar coordinates

E=pcos¢p and n=psing
to obtain

2 a
A ikz ]
U(0,0,2) = A J' j exp [% pﬂ pdpds

$p=0p=0
B .ieikz |:(62ia _ 1)5} [27] = Uy (1 — %)
ilz ik
or, U(0,0,z) =—2iUy e sin a (25)
where o= %az and Uy = Ae™ is the field on the z-axis in the absence of the
circular aperture. Thus, the intensity variation will be given by
10,0, z) =41, sin* a (26)
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We will have zero intensity when a=nm; n=1, 2,... which implies

le

T2

and the circular aperture will contain even number of half period zones.

z n=1,2,... (Minimum Intensity) 27

Similarly, we will have maximum intensity when o= (n + %jnwhich implies

a2

z= m, n=1,2,... (Maximum Intensity) (28)
and the circular aperture will contain odd number of half period zones.
11.3 (a) As mentioned in Solution 11.2, maxima will occur when
__a 10~
A2n+1)  6x107°x(2n+1)
ForA=5%x10"" cm, maxima will occur at z= 200 cm, 66.7 cm, 40 cm, ...

(b) Minimum intensity will occur when a = V/2nlz = 0.0775Vn em =
0.0775 ¢m, 0.110 cm, 0.134 cm,...

11.4 If U;(P) and U,(P) respectively represent the fields at the point P due to a
circular aperture and an opaque disc (of the same radius), then

U (P) + Uy (P) = Uy(P) (29)

= 166.7 cm, 55.6 cm, 33.3 cm,...

where U, (P) [= Aeikz] represents the field in the absence of any aperture; the
above equation is known as the Babinet’s principle. Thus,

Uy (P) = Uy(P) - U, (P) A .
= Up(P)~ Uy(P) [1 - *'*] = Uy(P) e*™™ (30)

where we have used Eq. (25) for U; (P). Thus,
2 2
V2P| = [Us(P)|

and therefore the intensity at the point P on the axis of a circular disc, 1, (P),
would be given by
5L(P) =1y €1y

which gives us the remarkable result that the intensity at a point on the axis of
an opaque disc is equal to the intensity at the point in the absence of the disc
(see Fig. 11.9). This is known as the Poisson spot.

2
11.5 (a) Maxima will occur when p = % =@2n+1);n=0,1,2,... [see Eq. 27)].

(0.01)2
6x107°x (2n+1)

forn=20, 1, 2,... The minima will occur when [see Eq. (28)].

Thus, d = cm = 1.67 cm, 0.56 cm, 0.33 cm,...
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5
d=—cm=0.83 cm, 0.42 cm,...

6n

(b) The central point will always be bright (which is the Poisson spot-see
Fig. 11.9).

Fig. 11.9  The Poisson spot at the center of the shadow of a one cent coin; the screen is
20 m from the coin and the source of light is also 20 m from the coin. Photograph
from Ref. R: 1; used with permission from P. M. Rinard and American association
of Physics Teachers.

2 2 2

a _ _a _(0.1

Ad—lorwhenl 7 200

=5%107 cm.

11.7 z= b and if a represents the radius of the circular aperture, then

AV 2l o A_ & d
(b+3) =b"+a" = b+3—b 1+b2~b+%

11.6 The maximum intensity will occur when

2
giving % = % Thus [see Eq. (25)]:
_ koo T
“TZ T T3
and 1(0,0,z) =41, sin> o= 41, sin2§= 31,
’ 2.2 2
11.8 (b) w(z)=wy |1+ %. For large values of z [>> ”%], we obtain
oW,
Az Az
wE =wo =Tl (32)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

142 Problems and Solutions in Optics and Photonics

which shows that the width increases linearly with z. We define the
diffraction angle as 26, where

tan 0 = Z zTE—WO 33)

showing that the rate of increase in the width is proportional to the
wavelength and inversely proportional to the initial width of the beam.
(¢) From Eq. (19), one can readily show that

too )
[[reey.navay =550 ry (34)

— o0

which is independent of z. This is to be expected, as the total energy
crossing the entire x-y plane will not change with z.

11.9 For a spherical wave diverging from the origin, the field distribution is given
by

l ikr
u~-—e (35)
Now, on the plane z = R (see Fig. 11.10)

2 2 2 2

+
r=\x*+y*+R: =R 1+x;2y =R+ (36)

where we have assumed |x|, |y| << R. -
Thus on the plane z = R, the phase

distribution (corresponding to a spherical RN
wave of radius R) would be given by 8

ik 2, 2
i ikR (X Ty \
elkr zelkR ezR (37) 4

From the above equation it follows that a
phase variation of the type

exp [i%(xz + y2)] (38) /

(on the x-y plane) represents a diverging .
spherical wave of radius R. If we compare -
the above expression with Eqs (4) and

(8) we obtain the following approximate Fig.11.10 A spherical wave diverging

expression for the radius of curvature of from the point O. The dashed
the phase front: curve represents a section of
the spherical wavefront at a
Twy distance R from the source.
R(2) zz{1+ IE 02] 39)
z
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11.10 For wy =1 mm, the diffraction angle is given by
A 5x107t .
tan 0 = . — implying 26 = 0.018

and w(z) =wp [l+——F 101 =~ 1.88 mm

22 s Jl , (05x1077107
0

at z=10m
Similarly, for wy = 0.25 mm

20=0.073° and w=635mmatz=10m

(see Fig. 11.11). Thus, smaller the spot size of the beam, greater is the
diffraction spreading—as expected from diffraction theory.

Ay =5000A
T T T T
g
g
2 mm} J0.018° °
3
o
wy =1 mm
=
=
0.5 mm —
o
wy = 0.25 mm
1 1 L Il
0 2 4 6 8 10

Fig. 11.11  Diffraction divergence of a Gaussian beam whose phase front is plane at z= 0. The figure
shows the increase in the diffraction divergence as the initial spot size is decreased from
1 mm to 0.25 mm; the wavelength is assumed to be 5000 A.

11.11 Beam diameter is given by

12
2.2
2w =2wy [1+ Az }

2.4

For wy= 0.1 cm, A=6.328 x 10~ ¢m, z = 2000 cm

1222
2.4
TwW,

=16.23 = 2w=0.83 cm

For wy = 0.2 mm = 0.02 cm and with same values of A and z

A%z22
2. 4
mwy

= 10143 = 2w =4.0 cm
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The above results show that the divergence increases as w, becomes smaller.
At A=5x10" cm for wy= 0.1 cm and z = 2000 cm, we have

A2Z22
=10.13 = 2w =0.67 cm

2 4

showing that the divergence decreases as we make the wavelength smaller.

A=6x107 cm, wy=0.05cm and z=2000 cm

1/2
_ 1 A’z _ 1/2
2w =2w, |1+ m =0.1[1+58.4]""=0.77 cm

11.12

0

n2w4
R(z)=z|1+
@) { s

} 1000[1 +0.017] = 1017 cm

A=10°m,R=1m,d=0.5m.

2wt d 1/4
Thus, R = d1+ 0 = wy= ,’—[——1} ~4x10*m=0.4 mm
2242 w Ld

2
x* yilicb

11.13

a
11.14 U(x, y,2) = = = expli — =
Ja+iyp)A+iyp) W
I 2 2
Thus, I(x,y,z) = 0 exp {— 22x - 22y }
Ja+yHa+7v) wi(z) wi(2)
q1/2
A2Z2 Az
where, wi(z) =wr(l+ 2= 1+ =~ for large z
i@ =wr(1+77) T_ =y Ty ( ge z)
q1/2
2222 Az
and wi(z) =w, (1+yH2= 1+ = for large z
5@) =w (1+71) L_ 7r2w2 o, ( ge z)

11.15 In order to carry out the integrations in the equation

up) = fdé jdn exp [— E+0-m }} (40)
we define two parameters u and v such that,
Tt =g and Trt—acP-EmR ()
(42)

- |2 = 2 (-
Thus, u= Azé and v = n-»)
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The integral over & gives

+o0 ) +00 2
jdg expl:%ljz} - \/’1;2 jdu exp {’”2” } - \/)”;Z 2[C () + S (e0)]

A2 (144 (43)
2
The integral over 1 gives
N ik 2 Az N inv?
J.dnexp[z(n—)’) } = ,’7 jdv exp | =
0 [
Az N inv? t inv?
V7 Jdv exXp| 5 |~ Jdvexp -
0 0
= ,f% [{C(e0) +iS(e0)} — {C (o) +iS(vp)}]

- \/% H% - C(vo)} " 1{% - S(vO)H (44)

Substituting in Eq. (40) we readily get

N
oe - 9520 | [s-canf i -s@l| @

where U, = Ae' is the field in the absence of the straight edge.

(b) Alarge (positive) value of y will correspond to a point which is very far above
the edge of the geometrical shadow; for such a point vy would tend to —ee and
C(—o0) = —% =S (—e0) we would get

(Ut))]

UP) =

Uy(1+i)=U, (406)

Thus, as expected, the amplitude at such a far away point is the same as that
in the absence of the edge. On the other hand, when the point P is deep inside
the geometrical shadow (i.e., for a large negative value of y), vy would tend to
+o0 and since C (o) = % = S (o) we would get

Up)—0.

This is to be expected because deep inside the geometric shadow, the intensity
will be very small.
(c) From Egq. (45) it readily follows that the intensity distribution will be given by

1) =31, {{% - C(Uo)}2 +f1- S(Uo)}z} @7
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(d)

11.16

11.17

11.18

11.19

STUDENTS-HUB.com

If the point P is such that it lies on the edge of the geometrical shadow (i.e., on
the line LL’ (see Fig. 11.2) then y = 0 and hence v, will be 0 and therefore,

1 1 1 1
I(P) = EIO |:Z+Zj| = ZIO

Thus, the intensity on the edge of the geometrical shadow is 1/4" of the
intensity that would have been in the absence of the edge.

In order to calculate the intensity at an arbitrary value of y, we just calculate
the value of the dimensionless parameter v, and either use Table 11.1 (or
use more accurate values using Ref. Abl or a software like Mathematica)
to obtain a curve like that shown in Fig. 11.3 which is an universal curve.
The corresponding (computer generated) intensity distribution is shown in
Fig. 11.4.

Uy =— /i y=- + y =-20y where y is measured in centime-
Ad 5x107°x 100

ters. For the points O, P, Q and R (see Fig. 11.8) the values of vy =0, -1, -2,
and +2.

(48)

Now, C(0) = 0=S(0);
C(=2) =—0.4883,

S(+2) =+0.3434

The intensity distribution is given by

C(-1)=-0.7799, S(-1)=-0.4383
S(=2)=-0.3434; C(+2)=+0.4883,

2 2
L1 l5-cenf +f3-sef ]
-1 for vy=0
4
=126 for vy=-1(y=0.5mm)
=0.84 for ©vy=-2(y=1.0mm)
=0.01 for ©vy=+2(y=-1.0 mm)

vy = — /iy = - +y = —25.82y where y is measured in
Ad 6x107°x 50

centimeters. Now the first two maxima occur at vy = —1.22 and —2.34 giving
y = 0.0473 cm and 0.0906 cm. The first two minima occur at vy = —1.87 and
—2.74 giving y = 0.0724 cm and 0.1061 cm.

The first maximum occurs at vy = —1.22; thus vy = — ’% y =-1.22. Thus,

2
A %300

x 0.1 =1.22 giving A ~ 4.479 x 10> cm.

If the most intense maximum occurs at y = y,... and the next minimum occurs
at ¥ = Ymin, then

- /% Yoax ~—122 and - /%ymmz—l.@
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-5
Thus, Ay = Vmin — Vmax = (0.65) , f% =0.65 ,/w ~0.0356 cm.

Using Table 11.1, we get

At 0y =0,L =025
IO

At ) =02, —=0.168
I
At vy =04, —=0.114

At vy =061 ~0.079

Indeed at vy = 0.5, C(vy) = 0.49234 and S(vy) = 0.064732 giving IL
0

=~0.095. Thus, we may assume very approximately v, = 0.5 giving

y=0.5 /% ~0.027 cm.

11.20 Substituting the expression for the field in Eq. (2), and using the standard
integrals we obtain

Ulx,y) = Ce'** exp (zﬂ—)fj cos (%)
a

And hence the intensity distribution at any value of z is given by

2rx

I(x,z) = C? cos? (T)

which is the same as the intensity distribution across the object plane. Since
1(x, z) is independent of z, we obtain the interesting result that the intensity
distribution at all planes normal to the z-axis is the same as that in the object
plane.

11.21 From symmetry it is obvious that the waist is at the center between the
converging and diverging wavefronts. Thus at a distance of 1 m, the radius of
curvature of the wavefront is 10 m. Using the formula for variation of radius
of curvature with distance [see Eq. (8)] we obtain

Wy = ﬁ
T
Substituting the values, we get wy ~ 0.98 mm.

11.22 The brightest point on the axis corresponds to having a single Fresnel half

period zone within the aperture. This happens when

a
A
The darkest point along the axis will correspond to the aperture having two

Fresnel half period zones. This will happen when z ~ 16 cm.

z= =32 cm
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Holography

o [ ]
K A Quick Review *
12.1 || FOURIER OPTICS

The Fraunhoffer diffraction pattern is given by the Fourier transform of the near field
distribution. Since a lens focuses plane waves on its focal plane, the Fraunhoffer
diffraction pattern of an aperture can be seen on the focal plane of a converging lens.
If f(x, y) represents the field distribution on the front focal plane of a converging lens
then the field distribution on the back focal plane of the lens is given by

g(6y) = ﬁ [ oy expl-2miGax + oy ady )

where & = x/Af, 0 = y/Af and x and y are measured on the Fourier transform plane.
The back focal plane is also called as the spatial frequency plane.

Thus a point with coordinates (xy, yo) on the back focal plane would correspond
to spatial frequencies xo/Af, yo/Af. Thus points close to the axis correspond to low
spatial frequencies and points far away from the axis correspond to large spatial
frequencies.

Since any spatial variation of object amplitude distribution can be described by
its Fourier transform, the object can as well be described by its spatial frequencies
also. The lens provides us the spatial frequency spectrum of the object and thus by
placing apertures on the back focal plane of the lens it is possible to alter the spatial
frequency spectrum of the object and thus modify the object distribution. A second
lens then takes a second Fourier transform and displays the image on its back focal
plane. This is the principle behind spatial frequency filtering.

An aperture placed on the axis of the spatial frequency plane would help pass only
the low spatial frequencies and a stop placed on the axis will allow only the high
spatial frequencies to pass through. These filtering procedures are similar to signal
processing of time dependent functions through frequency filters that is common in
electronic signal processing.

122 | HOLOGRAPHY

A hologram is formed by interfering the object beam with a reference wave. In order
for the interference pattern to be formed the two waves need to be coherent and hence
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usually they are derived from the same laser and the path differences are chosen so
that they are coherent. The interference pattern contains information about the object
wave and is called a hologram.

When the recorded hologram is illuminated by a reference wave which is usually
identical to the reference wave, then one of the reconstructed waves reconstructs
the original object wave and another wave reconstructs the conjugate of the original
object wave. Observing the reconstructed object wave is similar to observing the
original object wave and hence the image observed has all the features of the original
object and we get a three dimensional reconstruction of the original object.

PROBLEMS g

12.1 The field variation on the front focal plane of a lens of focal length 20 cm is
given by

g(x,y) =A+ Bcos 6mtx + Ccos 12my; (x, y in mm) 2)

(a) What are the spatial frequencies present in the field?
(b) What pattern would you observe at the back focal plane of the lens?
Assume a wavelength of 600 nm.

12.2 In a spatial frequency filtering setup (see Fig. 12.1), on plane P; lies in an

object of the form, g(x) = 4 [cos% + cos 27[:—)(} which is illuminated by a
a

plane wave. On the plane P, is placed a filter having a transmittance,

T(x)=1 for x<0
0 for x>0 3)

Obtain the intensity distribution on the plane Ps.

Object Spatial Image
plane frequency plane
plane

Fig. 12.1  Spatial frequency filtering set up.
12.3 Acircular aperture of radius a is placed (with its center on the axis) on the back

focal plane of a lens of focal length /- What is the range of spatial frequencies
that will be passed by the aperture?
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12.4 What is the effect of placing a filter of the form /4 (x) = px, where p is a constant
placed in spatial frequency plane of a spatial frequency filtering set up?
12.5 Consider an object distribution of the form,

f(x,y) =1+0.2cos (ZOx + %) +0.3sin (SOy + %j )

where x and y are in millimeters. (a) What are the spatial frequencies present
in the object? (b) If the above object is placed in the front focal plane of
a lens of focal length 20 cm and illuminated normally by a plane wave of
wavelength 1 pm, show schematically what would be observed on the back
focal plane of the lens?

12.6 On the front focal plane of a lens of focal length f one finds an amplitude
distribution of the form

- 252 7y
I, y) =Aexp (_ 0.04]eXp (_ 0.01] )
where x and y are measured in mm. Obtain the amplitude distribution on the
back focal plane if A =1.0 um and /= 20 cm.
12.7 In a spatial frequency filtering setup a field distribution g(x) is produced on
the front focal plane P, of the first lens. On the plane P, is placed a filter
having a transmittance given by sin 27zpx, where p is a constant. Calculate the

amplitude distribution on the amplitude distribution on the plane P;. (Consider
the problem in one dimension only).

12.8 Consider an object having a transmittance given by f(x) =1 + %cos (200x)

placed in the front panel P; of a lens of focal length 10 cm and illuminated
by a normally incident plane wave (here x is in mm). The focal length of lens
L, is also 10 cm. (i) what are the spatial frequencies present in the object.
(ii) A circular aperture of radius 0.15 cm is placed centered on plane P,.
What intensity distribution would you observe on plane P; if, (a) A = 0.6 pm
(b) A=0.4 um.
12.9 What are the spatial frequencies present in an object described by

(1) f(x)=4 + Bcos (207x) sin(507x),

(i) f(x)=A4+ Bcos®(1007x)
where x is measured in millimeters.

12.10 Consider an object with a transmittance given by g(x, y) = 4 + Bcos ox
placed on the front focal plane of a lens and illuminated by a normally incident
plane wave in a spatial frequency filtering arrangement. (a) What would you
observe on the back focal plane of the lens? (b) If an opaque disc is placed
on axis at the back focal plane to obstruct the light at the central spot, what
intensity pattern would you observe on the back focal plane of the second
lens? (c) if only the light from the central spot is allowed to propagate further,
what would you observe on the back focal plane of the second lens?

12.11 The beam coming out of a laser oscillating in the fundamental mode at a
wavelength of 600 nm is found to have the following amplitude distribution:
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f(,y) =A(1+0.1sin 207x)) e~ 7+ ©6)

where x and y are measured in millimeters. (a) Plot the x-variation of the
intensity pattern of the laser along the axis y = 0 and interpret the result.
(b) How would you use a spatial filtering arrangement to remove the fast
oscillatory noisy term in the intensity pattern?

12.12 A hologram is formed between a point source placed on the axis at a distance
d from the recording plane and a reference plane wave propagating at an angle
of 6 with the axis, both waves having a wavelength A. Obtain an expression
for the transmittance of the recorded hologram assuming linear recording.

12.13 If the hologram recorded in Problem 12.12 is illuminated by a reconstruction
plane wave identical to the recording wave and at the same wavelength, obtain
the different waves that will emanate from the reconstruction and interpret the
terms as to what they would represent.

12.14 If the reconstruction wave is the conjugate of the recording wave, then obtain
the position of the virtual and real images formed by the hologram.

12.15 Consider a hologram formed between a point object and a normally incident
plane wave, both having the wavelength A. Show that the fringes formed have
a spatial frequency which increases with the distance from the axis. If the
recording medium has a maximum recordable spatial frequency of S,,, obtain
the radius of the region where the interference pattern will be recorded by
the recording medium. What effect would this have on the reconstruction
process?

ff% SOLUTIONS

12.1 (a) Spatial frequencies present are [0, 0], [3, 0] mm ™" and [0, 6] mm; the
first number corresponds to x-direction and the second to the y-direction.
(b) On the back focal plane of the lens we would see five spots. These will be
at the following coordinates:
x=0,y=0
x =+0.36 mm,y=0
x =-036mm,y=0
x =0,y=+0.72 mm
x=0,y=-0.72 mm
12.2 The object contains the spatial frequencies 1/a and 1/b. So there will be four
spots lying along the x-axis corresponding to the positions + A f/a and + Af/b.
The filter will allow only the spots lying on the positive x-axis to be imaged by
the second lens. Corresponding to the spot at + A f/a the field distribution would
be exp[-2mix/a] and corresponding to the spot +Af/b the field distribution
would be exp[—27mix/b]. Thus, the total field would be

exp[—2mix/a] + exp[-2mix/b]
and the intensity pattern would be
2+2cos[2rx(1/a—1/b)]
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Note that the intensity pattern does not contain the two spatial frequencies
of the object.
12.3 Range of spatial frequencies passed would be 0 to Af/a in the radial direction.
12.4 An object distribution f(x) would produce the following amplitude distribution
on the back focal plane

g(x.y) = ﬁ [[ ey explamicn + oy))dvdy (7)

where # = x/Af, 0 = y/Afand x and y are measured on the Fourier transform
plane. Now, if we place a filter with a transmittance given by px, then the
second lens takes the Fourier transform of g(x, y) px and the field pattern as
seen on the back focal plane of the second lens would be

1 ’ ’ ’ e~/ s 0 4 ’ ’
hon) = 5z [ e ) el 2miGa + oy ey

2
:( 1 ) P sz a% UJ g’ y'>exp[—2ﬂi(ﬂx’+6y')]dx'dy'} )

%
_ (1 1 9
- (WJ P33 (. )]

Thus in the image plane we would obtain an intensity pattern proportional to
the x-differential of the object distribution. Since the differential of a function
is maximum near edges, such a filtering process leads to edge enhancement.

12.5 (a) Spatial frequencies present: (0, 0), (10/x, 0) mm™' and (0, 25/m) mm .
(b) On the back focal plane we would observe five spots of light at the
following points:
x=0,y=0
x =%2/mrmm, 0
x =0,y==x5/mrmm

12.6 On the back focal plane the field distribution will be the Fourier transform of
the distribution on the front focal plane and will be given by

A 2 ,2 7t2 ,2 e~ 7 oy 4 ’ 7

glx,y)= F”‘ exp {— 7%34 Jexp (— O.gl exp[-2mi(ux"+ 0y") ] dx’dy
_ A B (4x2 + yz)

0.02 AT expli 7100/12f2 )

12.7 The amplitude distribution on the back focal plane (apart from a constant
factor) is given by

g = 1) e W a (10)

The field distribution after the filter would be given by
h(x) =g(x)sin 2zpx (11)
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Thus, on the back focal plane of the second lens, the field distribution would
be given by

o - [y 245
= Jg(x//) sin 27px” Jf(x/) o 2TiX"XIM s o2 ixx"IAf (12)
= J. dx’ J.dx”f(x’) sin 2n.px”e—Zﬂix"x’/lfe—2n:ixx”//'tf

Writing the sine function as a sum of two exponentials, it is clear that we

obtain
pi = g et o amv [ )
- exp(—Zm‘x”{x i + p}ﬂ
AS
_ 1 , x+x’ x+x’ ,
Sl oot
_ @y

S LCx AN~/ x—pAf )] (13)

Thus on the back focal plane of the second lens, we would obtain the same
distribution as the object distribution but one centered at x = pAfand the other
at x =—plf.

12.8 (a) Spatial frequencies present in the object are 0 and 100/ mm ! along the
x-direction.
(b) For a wavelength of 600 nm, the back focal plane would have spots of
light on the axis and at x = 1.91 mm and x = —1.91 mm. Similarly for a
wavelength of 400 nm, there would be spots of light on the axis and at
x=-1.27 mm and x = 1.27 mm. Thus, for 600 nm wavelength the circular
aperture of radius 1.5 mm placed on the back focal plane would only
allow the central spot to contribute to the image on the plane P;, which
will be a uniform intensity pattern. On the other hand for the wavelength
of 400 nm, light from all the spots would be able to contribute to the
image and thus the image would be the same as the object pattern.
12.9 To obtain the spatial frequencies we need to write the field distribution in
terms of sine and cosine functions. Thus,

(i) f(x)=A+ g[sin (70 7x) + sin (30 77x)]

Hence the spatial frequencies are 0, 35 mm ' and 15 mm™".

(i) f(r)=A+ g[l + c0s 200 7x]

Hence the spatial frequencies present are 0 and 100 mm .
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12.10 (a) We would observe three spots of light, one on the axis and one each at
x =Afa and the other at x = —A fo both spots lying on the y-axis.

(b) The opaque disc would stop the zero frequency component to take part
in the imaging and hence the amplitude distribution on the image plane
would be g(x, y) = Bcos ox. Thus the intensity distribution would be
proportional to g2 (x,y)= B*cos? ax.

(c) Ifonly the central spot is allowed to propagate further, then this will result
in uniform illumination of the final image plane.

12.11 The amplitude distribution along the x-direction is given in the figure. As can
be seen it corresponds to a Gaussian distribution with a sinusoidal noise term
riding on the amplitude. This could be for example caused by interference
taking place between some reflections on the path of the laser beam. In order
to use such beams, we need to first ‘clean’ the beam and remove the oscillatory
amplitude variation. Since the oscillatory amplitude term corresponds to high
spatial frequency, the noise term can be removed by using spatial frequency
filtering.

I ' ' ' '

Fig. 12.2

On the spatial frequency plane we would observe the Fourier transform of
the amplitude distribution and we get

g(x,y) = %J‘J.A(l +0.1sin(207x")) e‘(x'2+y’2)
4 exp [-2mi(ux’ + 0y")]dx’dy’
0.1
2i
(@ +10°+70°}} - % exp (-7 {(@ —10)* + * }}] (14)

- /ff—; [exp{—n2{172+z~)2}}+ exp{-72

Thus on the back focal plane we would get three Gaussian distributions,
one centered on the origin, and two others centered at # = x/Af= £10. If the
three Gaussians are spatially separated, then if we place a pinhole on the axis
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of the back focal plane to pass only the central Gaussian beam, then on the
back focal plane of the second lens, we would obtain a Gaussian without the
noise term. This is the principle behind spatial frequency filtering to remove
noise from laser beams.

12.12 The amplitude distribution of the spherical wave from the point source is
given by

fy) = g exp (ikd) exp[i%(xz + yZ)} (15)

where we used the paraxial approximation in writing the equation.
Similarly the plane wave falling on the screen will be given by

g(x,y) = Bexp[ikxsin 6] (16)

where we have assumed the plane of the screen to be z = 0 and that the plane
wave makes an angle g with the z-axis and lies in the x-z plane.

The transmittance of the hologram would be given by the intensity pattern
obtained by the interference of the two waves. This is given (apart from a
proportionality constant) by

T(x,y) = /() + 2@y

-~ A2 » AB . x2 . y2
= ? + B+ > exp[+1k{[ﬁ+xsm 0]+ﬁ

AB . x2 . y2
+ g exp[ﬂk{(zd xsin 9]+2d}] 17)

12.13 The reconstruction wave is given again by g(x, y). Thus the transmitted wave
from the hologram would be the product of g (x, y) and 7'(x, y) which has three
terms:

First term:

A2 2 ikxsin 6
[? +B ]Be

which corresponds to the same wave as the reconstruction wave except for a

change in amplitude.
AB> |1+’
R exp [Zk{ >d

which corresponds to a diverging spherical wave and is the same as the object
wave that was recorded. This gives the virtual image of the point object.

Third term:
AB . x? _ . y2
g exp{ k{(—Zd 2xsin 9] + d H

Second term:
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which represents a converging spherical wave but propagating along a
different direction. This wave is responsible for the creation of the real image.
12.14 In this case the reconstruction wave would be given by

h(x,y) =Bexp[—ikxsin 0] (18)

Using the same procedure given in the solution to Problem 12.13 we again
obtain three terms corresponding to the emerging waves while the hologram
is reconstructed. The reconstructed wave would now be

2 . 2 2 2
T(x,y) = (% + szBe”‘”‘“G + %exp {+ ik {(;—d _ 2xsin ej + ;—dH

AB oy
+ p exp{—zk{+ 2d H 19)

The second term gives the virtual image and is now displaced from the
axis as contained in the term linearly dependent on x. The last term gives the
real image as it corresponds to a converging spherical wavefront and the term
gives a wave focusing at a distance d from the hologram on the axis of the
arrangement. Thus if the reconstruction wave is the conjugate of the reference
wave then the real image is formed on the axis while the virtual image is
displaced from the original position.

12.15 The recorded intensity distribution is given by

2 2. .2 2, .2
T(x,y)z%-i—Bz-i-%exp{—ik{x 2+dy H-ﬁ-%expli+ik{x 2+dy }:|

A*> 5 2A4B x>+ )2
=2 +B°+ =
B p cos I:ZTC{ 7d (20)

where we have replaced k& by 27/A. So we obtain oscillatory intensity
distribution. In order to get the spatial frequency, we note that a variation of
the form cos (2warx) has a spatial frequency o, which can be obtained by using
the following formula:
1 d
2w dx
Hence a linear x-variation in the amplitude corresponds to a constant spatial
frequency. If the argument of the cosine term is some function of x, say @(x),
then we obtain the local spatial frequency by taking the x-derivative of ¢(x)
and dividing by 2.
In the present case since the expression is symmetric in x and y, we consider
the variation along x. Hence in the present case, the local spatial frequency is

obtained as ,
L d |, X |- x
SO W [2” udj 2d @)

which shows that the spatial frequency increases with x.

s = Qrax)=o 21
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If the recording medium has a maximum recordable spatial frequency of
S, then the radius of the recorded hologram would be the value of x where
the spatial frequency becomes equal to S,,. This is given by

R = AdS,, (23)

The finite size of the recorded hologram would impact the resolution of the
images formed by the hologram. The hologram would act as if it is limited by
a circular aperture of radius R which would then restrict the resolution of the
image formed by the hologram.
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o o
* A Quick Review *
3.1 | LINEARLY POLARISED WAVES
The electric field associated with an x-polarised wave is described by the following
equation:
E = xEjcos (kz — ot + ¢) (1)

where E, (always assumed to be positive and measured in V/m) is known as the
amplitude of the wave, z is the direction of propagation, ¢y is the initial phase, x
represents the unit vector along the x-axis and

2
k=== 2
ot @
n being the refractive index of the medium and A, free space wavelength. Similarly,
the electric field associated with a y-polarised wave is described by the equation:

E = §Eycos (kz— o1 + ¢p) 3)

where the various symbols have the same meaning and y represents the unit vector
along the y-axis. For a linearly polarised wave with its E vector making an angle o
with the y-axis (see Fig. 13.1), we will have e

- E.=E,sin o cos(kz — ot + ¢,) ()
E, = Eycos o cos(kz — ot + @)

Notice that the x and y components of
the electric field are in phase. Perhaps the
easiest way for producing linearly polarised v
light waves is to pass an unpolarised beam z
through a Polaroid which consists of long
chain polymer molecules that contain
atoms (like iodine) which provide high Fig 131 A linearly polarised wave with its

Conductivity a]ong the length of the chain. E vector making an ang|e o with
These long chain molecules are aligned so the y-axis. The propagation of the
that they are almost parallel to each other. wave is in the +z direction.
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When a light beam is incident on such a polaroid, the molecules (aligned parallel to
each other) absorb the component of electric field which is parallel to the direction
of alignment because of the high conductivity provided by the iodine atoms; the
component perpendicular to it passes through. Thus, linearly polarised light waves
are produced.

132 | MALUS’ LAW

If an x-polarised beam is passed through a Polaroid P, whose pass axis makes an
angle 6 with the x-axis, then the intensity of the emerging beam will be given by (see
Fig. 13.2)

I =Iycos’ 6 (5)

where I, represents the intensity of the emergent beam when the pass axis of P, is
also along the x-axis (i.e., when 6= 0). Equation (5) represents the Malus’ Law.

X

Unpolarised
light

Py

Fig. 13.2 An unpolarised light beam gets x-polarised after passing through the polaroid P;, the
pass axis of the second polaroid P, makes an angle 6 with the x-axis. The intensity of the
emerging beam will vary as cos26.

133 | CIRCULARLY POLARISED WAVES
For a right circularly polarised wave (usually abbreviated as RCP), E and E), will
be given by
RCP: E. =Eycos (kz — oX)
and E, =—Eysin (kz — o) = Eycos (kz -t + %) (6)

The y component (of the electric field) is ahead in phase of the x component by %
At z=0, we will have

E,. =E,cos ot
and E, = Eysin ot
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and the electric field vector will rotate on the circumference of a circle in the
clockwise direction as shown in Fig. 13.3. Similarly, for a left circularly polarised
wave (usually abbreviated as LCP), E, and £, will be given by

LCP: E, =Eycos (kz— wt)
and E, = Eysin (kz — o) = E cos (kz -t — %) A

Fig. 13.3 A RCP (right circularly polarised) wave propagating in the +z direction.

The y component now lags behind in phase of the x component by % The electric

field vector rotates on the circumference of a circle in the anti-clockwise direction
(see Fig. 13.4)

Fig. 13.4 A LCP (left circularly polarised) wave propagating in the +Zz direction.

13.4 | ELLIPTICALLY POLARISED WAVES

For a right elliptically polarised wave (usually abbreviated as REP) with its major
and minor axes along x and y axes, £, and E, will be given by

REP: E, =E,cos (kz — wf)
} (®)

and E, =—FE;sin (kz — 1)
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with E| # E,; if E| = E,, we will have a circularly polarised wave. Similarly, for a
left elliptically polarised wave (usually abbreviated as LEP) with its major and minor
axes along x and y axes, E, and E, will be given by

LEP: E, =FE,cos(kz— wr) }
9
and E, = Ejsin (kz — o1) €)
13.5 POLARISATION BY REFLECTION:
BREWSTER’S LAW

If an unpolarised plane wave is incident on a dielectric at an angle of incidence (6)
such that

6=6,=tan"! (”—2) (10)

n

then the reflected beam will be linearly polarised with its electric vector perpendicular
to the plane of incidence [see Fig. 13.5]. The above equation is known as the
Brewsters law and the angle 6, is known as the polarising angle (also known as the
Brewster angle).

Partially
Polarised
45)
m
/@(@(\/9;‘\ 6, 6,
: Linearl
Unpolarised y
npolarise Polarised
(a) (b)

Fig. 13.5 When an unpolarised beam of light is incident on a dielectric at the polarising angle [i.e., the
angle of incidence is equal to tan™"(n,/n;)] then the reflected beam is plane-polarised with its
E-vector perpendicular to the plane of incidence. The transmitted beam is partially polarised.
The dashed line in (b) is normal to the reflecting surface.

13.6 |  ANISOTROPIC MEDIA: BIAXIAL MEDIA

1. Electric displacement vector and the applied electric field are related through

the following equation:

D =¢E (11
In isotropic media the displacement and the electric field are parallel to each
other and € is a scalar quantity. In anisotropic media, the two vectors are not
parallel to each other and ¢ is a tensor and we write Eq. (11) in the form

D =¢E (12)
where we have put a bar on € to indicate that it is not a scalar.
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2. In the principal axis system of the medium, € can be represented by a diagonal

matrix:
&g, 0 0
=10 €,y 0 (13)
0 0 ¢

and the three diagonal terms give the principal dielectric permittivities of the
medium.
3. For isotropic media,

Ex TE,TE,E (14)
For uniaxial media,

Eq TEHFE, (15)
and for biaxial media,

Ex £EFE (16)

4. We canalso define the principal dielectric constants and the principal refractive
indices through the following equations:

& ni= [K.. (17)
€

5. Since in the principal axis system € is diagonal, the principal refractive indices
are also sometimes referred to as n,, n,, and n..

6. In anisotropic media along any given direction of propagation there are two
linearly polarised eigenmodes which propagate, in general, with different
phase velocities.

7. When a wave crosses a boundary, according to Snell’s law the component of
the k parallel to the interface for the incident wave, the reflected wave and
the refracted wave are equal. On the other hand, the Poynting vector S of the
waves do not satisfy such a condition.

8. The index ellipsoid equation for an anisotropic medium is defined by

X y z"
St =l (18)
nxx ”lyy nzz

137 |  ANISOTROPIC MEDIA: UNIAXIAL MEDIA

1. For uniaxial media, the principal refractive indices are referred to as

n, = Ky = JK, and n.=K_ (19)

2. Inuniaxial media, there is one optic axis also called the z-axis along which the
two eigenmodes have the same velocity.
3. Both ordinary and extra-ordinary waves are linearly polarised:

D-k =0 for both o0- and e-waves (20)
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Thus D is always at right angles to k and for this reason the direction of D is
chosen as the direction of ‘vibrations’.

4. For the o- wave, the D vector is at right angles to the optic axis as well as to k
(see Fig. 13.6).

k,S  ordinary wave

D,E@ z (opitc axis)

H
Fig. 13.6  For the ordinary wave (in uniaxial crystals), D and E vectors are in the y direction; k
and S are in the same direction in the x-z plane and H also lies in the x-z plane.

5. On the other hand, for the e-wave, D lies in the plane containing k and the
optic axis (and of course, D -k = 0) (see Fig. 13.7).

D X
Extra-ordinary wave

z (optic axis)

Fig. 13.7  For the extraordinary wave (in uniaxial crystals), E, D, S and k vectors would lie in
the x-z plane and H will be in the y direction. S is at right angles to E and H; D is at
right angles to k and H.

6. Referring to Fig. 13.7, we have

2
0=+ y/=tan_l[n—02tan WJ @1

e

VELOCITY OF ORDINARY AND
EXTRAORDINARY WAVES

We write the electric vector as

13.8 ‘

E = Eoei(k-r—a)t)

where the vector E is independent of space and time; k represents the propagation
vector of the wave and o the angular frequency. The wave velocity v,, (also known
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as the phase velocity) and the wave refractive index n,, are defined through the
following equation:

vy = 2= (22)
Thus, w
K| =k:%nw (23)

c
Ny =Ny =Ny = Uy =0y = — (24)
2 2 "o
1 _ 1 _cos"y sy 25
2 2 2 2 (25)
nW nwe nO ne

where v is the angle that the k vector makes with the optic axis (see Figs 13.6 and

13.7). Thus

2 2 2
C »
vae £ = C—z cos’ v+ = sin’ v (26)

2
Mye 0 e

VELOCITY OF ORDINARY AND
EXTRAORDINARY RAYS

The ray propagates along the direction of the Poynting vector S (= E x H)

13.9 I

1 1 _n,e_cosze sin’@

- @7
% v c ?/ ng 2/ ng

where we have chosen the y-axis in such a way that the ray propagates in the x-z
plane making an angle 0 with the z-axis (see Figs 13.6 and 13.7).

1. For a uniaxial medium the index ellipsoid equation becomes
2 2 2
X +y z
— + =1 (28)
ne

0

PROBLEMS g

13.1 For a right circularly polarised wave described by Eq. (6), plot the electric
T3, 3m _2r
4w’t 2w’t 4a)’t w,t 2w,andatt "

n

vectoratr=0, =

13.2 For a left circularly polarised wave described by Eq. (7), plot the electric

T =30 =£,t= 3—7randatt=2—7r.
20 [0}

T
ectoratr=0,71= —, t= —, ,
PR 4w 20 4w 0]
13.3 Discuss the state of polarisation when the x and y components of the electric
field are given by the following equations:
E.=E,cos(wt + kz)
(a)

E,= LEO cos(wt + kz + 1)

NG
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) E.=Eysin(ot + kz) }

E,=E,cos(wt + kz)

Ex=EOsin(kz—a)t+§)

()
E, = Eysin| kz z
y = Eosm —a)t—-6—

Ex=Eosin(kz—wt+%)
@

E =—EFE,sin(kz — wt

y \/5 0 ( )

13.4 The electric field components of a plane electromagnetic wave are
E. =2Eycos(wt —kz+ ¢); E,=2E;sin(wf - kz)

Draw the diagram showing the state of polarisation (i.e., circular, plane,
elliptical or unpolarised) when

(@) 9=0
(b) ¢=r/2
(c) ¢=rm/d

13.5 Calculate the polarising angle for the air-glass interface, n; = 1 and ny = 1.5
and 6,~ 53° and also for the air-water interface, n; = 1 and n, = 1.33.

13.6 Atz=0,thefield associated with an RCP beam (propagating in the +z direction)
is described by the following equation

Ey = Eycos ot; E; = E;sin ot (29)

where the superscript 7 signifies that we are considering an RCP beam.
Similarly, the field at z = 0, associated with an LCP beam (propagating in the
+z direction) is described by the following equation

E. = Eycos (0t — ¢); E,=—Egsin(wt— ¢) (30)

where the superscript / signifies that we are considering an LCP beam.
Determine the SOP (state of polarisation) of the superposed beam (at z = 0).

13.7 Discuss the superposition of an RCP with an LCP of the same amplitude
and both propagating in the +z direction but with slightly different phase
velocities:

E; = Eycos (k,z — wt); E,=—Esin (k,z — of)
E,ﬂ = Eycos (k;z — w?); Eyl = Eysin (k;z — wf)
where k.= L n.and k;= L ny; once again, the superscripts (and the subscripts)
c c

rand / signify that we are considering an RCP and LCP respectively; n,. and »;
are the corresponding refractive indices.
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13.8 Consider a linearly polarised beam (propagating in the +z direction) incident
normally on a calcite (or quartz) crystal whose optic axis is along the y
direction and the oscillating electric field is assumed to make an angle ¢ with

the y-axis (in Fig. 13.8 we have shown ¢ = %). Find the value of the thickness

of the crystal (d) for which it will act as a QWP (quarter wave plate) or as a
HWP (half wave plate).

Fig. 13.8  Alinearly polarised beam making an angle 45° with the y-axis gets converted to a
LCP after propagating through a calcite QWP whose optic axis is along the y-axis
as shown by lines parallel to the y-axis. Further, an LCP gets converted to a RCP
after propagating through a calcite HWP; the optic axis of the HWP is also assumed
to be along the y-direction.

13.9 (a) For calcite, n, = 1.65836, n, = 1.48641 (at 18°C and for A, = 5893 A).
Calculate the thickness of the quarter wave plate. (b) In the above problem
if we assume ¢ = /4 obtain the output SOP. (c) What would happen if the
calcite QWP is replaced by a quartz QWP with its optic axis again along the
y-axis.

13.10 What would be the output SOP, if an RCP is incident normally on a calcite
QWP. What would happen if the calcite QWP is replaced by a calcite HWP.

13.11 A left circularly polarised beam (4, = 5893 A) is incident on a quartz crystal
(with its optic axis cut parallel to the surface) of thickness 0.025 mm. Determine
the state of polarisation of the emergent beam. Assume n, = 1.54425 and
n, = 1.55336.

13.12 Consider the propagation of an extra-ordinary wave through a KDP crystal.
If the wave vector is at an angle of 45° to the optic axis, calculate the angle
between S and k. Repeat the calculation for LiNbO3. For KDP n, = 1.5074,
n, = 1.4669 and for LiNbO3, n, = 2.2967, n, = 2.2082.

13.13 Prove that when the angle of incidence corresponds to the Brewster angle, the
reflected and refracted rays are at right angles to each other.

13.14 (a) Consider two crossed polaroids placed in the path of an unpolarised beam
of intensity /. If we place a third polaroid in between the two then, in
general, some light will be transmitted through. Explain this phenomenon.

(b) Assuming the pass axis of the third polaroid to be at 45° to the pass axis
of either of the polaroids, calculate the intensity of the transmitted beam.
Assume that all the polaroids are perfect.
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13.19

13.20
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A quarter-wave plate is rotated between two crossed polaroids. If an
unpolarised beam is incident on the first polaroid, discuss the variation of
intensity of the emergent beam as the quarter-wave plate is rotated. What will
happen if we have a half-wave instead of a quarter-wave plate?

In the previous problem, if the optic axis of the quarter-wave plate makes an
angle of 45° with the pass axis of either polaroid, show that only a quarter of
the incident intensity will be transmitted. If the quarter-wave plate is replaced
by a half-wave plate, show that half of the incident intensity will be transmitted
through.

For calcite, the values of 7, and n, for A, = 4046 A are 1.68134 and 1.49694
respectively; corresponding to Ay, = 7065 A the values are 1.65207 and
1.48359 respectively. We have a calcite quarter-wave plate corresponding to
Ao = 4046 A. A left-circularly polarised beam of Ay = 7065 A is incident on
this plate. Obtain the state of polarisation of the emergent beam.

A HWP (half wave plate) is introduced between two crossed polaroids P, and
P,. The optic axis makes an angle 15° with the pass axis of P as shown in
Fig. 13.9. If an unpolarised beam of intensity / is normally incident on P, and
if 11, I, and I are the intensities after P, after HWP and after P, respectively,
then calculate 1,/1y, I,/1, and I3/1,.

110 ) Y Pass axis
= o ’ g ©°fP
Polaroid _ HWP 2] ‘f’"y 1597,
é‘Pz L Z
5@ ®)
Fig. 13.9
Two prisms of calcite (n, > n,) are Aird q AirIvV

cemented together as shown in Fig. 13.10.
Lines and dots show the direction of
the optic axis. A beam of unpolarised —l"‘i—’+'—
light is incident normally from region 1. =
Assume the angle of the prism to be 12°.
Determine the path of rays in regions
II, III and IV indicating the direction of Fig. 13.10

vibrations (i.e., the direction of D).

A A/6 plate is introduced in between the two crossed polarisers in such a
way that the optic axis of the A/6 plate makes an angle of 45° with the pass
axis of the first polariser (see Fig. 13.11). Consider

an unpolarised beam of intensity /, to be incident IOI ” H
normally on the polariser. Assume the optic axis to be I |.| I
along the z-axis and the propagation along the x-axis. Py 26 plate P,
Write the y and z components of the electric fields Fig. 13.11

(and the corresponding total intensities) after passing
through (i) P, (ii) A/6 plate and (iii) P.
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13.21 A beam of light is passed through a polariser. If the polariser is rotated with
the beam as an axis, the intensity / of the emergent beam does not vary. What
are the possible states of polarisation of the incident beam? How to ascertain
its state of polarisation with the help of the given polariser and a QWP?

13.22 Give the correct choice: A linearly polarised wave is incident normally on a
A/4 plate. The light coming out of the plate is (a) always CP, (b) always LP,
(c) can never be LP, (d) can be LP, CP or even EP. (L: Linearly; C: Circularly;
E: Elliptically; P: Polarised).

13.23 Consider a plane electromagnetic wave propagating in KDP with its k lying
in the y-z plane and making an angle of 45° with the optic axis. Assuming
n, = 1.507 and n, = 1.467, obtain the phase velocities of the ordinary and
extraordinary waves. What is the angle between E and D vector for the two
waves?

13.24 An anisotropic medium is characterised by n, = 2.6 and n, = 2.9. Calculate the
refractive index of an extraordinary wave propagating with its k at 60° to the
optic axis.

13.25 Calculate the thickness of a A/4 and a A/2 plate required for an operating
wavelength of 0.589 um when it is made of

(a) Calcite with n,=1.66584 and n,=1.4864
(b) Quartz with n,=1.5442 and n,=1.5574
What would be the difference in the output SOP when linearly polarised

wave at 45° to the axes of the wave plate is incident on a A/4 plate made of
quartz and calcite?

13.26 Consider a 2 mm thick rectangular
block of lithium niobate (n, = 2.26, \
n, = 2.20) with its optic axis at 4 B
45° to the surface as shown in the , ... 45° >\
Fig. 13.12. A lightwave at a : T .

wavelength of 0.6 um is incident D
normally on the block.

(a) Whatshould be the polarisation Optic axis
state of the incident wave
so that it propagates as an
e-wave?

(b) Calculate the phase difference accumulated between the o-wave and the
e-wave in propagating from face 4B to face CD.

(c) Ifthe face CD is made reflecting, giving reasons, state the angle at which
the reflected e-wave will re-emerge from the face AB.

13.27 A plane polarised wave polarised at 30° to the x-direction propagates along
the z-direction. If you wish to convert this to a circularly polarised wave.

Fig. 13.12

(a) What wave plate would you use to achieve this?
(b) What should be the orientation of the axes of the wave plate with respect
to the x-direction to achieve this?
13.28 What should be the direction of propagation in a uniaxial medium to accumulate
maximum phase difference between the ordinary and extraordinary waves?
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Consider a right angled isosceles prism
made from calcite with n, = 1.658 and
n, = 1.486 with its optic axis perpendicular
to the side AC (see Fig. 13.13). Light is
incident normally on the face 4B. What
will happen to the waves as they strike the
surface AC?

Consider propagation of the extraordinary
wave (in an uniaxial crystal) with its k
making an angle of 45° with the optic axis
and lying in the x-z plane (see Fig. 13.14).
Show schematically D, E, H, B and S
corresponding to the wave specifying
values of all angles. What will be the wave
velocity of the wave?

Consider a Wollaston prism consisting of
two similar prisms of calcite (n, = 1.66
and n, = 1.49) as shown in Fig. 13.15, with
angle of prism equal to 25°. Calculate the
angular divergence of the two emerging
beams.

(a) Consider a plane wave incident
normally on a calcite crystal with its
optic axis making an angle of 20° with
the normal. Thus y = 20°. Calculate
the angle that the Poynting vector will
make with the normal to the surface.
Assume n, = 1.66 and n, = 1.49.

In the above problem assume the
crystal to be quartz with n, = 1.544 and
n, = 1.553.

(b)

Fig. 13.13
%
k
n,=1.507
n,=1.467
45°
z
Optic axis
Fig. 13.14

Fig. 13.15 A Wollaston prism. The
lines and dots show the
direction of the optic
axis.

(a) In an anisotropic dielectric, we may
assume B = o H. Substitute plane wave solutions
E = Eoei(kr—a)t), H= Hoei(k-l‘—wt), D= Doei(k-r—wt) (31)
in Maxwell’s equations. Show that D is always at right angles to k and H
is at right angles to k, E and D implying k, E and D will always be in the
same plane.
(b) Using the equations so derived, show that
n’ N
D =—* [E - (x-E)X] (32)
¢ Ho

where x is the unit vector along the direction of propagation of the wave
and

k| =k=Zn, (33)
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13.34 In an anisotropic medium let the x, y and z axes are chosen along the principal
axes so that

D, =¢.E; D,=¢,E, and D.=¢.E. (34)

where ¢,, €, and ¢, are known as the principal dielectric constants. In an
uniaxial crystal we choose the z-axis along the optic axis and the x and y
directions can be arbitrarily chosen as long as they are perpendicular to the
z-axis. Also,

D.=¢.E; D,=¢,E, and D.=¢. E. (35)
where, & =E=§) ng and £,=¢, nﬁ (36)

and n, and n, are known as the ordinary and extra-ordinary refractive indices
and at a given temperature (for a given wavelength) they are constants of the
crystal. Without any loss of generality, we may assume k, = 0. Using the result
derived in the previous problem, derive expressions for ,, for the ordinary
and extra-ordinary waves.

13.35 If we dissolve cane sugar in water, then because of the spiral like structure
of sugar molecules, the relation between D and E is given by the following
relation

D =gy’E +igk XE (37)
Without any loss of the generality, we may assume propagation along the

z-axis so that K, = k,, = 0 and k.= 1. Solve the equation

2
Tw_[E-(k-E)&k] =D (38)
)

and show that modes are RCP and LCP. Calculate their velocities.
13.36 Consider the incidence of the following REP beam on a sugar solution at
z=0:
E,=5cos wtr; E,=4sin ot

with A = 6328 A. Assume n;— n, = 10~ and n; = 4/3. Study the evolution of
the SOP of the beam.

13.37 Consider a biaxial crystal with n, = 1.619, n, = 1.620 and n, = 1.626. A
circularly polarised plane wave at 4q = 600 nm propagates along the x-axis.
After how much distance will the wave become linearly polarised?

13.38 Consider a biaxial crystal with n, = 1.56, n, = 1.59 and n. = 1.60. Along
which direction should a circularly polarised wave propagate so that it does
not change its state of polarisation as it propagates?

© /> SOLUTIONS

13.1 Atz=0, we will have
E,=Ejcos ot and E,=Ejsin of

Thus,
at t=0: E.,=Ey, and E,=0
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b1 E, Ey
= —= E =— E = —
at 1o . 5 and E, NG
/4 .
at t= %: E.=0 and E,=E, (seeFig. 13.3).

13.2 See Fig. 13.4.
13.3 (a) Propagation along the —z direction (into the page). Atz=0

)

E, =Ejcos ot; E,=— %Eo cos Wt

E

Zx =2 =tan(125.3°) : '
Ey

Fig. 13.16

LP (Linear Polarised) along the direction shown in the
figure; the propagation is along the —z axis; i.e., into the
page (see Fig. 13.16).

(b) Propagation along the —z direction (into the page).
Atz=0

E, =Eysin ot; E, = Eycos ot
= EX+ E§ = E; = Circularly polarised

Since propagation is along the —z axis; i.e., into
the page, we have a RCP wave (see Fig. 13.17).

(c) Propagation is along the +z direction (into the Fig. 13.17

T
Atz=—

page). Atz = -

E, =Eosin(%—wt+%) = Eycos ot

E, =—Eysin ot

= EX+ Ei =E}= Circularly polarised wave

Since propagation is along the +z axis; i.e., into Fig. 13.18
the page, we have a LCP wave.
(d) Propagation is along the +z axis (into the page). Now, atz=0

. E, .
E, =Eysin (%—wt); Ey=——Osm wt

V2

Thus,

at t=0; E.= % and  E,=0
t=%; E. = and y=—%
t=%, x=—% and Ey=—%
t= i—Z); E.=-E, and Ey=—%
t=%; E,f—% and E,=0
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Fig. 13.19 Fig. 13.20

The wave is LEP (Left Elliptically Polarised) as shown in Fig. 13.19.

Further
E E, .
E, = —% cos ot — =2 sin ot
2 V2
E, E, .
or, E.~E, = —; coswt and E,= —Tg sin @t

2

E,
Tlhus Ef + 2Ey2 - 2EE, = 70 which represents ellipse in the E, — E|,
plane.

13.4 Propagation is in the +z direction. Now, at z=0
E,=2Ejcos (ot +¢) and E,=Esin ot
(a) For ¢=0: E,=2Ecos wt, E, = Eysin wt

2 2 it
E
(21;;; j + [E—y] =1 116.6°
0 0 - y
As can be seen form Fig. 13.20, the wave is REP el
(Right Elliptically Polarised) with major axis along 2
the x-direction. Fig. 13.21
(b) For ¢= %; E,=-2Eysin 0wt and E,= Eysin ot
E: )~ tan(116.56%)
E,

Thus we have a linearly polarised wave (see Fig. 13.21).

(c) For¢= %: E.=-2Ejcos (wt+%) and E, = Eysin ot

t=0; E.=\2E), E,=0
EO

o

V4
t=— E.=0, E, =
4w Y
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” . —_ —
t=5 K =—\2E, E,=E
3n E,
==N. E.=-2E E,= =0
t 40’ X 0> y \/5
_Tr. - —
t= E.=—2E), E,=0
etc. The wave is REP (Right Circularly
Polarised)—see Fig. 13.22. -
13.5 (a) For the air-glass interface, n; = 1 and =70
ny,= 1.5 and
Fig. 13.22

6, =tan"' (1.5) = 56.3°
For the air-water interface, n; = 1 and n, = 1.33 and
6, =tan"'(1.33) = 53.1°

If we assume the simultaneous propagation of the two beams then the x
and y components of the resultant fields would be given by the following
equations:

13.6 Atz =0, the superposed field will be given by

E. =Ey[cos wt + cos(wt— ¢)] = 2E,cos % cos (wt — %j

E, = Ey[sin ot - sin(w? - §)] = 2E,sin % cos (wt - %)

Thus, the resultant wave is linearly polarised with the direction of the
oscillating electric vector making an angle ¢/2 with the x-axis.
13.7 If we superpose the two fields we would obtain

E, =2Ejcos [M} cos[a)t - @}
2 2

E, =2E;sin [@} cos [a)t - ?}

where, 0(z) =(ki—k)z and 0O(z)=(k+k)z

Thus the resultant wave is always linearly polarised with the direction of the
oscillating electric vector making an angle ¢(z)/2 with the x-axis; thus the
SOP rotates as it propagates through the optically active medium. Further,

0@) = (ki—k)z= 2 () n))z
)"0

where A is the free space wavelength. Now, if

n;> n, < the optically active substance is said to be
right-handed or dextro-rotatory

n,.> n; < the optically active substance is said to be
left-handed or laevo-rotatory.
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13.8 Let the plane z = 0 represent the surface of the crystal on which the beam is
incident. The x- and y-components of the incident beam can be written in the
form

E, =Eysin ¢ cos (kz — w1); E,= Eycos ¢ cos (kz — w1)

where k(= @/c) represents the free-space wave number. Inside the crystal, the
x and y components propagate as ordinary and extraordinary waves:

E, = Eysin ¢ cos (n,kz — wr) (ordinary wave)
E, = Eycos ¢ cos(n.kz — r) (extra-ordinary wave) 39)
If the thickness of the crystal is d, then at the emerging surface, we will have
E, =Eysin ¢ cos(wt - 6,); E, = Ejcos ¢cos(wt— 6,)

where, 6, = n,kd and 6, = n,kd. By appropriately choosing the instant # = 0,
the components may be rewritten as

E, = Eysin ¢ cos(wt — 0); E, = Ejcos ¢ cos ot

where, 0 =6, 6,=kd(n,—n,)= i—”(no —n)d (40)
0

represents the phase difference between the ordinary and the extra-ordinary
beams. Clearly, if the thickness of the crystal is such, that =27, 47, 67... the
emergent beam will have the same state of polarisation as the incident beam.
Now, if the thickness d of the crystal is such that 0 = /2, the crystal is said

to be a quarter wave plate (usually abbreviated as QWP)—a phase difference

of m/2 implies a path difference of a quarter of a wavelength—and if ¢ = %

(see Fig. 13.8) the output will be LCP. On the other hand, if the thickness of
the crystal is such that 8= 7, the crystal is said to be a half wave plate (usually

abbreviated as HWP); an LCP incident normally on a HWP will get converted
to RCP (see Fig. 13.8).

1 A 5893 x107°
13.9 d= — =
@ 4= G—n) 4% 017195
(b) The output SOP will be LCP
(c) Ifthe calcite QWP is replaced by a quartz QWP (with its optic-axis along
the y-direction) the output will be RCP.
13.10 We assume propagation along the +z axis (see Fig. 13.23). For a RCP, we may
assume

E, =Eycos(wt —kz); E,= Eysin(of - kz)

=0.0000857 cm.

Thus at z =0, E, = E( cos ot and E, = E, sin of which
represents a RCP. The x-polarised wave propagates as
an o-wave and the y-polarised wave propagates as an
e-wave. Thus

E, =Ejcos(wt—0); E,= Eysin ot

Fig. 13.23
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where 0= (k, — k,)z = i—n(no —n,)z. For a calcite HWP, n, > n, and 0 = ;
0

thus after emerging from the half wave plate, it will be
E, =—Eycos wt, E, = Eysin ot
which represents a LCP.
13.11 The electric field for the incident beam at z = 0 would be

E E
E. = YLsinwt;, E,=-Lcoswt 41)
T2 T2
The x-polarised wave propagates as an o-wave and the y-polarised wave

propagates as an e-wave. Further,
2z ,_, 0.00911x 0.225 B
Ao 5893 %10~

Thus, the emergent beam will be

0, = (ne - no)

E E
E, = "Ysin(wt+0.777); E,==%cos(wi)
T2 T2
which will represent a right elliptically polarised light.
13.12 We refer to Fig. 13.7; thus w=45°. Now the angle ¢ between S and k is given

by
2
o= tan”! {n—gtan l//j| -y
e
For KDP,
i 2
¢ =tan™' G'iggg) } —45° = 1.56°
For LiNbOs,
i 2
o= (3259 | 4502225

13.13 When the angle of incidence is the Brewster angle 6,,

n
tan 6, = —2 (42)
n

Now, using Snell’s law (see Fig. 13.24)

: . ; ny . ;
nysin 6, = n,sinr = sin 6, = 2 sin r=tan 6,sinr
m

= cosep=sinr=>r=%70p=>r+9p=%, Fig. 13.24
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13.14 | | |
Iy

Unpolarid =
lri)ght | 1121, | 1721y cos’0 112 1y cos?8 cos?¢
First Second polariser Third polariser at
olaﬁser at an angle 0 wrt an angle ¢ wrt the
P the first polariser second polariser
Fig. 13.25

(a) The first polaroid produces linearly polarised light of electric filed
strength Ey. When it encounters the next polariser which is placed at an
angle # 90° to the first polaroid, then some component is passed through,
the amplitude of resulting electric field being Eycos 6, where 6 is the
angle between the first two polaroids (see Fig. 13.25).

(b) Now when this encounters a third polaroid, a part of the electric field

E(cos 0 cos ¢ is passed through. If 0= ¢ = %, then

— g L (o2 ™ 2y _1
I1=1, 2(cos 4)(005 4) 810.

13.15

optic axis of
X the QWP

Fig. 13.26

Let the optic axis of the QWP (shown as y” axis in Fig. 13.26) make an angle
6 with the y-axis. Then, for a x polarised beam, just before the QWP

E.» =Eycos 0 cos wt; E,s = Egysin 0 cos ot
After passing through the (calcite) QWP, we will have (see Solution 13.10):
E. =Eycos 6 cos (a)t - %] = Ejcos 0sin wt
E, = Eysin 6 cos ot
[If 6= %, we will have a LCP]. Thus, component along the y-axis that is

transmitted by the second Polaroid is given by,

E, =—Eqcos 8sin 6sin ot + Egsin 6 cos 0 cos ot
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_ N2l 1 .2 2 1.2 20l 1, .2
Thus, 1=K(E})=KEj Esm 6 cos" 0+ Esm Ocos 0| = 5105111 20

where 1 ( = %KE& ) is the intensity incident on the QWP. This follows from

the fact that when 6 = %, the SOP after the QWP is LCP and the intensity
(after the analyser) must be %Io. Further when 6 = 0, the x-polarised wave

travels as on o-wave and the SOP (after traversing through the QWP) remains
unchanged. Thus, the intensity after the analyser will be zero. Similarly,

when 0= %, the x-polarised wave travels as on e-wave and the SOP remains

unchanged giving zero intensity after the analyser.

If instead of a QWP, we have a (calcite) HWP, then after passing through
the HWP, we will have,

E. =Eycos 8 cos(wt— m)=—Eycos O cos ot; E,»= Eysin 6 cos ot

Thus the component along the y-axis that is transmitted by the second polaroid
is given by,

E, =+2FEycos Osin O cos ot = = Isin>26
Obviously, when 6 = %, after the HWP the SOP of the beam will be rotated
by % and the (y-polarised) beam will pass through the analyser.

13.17 For A= 4046 A, the thickness of the QWP is given by

Ao 4.046 x107°

- ~ -5
—n)  4(1.68134 — 149608 ~ 4010 em

4(n

0

At Ay = 7065 A, the phase difference introduced is given by:

o 27 4.046x107° g
=22 n —n)d= = =~
O 3 TN s wi0s < 4 349 7 4
The LCP is incident on the QWP is given by =45
X
E, = Eysin t; E,=E;cos ot QJ =36

The output beam will be
E, = Esin (a)t — %), E, = Ejcos 0t
which is a LEP beam (see Fig. 13.27).

13.18 I} = %IO. After the HWP, the intensity remains

the same I, = [} = %Io. I3 can be obtained

LEP

using Problem 13.14: Fig. 13.27

1, . 1, . 1
13 = EIO sm2 20= 510 Sll’l2 30° = §]0
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13.19 The polarisation in the plane of the paper will pass through undeviated. The
polarisation normal to the plane of the paper will pass through as an ordinary
wave in the first crystal (see Fig. 13.6) and will pass through an extra-ordinary
wave in the second crystal; thus,

1.658
1.486

sin 12°} = 13.41°

i 3 .1l n, . B
n,sin 12° =n,sin r = r = sin 1[—" sml2°} =sin ‘{
n
e

Therefore the angle of incidence at the second surface will be 13.41° — 12°
= 1.41°. The emerging angle will be

sin @ = n,sin (1.41°) = 1.486 x 0.0246 = 0= 2.1°.

13.20

P

Fig. 13.28

After passing through P;, the beam is polarised along the )’ axis (see
Fig. 13.28). Obviously, if [, is the intensity of the incident beam then the

intensity of the beam coming out from P, is given by
1
I ==]
1= 5%

Let the amplitude of the beam emerging from P, be £}, then
1 1
E,=—E,coswt; E,=—=EFE,cos wt
y \/5 1 \/E 1
The optic axis of the A/6 plate is along the z-axis; thus, after passing through
the A/6 plate
E, = LElcos. (a)t - E); E = LE1 cos wt

"7 3 N5

[The y-polarised beam propagates as an o-wave and the z-polarised wave
propagates as an e-wave and we have assumed the crystal to be negative like
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calcite]. The intensity is still 1/27;. Now, only z” component passes through
the Polaroid P,; thus,

1 1 1 T
E, =_$Ey+ EEZ: EE' [—cos(wt—?)+coswt}

=—Elsin(wt—%) -sin%=—%Elsin(wt—%)
N |
Thus, [2 = le = §10

13.21 The incident beam may be either (a) unpolarised or (b) circularly polarised
or (¢) a mixture of both unpolarised and circularly polarised beam. If we now
place a QWP after the beam then the circularly polarised beam will become
linearly polarised which would give complete extinction at two positions if we
put a polariser after the QWP and rotate this polariser.

On the after hand, if there is no intensity variation as the second polariser
is rotated then the incident beam is unpolarised light and if there is some
intensity variation then the incident beam will be a mixture of unpolarised
light and circularly polarised light.

13.22 (d)

13.23 The ordinary wave will have an index of 1.507 and hence its phase velocity
will be ¢/1.507 = 1.9907 x 10® m/s. The refractive index of the extraordinary
wave will be given by Eq. (25) with y=45°. This gives us an index of 1.4866
for the refractive index of the extraordinary wave. Thus, the phase velocity of
the extraordinary wave will be ¢/1.4866 = 2.018 x 10% mys.

For the ordinary wave E and D will be along the same direction.
For the extraordinary wave, since the direction of propagation is at 45° to
the optic axis, the displacement vector of the extraordinary wave will also
subtend an angle of 135° with the z-axis since the displacement vector is
always perpendicular to the propagation direction. Hence,

& =_1= EOnozEx _ ngEx

2 2
D, g E, njE,

Hence if ¢ is the angle between E and D then

2
tan(y+ ¢) =Lz = Do —1.5528 (43)
E,
Since v =45° we get ¢ = 1.54°.

13.24 Substitute for n, and #, in Eq. (25) and assume y = 60°

13.25 (a) 0.81 um and 1.62 um (b) 11.16 um and 22.32 um. Calcite is negative
uniaxial while quartz is positive uniaxial. Hence in one case the output will
be right circularly polarised and in the other case it would be left circularly
polarised.

13.26 (a) Since the polarisation state of an e-wave is perpendicular to the
propagation direction and lies in the plane containing the optic axis and
the propagation direction, the incident polarisation must be in the plane of
the figure so that it propagates as an e-wave.
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(b) Since the incident wave is perpendicular to the interface, the propagation
vectors of both the ordinary and the extra ordinary refracted waves would
be perpendicular to the interface. Hence the phase difference between the
two waves in propagating from the face 4B to the face CD would be

Ap=2E (n,—n)L = 4007
)“0

(c) The propagation vector of the wave reflected from the face CD would
again be perpendicular to the interface and as it emerges from the face
AB it will again emerge perpendicular to the interface. This is due to the
conservation of the tangential component of the propagation vector at the
interfaces.

13.27 (a) We would use a quarter wave plate.

(b) The fast and slow axes of the quarter wave plate should make an angle of
45° with the orientation of the input polarisation state.

13.28 The wave should propagate perpendicular to the optic axis of the uniaxial
medium.

13.29 The ordinary wave will be polarised perpendicular to the plane of the figure
while the extra ordinary wave will be polarised in the plane of the figure.
Since the angle of incidence on the face AC will be 45°, both the waves will
be incident at an angle greater than the critical angle at the interface and will
get total internally reflected.

13.30 e

o
4 z  Optic axis

Fig. 13.29

13.31 Corresponding to the perpendicular polarisation [see Fig. 13.15], the angle of
refraction is given by

n,sin25° =n,sinr) = sinr; = % X sin 25° = r; = 28.1°

Thus the angle of incidence at the second surface will be i} = 28.1°
—25°=3.1°. The output angle 6, will be given by

n,sin 3.1° =sin 6, = 0, = 4.62°
For the y-polarised beam,
7,50 25° = i ry = sin ry = % X $in 25° = r = 22.3°
Thus, Iy =25°-22.3°=27°.
The output of angle 6, will be given by
n,sin 2.7° =sin 6, = 6, = 4.5°
Thus, 6=06,+6,=172°
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13.32 (a) y=20°n,=1.66and n, = 1.49. Thus,

2
o

loj =tan_]|: Stany

e

—y=2431°-20°=431°

(b) Ifn, = 1.544, n, = 1.553 then for y=20°
¢ = 19.79° —20°=—0.21°

13.33 (a) In a (charge free) dielectric div D = 0. If we substitute the plane wave
solutions, we would obtain

i(k,D,+k,D,+k.D.) =0 =D-k=0 (44)

Thus D is always at right angles to k. Similarly since in a nonmagnetic
medium div H =0 giving H-k = 0. Thus,

D and H will be right angles to k (45)
Now, in the absence of any currents (i.e., /= 0) Maxwell’s curl equations
become

_ dB _. . .

VXE == =ioB=iouH (46)
and vxH =2 - oD @7)
Substituting the plane wave solutions, we would obtain

oE, OE ) . ikt
(VX E); = 5% = = = (iky Eo. - ik, Eq,) e’

—i(ky E. ~ k,E,) = i(k X E),
Thus,  VXE =i(kxE)=iouH = Hz—wl—(kxE) (48)

Ho
and VxH=i(kxH)=—ioD = D:%(ka) (49)
The above equations show that
H is at right angles to k, E and D (50)

implying
k, E and D will always be in the same plane.

(b) Substituting for H in Eq. (49), we get

D=—[(kxE)xk]
ol

- 21 [(k-K)E - (k-E)K] (51)
Oy %)

where we have used the vector identity

(AXB)xC =(A-C)B-(B-C)A (52)
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K2 R R n’ n n
Thus, D = [E—(x-E)x]= =—"[E—-(x-E)x]

2 2
0"l ¢ Uy

S k
h =X
where K i

represents the unit vector along .
13.34 Since D, = ¢, E, = sonf E ., we have for the x-component of Eq. (53)
Eoltoc’ 1 E =
2 Bx T ExT Kx(KxEx+ KyEy+ KzEz)

n,

Since ¢* = , we have

Eoly

2

n

X 2 2 —
(——Ky —KZJEX+ KK B, + Kk E, =0

where we have used the relation
K2+ Ky2+ k> =1 (since K isa unit vector)

Similarly,

2

ny 2 2 _
KK, Ey + — — Ky —K: E,+KxKE =0

n,

2
n
KB+ K KB, + [—ZZ—K)% —K’i]Ez =0
n
w

(53)

(54)

(35)

(56)

(57)

(58)

Without any loss of generality, we assume that the y-axis is at right angles to

k; thus k, =0 and we may write

K =siny, k,=0 and Kk =cosy

(39)

where v is the angle that the & vector makes with the optic axis (see Fig. 13.7).

Equations (55) — (57) therefore become

2
(”_02 - cos? y/JEx +sin w cos WE, =0
n

2

n
2 —-1|E,=0

("i ] ’
2

w
and sin ycos WE, + [”_ez —sin® w]Ez =0

w

(60)

(61)

(62)

Since two equations involve only £, and £ and one equation involves only £,

we have the following two independent solutions:
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First Solution: We assume £, # 0 then E, = 0 = E.. From Eq. (61) one
obtains the solution

Ry =Ny =H, (ordinary wave) (63)

The corresponding wave velocity is
C

Uy = Vypp = — (y-polarised o-wave) (64)

n,

Since the wave velocity is independent of the direction of the wave, it is
referred to as the ordinary wave (usually abbreviated as the o-wave) and hence
the subscript ‘0’ on n,, and v,,,.

Second Solution: The second solution of Eqs (60) — (62) will correspond to
E,=0 and E,E.#0 (65)

We use Eqgs (60) — (62) to obtain
2

n
o — cos? v
E 2 i
E _ n, __ siny cosy
E, siny cosy nf S
—5 —sin"y
. . . . w
Simple manipulations would give us
1 1 cos? 74 sin? v
S T -T2 T (66)
nW nwe nO ne

where the subscript e refers to the fact that the wave refractive index
corresponds to the extra ordinary wave. The corresponding wave velocity

would be given by
2
2 _ 22 L & 2 67
Uye = —— = —5 COS"Y+ —sin"y (67)
nW@ nO e

Since the wave velocity is dependent on the direction of the wave, it is referred
to as the extra ordinary wave and hence the subscript e. Of course, for the
extra-ordinary wave, we must have

D,=¢,E,=0

Thus the displacement vector D of the wave is normal to the y-axis and also to
k implying that

the displacement vector D associated with the extraordinary wave lies
in the plane containing the propagation vector k and the optic axis and
is normal to k.
Let ¢ and O represent the angles that the S vector makes with the k vector and
the optic axis respectively (see Fig. 13.7). In order to determine the angle ¢ we
note that
eE, D

e E. D

X

=—tan y
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E

and since E—z =—tan(¢+ y) (68)
2 X

we get ”_ez tan (¢ + y) =tan ¥ (69)
¢ 2

or, 0= tan™! {n—‘;tan 1//} -y (70)

Obviously, for negative crystals n, > n, and ¢ will be positive implying that
ray direction is further away from the optic axis as shown in Fig. 13.7.
13.35 We write

D =gn’E+igk XE

=gyn*[E +io k X E] (71)
where, o= g 5 (72)

and K is the unit vector along the direction of propagation of the wave. The
parameter ¢ can be positive or negative but it is usually an extremely small
number (<< 1). Without any loss of the generality, we may assume propagation
along the z-axis so that K, = k, = 0 and k; = 1 giving

X y z
RxE=|0 0 1 |=-%B+JE,
E, E, E,
2
D, gn- -—ig 0 E,
Thus, D,|=| g en’ 0 |[E (73)
D 0 0 gon* | \E:

The € matrix is still Hermitian but there is a ‘small” off diagonal imaginary
element. The presence of these off diagonal terms give rise to optical activity.

Now,
2

" [E-(k -E)X]=D
¢ My
We write the x and y components of the above equation and since K, = 0 = K,

and K, = 1, we get

2

"w g =D,=eynE, - igE
P X X 0 Ly —18Ly,
¢ My
2
d W E,=D,=igE,+ &n’E
an 3 vy =D,=igE.+¢&nE,
C Hy
2
Thus, n_vzv_l E, =—iaE, (74)
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2

2
and [”—W - 1]Ey —iaE, (75)
n

where we have used the fact that ¢ = 1/ /¢, 4, . For nontrival solutions,

7’12 2 az

Zw 11 =

n2
giving n, =n\lto (76)
and E, =ik, 77)

We write the two solutions as n, (= ny/l1+ o) and n; (= n/1-ca); the
corresponding propagation constants will be given by

=2, 2,6
k =k, M cn 1+ (78)
and k=k,=%n,=gn,/l—a (79)
C

For n,, = n,, if
Ex — Eoei(krz—(l)t)

il k.z -t + E
then E, =+iE, = Eoe( 2)
which would represent an RCP (Right Circularly Polarised) wave and hence
the subscript ». Similarly, For n,, = n, if

E, = Eoei(k,z—wt)
izt -Z%
then E, =—iE, = Eoe( I 2)

which would represent an LCP (Left Circularly Polarised) wave and hence
the subscript /. The RCP and LCP waves are the two ‘modes’ of the ‘optically
active’ substance and for an arbitrary incident state of polarisation, we must
write it as a superposition of the two modes and study the independent
propagation of the two modes. Now, for o <<'1

n.—n=nll+a —-l1-a
=no (80)

13.36 Since Ch 4.5and % =0.5, we write the incident beam as superposition

of the following two circularly polarised beams

E =45 Cf)S ot (RCP) + E, . =05 co§ wt (LCP)
E\,=4.5sinwr 2y =—0.5sinwr

As the beam propagates, we will have

E. =4.5cos(wt— ¢y) +0.5cos (0t — ¢,)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

186 Problems and Solutions in Optics and Photonics

=(4.5cos ¢ + 0.5 cos ¢,) cos wt + (4.5 sin ¢; + 0.5 sin ¢,) sin wt
=a;cos(wt—6))

where, ¢, =k.z= % nz, ¢ =kjz = %nlz
aycos 6 =4.5cos ¢; +0.5cos ¢, and a;sin 6, =4.5sin ¢, + 0.5 sin ¢,

from which one can easily calculate a; and 6,. Similarly,
E, = 4.5 sin (0t~ ¢;) — 0.5 sin (0t — ¢,)
= (4.5 cos ¢, — 0.5 cos @) sin @t — (4.5 sin ¢,
— 0.5 sin ¢,) cos wt
=ap sin ((Ot — 02)
where, a,cos 6, =4.5cos ¢, —0.5cos ¢,
and a, sin 6, =4.5sin ¢; — 0.5 sin ¢,

13.37 Since the wave propagates along the x-direction, the two modes will be
polarised along y and z. The one polarised along y will have an index 1.620 and
the one polarised along z will have an index 1.626. For converting a circularly
polarised wave to linearly polarised wave, the phase difference between the
two components must increase by /2. Hence,

2 _Tr
7, = 3 (81)

which gives d =25 um.

13.38 The given medium is biaxial. Hence it must propagate along one of the optic
axes of the biaxial medium. Now since as given n, < n, < n. the wave must
propagate along the x-z plane so that one of the indices would be n,, and the
other index would lie between n, and n, which can be made equal to n,. If the
direction of propagation which lies in the x-z plane makes an angle 8 with the
z-axis then the refractive index of the wave would be

2 .2
21 _ cos2 6 N s1n20 (82)
n”(6) ny n;

In our case, we need to obtain & such that n(6) = n,.. Solving we get 6= 60.24°.
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Polarisation II: Jones 1 4
Vectors and Jones Matrices

k A Quick Review ¥.

Through Jones calculus, it becomes quite straightforward to determine the polarisation
state of the beam emerging from a polariser or a phase retarder (like a QWP or a
HWP). An x-polarised plane wave (propagating in the +z-direction) is described by

E = XE,cos (kz — of) = XEyRe [e'*?~ )] (1)

Such a wave is written as Eqy|x >, where

x> = (IJ o
0

is the normalised Jones vector representing a x-polarised wave. Similarly, a
y-polarised wave
E = yE,cos (kz — wt) = yE,Re[e ¥~ ] (3)

y> - (Oj @
1

is the normalised Jones vector representing a y-polarised wave; in writing Eqs. (2)
and (3), we have neglected the common phase factor = which is implicitly
assumed. A linearly polarised wave whose E x

vector makes an angle ¢ with the y-axis (see
Fig. 14.1) is represented by the normalised
Jones vector

sin o
|LPa>=sina|x>+cosa|y>=( j(S)
cos o

is written as Ey|y >, where

For an RCP (propagating in the z-direction) we
may write (see Fig. 14.2):

E = geitkz—on 4 5]ei(szwt+ 7/2) (6)
Thus, neglecting the (unimportant) phase factor, Fig.141 A linearly polarised wave
the normalised Jones vector representing an with its E vector making an
RCP will be angle o with the y-axis. The
1 1 1 (1 propagation of the wave is in
RCP>= —| . == 7 the +Z direction.
ers= gl we) =50 o
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Fig. 14.2 A right circularly polarised wave propagating in the +z direction.

Similarly, the normalised Jones vector representing an LCP will be

|ILCP> = ﬁ(_llj (®)

Let us next consider a calcite (or a quartz) phase retarder like a QWP or a HWP;
we assume its optic axis to be along the y-axis (see Fig. 14.3). The ‘modes’ of such a
device are linearly polarised along the x and y-directions; the x-polarised wave will
be the ordinary wave and the y-polarised wave will be the extra-ordinary wave. Thus,
if £} and E;, are the x and y components of the electric field after propagating through
the retardation plates (of thickness d), then

E| = é"E,
E; = &"E,
where, k, = Z—n-no and k.= 2—”}1@ ©)
Ao o

X

RCP

Calcite
LCP HWP
Calcite

z=0 QWP

Fig. 14.3 Alinearly polarised beam making an angle 45° with the y-axis gets converted to a LCP after
propagating through a calcite QWP whose optic axis is along the y-axis as shown by lines
parallel to the y-axis. Further, an LCP gets converted to a RCP after propagating through a
calcite HWP; the optic axis of the HWP is also assumed to be along the y-direction.
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Since, only the relative phase difference is of interest, we may write

E, =¢"®E,
E, =E, 5
where, ® = (k,—k,)d= /1_” (n,—n,)d (10)
0

is the phase difference introduced by the phase retarder. Thus, we may write

E; _ eid) 0 Ex _ Ex
) ) )

where Tpp is Jones matrix for the phase retarder and is given by

&® 0
Tpg = [0 IJ (12)

For calcite (which is a negative crystal), n, = 1.65836 and n, = 1.48641 at
Ao= 5893 A. Since n, > n,, ® will be positive; the y-polarised extra-ordinary wave

will travel faster than the x-polarised ordinary wave (L < ij Thus, for a calcite

n, n,

QWP (with its optic axis along the y-direction), ® =+ % and

i 0
Towp = (O 1) (fast axis along the y-direction) (13)

For a quartz QWP, n, < n, and with its optic axis along the y-direction, ® = —% and

0
Towp = ( Ol 1] (slow axis along the y-direction) (14)

On the other hand, for a HWP, @ = +r for calcite and ® = —7 for quartz. Thus,

for both cases
HWP 0 1

The Jones matrix for a phase retarder (like a QWP or a HWP) whose optic axis
makes an angle o with the horisontal axis (y-axis) is discussed in Problem 14.13.
The Jones matrix for a linear polariser making an angle o with the horizontal axis
(y-axis) is given by (see Problem 14.8)

sin® ot sina cos o
Tpp(o) =| ) (16)
sin o cos o cos” o
An elliptically polarised wave (with its major axis either along the x or y-direction)
is given by
E. =acos(kz— of) = aRee'*~ @)
ilkz—wr %)

E, =Tbsin(kz— wtf)=bRee
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where the upper (and lower) signs correspond to the REP and LEP respectively.
Thus, the corresponding normalised Jones vectors can be written as

a €
REP>=—2 | & o[98 it [2)wiho<e<E  (17)
+im/2 .
a*+ b2 \be isin € a 2

where a and b are assumed to be real and positive; and

a
ILEP > =;[ j:( cose J;€=tan‘1(2)with0s,s£% (18)
a

[2 452 \be™™2) | -isine

The parameter € is known as the ellipticity. For the REP shown in Fig. 14.4

b /4
2.3 ~
a = ¢ 2.5

and the normalised Jones vector will be

31
|REP > = 03
0.95i

b

))

Fig. 14.4 A right elliptically polarised wave propagating in the +z direction.

Obviously € = 0 represents the x-polarised wave, € = % represents a circularly
polarised wave and €= %represents the y-polarised wave.

The use of Jones matrices makes it very straightforward to consider more
complicated cases like two QWP with their axes at an angle.

PROBLEMS g

14.1 The state of polarisation is described by the following normalised Jones vector

(%)

Determine the x and y components of correspond electric field and the sense
of rotation and ellipticity.
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14.2° Write the normalised Jones vector for the following values of £, and £,
E, =acos(kz— wr)
E, =-bcos(kz— ot - ¢)

14.3 Consider a calcite QWP whose optic axis is along the y-axis (see Fig. 14.3).
By using Jones matrices, obtain the output state of polarisation when the
incident beam is

(a) x polarised

(b) y polarised

(c) Left Circularly Polarised (LCP)

(d) Linearly Polarised with its E making an angle of 45° with the y-axis
(e) Linearly Polarised with its E making an angle of 30° with the y-axis
(f) Left Elliptically Polarised (LEP) with its E given by

E = %Eo cos (kz — wr)

3.
E, = \/—2—-E0 sin (kz — wt) (19)

14.4 Consider a calcite HWP whose optic axis is along the y-axis (see Fig. 14.3).
By using Jones matrices, obtain the output state of polarisation when the
incident beam is

(a) x-polarised

(b) ypolarised

(c) Left Circularly Polarised (LCP)

(d) Linearly Polarised with its E making an angle of 45° with the y-axis
(e) Linearly Polarised with its E making an angle of 30° with the y-axis
(f) Left Elliptically Polarised (LEP) with its E given by Eq. (19).

14.5 (a) Consider a calcite QWP followed by a calcite HWP; in both of them the
optic axis is along the y-axis (see Fig. 14.3). Find the Jones matrix for the
combination and obtain the output state of polarisation when the incident
beam is linearly polarised with its E making an angle of 45° with the
y-axis,

(b) Show that if we put the calcite HWP first and then the QWP, the effect will
be the same.

14.6 Consider a quartz QWP whose optic axis is along the y-axis (see Fig. 14.3). By
using Jones matrices, obtain the output state of polarisation when the incident
beam is

(a) x polarised

(b) y polarised

(c) Left Circularly Polarised (LCP)

(d) Linearly Polarised with its E making an angle of 45° with the y-axis
(e) Linearly Polarised with its E making an angle of 30° with the y-axis
(f) Left Elliptically Polarised (LEP) with its E given by Eq. (19).
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14.7 Consider now a calcite QWP fol-
lowed by a quartz QWP; in both of
them the optic axis is along the y-
axis. Find the Jones matrix for the
combination.

14.8 (a) Show that the Jones matrix for
a linear polariser making an angle
o with the horisontal axis (y-axis)
is given by Eq. (16). (b) Write the
Jones matrix for the x-polariser, for
the y-polariser and for a polariser
which polarises at +45° angle and
at 135° angle with the y-axis (see Fig.14.5 A linearly polarised wave making

Figs 14.1 and 14.5). an angle of 135° with the y-axis;
14.9 (a) Consider a calcite QWP (with its :jrilreect[i)écr)]pagatlon s in the +z

optic axis along the y-axis) followed
by a Polaroid with its pass axis making angle ¢ with the y-axis (a) Find the
Jones matrix for the combination. (b) For an incident x-polarised beam, find
the state of polarisation after it comes out of the QWP.

14.10 Consider a Polaroid (with its pass axis making angle o with the y-axis)
followed by a calcite QWP with its optic axis along the y-axis. (a) Find the
Jones matrix for the combination; (b) For an incident x-polarised beam, find
the state of polarisation after it comes out of the QWP; (c) what will be the
output SOP if o= n/4.

14.11 Consider a REP with its major axis along the 7 direction and described by the
following Jones vector (see Fig. 14.6).

E¢ cos €
|REP>=[ j=( ] (20)
E, —isin €

Fig. 14.6 A right elliptically polarised wave with its major axis making an angle ¢ with the
y-axis; the wave is propagating in the +z direction.
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The 7 axis makes an angle o with the y-axis as shown in Fig. 14.6. Calculate

the JOneS vector
( x]
Ey

14.12 For calcite, the values of n, and n, for A, = 4046 A are 1.68134 and 1.49694
respectively; corresponding to Ay, = 7065 A the values are 1.65207 and
1.48359 respectively. At A,= 4046 A the calcite plate is a QWP (a) Write the
Jones matrix for the calcite plate for A= 4046 A and for A, = 7065 A. (b) A
left-circularly polarised beam of Aj = 7065 A is incident on this calcite plate.
Obtain the state of polarisation of the emergent beam.

14.13 Consider a calcite (or quartz) phase retarder whose optic axis makes an angle
o with the y-axis; we choose the 1 axis along this direction and the & axis
perpendicular to that (see Fig. 14.7). If E, and E|, are the x and y components
of the electric field that is incident on the phase retarder and if 5 and Ej are
the x and y components of the electric field after propagating through the
phase retarder then show that

E! E
[Ei‘j =TPR(a)[E"] @
y y

Pcos’a +sin’a (1-¢€®)sin o cos o

®sin o + cos’

where, Tpp(@) = ( ¢ (22)

(1-e®)sinacosa ¢

represents the Jones matrix of a calcite (or quartz) phase retarder whose optic
axis makes an angle o with the y-axis.

!

Fig. 14.7 A calcite (or quartz) phase retarder whose optic axis is along the 1 axis which
makes an angle o with the y-axis; the wave is propagating in the +2z direction.

=
S
flan

= EL T .

14.14 Use the results of the previous problem to calculate the output state of
polarisation for an x-polarised light incident on a (a) calcite QWP (b) calcite
HWP; in each case, the optic axis makes an angle 7z/4 with the y-axis.
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% SOLUTIONS

0.8 0.8
14.1 |LEP>= = .
| —0.6i 0.6¢ %2

Thus, E,. =0.8EyRe ¢'* =) =08E,cos(kz — wr)
i(kz— wt — %J
E, =0.6E Ree = 0.6 Eysin (kz — r)

At z= 0, we will have
E. =0.8E,cos ot
E, =-0.6 Eysin ot
which will represent an LEP with ellipticity given by

£=tan' 061 %
0.8 4.9

142 E.=acos(kz— wt)=aRe ollkz—o0)
E,=—bcos(kz— wt— ¢)=—bRe itk —w1-9)

Thus, the normalised Jones vector will be

1 a
Jaz+p? (=be ™

14.3 The Jones matrix for a calcite QWP with its fast axis along the y-direction is

given by
i 0
0 1

(a) The x polarised beam will remain x polarised.
(b) The y polarised beam will remain y polarised ( J
—i

(c) The normalised Jones vector for the LCP is given by |[LCP>= L

Thus, , -
|output > = ((I) (1)) ﬁ[j B ﬁ(—lJ

which is a linearly polarised wave with its E making an angle of 135°
with the x-axis (see Fig. 14.5).

(d) The Jones matrix for linearly polarised wave with its E making an angle
of 45° with the y-axis is given by

145°> = ﬁ@
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Thus,

[ e

which is a left circularly polarised wave.
(e) The Jones vector for a linearly polarised wave with its E making an
angle of 30° with the y-axis is given by

160° > = sin30° 10 g
cos30°) 0 2 \/5 0

Thus, |output > A YA PR | PR B o
us, output > = — == =t
P 0 1)2(3)7° 2|30 2|3

which is a left elliptically polarised wave with its minor axis along the
X-axis.
(f) The incident left elliptically polarised wave is given by

E. = —;—Eocos(kz— of) = %EO Re 'Kz = @)
3 . 3 ilkz—wi-Z
E, = _‘/Z:Eosm(kz— o) = gEO Re e( 2)

Thus, the Jones vector for the incident LEP will be

. 1 1
input >= — E
e

and the beam coming out of the QWP will be given by

|output > = E, = 0o 1 : E=l : E,
E ) o 1)2(-i3)"0 2(-if3)"°

1"E
2| -if3)°

which is LP with its E making an angle of 150° with the y-axis.
14.4 In continuation of the previous problem we just have to replace everywhere

T_iObT_—IO
QWPOI}’HWP01

(c) For a LCP incident on the HWP, the beam coming out will be given by

|output > = (_01 (1)] ﬁ[_l,) - _T;C]

which is a RCP.
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(d) For a linearly polarised wave (with its E making an angle of 45° with the
y-axis), the beam coming out of the HWP will be given by

o=

which is a linearly polarised wave with E making an angle of 135° with the
y-axis.
14.5 The Jones matrix for the combination will be

Z1 0\(i 0) (=i 0
I=TaweTowe=| o /o )7\ o 1

This should have been obvious because a QWP followed by a HWP is
equivalent to phase retarder with

Since the Jones matrix for a linearly polarised wave with its E making an
angle of 45° with the y-axis is given by

|45° > = -\/%Cj

the beam coming out of the HWP will be given by

(3 )0

which represents a RCP as shown in Fig. 14.3.
(b) When the HWP is followed by a QWP we will have

pep o (i 01 0)_(=i 0
QWETHWE g 1)l o 1 0 1

which is the same as in (a). This is a consequence of the fact that if we have a
QWP and an HWP, then it does not matter which one is put first as long as the
optic axes are in the same direction.

14.6 In continuation of Problem 14.5 we just have to replace everywhere

leite _ [ ¢ 0 rtz _ =i 0
Taw® = (O 1] by Tgw = (0 | (23)
14.7 The Jones matrix of the combination will be
. i 0\(—-i O 1 0
T = Tquartz Tcalclte: _ 24
QWP TQWP g 1){lo 1) (o0 1 24

14.8 Consider a polaroid whose pass axis makes an angle o with the y-axis; we
choose the 7 axis along this direction and the & axis perpendicular to that (see
Fig. 14.8). If E, and E,, are the x and y components of the electric field that is
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(b)

STUDENTS-HUB.com

incident on the polaroid, then for the light coming out of the polaroid, the &

and 1 components of the field will be given by
Eé =0

, .
and E, =E sina+E,cos o

Fig. 14.8 A linearly polarised wave whose electric vector oscillates along a direction making
an angle o with the y-axis; the wave is propagating in the +z direction.

Thus, the corresponding x and y components of the field will be given by

E} = Ej sin o+ E cos a=Exsin2a+Eysinacosa

and Ey = Ej cos a—Eé sin = E, sin ¢ cos a+Eycosza
Th [E] T, p(0f) [E] (25)
us y | =1L p(O
E] E,
sin’ o sin & cos o
where, T;p(0) = ) (26)
sin & cos o cos“a
For the x-polariser, o= % and we will have
T, ( ”) Lo (x-polariser) 7)
a==|= x-polariser
Pl*=2) 1o o P
For the y-polariser, o= 0 and we will have
0 0 .
Tip(x=0) = 0 1 (y-polariser) (28)
For a polariser which polariser at +45° angle with the y-axis.
To(a=Z) =41 ! 45°-polari 29
TP oc—4 =301 (45°-polariser) 29)
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For a polariser which polarises at +135° angle with the y-axis.

T,p (oc =3—”) _ LTI 3se polariser) (30)
4 ) 210 1

14.9 A calcite QWP (with its optic axis along the y-axis) is followed by a polaroid
with its pass axis making angle o with the y-axis

(a) The Jones matrix for the combination will be

sin® o sinocoso |[i O
T =Tp()Towp= | | ) 01
sin o cos o cos” o

isin> o sin o cos o
= (31)

isin o cos o cos’ o

(b) The Jones vector for the incident LEP is [see Solution 14.3(f)]

: 1 1

put > = — E

=

Thus, the state of polarisation after it comes out of the polaroid will be
) .
isin” o sinacoser | 1 1
loutput > = | ) = E,
isin o cos o cos” o 2 -iy3

(isin o — /3 cos @) [sin oc]
= EO

2 cos

which is a linearly polarised wave making an angle o with the horizontal
axis. This should have been obvious because we have a polaroid at the
end so the output has to be linearly polarised along the pass axis of the
polaroid.

14.10 A polaroid (with its pass axis making angle o with the y-axis) is followed by
a calcite QWP with its optic axis along the y-axis.

(a) The Jones matrix for the combination will be

i 0 sin’ o sin o cos o
T =Towp Trp(@) = i )
0 1){sinacosa cos” o

( isin’ o isin o cos OC]

sin o cos o cos’ o
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(b) The SOP of the emergent wave will be

isin® o isinocoso |1
|output > = 0

sin & cos o cos’a

] isin ) sin o e’™'?
=sin & =sin o
cos o cosa

ilkz-wt+Z
Thus, E, =E sinffaRe e ( 2) =—FE, sin® o sin (kz — wr)

ikz - wf) _

E, = Eysin acos xRe e Eysin o cos o cos (kz — wf)

which is a left elliptically polarised light with major and minor axes
along the x and y directions.
(¢) For = m/4, the output will be a LCP.

Eg cos €
14.11 |REP>= = o
En —isin &

Now, E,=Egcosa+ Eysino
and E, =—E§sin o+ Epcos o
E, cosa sina [ Ee
Thus, = .
Ey —sin o cos E,7

cosa sino coSs €
—sino coso )| —isin €

COS O COS € — isin ¢ Sin €
= . . . ] (32)
—sin & cos € —icos ¢ sin €
14.12 For the QWP at 1o=4046 A
2r T
q) = /,L—O(no—ne)d= E
A . -3
Thus, d 0 4.046 %10 ~5.49x 10" cm

T 4(m,-n,) 4(1.68134 — 1.49694)

At Ap = 7065 A, the phase difference introduced is given by:

® = 2 (g n)d = —2F X (165207 - 1.48359)
0 7.065x10 X 5.49 x 10~ cm
T382
eiﬂ'/z 0 l O
Thus, T(Ao = 4046 A) = =
us (o ) [o 1} (0 1)
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QT382
0 1

Thus, if a left-circularly polarised beam of Ay = 7065 A is incident on this
calcite plate, the state of polarisation of the emergent beam will be given by

ein’/3.82 0 1 1 1 eiﬂ/3.82
0 1 ﬁ(—ij 2 e
kz—ot+ -2

Re ei( 3'82) and E,= Lo Re ei(kz_wt_%)

N

T(A = 7065 A) = (

|output) = (

Thus, E, =

Eo
NE
At z=0, we will have

E, E
E. = =2 cos| wr— - and E,=-—2 sin ot
* (a’ 3.82) 2

V2

14.13 Consider a calcite phase retarder whose optic axis makes an angle o with the
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y-axis; we choose the 7 axis along this direction and the & axis perpendicular
to that (see Fig. 14.8). If £, and E|, are the x and y components of the electric
field that incident on the phase retarder, then,
Eg = E cos a—E,sin o
Ey =E.sina+ E,cos o

E¢ _[coso —sina E,
E, sinoe cosa )| E,

Now, if Eé and Ej are the & and 1 components of the electric field that
comes out of the phase retarder, then

&)l )

where Tpy is Jones matrix for the phase retarder [see Eq. (12)]. Thus, if £ and
E}, are the x and y components of the electric field after propagating through
the phase retarder then

(33)

Thus, (34

(35)

E7) (cosa

E] —sin o
cos o
—sin o

cos o
—sin o

sina][Eg)
cosa )\ Ep
sina][eiq’ O]LEé‘]
cosa)\0 1)\ Ey

sina \(e® 0 c?sa —sin or [ Ey (36)
cosa)\0 1 ){sinax cosa || E,
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Simple matrix multiplication would give the desired result.

14.14 For a QWP ¢'® = and for o= %We will have

T (£)=l 1+ 1-—i
PRN4) 2\1=i 144

Thus, for an incident x-polarised light,

Ex) qfl+i 1=d)(1) q(1+i) 1 o2
E) 2(01—-i 1+i)\0) 2{1-i 2| oim/2
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Maxwell's Equations and 1
The Wave Equation

k A Quick Review g

The equation

1
e et ()

is known as the one-dimensional wave equation. This is because of the fact that the
most general solution of the above equation is given by (see Problem 15.7)

Y(x, ) =f(x—vt)+g(x+0vt) 2)

where fand g are arbitrary functions of their arguments. The term f'(x — vf) represents
a wave propagating in the +x direction with speed v and the term g (x + vf) represents
a wave propagating in the —x direction with speed v. For example, the function

Y (x, ) = Acos (kx — wf) 3)
can be written as

W (x, f) = Acos[k(x —v1)] 4)

Since x and ¢ appear as (x — v?), the above form of ¥ (x, ) would satisfy Eq. (1) and
would represent a wave propagating in the +x direction with speed v given by

O _ya )

%
o 2
where, V= and A 3 (6)

represent respectively the frequency and wavelength associated with the wave.
Similarly, the function

WY (x, f) = Asin(kx + wr) @)
can be written as
Y (x, f) = Asin[k(x + v1)] )

and would represent a wave propagating in the —x direction with speed v = @/k. Thus
whenever, from physical considerations, we are able to derive an equation of the type
given by Eq. (1), we can predict the existence of waves and calculate the velocity of
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propagation of these waves. For example, if we apply Newton’s laws of motion to
a vibrating string under tension 7, we can derive the following equation (see, e.g.,
Ref. Ghl)

Py_ 19y
ox*  T/p gs?
where p is the mass per unit length of the string (which is assumed to be along the

x direction). The above equation shows the existence of transverse waves on a string
and that the velocity of these waves will be given by:

)

v=|L (10)

p

Similarly for sound waves propagating in a gas, one can derive from physical
considerations (see, e.g., Chapter 11 of Ref. Gh1)

2 2
% - P % (11)
ox YP ot

where &(x) represents the (longitudinal) displacement of the gas, p the density of

the gas and y = C,/C, represents the ratio of specific heats. Thus, the velocity of the
(longitudinal) sound waves in a gas will be given by:

:’}/_P_ 12
2 o

The equation

2
Vi = iz—a \f (13)
v” odt
is known as the three-dimensional wave equation. In the above equation
V¥ = div grad ¥ (14)

and in the Cartesian system of coordinates

2 2 2
vy = 0¥ oY, oY (15)
ox?  ay? 3z’

The function
Y(x,y,z, ) =Acos(k-r — wr) (16)

represents a plane wave propagating along the direction of k. At all points on a plane
normal to K, the quantity k- r is a constant; thus the phase fronts are perpendicular to
k. Further, if we substitute Eq. (16) in Eq. (15), we would obtain

L = (17)
k
where,
K=+ i+ k2 (18)
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Around the middle of the nineteenth century, Maxwell summed up all laws of
electricity and magnetism in the form of four equations—which are now referred
to as Maxwell’s equations. In a charge free, homogeneous and isotropic dielectric,
Maxwell’s equations are given by

V.E=0 (19)
V-H=0 (20)
o
VXE =—u > (21)
and VxH = aa—];: (22)

where E and H represent the electric field and the magnetic field respectively; € and
u represent the dielectric permittivity and magnetic permeability of the dielectric.
Using these equations, he showed that the Cartesian components of the electric and
magnetic field satisfy the wave equation (see Problem 15.5):

2
Vg =gy ¥ (23)
or?

After deriving the wave equation, Maxwell could predict the existence of
electromagnetic waves whose velocity will be given by:

Q

%"~
=

(24)
In free space,
£=6=8854x10"2C*N?m? and u=uy=4rx10"'Ns*C?2 (25)

and we obtain
1

v €oMo

which is the speed of light in free space. Maxwell argued that since the (predicted)
speed of electromagnetic waves was very close to the measured value of speed of
light,

v=c= =2.99794 x 10* ms™! (26)

Light must be an electromagnetic wave
In a dielectric
<.
n

v = 27

where the refractive index (n) of a dielectric (characterised by dielectric permittivity
€ and magnetic permeability 1) would be given by

¢ Zad) £
n=S= | - /_z K 28
v €y €9 \/_ @

where we have assumed u = U, which is true for almost all dielectrics and

e
== 2
K & (29)

is known as the dielectric constant of the medium.
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PROBLEMS g

15.1 The displacement associated with a wave is given by
(@) y(x,£)=0.1cos (0.2x —21)
() y(x, ) =0.25sin(0.5x + 3¢)
) y(x,£)=0.5sin2x(0.1x—9)

where in each case x and y are measured in centimeters and ¢ in seconds.
Calculate the wavelength, amplitude, frequency and the velocity in each case.
15.2 Show that the functions

_(x-o)

W(x,6) =Ae' T Wix =4 @ and W(x,f)=de ©°

satisfy Eq. (1) and therefore each of the above functions would represent a
wave.
15.3 Show that the functions

2 2 tZ

X
W(x,/)=Ade ° coswr and W(x,))=Ade ° e ©’

X

do not satisfy Eq. (1) and hence do not represent waves.
15.4 Show that the plane wave solutions
E =Ejexp[i(k-r — wf)] (30)
and H =Hjexp[i(k-r — wf)] 31

where E, and H, are space and time independent vectors satisfy Maxwell’s
equations [Eqgs (19)-(22)] and show that

k-E=0 (32)
K-H=0 (33)
- kxE (34)
oy
and g HxK (35)
we

Thus E, H and k are at right angles to each other showing the transverse
nature of the waves. Using the above equations show that

H, = -~ E, (36)

oy

(b) Substitute Eq. (35) in Eq. (34) to obtain the following expression for the
velocity of electromagnetic waves

v = (37)

|8
I

ﬁ’~
=
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15.5 In continuation of the previous problem, use Maxwell’s equations to derive the
wave equation, determine the velocity of electromagnetic waves in a dielectric
and hence derive an expression for the refractive index of the dielectric.

15.6 Foran x-polarised plane electromagnetic wave propagating in the +z direction,
we may write the electric field as

E = xEyexp[i(kz — w1)] (38)
where the actual electric field is given by
E, =Eqcos(kz— o), E, =0, E.=0 39)
Calculate the corresponding magnetic field.
15.7 (a) Define two variables
E=x-vt and n=x+ot (40)
Using the above variables, show that Eq. (1) transforms to the following
equation
o’
agan
(b) Integrate the above equation to obtain the general solution given by
Eq. (2).

15.8 Write the three-dimensional wave equation [Eq. (13)] in spherical coordinates
(r, 6, ). Assume ¥ to be a function only of » and ¢, and obtain the general
solution of the wave equation.

15.9 A Gaussian pulse is propagating in the +x-direction and at ¢ = ¢, the displace-
ment is given by

(x=b)’ }

vy, t=ty)=aexp| — )
o

-0 (41)

Find y (x, 7).
15.10 A sonometer wire is stretched with a tension of 1 N. Calculate the velocity of
transverse waves if p=0.2 g/cm.
15.11 The displacement associated with a three-dimensional wave is given by

3 1
v (x,y,z, 1) =acos {gkx+ Eky— a)tjl

Show that the wave propagates along a direction making an angle 30° with the
X-axis.
15.12 Obtain the unit vector along the direction of propagation for a wave, the
displacement of which is given by
v (x,y,z, f)=acos[2x + 3y +4z—5{]

where x, y and z are measured in centimeters and ¢ in seconds. What will be
the wavelength and the frequency of the wave?
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f% SOLUTIONS

15.1 (a) a=0.1 cm; k=27”=0.20m_1=>),:31.4cm
w=2s’1:>Vz0.32s’1; v=%=100m/s.

Wave propagating in the +x direction.

(b) a=02cm; k= 27” —05cm = A=~12.6cm

w=3s'=v= 0.485_1; v= 03—5 =6 cm/s.
Wave propagating in the —x direction.

(¢) a=05cm; k=02n= 277[ = A=10cm
v=1s"'; v=10cmis.
Wave propagating in the +x direction

15.4 Maxwell’s equations are given by Eqs (19)-(22). Now,

0E, OJE, OFE
‘E=—"+—+ ==
V-E ox dy 0z

Since, Ey =Eocexpli(k-r— )] = Egcexpli(kex+ k,y+ k.z— 0f)]

oE
we get 8_): =ik, Eoexp[i(kx+ k,y+ k.z— 01)]

Thus, the Maxwell’s equation V- E = 0 would give us
ik Eox+ ky Eoy+ k. Eo.] expli(k-r — 01)] =0

implying

k-E =0 (42)
Similarly, the equation V-H = 0 would give us

k-H=0 (43)

The above two equations tell us that E and H are at right angles to k, thus the
waves are transverse in nature. Now, using Eq. (29)

0E, OE,\ .
(VXE), = P = i[k, Eo, — k Eqy] exp[i(k-r — w1)]
=i(kxE),
Thus, Eq. (21) gives us
i(kxE), =iouH, = H,= KxE), Z;)x (44)

Similarly we can write for the y and z components of Eq. (21) and obtain the

vector equation
_ kXxE

ou

H

(45)
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Similarly, Eq. (22) would give us
E = H x k
wE

(46)
showing that k, E and H are at right angles to each other. From Eqs (45) one
readily gets
Hy=—E 47
0= ko (47)

Substituting for H from Eq. (34) in Eq. (35), we get

E = ——[(k xE)xk]
o’eu

- 21 [(k-K)E — (k-E) x k] (48)
el

where we have used the vector identity

(AxB)xC=(A-O)B-(B-O)A (49)
Since k- E =0, we get
k2
E=——E
O eU
Thus, k=weu (50)
and the speed of propagation of the electromagnetic wave is given by
p=Q-_1 (51)
k el

15.5 If we take the curl of Eq. (21), we would obtain
2
curl curl E =—p 9 curl H=—¢eu J9E (52)
ot 8t2

where we have used Eq. (22). Now, the operator VZE is defined by the
following equation;

V2E = grad div E — curl curl E (53)
Using Cartesian coordinates, one can easily show that
’E, J°E, JOE
>+ -+ —- =div grad E, (54)
ox dy 0z

i.e.,a Cartesian component of V2E is the div grad of the Cartesian component'.
Thus, using

(V’E), =

curl curl E = grad divE — V’E

! However, (V’E), # grad div E,
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15.6

15.7

STUDENTS-HUB.com

we obtain
2
grad div E — V’E =—¢gp, JOE
or?
2
or, V’E =¢eu 8_]22
ot

(55)

(56)

where we have used the equation div E = 0. Equation (56) is known as the
three-dimensional wave equation and each Cartesian component of E satisfies

the scalar wave equation:

The corresponding magnetic field is given by

H, =0, H,= Hycos(kz— wt), H,=0

. k
th Hy=—E
W1 0 ol 0

We introduce the new variables

E=x-vt and n=x+ot.

9 _ an _
Thus, P =1 and i 1
Now, in terms of the independent variables & and 7
¥ _ 9¥ ¢ 8‘P8_n_8‘P+8‘P

ox  9f ox

ox? 9 %4—% ox dn
_PY L, Y Y
9E? o&an  9n?

Similarly, since P —v and > +0, we get
a_\P = a_\Pﬁ a_\Pa_n = _va_\P +
ot o ot dn ot oé

anox - 9&  an

2
Further, B_T:i(al}l 8‘11)8_§+i 8_‘I‘+8_‘{’
9§ dn

(57)

(58)

(39)

(60)

(61)

Ian
0x

(62)
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15.8

STUDENTS-HUB.com

and aa%y - ”{aag(aa?)ag an(aé‘ja—n}
’ {aaé(gj;) 5 an(ﬁjgj}
. Lo’

or’ 92 9&an  gn?

Substituting Eqs (62) and (63) in Eq. (1) we get

55

2 2 2
Py :Uz[a ¥ O

(63)

Thus, oY has to be independent of 77; however it can be an arbitrary
function of &
oY
=F
T O
or, Y& n = JF (&)d& + constant of integration

The constant of integration can be an arbitrary function of 1. Further, since the
integral of an arbitrary function is again an arbitrary function, we obtain as the

general solution of the wave equation

Y& m =/ +gm=rx-vn)+gkx+on

where f'and g are arbitrary functions of their arguments.

In spherical coordinates
1 9 ¥ 1 d b4
Vig= 2,29 4 2 9T 4
P or (r Br) r2sing 96 ( man)
Since W is a function only of 7 and ¢, we have
1 9 oY
V¥ (r, 1) = 20Y
(r,n) = T (r arj
Thus, the wave equation becomes
10 (20¥)_ Lo
r2 ar al" vz t2
Making the transformation
W 1) = u(:,t)
we obtain
a0 () 0,
or or\r or
1 9 (20¥) _ 1%
Th —- = = | ==
e P2 or (r af) ror?

(64)

S
sin20 a¢

(66)

67

(68)
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and the wave equation [Eq. (67)] will take the form

2 2
a_z - 10w (69)
o’ v* o’
which is of the same form as Eq. (1). Thus, the general solution will be
Y1) = f(rr—vt) N g(r:—vt) (70)

The function Sr—o) will represent an outgoing spherical wave with
r

amplitude decreasing as 1 and therefore the intensity decreasing as Lz
r

Similarly the term gr+01) i represent an incoming spherical wave.

»
2
15.9 y(x, t)=aexp{—(x_b —ot=h)) :|

o2
2

5
15.10 7= 1 N = 10° dynes, p= 0 g/cm,v=\/%= /%zmnm
st ke B ko le ko
. x_T 5 y_E 5 z

k
tan@ = L =

k3

k=y29=2% 5 3= 2 ~117¢em
A 29
w=5s’1:>v=2iz 7965
Unit vector along the direction of propagation will be given by
~ k k k 2 3 4
k=—23+ Ly+-27= X+ —=y+ 2
k kY k [29 29 y V29
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Group Velocity and Pulse 1 6
Dispersion

k A Quick Review ?

Consider a plane wave propagating along the +z direction:

W(z, 1) =A@+ (1)
If the wave is propagating in a medium characterised by the refractive index variation
n(w), then
k(@) =2 n(a) @
The phase velocity of the wave is given by
0]
== 3
v, =2 G
A temporal pulse travels with the group velocity given by
1
‘e " dklda @
1 dk _ 1 dn
Th B — === + —_— 5
us 0 do c[n(a)) wdw} (5)
In free space n(w) =1 at all frequencies; hence
Vg =U,=cC (6)
Since, 0= 27c (7
Ao
1 1 dn
we get g = Z{n Ay) — 2 d—/lo} )

and the time taken by a pulse to traverse a length L of the dispersive medium is given
by

L L[, dn
T—g—?{n(lo) lod10:| )

For a source having a spectral width of A4, the temporal broadening of a pulse will
therefore be given by

dt LAy | 42 d*n
AT, = —Aly=— Aog— 10
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The quantity At,, is usually referred as material dispersion because it is due to the
material properties of the medium—hence the subscript m. Indeed, after propagating
through a length L of the dispersive medium, a pulse of temporal width 7, will get
broadened to 7, where

17 = 13 + (AT,,) (11)

In Eq. (10), we assume L = 1 km (= 1000 m), Alg =1 nm (= 107° m) to obtain
the following expression for the material dispersion coefficient (which is measured
in ps/km-nm):

D,,

Az, 10 {?t% d*n

B LAZ, B % dAg

} ps/km.nm (Material Dispersion Coefficient)(12)
where we have used c =3 x 108 m/s=3x 107 km/ps and A [in Eq. (12)] is measured
in um and the quantity inside the square brackets is dimensionless. The quantity
D,, is usually referred as the material dispersion coefficient (because it is due to the
material properties of the medium) and hence the subscript m on D; it is tabulated
(for pure silica) in Table 18.1.

For pure silica, the refractive index variation can be assumed to be given by the
following convenient approximate empirical formula (in the wavelength domain
0.5 um < Ay < 1.6 um)

n(lg) = Co—arf+ -5 (13)
)’0

where Cy = 1.451, a = 0.003 and A, is measured in m. [A more accurate expression
for n(Ay) is given in Problem 16.5].

PROBLEMS g

16.1 Using the empirical formula given by Eq. (13) calculate the phase and group
velocities in silica at Ay = 0.7 um, 0.8 um, 1.0 um, 1.2 um and 1.4 um.
Compare with the (more accurate) values given in Table 18.1.

16.2 Using the empirical formula given by Eq. (13)

(a) Calculate the zero dispersion wavelength.
(b) Calculate the material dispersion at 800 nm in ps/km.nm.

[1.32 um; —101 ps/km.nm]

16.3 Let,
n(Ao) =ng+ Ao (14)
where A is the free space wavelength. Derive expressions for phase and group
velocities.

16.4 In 1836, Cauchy gave the following approximate formula to describe the
wavelength dependence of refractive index in glass in the visible region of the
spectrum

B

0
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Now,  n(4;) =1.50883; n(A,)=1.51690 for borosilicate glass
n(A)) = 1.45640; n(A,)=1.46318 for vitreous quartz
where A1 =0.6563 um and A, =0.4861 um.

(a) Calculate the values of 4 and B.
(b) Using the Cauchy formula calculate the refractive index at 0.5890 um and
0.3988 um and compare with the corresponding experimental values:
(1) (1.51124 and 1.52546) for borosilicate glass and
(i1) (1.45845 and 1.47030) for vitreous quartz.
16.5 The refractive index variation for pure silica in the wavelength region
0.5 um < Ay < 1.6 um is accurately described by the following empirical
formula [Ref. Pal]:

C. C C
n(Ag) = Co+ C1 A5+ CyAq + 2 4 :

(Ao-1) ’ (Ag-17 " A5-10’ >

where C, = 1.4508554, C; =-0.0031268, C, =—0.0000381, C5 = 0.0030270,
C4 = -0.0000779, Cs = 0.0000018, / = 0.035 and A is measured in {m.

2
Calculate and plot n(4g) and d—’; in the wavelength domain 0.5 um < A,

< 1.6 um. 0
16.6 (a) For a Gaussian pulse given by .
E(z=0,1) =Ege ™ &' (16)
show that the spectral width is approximately given by
2
A = = 17
0= a7
(b) Assume Ay= 8000 A. Calculate Ao for 7y =1 ns and for 75 =1 ps.
g

16.7 The time evolution of a Gaussian pulse in a dispersive medium is given by
(see Ref. Gh1 and Gh2):

2
; 3]
E(z 1) = 0 /(@ =k oxp | — £ (18)
J1+ip 75 (1+ip)
2
where, p = 2—}/22 and y= d_l; (19)
Ty w

(a) Show that the pulse broadening is given by

AT=E|y| (20)
To
(b) Using Eq. (2), show that
;Lo 2 dzn
Y= A — 21
2rc? { ° dirg
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(c) Using the above equation, calculate A7 and show that the results are
consistent with Eq. (10).

2
16.8 (a) Forpuresilica, at Ag=1.55 um, an —0.004165 um’z. Calculate (with

. 2
proper units the value of . dAy
(b) Calculate the value of A7 for a 100 ps pulse propagating through a 2 km
long fiber.

16.9 (a) For the propagating Gaussian pulse given by Eq. (18) show that the
frequency chirp is given by

Aw = 271’[1 - i] 22)

51+ p?) Vg
where p is defined in Eq. (19).

(b) Assume a 100 ps (= 17y) pulse at Ay = 1 um. Calculate the frequency chirp

AQ) at—z/vy=—100 ps, —50 ps, +50 ps and +100 ps. Assume z = 1 km

2
and other values from Table 18.1.

16.10 Repeat the previous problem for Ay = 1.5 um; the values of 7, and z remain the
same. Discuss the qualitative difference in the results obtained in the previous
problem.

16.11 The frequency spectrum of E(0, ¢) is given by the function 4(w). Show that
the frequency spectrum of E(z, #) is simply

A(CO) e—ik(w)z

implying that no new frequencies are generated—different frequencies
superpose with different phases at different values of z.

f% SOLUTIONS

_ 2, a _ 2 1 | dn _ 2a
16.1 I’l(/’Lo)C()—alo"‘A—éCo—allo—fg:l,——zalo—r

niC
4
Ug

:CO—aA§+%+2aA§+2—‘;:CO+a /1§+i2
A’O 2’0

Now, Cy = 1.451, a = 0.003 and A, should be in wm. Thus at Ay = 0.7 um,
0.8um, 1.0 pm, 1.2 um and 1.4 um, we get

A%- Lz ~—1.551,-0.923, 0, 0.746, 1.450
Ao
Thus, n(Ay) = 1.456, 1.454, 1.451, 1.449, 1.455

Similarly, ng(Ag) = 1.4708, 1.4670, 1.4630, 1.4616, 1.4615

Actually the group index 7, attains a minimum around Ay = 1.32 um. The
phase and group velocities are c/n and ¢/ng respectively.
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16.2 (a) n(Ag) = 1.4510.003[13—%)
0

dn 2 -1
—— =—0.003| 24, + —] (um)
dA [ Al
2
A 0.006] 1- 2 | (um) 2
dig g
2
Thus, % (and hence material dispersion) vanishes when

0 Jo=3" um =~ 1.32 um.

(b) At Ao=800nm=0.8 um

2 d*n 3
A1 _0.64x | —0.006)1- —— || ~+0.0243
)b() dﬂ,o X |: ( 0.84ji|
Thus, using Eq. (19)
4
D, ~— 9 (+0.0243) =101 ps/km.nm

7 3%0.8

which may be compared with the more accurate value of —106.6 ps’km.nm
(see Table 18.1).

dn

Thus,
1 _1 _gq.dn 1 A= "o - <
Z)g - |:n()«0) /10 dﬂ,o :| c [no +AA,O A,()A] c = Ug o
o= S c
P n(dy)  ng+ AA,
164 n(A)=A+ 2 andn(dp) =+ 2
A A2
Thus, B 11 =n(A)—-n(A) = B= AiA; [n(A) — n(A))]
o) T 3-23 1
_ _ AT A2 132
For ;=0.6563 um and A, =0.4861 um = 523x 107" m
1~ 42

Thus, for borosilicate glass

B=5.23x10"[1.51690 — 1.50883] = 4.22 x 10> m? = 4 = 1.499
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Thus, at A=0.5890 um, n = 1.51120 and at A = 0.3988 pum, n = 1.52557
Similarly, for vitreous quartz

B=523%10"[1.46318 — 1.45640] =~ 3.546 x 10 " m? = 4 = 1.44817
Thus, at A= 0.5890 um, 7 = 1.45839 and at A = 0.3988 pm, n = 1.47047

16.5 We define

STUDENTS-HUB.com

y=l% and z=23-1

Then
’ C C C
n(Ag) =Co+ Cly+ CyP + = + =2+ =
z z z
dn C; 2C, 3Cs
d).«o = |:C1+2C2y—z—2—z—3—z—4 22,0
2 2 12
and dn 2 ={2C2+%+%+—?’}4%
dAg z z z
c, 2¢, 3cC
+2{C1+2C2y——§’——34 - —45}
z z z
AGNUPLOT program for calculating 7(Ay) [denoted as n(x)], aflTn [denoted
2 0
as np(x)], and dan [denoted as mpp(x)] is given below. The respective plots

2
0

are shown in the diagrams.

GNUPLOT Program

#Variation of the group velocity and npp for pure
silica

set multiplot

set nokey

#set yrange [1.440:1.458]

[
#set yrange [-0.02:0.12]
#set yrange [-0.025:-0.010]
set xrange [0.5:1.65]
set xtics
set ytics
c=2.99792

c0=1.4508554
cl=-0.0031268
c2=-0.0000381
c3=0.0030270
c4=-0.0000779
c5=0.0000018
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el=0.035

y(x)=1/(x*x - el)
n(x)=cO0+cl*x*x +C2*x*x*x*x +Cc3*y (x) tCcd*y (x) *y (x)+tcb*
v (X) *y (X) *y (%)
Nnp(x)=2*cl*x+4*c2*x*x*x-2*x*c3*y(x)*y(x)
—4¥*x*chry (X)*y (X) ¥y (X) —6*x*Cch*y (X) *y (X) *y (X) ¥y (x)

npp (x)=2*cl+12*c2*x*x-2*c3*y(x)*y(x)* (1
—4*xFx*Fy (X)) -4*cd*y (x)*y (x) *y(x)* (1-6*x*x*y (X))
—6*c5%y (%) ¥y (%) ¥y (%) ¥y (%) * (1-8*x*x*y (X))

ng (x)=n(x) - x*npp (x)

vg (x)=c/ng (x)

nppn=npp (.85)

f0(x)=0.

fl(x)=x*x*npp (x)
£f2(x)=-10000.0*£f1 (x) / (c*x)
#plot n(x),f0(x) w 1 1
#plot npp(x),f0(x) w 1
#plot np(x)w 1 1

1

1.458

1.456 |
1.454 |
1452 |
n(%) 145
1.448 |-
1.446 |
1.444 |
1.442 |

| | ] | 1 |
1440 06 08 1 12 14 16
Aom)  ——

Fig. 16.1 Variation of n(4o) with A, for pure silica with n(A4,) given by Eq. (15)
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-0.010

-0.012

-0.014

-0.016

—0.018

dnldA,(um™")

-0.020

—0.022

-0.024

Ao(m)  ——

an

Fig. 16.2 Variation of i,

with A for pure silica with n(A.) given by Eq. (15)
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2
d n/d/lzo(pm‘z)

0.02 -

_0.02 ! | 1 1 L l
0.6 0.8 1 12 1.4 1.6

Ao(um)  ———

2
Fig. 16.3 Variation of 37'; with A for pure silica with n(Aq) given by Eq. (15)

16.6 (a) Consider a Gaussian pulse for which we may write

t2

E(z =0,1) = Ege "0 &' 23)

A wave packet can always be expressed as a superposition of plane waves
of different frequencies:

+ o0

E, 1) = jA(m)e"[”’—kz]dw (24)
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Obviously, oo
E(z=0,1) = J A(@)e ™ do 25)

Thus, oo
1 _
A(w) = J' E(z=0,5)e" 2
(@ =5 [EG=0nedr (26)

Substituting from Eq. (23) we get

E, -4
4 :_OJ' 72 —i(a)—wo)tdt
(@) o )¢ ve
E
= Zo% exp[—l(w—wo)%g] @7)
yNE 4
where we have used
J+me_ax2+ﬂxdx= %eﬁ2/4(x (28)

In general, A(®w) can be complex and as such one defines the power
spectral density

S(o) =|4(o)? (29)
For the Gaussian pulse,
E212 1
S(w) = :n" exp[—a(a} — ) 13} (30)

If the FWHM (Full Width at Half Maximum) is A®, then

1{AwY 2| _ 1
€xp |:—'4—(T)ZTO:| = P

which would give

A® Ty = 24
Thus, the spectral width is approximately given by
2
A = = 31
o= (1)
2 10°
(b) Ao=8x10"m = o= 2% = fo ~236x 105!
A 810
Aw= Tl =2x10°s " and2x 102 s7! for 7o =1 ns and 1 ps respectively.
Thus, °
Aw

o = 107% and 10~ which represent the spectral purity of the pulse.
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16.7 The intensity distribution corresponding to Eq. (18) would be given by

2
3]
_ IO g
I(Z, t) = T(Z)/TO €eXp —TZ—(Z)‘ (32)
where, 2(2) = 13 (1 +p) (33)

Thus, the pulse broadening will be given by

At= 1 (2) -1}

=lplt= 2|T_J;|Z G4
(b) Now, V= % N % E(ﬂ o dd_ﬁ)ﬂ
ldi%{n(lo)_’lodd_fo} %

o g fa]

where the quantity inside the square brackets is dimensionless. Further, since
the spectral width of the Gaussian pulse is given by [see Eq. (31)]

Aa) ~ i
. 7o
we may write
1 1 12nc
— = —Aw= ===Z]AA 36
7, "2 2 2 | Aol (36)

0
Substituting for 7, from the above equation and for y [from Eq. (35)] in
Eq. (34) we get

2
oz 2dn
AT = /,L—OC 10—% Alo (37)
which is the same as Eq. (10).
2
16.8 At Ay=1.55 um, d—;’ ~—0.004165 pum > [see Table 18.1]
dAy
Thus,
2 —6
y= ’1"2 A2 d’j . 1:35x10 = [1.55 % 1.55 x 0.004165]
2rc dAg 2rx9x10

~-2743x 10 m!¢?
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For a 100 ps pulse propagating through a 2 km long fiber

_2lylz _ 2x2743x107%°x2x10°
T 1071%)

16.9 If we carry out simple manipulations, Eq. (18) can be written in the form:

AT = 1.1 ps

2
-3)
Et) = —0 el - i expli(®@(z, 1) —koyz)]  (38)

r@il? | 2

where the phase term is given by

2
D(z,1) = wot + K(t—i] _1 tan”' p 39
(2 2
p
and K(z) = ——— (40)
73+ p?)
Equation (39) represents the phase term and the instantaneous frequency is
given by
0@) = 22 = gy + 21([1‘ - ij (41)
ot Uy
showing that w(f) changes within the pulse. The frequency chirp is therefore
given by
Aw = w(t)—a)0=27c(t—iJ (42)
Uq
_ _ 27mc _ 15 0.~ _ _ 1010
b) y=1um= w,= 2= 1.885x 10 Hz; 7o=100 ps=10""s.
0
2
At Ay =1 um, d—’; =~+0.0120 (um)’2 [see Table 18.1]
dAy
2 A 2 -6
Thus, y= 4K = Lo |ppdin) o 10 (1500120
do® 2rc dAg 2w x (3x10%)

~2.12% 102 m™' ¢

-26 3
2yz_ 2x202x107°%10° o

T3 (107192

A—w:% -2 | =45%x101 - =
®o w7y (1+ p7) g g

where [t - LJ is measured in pico seconds. Thus, Ao —4.5x%x 10_8, -2.25
v 0]
g 0

p=
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x 1078 +2.25x 108 and +4.5 x 1075 at [z - LJ =-100 ps, —50 ps, +50 ps

and +100 ps respectively. Y
16.10 Ag=1.5 um = ay = % ~1.257% 10" Hz
0

7o =100 ps=10""ps,z=1km=10’m

2
At 2o = 1.5 pum, L2 < _0.00365 (um) 2
dAd
o 13 x10~°
27 x (3%x10%)?

_2yz . 2x2.18x107*°x10°

[-1.5% 1.5%0.00365] =—2.18 x 1072 m ! ¢

p ~ ~-436x%x10°
73 (107192
A® :% t—i ~-6.94x107"° t—i
®o @, (1+ p7) Ug Ug
where (r - vi] is measured in pico seconds. Thus, Ao +6.94 x 10’8,
g Wy

+3.47x10°%,-3.47%x10 % and +6.94 x 10 3 at [t - ij =—100 ps, —50 ps,
+50 ps and + 100 ps respectively. %

The qualitative difference in the results obtained in the previous and in the
present problem is the fact that at A =1 um we have negative dispersion and
the front end is red shifted (A @ is negative) and the trailing end is blue shifted.
The converse is true at A = 1.5 wm where we have positive dispersion.

16.11 We can write Eq. (24) as
+eo .
E(z, 1) = j G (®,2)e'dw
where G (@, z) = A(w) ¢ "% The inverse Fourier transform is given by

+oo .
G(w,z) = % j_ E(z,0)e @ ds

i 1 Hed _i
A ikz _ J it
or, (w)e 7). E(z,t)ye'""dw

ik

showing that the frequency spectrum of E(z, ) is simply 4(@)e "** implying

that no new frequencies are generated.
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™Y o
* A Quick Review *
171 | EINSTEIN COEFFICIENTS

The quantities 4,;, B, and B, are known as Einstein coefficients and are determined
by the atomic system. The coefficient 4, is given by
1
Ay = (1)

lop

where 7, represents the spontaneous emission lifetime of the upper level (see
Fig.17.1). Further,

E, N,
Absorption
Emission
Ey Ny

Fig. 17.1  E; and E; represent the energy levels of an atom. N; and N, represent the number of atoms
(per unit volume) in the energy levels E; and E, respectively.

By, =By =B 2
Ay, ha’ng

and — = 3
By % ®)

where n represents the refractive index of the medium. At thermal equilibrium, the
ratio of the number of spontaneous to stimulated emissions is given by

A21 _ ho
Byju(w) exp(kBT)—l )
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where u(®) represents the radiation energy density and is given by Planck’s law:

) ho’n 1 5)
u(@) =
n’c ha
exp kB_T -1
17.2 | LINESHAPE FUNCTIONS

17.2.1 Natural Broadening

The normalised lineshape function (corresponding to natural broadening) is given by

(@) = 222 ! ©)
& n 1+4(w—w0)2t3p

where 7, = 1/4,; is the spontaneous emission lifetime. The above functional form
is referred to as a Lorentzian and the full width at half maximum (FWHM) of the
Lorentzian is

1
Aoy = 7
sp

The normalisation condition satisfied by g(w) is
[e(@do =1 )

17.2.2  Collisonal Broadening

The normalised lineshape function corresponding to collisional broadening is given

by
T, 1
W =-<£c— - 9
&(®) 7T1+(a)—a)0)zrc2 ©)
where 7, represents the mean collision time; the FWHM will be
2
Aw, = — (10

Thus, a mean collision time of ~10®s corresponds to a Av of about 0.3 MHz. The
mean time between collisions depends on the mean free path and the average speed
of the atoms in the gas which in turn would depend on the pressure and temperature
of the gas as well as the mass of the atom. An approximate expression for the average
collision time is
1 (2)1/2 (]MkBT)l/z (11)

3 pa’

"%

where M is the atomic mass, a is the radius of the atom (assumed to be a hard sphere)
and p is the pressure of the gas.
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17.2.3 Doppler Broadening

The normalised lineshape function corresponding to Doppler broadening is given by
1

e M) M (0 - o)
8@ =%, (kaT) eXp{ 25T o (12)

which corresponds to a Gaussian distribution. The lineshape function is peaked at
g, and the FWHM is given by

2kpT 2
Awp = 2w0( MIZZ 1n2j (13)
173 | THE THRESHOLD CONDITION

Let Ny and N, be the number of atoms per unit volume present in the energy levels
E, and E, respectively (see Fig. 17.1). The atom in the lower energy level £ can
absorb the incident radiation at a frequency w = (E, — E)/h and be excited to £,. The
threshold condition for the onset of laser action is approximately given by

4v2n3 lp 1
N, —N;) = —_—
WN2=N) 2 =577 " (@)

(14

where, g(w) represents the lineshape function,
nq represents the refractive index of the medium enclosed by the cavity,
ty = /43 is the spontaneous lifetime associated with the transition 2 — 1,
t. is the passive cavity lifetime (which is the time in which energy in the
cavity reduces by a factor 1/e) and is given by

1 c

. 2dn,

c

(2a1d—lnR1R2) (15)

with R; and R, represent the reflectivities of the mirrors forming the cavity and o
represents the average loss per unit length due to all loss mechanisms (other than the
finite reflectivity) such as scattering loss, diffraction loss due to finite mirror sizes
etc.

17.3.1 Absorption and Emission Cross Sections

The absorption cross section o, is related to the lineshape function and the
spontaneous lifetime through the following equation:

n’c?

16
i 5@ (16)

O, =

The emission cross section G, is equal to the absorption cross section o,
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17.3.2 Gain Co-efficient

In the presence of population inversion the gain co-efficient y is given by
- et
o* ngtsp

g(®) (N, - Ny) (17)

where N, and N, are the population densities in the lower and upper level.

17.4 H MODES IN A CAVITY
The discrete frequencies of oscillation of I M
the modes inside a cavity consisting of two ! 2
mirrors separated by a distance d are given
by
— — ¢ I |
V=1y, m2nod (18) I d |

. . Fig. 17.2  An optical resonator consisting of
where m is an integer and #, represents the two plane mirrors separated by a

refractive index of the medium enclosed by distance d.
the cavity (see Fig. 17.2)

17.4.1 Stability Condition

The stability condition for a general spherical mirror resonator consisting of two
mirrors of radii of curvatures R and R, and separated by a distance d (see Fig. 17.3)is

d d
0s(1—Ej(l—R—2)s1 (19)

z=—d,

Radius R,

—
Radius R, /

Fig. 17.3 A resonator consisting of two spherical mirrors.

The spot sizes of the Gaussian oscillating mode at the two mirrors is given by

Ad Ip)

2
wiz)=—,)—F———
@) T \Ng(l-g8g)

(20)
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Wz(ZZ) B % & ( flglgz) @0
where w(z;) and w(z,) represent the spot sizes at the two mirrors and,
g=l-g5 B=l-g (22)
17.4.2  Quality Factor
The quality factor O of a laser cavity is given by
_ 4nvonyd 1 23)

where R; and R, are the reflectivities of the two mirrors of the cavity, d is the
separation between the mirrors and ¢ is the loss co-efficient of the cavity due to
mechanisms other than the finite reflectivity of the mirror.

17.4.3 Mode Locking
The time variation of the intensity at the output of a mode locked laser is given by

. 2
I=Iﬂ{s1n[7r(N+l)6vt]}

sin[movi] 24)

where OV is the intermode spacing, and N represents the number of oscillating
longitudinal modes of the resonator.

PROBLEMS g

17.1 Consider a cavity consisting of two plane mirrors separated by a distance
60cm in air (see Fig. 17.2). Calculate the mode number corresponding to the
wavelength 1= 6000 A. Also calculate the frequency spacing between the two
longitudinal modes.

17.2 Alaser cavity consists of two mirrors separated by a distance 10 cm in air. The
laser beam has a central frequency of v= v, =6 X 10" Hz and two frequencies
on ecither side of the central frequency. Calculate the frequency spacing
between the longitudinal modes and the corresponding mode numbers.

17.3 Consider two concave mirrors M; and M, atz=z; =—d, and atz =z, = +d,
respectively (see Fig. 17.3). We are assuming the origin somewhere between
the mirrors so that both d; and d, are positive quantities. Thus, the distance
between the two mirrors is given by d = d; + d,. We assume a Gaussian beam
propagating along the z-direction whose amplitude distribution on the plane
z=01is given by

2 2
X +y :| (25)

u(x,y) =aexp {— 3
Wo
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implying that the phase front is plane at z = 0; the parameter wy, is the spot size
and also called the beam waist. As the Gaussian beam propagates along the
z-direction, the spot size and the radius of curvature of the wavefront change

and are given by:
’ 2
z o
w(z) =wq 1+E and R(z)=z+; (206)

24
/4
where o= /'L;V % For the Gaussian beam to resonate between the two mirrors,
show that we must have
2 Ad
wg = (1- (27)
O m(g+g,-2812) 818:(1-8182)
where, g =1- Ri1 and g,=1- Riz (28)
17.4 In continuation of the previous problem, show that for w, to be real we must
have
d d
<{l-—1{1-=—1<
O_( Rl][ sz_l 29)
Plot the stability diagram.
17.5 (a) Consider a simple resonator configuration . R

consisting of a plane mirror and a
spherical mirror separated by a distance
d (see Fig. 17.4). Show that

Y 50 cm

d |(R

wo= s (g - 1) (30) Fig.17.4 A simple resonator
consisting of a plane

(For R <d, wy will become imaginary and mirror and a concave

resonator will become unstable). mirror.

(b) For a typical He-Ne laser (1 = 0.6328
um) we may have d = 50 cm, R = 100 cm.
show that the resonator configuration is well within the shaded region of
the stability diagram. Calculate the spot size wy.

(c) If we increase R to 200 cm, what will be the spot size wy?

17.6 Consider a simple resonator configuration consisting of two spherical mirrors
separated by a distance d = 1.5 m with R; = 1.0 m and R, = 0.75 m. Show that
the resonator configuration is very much stable. For A = 1 um, calculate the
spot size wy.

17.7 Calculate the values of g, g, and wy, for

(a) A symmetric concentric resonator with Ry = R, = % so that the center of
curvature of both mirrors are at the center.

(b) A symmetric confocal resonator with R} = R, = d so that the center of
curvature of both mirrors are at the pole of the other mirror.

(c) A resonator with plane parallel mirrors.
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17.8 Determine the MKS units of u(®), 4 and B.
[Ans. Js m_3; Jm_3; s_l; m’ J_ls_z].
17.9 For an optical source at thermal equilibrium, 7'~ 10° °K with @ =~ 3.8 x 10"

Hz (corresponding to A = 5000 A), calculate the ratio of the number of
spontaneous to stimulated emissions.

17.10 For the 2P — 1S transition in the hydrogen atom calculate the frequency of the
transition @. The lifetime of the 2 P state for spontaneous emission is given by:

tp=1.6%x10"s

Calculate the Einstein 4 and B co-efficients. Assume 7 = 1.
[Ans. @~ 1.5%x 10"® Hz, By; =4.2x 10* m? 1 s
17.11 Consider the D, line of Na(A = 5890 A)

(a) The spontaneous emission lifetime 7y, = 16 ns. Calculate the natural line
width AVN and AXN

(b) Assume 7= 500 °K. Calculate Avy and AAj,.
[kp ~ 1.38 X 1072 J/°K; My, = 23 My; My~ 1.67 x 1077 kg.
[Ans. Ady= 10" A; Adp=0.02 A]

17.12 In a He-Ne laser the pressure of gas is typically 0.5 Torr; Torr is a unit of
pressure and 1 Torr = 1 mm of Hg = 133 Nm™. Assuming the atomic mass
M=20x1.67x107"% kg, the radius of the atom a ~ 0.1 nm, 7= 300 K calculate
the mean collision time ..

17.13 In a CO, laser (49 = 10.6 um), the laser transition occurs between the
vibrational states of the CO, molecule. At 7= 300° K, calculate the Doppler
linewidth AVD and A},D [MCO2 =44 MH]

[Ans. Avp = 53 MHz; Adp =02 A]

17.14 (a) Consider a He-Ne laser with cavity life time 7. = 5 X 10 8s.1f R;=1.0and

R,=0.98, calculate the cavity length d; assume rny = 1 and o = 0.
(b) Calculate the passive cavity line width Av, and compare with the
longitudinal mode spacing ov.
[Ans. (a) d = 15 cm (b) Av, = 3.2 MHz; ov =1 GHz]

17.15 In a typical He-Ne laser (A = 6328 A) we have d = 20 cm, R; = R, = 0.98,

oy =0,1,= 1077s, Avp = 1.3 x 10° Hz and ny = 1. Calculate 7, and (N5 — N} ).
[Ans. 33 ns; 8.8 x 10% cm™)

17.16 Consider a He-Ne laser (4o = 0.6328 um) with d =30 cm, ng = 1, Ry = 1,
R, =0.99. Calculate the passive cavity linewidth Av, and the passive cavity
life time 7,.. You may assume &, = 0. [Ans. 0.8 MHz, 0.2 us]

17.17 (a) For the He-Ne laser described in the previous problem, if the power level

is 0.5 mW, calculate the ultimate linewidth (V).
(b) Discuss the stability of the mirror position Ad to obtain the ultimate
linewidth.

17.18 Limiting aperture are used to suppress higher order transverse mode
oscillation. Consider a Gaussian beam of waist size wy = 0.5 mm and a total
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power of | mW. An aperture of radius 1 mm is introduced at the position of
the waist. Calculate the power which goes through the aperture.

17.19 A 100 cm long laser having an oscillating bandwidth of 1500 MHz is mode
locked. What would be (a) the approximate pulse width of the mode locked
pulses, (b) the pulse repetition rate, and (c) the length of the mode locked
pulse in free space.

17.20 Consider a He-Ne laser with Doppler broadened linewidth of 1500 MHz. What
should be the length of the resonator cavity so that only a single longitudinal
mode would oscillate? Assume that there is an oscillating mode at the line
center.

17.21 Anatomic transition has a time width of Av=10® Hz. Estimate the approximate
value of g(w) at the center of line.

17.22 There are 10" photons in the cavity of an Ar-ion laser oscillating in steady
state at the wavelength of 514 nm. If the laser resonator is formed by two
plane mirrors of reflectivities 100% and 90%, separated by a distance of
50 cm, calculate the output power and the energy inside the cavity. Neglect
internal losses of the cavity. [Ans. P,=1.22 W, E =38 n]]

17.23 Consider a laser with plane mirrors having reflectivities of 0.9 each and of
length 50cm filled with the gain medium (see Fig. 17.2). Neglecting scattering
and other cavity losses, estimate the threshold gain coefficient (in m™)
required to start laser oscillation.

17.24 In atypical He-Ne laser the threshold population inversion density is 10°cm™.
What is the population inversion density when the laser is oscillating in steady
state with an output of | mW?

17.25 Figure 17.5 shown the output from a mode locked laser as a function of time.

10°

P(W)

T T T t(nS)
10 20 30
0.1 ns
Fig. 175

(a) What is the length of the laser resonator (assuming an internal refractive
index of unity)?
(b) What is the approximate number of oscillating modes?
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(c) What would be the average output power when the same laser is operated
without mode locking?
(d) What should be the frequency of a loss modulator placed inside the
cavity for mode locking?
17.26 The gain co-efficient (in m ') of a laser medium with a center wavelength of
500 nm depends on frequency through the following equation:

2
7O) = ¥ () exp[—4{v o "} }

where vj is the center frequency, y(vy) = 1 m ™! and Av = 3 GHz. The length
of the laser cavity is 1 m and the mirror reflectivities are 99% each. Obtain the
number of longitudinal modes that will oscillate in the laser. Neglect all other
losses in the cavity.

17.27 Consider a three level laser system with lasing between levels £, and E,. The
level E, has a lift time of 1 us. Assuming the transition E5 -> E, to be very
rapid, estimate the number of atoms that needs to be pumped per unit time
per unit volume from level E; to reach threshold for achieving population
inversion. Given that the total population density of the atoms is 10" ¢m 3.

17.28 Consider an atomic system as shown below:

3 IE3:36V
2 E,=1leV
| — E =0eV

The A co-efficient of the various transitions are given by
A3y =7x107s7", A3, =107s7!, 45, = 10%s7!

(a) Show that this system cannot be used for continuous wave laser
oscillation between levels 2 and 1.

(b) What is the spontaneous lifetime of level 3?
(c) If the steady state population of level 3 is 10'% atoms/cm’®, what is the
power emitted spontaneously in the 3 — 2 transition?

\’% SOLUTIONS

3x10° m/
171 ve 222 =55 10" Hz
6x10""'m
5% 10" x 2 x 60
Thus, m ~ —————— =2 x 10° and the frequency spacing between

3x10"
two adjacent modes will be given by

3x10%m/s

Lo 22 e 8Hz=
24" 2x06m 2.5x 10" Hz =250 MHz.

ov =
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17.2 The spacing of two adjacent modes will be

_c _
8v =57 = 1500 MHz

Thus, the output beam will have frequencies
Vo—20V, Vo— 0OV, vy, Vo + 6V and vy +26v

corresponding to m = 399998, 399999, 400000, 400001 and 400002,
respectively. Figure 17.6 shows typical longitudinal modes of a laser.

UL

| | | | | | | J
1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59

— A(um)

Fig. 17.6  The output of a typical multi-longitudinal mode (MLM) laser [Adapted from Ref. Lil]..

17.3 The poles of the mirrors M; and M, are at z = z; = —d, and at z = z, = +d,
respectively (see Fig. 17.3). Now, as the Gaussian beam propagates along the
z-direction, the spot size and the radius of curvature of the wavefront change
and are given by:

2
_ f z = 5+
w(z) =wg4|l + o and R(z)=z+ B

. For the Gaussian beam to resonate between the two mirrors,

2 4
"o
/12

where o =

the radii of the phase front (at the mirrors) should be equal to the radii of
curvatures of the mirrors:

o
~R =—d1—dﬁl and R2=d2+d—2
We have used the sign convention such that for the type of mirrors shown in
Fig. 17.3, both R and R, are positive. Thus,
o =d|(R;—dy) = dy (R, — dy)
If we use the relation d, = d — d|, we would readily get
(Ry,—d)d (R —d)d

h =R TR, —2d R+R,-2d

and d,=
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We define

and we

From the above equations we may write R; = % and R, = —g
— & — &

would obtain

_ _&l-g)d . o __&l-g)d

b &t+&-28% : &1t+8 288

212,d°(1- g,8,)

Thus, o :dl(Rl_dl):
(g1+8g- 2g1g2)2

2. 4
W, . .
% we get for the spot size at the waist

/12
Ad
W(2) = \)glgz(l—glgz)

(g + g —282)

Since o=

17.4 For wy to be real we must have 0 < g, g, <1, or

d d
osi-4]1-)s1

The above equation represents the stability condition for a resonator consisting
of two spherical mirrors. Figure 17.7 shows the stability diagram and the
shaded region correspond to stable resonator configurations.

Planar

g E [glzgzzl]

Confocal

()

(g 1= &7 —1] {
Concentric

Fig. 17.7  The stability diagram for optical resonators. The shaded region corresponds to
stable configurations.

17.5 (a) For a resonator configuration consisting of a plane mirror and a spherical
mirror separated by a distance d, we will have R; = e and R, = R giving
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gi=landg,=1- % Simple manipulations of Eq. (27) would give

Ad |[R
W% 7 (E_l)

(b) When d = 50 cm, R = 100 cm, we get g; = 1, g, = 0.5 and the resonator
configuration is well within the shaded region of Fig. 17.7 and is very
much stable. Further, g;g, = 0.5 and wy = 0.32 mm.

(c) If we increase R to 200 cm, we will get wy = 0.38 mm.

17.6 Ford=15m,R;=1.0m and R, =0.75 m, we get g; =-0.5, g, =—1.0 and
212> =0.5. Thus, the values of g; and g, are such that the resonator configura-
tion is well within the shaded region of Fig. 17.7 and is very much stable. For
A=1um, we get wy = 0.31 mm.

17.7 When g; =g, = g, Eq. (27) simplifies to

> _Ad |[1+g
wo T T l1-g

(a) For the symmetric concentric resonator R; = R, = % and g; =g, =—1.
Thus, g2, = 1 and w, becomes zero.
(b) For the symmetric confocal resonator Ry = R, = d and g; = g, = 0. Thus,

g1g2=0and
W [Ad
0 T

(c) For plane parallel mirrors Ry = R, = oo, g = g, = 1 and w, becomes
infinity.

All three configurations discussed above (concentric, confocal and
planar) lie on the boundary of the stability diagram so that a small
variation of the parameters can make the system unstable and will have
very large loss.

17.8 (a) u(w)dw = Radiation energy per unit volume in the frequency interval @

and @+ dw
Thus, unit of u(w)dw=Im > = [u(w)] =Jsm>
(d) [4]=s"
(¢) Number of stimulated emissions per unit time per unit volume
=N, By u()

= [N, Byju(w)] = s 'm. Since [N,] = m>; [u(w)] = Jsm >, we have
m>Jsm? [By1]= s'm? = [Byi]= m’J s

17.9 At thermal equilibrium, the ratio of the number of spontaneous to stimulated
emissions is given by;

R= 4y N, = kT _ |
B, Nyu (o)
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Thus, at thermal equilibrium at a temperature 7, for frequencies, @ >> kzT/h,
the number of spontaneous emissions far exceeds the number of stimulated
emissions. For an optical source at 7= 1000 K

kpT — 1.38x107(J/K) x 10° (K)

~13x10"s!
h 1.054 x 10734(Js)

Thus for @>> 1.3 x 10'*s™!, the radiation would be mostly due to spontaneous
emission. For A = 500 nm (which corresponds to the yellow region of the
spectrum) @ = 3.8 X 10"°s ! and

R =e*?=50x%x10"7

Thus at optical frequencies, the emission from a hot body is predominantly
due to spontaneous transitions and hence the light from usual light sources is
incoherent.

17.10 The energy levels of the hydrogen atom are given by

2
E =_ nz’ i
! 2n*h? |\ 47gg
where 1 is the reduced mass, g(=1.6 X 1077 C) represents the charge of
electron, £(=8.854 x 10712 MKS units) is the dielectric permittivity of free

_h
space and h = i

where h = 6.626 x 10*Js is the Planck’s constant. For the n = nyton=n,
transition the frequency of the emitted line will be given by

uz*( ¢* (1
hv = E — E = — || — . — e —
oo 2n% | 4mg n o

1 v 1 2| 1 1
Thus, —=—=—(E, —E,)=RZ (—2——2J
A ¢ het ™ 2 noon
) \2
H q 7.1 .
where R = 3 = 1.0973 X 10'm " is known as the Rydberg
4rhic | 4Ey
constant.
For the 2P — 1§ transition in the hydrogen atom n; =2, n, =1 and Z=1 and
we get
A=1215%107m and @=27v= % ~1.55% 10'* Hz. (ho ~ 10.2 ¢V)
The lifetime of the 2 P state for spontaneous emission is given by:
fyy = —— =~ 1.6x 1075
YAy .
Thus, Ay =6x10%s7!
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71_203
and By =554y =41x10"m’1"'s?
hw’ny

where we have assumed ny = 1.

17.11 The spontaneous lifetime of the sodium level leading toa D line (A= 589.1 nm)
is 16 ns. Thus, the natural line width (FWHM) will be

Aoy =L:;_9=6.25><107s_1 = Avy=10"s"'=10 MHz.
tsp 16 X107 7s
Now, V= % = Av= /I%A/l (ignoring the sign)
2 5.89 x107°)>
Thus, Ady = A Av= GBI T)” 107em =10 2em=10"*A
c 3x10'°
1/2
4| 2kyT }
Awp = == =L—1n2
P /10[ M

23 1/2
3 47 2x1.38 %107 x 500 X In2
5.89 %1077 23x1.67x107%

A®
Thus, Awp=10"s" = Av,= ZnD:1.6><109s’1

2 ~12
and Adp =2 Avp=2x10"7m=0.02A
C
1/2 1/2
Mk, T
17.12 rc=i(3) (MkgT) ~ 32)
8w \ 3 pa
p=05Torr=0.5x 133 Nm?2, M=20x1.67x 102 kg, a = 0.1 nm,
T=300K.
Thus,
1 (2)”2 \/20 x1.67 x 10727 (kg) x 1.38 x 107 (JK ") x 300 (K)
. =L[(2
© 8m\3 0.5%133(Nm2) x[0.1x 107" (m)]?

~107°s= 1000 ns.
17.13 29=1.06x10"m

1/2
2 [ZkBTanT/Z 2 [2 x1.381072 x 300

% 0.693

Avp = — =
P2l M 1.06x10°° | 44x1.67x10°%

=53 x 10° Hz = 53 MHz

2
Adp = ’%AVD ~02x10""m=02A4

17.14 (a) Si _o, L= <m
.14 (a) Since o = T T g

c

[~In Ry R,]
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~3x10”%x5x107
- 2

= d [~In (0.98)] = 15cm

(b) Aw, ~ L1076 = Ay, = Ay _ 3.2 x 10%s7!. The longitudinal
L ’ 2r ' ' g
mode spacing is giving by:

3x10'°
5V=§= o~ 10"Hz=1GHz
1 c/n
17.15 t—=7[—lnR1R2]
3x10"°
= Sz0 [ (0.98x0.98)] =33 ns
o*n ly Art e " ty a,,
(N2 = N 3 === =—
woc’t.g (@) A nct.g(wy) Actg(wy)
1/2
2 (In2 o
g(wp) _271'Av( p. ) ~1.15x 107"

4x1077

Thus, (N, — N, =
(2= N (6328 X107 ) x3x 10" x33x 10 "% 1.15 x 1010

~88x10%cm™
10

1 c/n
2% 30

17.16 =~

c

20,d—InR\Ry] = [In(0.99)] = £, =2 x 107s = 0.2 s.

8wy~ = AV~ —=08MHz

c c

1717 @) (6v),, = 27 (AV,)* hv, 27 (0.8x10°)% x 6.626 x 10>* x 3 x 10°
L P 0.5%1072x 0.6328 x 10~°

~2.5x 107 Hz

(b) Change in frequency Av caused by a change in length Ad is given by
Av _ Ad
v d
Thus, for Av to be = (6Vv),, we must have

Sv Sv -3
Ad_ Wy y0 Oy 5.5><10 6
d v e/l 3x10%/0.6328 x 10~

~1.6x10"°m

which is less than nuclear dimensions.
17.18 We assume a Gaussian intensity distribution of the form

x 30

— AL
I=1ye 0
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The power transmitted through an aperture of radius a centered on the
Gaussian beam is given by

P= j.rdr Td@] (r)= 27tj.1(r)rdr
0 0 0

Substituting and integrating we obtain
P =Py(1—e <)

where Py is the total power in the beam. Using the values given in the problem
we obtain P = mW.
17.19 The mode spacing of the laser cavity is
<
C2L
In a gain bandwidth of 1500 MHz, the number of oscillating modes would
be 5.

(a) The approximate pulse width is the inverse of the oscillating bandwidth
and is 0.67 ns.

(b) The pulse repetition rate is the inverse of the time taken for one roundtrip
through the cavity. For a 1 m long cavity this corresponds to 3 X 108
pulses per second.

(c) The length of the mode locked pulse is the product of the speed of light
and the pulse duration. Hence for this case it is 200 km.

Av =300 MHz

17.20 The intermode spacing should be larger than half of the gain bandwidth since
there is a mode at the center of the line. Hence
¢ 8
2L >1.5x10
which gives L <20 cm
17.21 Since g(w) is normalised the approximate value of g(w) at the line center
would be the inverse of the transition bandwidth. The given bandwidth is
Aw=21x10%s7", Hence,

1 8
=~—x10%s.
g(wp) o S

17.22 The output power is given by
nhv
Poy = T
where 7, is the cavity lifetime, » is the number of photons present inside the
cavity and v is the frequency. The cavity lifetime is given by

Ti = % (-2aL —In RR)

c
Substituting the given values we obtain Py, = 1.22 W
Energy inside the cavity is nhv =38.6 nJ
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17.23 The threshold gain co-efficient is the value of gain when the gain compensates
the losses. Hence, for the given cavity, it satisfied the following equation:

e’ R-e"™.R =1

where yis the gain co-efficient and R the reflectivity of each mirror. Hence, we
obtain

- lhr=_L -
Y 2lnR 0.51n0.9m

17.24 The population inversion density when the laser is oscillating in steady state is
equal to the population inversion density at threshold. Hence, in this case, the
population inversion density is 10%cm >,

17.25 (a) The repetition frequency is given by Eq. 8v=¢/2L. From Fig. 17.5 we see
that 1/6v = 10 ns. Hence, the length of the cavity is 1.5 m.

(b) The time between the peak of the pulse and the first zero is given by the
inverse of the bandwidth of the pulse. In this case it is 0.05 ns. The time
between the pulses is the inverse of the intermode spacing which from
the figure is 10 ns. The number of oscillating modes is given by the ratio
of the oscillating bandwidth to the mode spacing. Hence, the number of
oscillating modes is 200.

(c) The peak power under mode locking is N times the average power without
mode locking where N is the number of modes. Hence, in this case the
average power when the laser is operated without mode locking would be
10°/200 = 5 kW.

(d) The frequency of the mode locker should be equal to the mode spacing.
Hence, in this case it should be 100 MHz.

17.26 We need to first calculate the bandwidth over which the gain exceeds the loss
of the cavity. For this we first need to evaluate the loss co-efficient. Since
we can neglect the internal losses of the cavity, if we represent the loss
co-efficient as o we have

1
Ot=—zlnR1R2

Substituting the values we obtain .~ 0.01 m .
The gain bandwidth will be the frequency range where the gain exceeds the
loss. Hence, if the gain becomes equal to loss at v= v, + §v then we have

(6v)*
4(Av)?

0.01 = y(vy) exp l:—

Substituting the values we obtain 6v=3.22 GHz. Hence, the gain bandwidth
would be 6.44 GHz.
The spacing between the modes of the given cavity is 300 MHz. Hence, the
number of oscillating modes would be 6.44/0.3 ~ 21 modes.
17.27 Since the transitions from level E; are very rapid we can assume that the
population of that level is zero. At threshold the population of the level £ and
E, would be equal and hence the net transition between these two levels will

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Lasers 241

be just the spontaneous emissions from E, to £;. Thus, the rate at which atoms

have to be transported from level E; to the upper level should be equal to the

rate at which atoms are dropping spontaneously from £, to £ which is just the
inverse of the spontaneous life time of £,. Hence the rate of pumping should
be 10° per second.

17.28 (a) For continuous wave operation of the three level system, we should have
Az, > Ay;. Since in this case this condition is not satisfied, this cannot be
used for continuous wave laser operation.

(b) The total spontaneous emission rate from level 3 is the sum of the
spontaneous rates from 3 to 2 and 3 to 1. Hence, the total rate is given by
8x 107 s™!. This corresponds to a life time of 12.5 ns.

(c) The power emitted spontaneously in the transition 3 -> 2 is N3 43,

(E;— E,). Substituting the values, we obtain a power of 2.24 x 10'® W/m”,
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Fiber Optics I: Basic Con-
cepts and Ray Optics Con-
siderations in Multimode

Fibers

o o

* A Quick Review *
18.1 | STEP INDEX FIBER

The refractive index distribution (in the transverse direction) of a step index fiber is
given by (see Fig. 18.1)
M

n=mn O<r<a
=n, r>a

where n; and n,(<mn;) represent respectively the refractive indices of core and
cladding and a represents the radius of the core. We define a parameter A through the

following equations

nt —n?
A=——2 ()
2n;
When n; = n,, i.e., when A << 1 (as is true for most silica fibers)

m—nm nmn-m
A A 3)
ny ny

A=

n(r)

(a) (b)

Fig. 18.1  (a) The refractive index variation of a step-index fiber. (b) The transverse cross-section of
the fiber.
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The numerical aperture of the fiber is given by the following equation:

NA=sinim=,ln12—n22 “)

where i, is the maximum value of the angle of incidence of the ray (that it makes
with the z-axis) to be guided through the fiber (see Fig. 18.2).

Air
Cladding (n = n,) B

Cladding
Air

Fig. 18.2  If the angle of incidence (at the core-cladding interface) is greater than the critical angle, it
will undergo total internal reflection and will guided through the optical fiber.

One defines the normalised waveguide parameter

2 2
V= /,t—oa\/nlz—ng = ToanI\/ZA )

where A is the wavelength of operation. For V> 10, the total number of modes in a
step index optical fiber is approximately given by

N = %V2 (Number of modes for a multimode step-index fiber) (6)

Thus, for V' = 10, the fiber will support approximately 50 modes. When the fiber
supports such a large number of modes, the fiber is said to be a multimode fiber and
one can use ray optics to calculate intermodal dispersion which is also known as ray
dispersion which is given by:

i =

L ; 3 ! ;
AT, = me A (Ray dispersion for a multimode step-index fiber) (7
c

182 | ATTENUATION

The attenuation in an optical fiber is usually measured in decibels (dB). If an input
power P; results in an output power P,, then the loss in decibels is given by

P
o =10 log;g [ P’“p“t ] (8)

output

Thus, if the output power is only one hundredth of the input power, then the loss is
=20 dB etc. Further, the power level of a beam is measured in dBm which is defined

as
P(dBm) =10log;q P (mW) 9)

Thus, e.g., 0.2 W =200 mW < =23 dBm etc. Now,
Poutput (dBm) = Pinput (dBm) - OC(dB) (10)
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183 | MATERIAL DISPERSION

For an optical pulse having a spectral width A, the pulse broadening due to the
dependence of the refractive index » on wavelength is given by [see Eq. (10) of

Chapter 16].
LAA«O 2 d2n
At, = - A — 11
Agc { 0 d)»g (ah

where L is the length of the fiber, ¢ = 3 X 108 m/s is the speed of light in free space, A,
is the free space wavelength and the quantity inside the square brackets is dimension-
less. The material dispersion co-efficient (which is measured in ps/km-nm):

AT, 10* l: 2 d*n

—} ps/km.nm (Material Dispersion Co-efficient) (12)

D, =
O dA

LAd, 37

where we have used ¢ =~ 3 x 108 m/s = 3 x 107/ km/ps A, is measured in um and
the quantity inside the square brackets is dimensionless. The quantity D,, is usually
referred as the material dispersion coefficient (because it is due to the material
properties of the medium) and hence the subscript m on D; it is tabulated (for pure
silica) in Table 18.1. It represents the pulse broadening in picoseconds per kilometer
length of the fiber per nanometer spectral width of the source. The total dispersion

is given by
AT = (AT,)? + (AT, (13)
2
In Table 18.1 we have given the variation of n(4,), ﬂ, dan and D,, for pure silica.
d2 i

The maximum permissible bit rate (B,,), in one type of extensively used coding
[known as NRZ (Non-Return to Zero)], is given by

0.7
max ~ E (14)
Table 18.1 Values of # and D,, for pure silica’
dn il d'n =2
Ao (Um) n(2o) di, (wm™) > UM™) | p (ps/nm.km)
dAy

0.70 1.45561 -0.02276 0.0741 -172.9
0.75 1.45456 —-0.01958 0.0541 -1353
0.80 1.45364 —-0.01725159 0.0400 —-106.6
0.85 1.45282 —-0.01552236 0.0297 —-84.2
0.90 1.45208 —0.01423535 0.0221 —-66.4
0.95 1.45139 —-0.01327862 0.0164 -51.9
1.00 1.45075 —-0.01257282 0.0120 -40.1

Contd.

" The numerical values in the Table correspond to the refractive index variation as given in

Ref. Pal (see Solution 16.5).
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Table 18.1 Contd.

1.05 1.45013 —-0.01206070 0.0086 -30.1
1.10 1.44954 —-0.01170022 0.0059 -21.7
1.15 1.44896 —0.01146001 0.0037 -14.5
1.20 1.44839 —-0.01131637 0.0020 -8.14
1.25 1.44783 —-0.01125123 0.00062 -2.58
1.30 1.44726 —-0.01125037 —0.00055 2.39
1.35 1.44670 —-0.01130300 —-0.00153 6.87
1.40 1.44613 —-0.01140040 —-0.00235 10.95
1.45 1.44556 —0.01153568 —-0.00305 14.72
1.50 1.44498 —-0.01170333 —-0.00365 18.23
1.55 1.44439 —0.01189888 —0.00416 21.52
1.60 1.44379 -0.01211873 —-0.00462 24.64
18.4 | PARABOLIC INDEX FIBER

The refractive index distribution (in the transverse direction) of a parabolic index
fiber (often abbreviated as PIF) is given by (see Fig. 18.3)

2
#Oﬂ=n5b—2A(§)}0<r<a

2
=n; r>a

(15)

where n; represents the refractive index on the axis of the core and n,(< n) represents
the refractive index of cladding and a represents the radius of the core. The parameter
A, and the normalised waveguide parameter V' is again defined by Egs. (2) and (5)
respectively. For V' > 10, the total number of modes in a parabolic index optical fiber
is approximately given by

1

Nz4w (16)

n(r)

n

Core

Cladding
n;

a

Fig. 18.3 The refractive index variation of a parabolic-index fiber.
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For V' = 10, the fiber will support approximately 25 modes. When the fiber
supports such a large number of modes, one can use ray optics to calculate intermodal
dispersion which is also known as ray dispersion which is given by:

2
At = ’lzz_L(u_) Pulse dispersion in multimode PIF (17)
c ny

When A << 1, the above equation can be written as

L
At~ %Az (18)

185 | POWER LAW PROFILE

A broad class of multimoded graded index fibers can be described by the following
refractive index distribution

q
nz(r)=n12{l—2A(£) }; 0<r<a
a
_2_ 2 .
=n5 =ni(1-2A); r>a (19)

where r corresponds to a cylindrical radial
coordinate, 1, represents the value of the w(r)
refractive index on the axis (i.e., at » = 0), ”12
n, represents the refractive index of the \ \
cladding and a represents the radius of g=1 \
the core. Equation (19) describes what is ny ‘
usually referred to as a power law profile
or a g-profile; g =1, ¢ =2 and g = =
correspond to the linear, parabolic, and step
index profiles, respectively (see Fig. 18.4).
The normalised waveguide parameter is
again defined by Eq. (5). The total number Fig, 18.4 Power law profiles for the refractive
of modes in a highly multimoded graded index distribution given by Eq. (19).
index optical fiber characterised by Eq.

(19) are approximately given by

1
|
1
1
|
1
1
|
1

r

a

_ q 2
N~2(2+q)V (20)

Thus, a parabolic index fiber (¢ = 2) with ¥ = 10 will support approximately
25 modes. Similarly, a step index fiber (¢ = eo) with V= 10 will support approximately
50 modes. When the fiber supports such a large number of modes, the fiber is said to
be a multimode fiber.
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The time taken by a ray to propagate through a length L of a multimode fiber
described by a g-profile (see Eq. 19) is given by [see Ref. An1 and Chapter 5 of

Gh 5]
~ 5. B
7(B) = (/ﬂ“ﬁjl 21)
2 ant
where, A _c(2+q)’ _c(2+q) (22)

and for rays guided by the fiber n, < ﬁ <n.

PROBLEMS g

18.1 Calculate the critical angle for (a) the glass-air interface (n; = 1.5, n, = 1.0)

and (b) for the glass-water interface, (nl =1.5,n,= %)

18.2 Consider a step index fiber with n; = 1.5, A=0.015 and a = 25 pm placed in
air. Calculate n,, NA and the maximum acceptance angle (i,,).
[Ans. 1.477; 0.26; 15°]
18.3 Incontinuation ofthe previous problem, consider the same step index immersed
in water of refractive index 1.33. Calculate the maximum acceptance angle.
[Ans. 11.3°]
18.4 Consider a 40 km fiber link (with a loss of 0.4 dB/km) having 3 connectors in
its path and each connector has a loss of 1.8 dB. Calculate the total loss in dB.
18.5 The power of a 2 mW laser beam decreases to 15 uW after traversing through
25 km of a single mode optical fiber. Calculate the attenuation of the fiber.
[Ans. 0.85 dB/km]
18.6 A5 mW laser beam passes through a 26 km fiber of loss 0.2 dB/km. Calculate
the power at the output end.
[Ans. 1.5 mW]
18.7 Consider a 5 mW laser beam passing through a 40 km fiber link of loss
0.5 dB/km. Calculate the output in dBm and in mW.
18.8 For pure silica the refractive index variation in the wavelength domain
0.5 wm < Ay < 1.6 um can be assumed to be given by the following approxi-

mate empirical formula b

A
where Cy = 1.451, a = 0.003 (um) 2, b = 0.003 (um)* and A, is measured in
um. Calculate the group velocity at Ay = 0.80 um and at Ay = 0.85 um and
show that the group velocity attains a maximum value at Ay = 1.32 um.

18.9 Consider an LED operating at 0.85 wm with a spectral width of 50 nm. At this
wavelength

n(Ag) = Co—ald+ (23)

d*n =53
47 £ 0.0297 (um)
dig

Calculate the material dispersion in ns/km.
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18.10 Consider again an LED operating at 1.3 um with a spectral width of 20 nm. At
this wavelength
d*n

il ~0.00055 (um) >

0

Calculate the material dispersion in ps/nm.
18.11 In the IV generation optical communication systems, one uses laser diodes
operating at Ay = 1.55 um where
d*n -2
—— = 0.0042 (um)
dar;
Assume a spectral width of A4y = 2 nm and calculate the material dispersion.
18.12 Consider a step index fiber with n; and n, representing the core and cladding
refractive indices, respectively. Let 60 be the angle that the rays make with the
z-axis. Show that all rays for which
<6, =cos”! (n—z) (24)
n
will get guided through the fiber. Thus, using simple ray optics, calculate the
time taken by each ray to propagate through the length of the fiber and show
that the ray dispersion will be given by:

L
A, E”ITA (25)

18.13 Consider a multimode graded index fiber described by a g-profile (see Eq. 19).
For rays guided by the fiber n, < B < n;. Using Eq. (21), calculate the ray
dispersion in fibers

(a) For the step profile, (g = <),

(b) For the parabolic profile, (g = 2), and

(c) For the optimum profile, (¢ =2 —2A)

18.14 Consider a SIF with #n; = 1.5, a =40 um and A = 0.015 operating at 0.85 um
with a spectral width of 50 nm.

(a) Is this a single mode fiber or a multimode fiber?

(b) Calculate ray dispersion and using the value of material dispersion (from
Problem 18.10), calculate total pulse dispersion.

18.15 In continuation of the previous problem, consider a parabolic index fiber with
n;=1.5,a =40 um and A = 0.015 operating at 850 nm with a spectral width
of 50 nm.

(a) Is this a single mode fiber or a multimode fiber?

(b) Calculate ray dispersion and using the value of material dispersion (from
Problem 18.12), calculate total pulse dispersion and hence the maximum
bit rate.

18.16 Consider fibers with step index profile, parabolic index profile and a triangular
index profile. Show that in the step index fiber and parabolic index fiber, the
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fastest ray corresponds to the one propagating along the axis while for the
triangular profile, the fastest ray corresponds to a ray making the largest angle
with the axis.

% SOLUTIONS

18.1 For the glass-air interface, n; = 1.5, n, = 1.0 and the critical angle is given by

6, = sin”! (%)z 41.8°

On the other hand, for the glass-water interface, n; = 1.5, n, = 4/3 and

0, = sin”! (ﬂj ~62.7°.
15

182 my=n;(1-2A)"%=1.540.97 ~1.477
NA = nf —n} = nN2A = 1.540.03 = 0.260
sini, =0.260 = i,~15°.
0.260
1.33
18.4 The total loss will be 0.4 dB/km x 40 km + 3 x 1.8 dB=21.4 dB.

18.3 nyger SiN iy = \/1f — 13 = sin iy, = =i,~11.3°

-3
185 Lossin dB = 101og;0 o =21 25 = Attenuation = 2-2>
15%10~ 25

18.6 5 mW =6.99 dBm; loss = 0.2 x 26 = 5.2 dB; Power at the output end = 6.99
—5.20=1.79 dBm; Power in mW = 10%17° = 1.5 mW.

18.7 The input power is 6.99 dBm. The total loss is 20 dB. Thus the power at the
output would be —13.01 dBm which is equal to 0.05 mW.

= (.85 dB/km.

. b dn 2 2b
18.8 S ~Cy—alj+— L oy y i)
mce n(%) 0— adAg /lg = )“0 d)vo a lg
_L_L dan | _ L 2, 3b
Thus, T—Z—;[H(ﬂo)—% d—/lo:l —?(C(H—a/lo +_ﬂ,§j

The group velocity attains a maximum value (or, the material dispersion
becomes zero) when

2
dn_o 5 2a+%-0 5 A=132pm
dA; Ao

This is known as the zero material dispersion wavelength.
18.9 AtAy=0.85um

d’n -2
—— = 0.0297 (um)
dr;

giving D,, =—85 ps/km.nm
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the negative sign indicating that higher wavelengths travel faster than lower

wavelengths. Thus for A4y = 25 nm, the broadening of the pulse (due to

material dispersion) will be At,, = 2.1 ns/km.

18.11 In the IV generation optical communication systems, one uses laser diodes

operating at Aq = 1.55 um where,
d*n _
i

The corresponding material dispersion will be given by

0.0042 (um)~>

D,, =+21.7 ps/km.nm

the positive sign indicating that higher wavelengths travel slower than lower
wavelengths. Thus for A4y = 2 nm, the broadening of the pulse (due to material
dispersion) will be A7, = 43 ps/km.
18.12 If we assume that all rays lying between 6 =0 and 6= 6, = cos™! (n—z) [see
n
Fig. 18.2] are present, then the time taken by these extreme rays for a fiber of
length L would be given by

L
Imin = h- corresponding to 6= 0 (26)
2
L
Imax = L corresponding to 6= 6, = cos™' (n_Zj @7
cn, n

Hence, if all the input rays were excited simultaneously, the rays would
occupy a time interval at the output end of duration

mL|(n
ATi = Imax — fmin = 1—|:(_1j - 1j| (28)
c |\ m
or, AT; = MA
c
18.13 For the step profile, g = oo and
2 ~ 2
4=0; and B="1 o (=1L (29)
¢ cny
2 n’ 3 n
Thus,  Toyex = T(B =my) = jL and Ty, =7(B =n))= ?IL (30)
2
- m (n—ny)
giving AT = Ty — Tgyin = —~——2=L 3D
c  m

which is the same expression as given by Eq. (23). For the parabolic profile,

q=2and
1 nt 5 _ M0
A=—; and B=— = 1(f)=—1L (32)
2c 2c cny
- 1 l12
Thus, Toax = T(B=m)==|nm+—L|L
2c 1y
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~ n
and Tmin = T(ﬂ =m)= ?IL (33)
2
. n, (n —n
giving AT = Ty — Togin = 2_2c(1n—2j L (34)
)

which is the same expression as given by Eq. (17). The calculation of the
optimum value of ¢ (which would give minimum ray dispersion) requires a
plot of r(ﬂ) as a function of 8 for different values of ¢. The details are given
in References An1 and Gh5 and the minimum dispersion occurs for g = 2 —
2A where the pulse dispersion is given by:

2
n
At (optimum profile) = —C(%j L (35)
2

18.14 V——anlx,/ ——><O4O><15\/0.03z

Smce it is a step index fiber, the number of modes will be %Vz = 2965;

thus it is a highly multimode fiber. At 0.85 um, D,, = —85 ps/km.nm (see
Problem 18.10); thus for AAy = 50 nm, |AT,,| = 85 X 50 ps/km = 4.2 ns/km.
The ray dispersion (or the intermodal dispersion) is given by [see Eq. (17)]:

3
AT = MAzl.leg
c 3%10

where we have taken L = 1 km = 1000 m. Thus At; = 75 ns/km.

Finally, (AD) = (AT,)> + (AT,,)? =75.1 ns/km

This gives a maximum bit rate of
Binay = —— 21— bits-km/s ~ 9 Mbits-km/s
75.1x10~

Thus a 10 km link can at most support only 900 kbits/s.
18.15 (a) As in the previous problem

V——anlxl ><040><15\/00 =77

Since it is a parabolic index fiber, the number of modes will be

x0.015=75%10"%s

%Vz = 1482; thus it is again a highly multimode fiber.

(b) Since the operating wavelength and the spectral width of the source are
the same as in the previous problem, At,, = 4.2 ns/km. However, the ray
dispersion (or the intermodal dispersion) is now given by [see Eq. (21)]:

ml o 15x10°

palidres 108><(0.015)2=0.56><10“’s
X 3 X

AT,‘ =
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which is much less than in the previous problem. The total dispersion is
therefore given by

(Ar)= \/ (AT)* + (AT,)* = \/(4.2)2 +(0.56)* ~ 4.2 ns/km

This gives a maximum bit rate of

— 97 bits-kmis = 167 Mbits-km/s

T 42%10”

Thus, a 10 km link can at most support about 17 Mbits/s.
18.16 For a step index fiber

max

2
= n
T = —,:L
B B
For a parabolic index fiber
2
By = |25+ | L
- i)
For a triangular profile fiber
2
~ ~ n L
=12 —.1. =
-2

The axial ray corresponds to 8 = n; and the ray making largest angle with
the axis corresponds to 8 = n,. Calculating ¢ for the two extreme rays for
the different profiles, it can be shown that for the step index profile and the
parabolic index profile, the axial ray takes less time to travel along the fiber
than the rays making the largest angle with the axis while the contrary is true
for the triangular profile fiber.
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and Concept of Modes

k A Quick Review ﬁ

We consider a waveguide with refractive index depending only on the x coordinate:
nt =n’(x) (1)

When the refractive index variation depends only on the x coordinate, we can always

choose the z-axis along the direction of propagation of the wave and we may, without
any loss of generality, write the solutions of Maxwell’s equations in the form

E=Ee' @ P 2)

F =H(x)e' @B 3)

The above equations define the modes of the system. Thus,

modes represent transverse field distributions that suffer a phase change
only as they propagate through the waveguide along z.

The quantity 3 represents the propagation constant of the mode. If we substitute
the above solutions in Maxwell’s equations, we will obtain two independent sets of
equations. The first set of equations correspond to nonvanishing values of £, H, and
H_ with E,, E. and H,, vanishing, giving rise to what are known as TE modes because
the electric field has only a transverse component. The second set of equations
correspond to nonvanishing values of E,, E. and H,, with E,, H, and H, vanishing,
giving rise to what are known as TM modes because the magnetic field now has only
a transverse component.
For TE modes, E,, (x) satisfies the following differential equation

dz
b;y + [kgn’(x) — B*1E, =0 )
dx

where, ko = w\glty = % %)

1

VEoHo

Once E, (x) is known, we can determine #, and H, from the following equations:

B i dE
H =-—E,(x) and H,= — (6)
/1) Oy dx

is the free space wave number and ¢ [z ] is the speed of light in free space.
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Since E,, and H. represent tangential components,

dE i
E, and d—xy must be continuous everywhere @)

Further, when the refractive index distribution is symmetric about x = 0; that is, when
2 _ 2
n(=x) =n"(x) (®)

the solutions are either symmetric or antisymmetric functions of x (see
Problem 19.11). Thus we must have,

E,(—x) =E,(x) symmetric modes 9)
E,(-x) =-E,(x)  antisymmetric modes (10)

For TM modes, H,(x) satisfies the following equation:

2, d | dH, 2 2 2
— — | + -P°1H,(x)= 11
" () dx[n2(x) 2|+ [k () - B Hy () =0 (1)
Once H,(x) is known, we can determine £, and £ from the following equations:
dH
E.= LHy and E,= 1 4 (12)

! a)sonz(x) ia)sonz(x) dx

Further, since H,,(x) and E (x) are tangential component,

H, and 1 dﬂ must be continuous everywhere (13)
n2 dx
9.1 | STEP INDEX SYMMETRIC PROFILE

The simplest planar optical waveguide consists of a thin dielectric film sandwiched
between materials of slightly lower refractive indices and is characterised by the
following refractive index variation (see Fig. 19.1).

) d
n; x| <3

n(x) = P (14)
ny; x| > 5

with n; > n,. The above equation describes what is usually referred to as a step-index
profile. When

2
n} < f—z <n}  GUIDED MODES (15)
0

the solutions are oscillatory in nature in the region |x| < % and exponential in nature

in the region |x| > % Only for certain discrete values of 3, will we have decaying
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L . d . . .
solutions in the region x > 5 as well as in the region x < — %; these are the discrete

guided modes of the waveguide. On the other hand, when ﬂz < k} n3, the solutions

. . . d
are also oscillatory in the region | x| > 5 and they correspond to what are known as

radiation modes of the waveguide. These radiation modes correspond to rays that
undergo refraction (rather than total internal reflection) at the film-cover interface
and when these are excited, they quickly leak away from the core of the waveguide.

X
)

ny

Fig. 19.1 A planar dielectric waveguide of thickness d (along x direction) but infinitely extended along
the y direction. Light propagates along the z direction.

One often defines the effective index of the mode as

_B
Nopp = 16
eff k() ( )
Thus, for guided modes
Ny < Mer <My 17)

TE MODES OF A SYMMETRIC STEP
INDEX PLANAR WAVEGUIDE

If we solve Eq. (4) and apply the necessary continuity conditions, we will find that

19.2

the propagation constants ﬁ (for the TE modes) are determined by solving the

0
following transcendental equations:

2
Etan & = (%) -&2 for symmetric modes (18)
7\
and —&coté = (3) &2 for antisymmetric modes (19)
where, = % (20)
K= \koni =B @1

and V= kod\/nlz - n% (22)
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Fig. 19.2 Variation of £tan & (solid curve) and - & cot £ (dashed curve) as a function of £ The points of
intersection of these curves with the quadrant of a circle of radius V/2 determine the discrete

propagation constants of the waveguide.

(23)

Since the equation

2
Y >
n ( 2) ¢

(for positive values of &) represents a circle (of radius ¥/2) in the first quadrant of
the &-n plane', the numerical evaluation of the allowed values of £ (and hence of
the propagation constants) is quite simple. In Fig. 19.2 we have plotted the functions

& tan & (solid curve) and — € cot & (dashed curve) as a function of £. For a given value
2
(%) which

! This follows from the fact that if we square Eq. (37) we would get 172 + 52 =

represents a circle of radius V/2.
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of V, the points of intersection of these curves with the quadrant of the circle would
determine the allowed (discrete) values of & The two circles in Fig. 19.2 correspond
to ¥/2 =2 and V/2 = 5. Obviously, as can be seen from the figure, for V=4 we will
have one symmetric and one antisymmetric mode and for /= 10 we will have two
symmetric and two antisymmetric modes. In general, when

(m-D)r<V<mr (24)

the waveguide will support a total of m modes. It is convenient to define the
dimensionless propagation constant

B
b= kg _ ngff_n% _ dez (25)
=T 2 2 2 2
) n—m
where, v =B~ ki n} (26)
giving % = %V\ﬁ; 27
K22d2_1222 N
Further, (k" +vy )T = Z[kod (m—m3)]= i (28)
_kd_ 1., yd
$7 5 (ZV 4
1
= EV 1-b (29)
Thus, Egs (18) and (19) can be written in the form
(%V l—b) tan (%V 1—b) = %V\/Z for symmetric modes 30)

\9)

- (%V 1- b) cot (%V 1- b) -1 vJb for antisymmetric modes  (31)

Obviously, because of Eq. (15), for guided modes we will have
0<b<l 32)

For a given value of V, solutions of Eqs (30) and (31) will give us discrete values of
b; the m™ solution (m=0,1,2,3,...)is referred to as the TE,, mode. In Table 19.1
we have tabulated the discrete values of b for various values of V. For any given (step
index) waveguide we just have to calculate V, and then obtain the corresponding
value of b either by solving Eqs (30) and (31) or by using Table 19.1. From the values
of b, one can obtain the propagation constants by using the following equation [see

Eq. (29)]:

N R (3)
0
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Table 19.1

Values of the normalised propagation constant
(corresponding to TE modes) for a symmetric pla-
nar waveguide; the values are generated by using
the software in Ref. Gh3. Notice that for V < zwe
will have only one TE mode which will be sym-
metric in x and for 7 < V < 2w we will have two TE
modes one of them will be symmetric in x and the

other anti-symmetric in x.

vV b(TE,)  b(TE,) v b(TE,)  b(TE;)  b(TE,)
1.000  .189339 4000 734844 101775
1125 225643 4125 745021 .123903
1250 261714 4250 754647 146349
1.375 297049 4375 763756 168864
1.500 331290 4500 772384 191259
1.625 364196 4625 780563 213390
1750 395618 4750 788321 235151
1.875 425479 4875 7795686 256461
2.000 453753 5000  .802683 277265
2125  .480453 5125 809335 297523
2250 505616 5250 815663 317210
2375 529300 5375 821689 336310
2.500 551571 5500  .827429 354817
2.625 572502 5625 832902 372731
2750 592169 5750 838123 390056
2.875 .610649 5875 843107  .406800
3.000 .628017 6.000  .847869  .422976
3.125  .644344 6.125 852420  .438596
3250 .659701  .002702 6250 856772 453676
3375 674151 011415 6375 860938 468231  .001845
3.500 .687758  .024612 6500  .864926  .482278 008819
3.625 700579  .041077 6.625 868748 495834 019189
3750 712667 059875 6750 872412 508916  .031806
3.875 724073 .080292 6.875 875926 521541 045942
4000 734844  .101775 7.000 .879298 533727  .061106

For a guided (symmetric) mode, the complete field inside the film is given by

STUDENTS-HUB.com

_ i(wt—PBz)
E,(x) =Acos kxe''”

1

= —Ae
2

(w1 z—xx) | lAei(wtfﬁz-%—Kx)
2

(34
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Thus, a guided mode can be considered to be a superposition of two plane waves
with

ke =1k, =0,k = (35)
and ke =—1,k,=0,k. = (36)

In each case kf + kﬁ + kz2 = ﬂ2 + K= k% n%. Thus, the two plane waves make angles
+ 0 and — 0 with the z-axis where

B__ B 37

Since [ takes discrete values, a guided mode can be considered to be superposition
of two plane waves propagating at discrete angles with the z-axis (see Fig. 19.3).

Fig. 19.3 A guided mode in a step index waveguide corresponds to the superposition of two plane
waves propagating at particular angles + 6 with the z-axis.

19.3

TM MODES OF A SYMMETRIC STEP
INDEX PLANAR WAVEGUIDE

For TM modes, one has to solve Eq. (11) [with continuity conditions given by
Eq. (13)] and one obtains the following transcendental equations which determine
the discrete propagation constants f3/k

2 2
Etan & = (ﬂ] (%) - &2 for symmetric TM modes (38)
n

2 2

and —Ecot & = (ﬂj (%) -2 for antisymmetric TM modes ~ (39)
n

where £ and V have been defined earlier. In terms of the parameters 5 and V, we have

2
(%V 1- b) tan (%V 1- b) = (ﬂ) %V\/I; for symmetric TM modes  (40)
n

2
- (%V 1- b) cot(%V 1- b) = (ﬂ) %V«/I; for antisymmetric TM modes (41)
)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

260 Problems and Solutions in Optics and Photonics

194 | TEMODES IN A PARABOLIC INDEX MEDIUM

For a parabolic index medium characterised by the following refractive index
distribution:

2
n’(x) =n? [I—ZA(%H ,  |x|<aCORE (42)

=3 =ni(l-24), | x| > a CLADDING

the propagation constants are approximately given by

ﬁ=ﬁmzk0n1\/{l—ml; m=0,1,2,3,... mya (43)

where the maximum value of m (= m,,,) should be such that Eq. (15) is satisfied. The
above expression for 3 is valid when

V =koant —nd =koan N2A 210 (44)

i.e., when the waveguide supports a large number of modes.

PROBLEMS g

19.1 Consider a step index planar waveguide with d = 3 um, »n; = 1.5 and

n, = 1.49153. The value of n, is chosen such that \/nf —n; = ﬁ Using

Table 19.1, calculate the discrete values of b (and hence of B/ky) for
Ao=1.5 um, 1.0 um and 0.6 um. Show that in each case, the values of B/k, lie
between #n; and n,.

19.2 In the above example, for A, = 0.6 um, calculate the values of 6 that the
component waves will make with the z-axis; show that the corresponding
angles of incidence at the core-cladding interface is greater than the critical

angle. J2A

19.3 Using Eq. (43) and assuming na
0"

<< 1, show that the group velocity is

approximately independent of the mode number.

19.4 Consider a step index planar waveguide with d = 2.5 um, »; = 1.5 and
n, = 1.47. Assume the operating wavelength Ay = 1.0 um. Use Table 19.1 and
linear interpolation, to determine the discrete values of b (and hence of B/k).

19.5 (a) Consider a symmetric step-index waveguide [see Eq. (14)] with n; = 1.5,

ny = 1.46, d =4 um operating at Ay = 0.6328 um. Calculate the number of
TE and TM modes.
(b) Consider TE modes in a step index planar waveguide with n; = 1.5,

d =2 um and the value of n, is chosen such that \/n} —n3 = % For

Ao=1um, 0.8 um and 0.66667 um calculate (using Table 19.1) the values

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Basic Waveguide Theory and Concept of Modes 261

of b and the corresponding value of f8/ky. Show that the values of B/k lie
between #n; and n,.
19.6 Consider now a parabolic index waveguide [see Eq. (43)] with n; = 1.50,
ny = 1.46, a =2 um operating again at A, = 0.6328 um. Assuming the validity
2
of Eq. (43) and that for discrete guided modes we must have n < ﬁ—z <ni,

calculate the maximum value of m and the total number of TE modes(.)

19.7 Consider a step index symmetric waveguide with n; = 1.50, n, = 1.48,
operating at Ay = 0.6328 um. Calculate the value of d so that V' = 6. Using

Table 19.1, calculate the values of b, the corresponding propagation constants

B/ky and the angles that the component waves make with the z-axis.

19.8 We consider the same waveguide as in the previous problem. At what
wavelength will the value of ¥ be equal to 3. Using Table 19.1, calculate the

value of b and the corresponding propagation constant /k.

19.9 (a) Consider a symmetric step-index waveguide [see Eq. (14)] with n; =1.49,
n, = 1.46, d =4 um operating at Ao = 0.6328 um. Solve Eqgs (18) and (19)
to calculate the values of B/k.

(b) Calculate the corresponding values of 6,,,.

19.10 (a) Consider a step index symmetric waveguide with n; = 1.503, n, = 1.500
and d = 4 um. For Ay = 1 um, calculate the value of 7 and use linear
interpolation of the numbers given in Table 19.1 to calculate the value of
Blko.

(b) If the operating wavelength is changed to 0.5 wm, show that V' = 4.771
and by linear interpolation of the numbers given in Table 19.1 calculate
the discrete values of B/k, ands the corresponding angles that the waves
make with the z-axis.

19.11 In Eq. (4), make the transformation x — —x and assuming nz(x) = nz(fx)
show that E|, (—x) satisfies the same equation as £, (x); hence we must have
E,(-x) = AE,(x). Make the transformation x — —x again to prove that the
solutions are either symmetric or antisymmetric functions of x [i.e., prove
Eqs (9) and (10)].

19.12 Consider an infinitely extended parabolic index medium described by

nz(x) = n% — ox?
Starting from the scalar wave equation and using the fact that the
fundamental mode has a Gaussian field distribution of the form;

ll/(x): Ae—x2/2w§

Calculate wy. Obtain the propagation constant of the fundamental mode.
19.13 Consider a symmetric planar waveguide with ny =2.3, n, =2.2 and d =2 um
operating at Aq = 1.0 um.
(a) How many guided TE and TM modes will the waveguide support?

(b) What are the minimum and maximum possible values of 8 of the TE;
mode?
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(c¢) In what range of A4 values will the waveguide be single moded (TE, and
TMy)?
19.14 Consider a planar waveguide with a refractive index profile given by

2 2

n°(x) =ny; |x|<d,
=n3; d <|x|<d,
=n3; |x|>d

with n; > n3 > n,. Write down the range of propagation constant for guided
modes in such a waveguide.

19.15 Consider a planar waveguide with the refractive index profile given in
Problem 19.14 but with n; = n3. Can such a waveguide support guided modes?

19.16 A symmetric single mode planar waveguide is excited by light which is
polarised at 45° to the x-axis and lying in the x-y plane. Show that the state of
polarisation will repeat itself after propagation through a certain distance and
obtain this distance. Assume that the propagation constants of the TE and TM
modes are Brg and By

f% SOLUTIONS

19.1 Ford=3 um, n; = 1.5 and n, = 1.49153, we get

For Ay = 1.5 um, V is equal to 2.0 and from Table 19.1 we see that there
will be only one TE mode with b = 0.453753; the corresponding value of
Blky = 1.49538. The same waveguide operating at Ay = 1.0 um will have
V'=3.0 and from Table 19.1 we see that there will be again only one TE mode
with b = 0.628017; the corresponding value of B/ky = 1.49686. However, for
Ao =0.6 um, V= 5.0 and there will be two TE modes with b = 0.802683 (the
TE( mode) and the other with 5 = 0.277265 (the TE; mode). The correspond-
ing values of B/ky =~ 1.49833 and 1.49389. Finally, for A =0.4286 um, V'="7.0
and there will have 3 TE modes with b =0.879298 (TE,), 0.533727 (TE) and
0.061106 (TE,). The corresponding values of /k, are approximately given by

kﬁ = 1.4990, 1.49606 and 1.49205
0

respectively. Notice that all values of B/k, lie between n; and n,. Further,
in each case, the waveguide will support equal number of TM modes (see
Fig. 19.2). Further, as the wavelength is made smaller, the waveguide will

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Basic Waveguide Theory and Concept of Modes 263

support larger number of modes and in the limit of the wavelength tending
to zero, we will have a very large number of modes which is nothing but the
ray-optics limit.

19.2 For A9 = 0.6 um, ¥ will be 5.0 and we will have two TE modes with
Blky=1.49833 and 1.49389. Since n; = 1.5, the values of cos O will be 0.99889
and 0.99593 and therefore

60=2.70° and 5.17°

corresponding to the symmetric TE, mode and the antisymmetric TE; mode
respectively.

193 When 22
oa
binomial expansion in Eq. (43) to obtain

B =By~ komi - (m—#%) 24

<< 1 and for not too large values of m, we may carry out a

a
1) ./
anl(rHE)ﬂ; m=0,1,2,3,... (45)
c a
Thus the group velocity v, of the mode will be given by,
1 _dB_m (46)
Uy do ¢

independent of the mode number. Thus, in this approximation, all modes
travel with the same group velocity. Indeed, using ray optics, we had shown
in Problem 2.8 that all rays take approximately the same time to propagate
through a certain distance of a parabolic index waveguide. It is for this reason
that parabolic index waveguides are often used in fiber-optic communication
systems.

19.4 Forn;=1.5,n,=1.47,d=2.5umand 1= 1.0 um, we get V'=4.6888. If we
carry out linear interpolation we would obtain for the TE, mode

b=10.780563 + 0'788323 1"2(;'7805 63 x 0.0638 = 0.78452

We therefore get kﬁ =~ 1.49359. Similarly for the TE; mode.
0

b=10.213390 + 0.235 153 1_22_'2133 20 x 0.0638 = 0.22450

and the corresponding value of B/k, will be = 1.47679. Once again, both
values of fB/kj lie between n; and n,.
19.5 (a) We have a symmetric step-index waveguide [see Eq. (14)] with n; = 1.50,
n, = 1.46, d = 4 um operating at A, = 0.6328 um. Thus,

V _kd [2 2 _md [2 2 _ 4=m 2 2
2 Ji2—n? = /,L—O./nl i = 157~ 146

= 0.833
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which is about 2.18 . From Fig. 19.2 we find that there will be 5 TE and
5 TM modes.
(b) Consider TE modes in a step index planar waveguide with d = 2.0 um,

. 1
=1.50, and the value of h hthth— 2 = = Thus,
np an € value€ o1 7, 1S chosen suc a nl I’l2 p us

V =kod ,/nlz —-n = % /,LO (where A is measured in microns)
=4.0,5.0and 6.0

for Ag=1 um, 0.8 um and 0.66667 um respectively. Using Table 19.1, the
corresponding values of b are
(0.734844 and 0.101775), (0.802683 and 0.277265) and
(0.847869 and 0.422976)

Lo md=nt— L ~2.1486 = ny ~ 1.4658
T T

Thus, ﬁ = [n% + Lz:| = [2.1486 +L} and the corresponding
k 4m 4r?

value of f/k are given by
(1.4721,1.4667); (1.4727,1.4682) and (1.4731, 1.4695)

for =1 um, 0.8 um and 0.66667 um, respectively. As can be seen all
values of fB/k lie between n; and n,.
19.6 For a parabolic index waveguide, the allowed values of ,82 for discrete guided

modes are given by
komN2A
Br=Bi=lkint—@m+ 1) N2 =0,1,2,3,..
a

which can be written as
m= L kni = B, 1
2| kyn\2A/a

For a guided mode, the minimum value of f is kg n,; thus if m,,, represents
the maximum value of m; then m,,,, must be the integer less than

2,2
kOnl kgns 1 _1|r /a2 1 l[V 1]
kym~N2A/la 2| V/a 2
- [2_ 2 _2¢m 2_ 2
Now, V =koan —ny = 2._0 a\ny —n

X 2 X ~1.46% = 6.8

- . 6328

Thus, m,,x must be the integer less than 2.9; and therefore in this approxima-
tion there will be only 2 TE modes.
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19.7 V= kod,/nlz - n% = 21[—61 n12 - ng
0
Thus, V=6= 0267231 3 J1.57 —1.48%  (where d is measured in microns)
6x0.6328

2m\[1.5% — 1.48?

For V' = 6, there are only 2 TE modes; the two values of b are: 0.847869 and
0.422976. Now,

B _ b | _ b
o \/{n§+m} = \/{2'190“?}

Thus the corresponding value of B/k, are 1.4872 (=njcos 6;) and
1.4836 (= ny cos 8,) where 6; and 0, are the angles that the component waves
make with the z-axis. Since, we get 6, = 7.49° and 6, = 8.48°.

19.8 The wavelength (at which the value of V" will be equal to 3) must be 1.2656 um.
For V' = 3, there will be only one TE mode and the corresponding value of b
will be: 0.628017. The corresponding value of §/kq will be:

B [ng n Lz} - {2.1904 N Lz} ~ 1485
ko 4r 4

which lies between 7, and »,.

2nd [2 8 2 2
19.9 V= =" — = ————4/I. —1. = 11.815
9.9 T R T V1.497—1.46

Thus, V/2 = 5.91. In Fig. 19.2, if we plot the quadrant of a circle of radius
591, we will have four points of intersection; two corresponding to
symmetric modes and two corresponding to anti-symmetric modes. Now, the
transcendental equation for symmetric modes [see Eq. (30)]

(lV 1—b)tan(lV 1—b)= b
2 2
can be written as

Q(b)=(%V l—b)sin(%V 1—b)—%V\/Z;COS(%V 1—b)=0

= d ~2.4752 um

| —

One can use any program (like GNUPLOT or MATLAB or MATHEMATICA) to
plot Q(b) as a function of b in the region 0 < b < 1. We have used GNUPLOT
to plot Q(b) as a function of b as shown in Fig. 19.4. The figure clearly shows
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that there are two (symmetric) TE modes one around b = 0.95 (TE, mode) and
the other around b = 0.55 (TE, mode). In order to get greater accuracy, one
may plot Q(b) in the vicinity of the roots as we have done in Figs. 19.5 and
19.6. One finds that the values of b are close to 0.948 and 0.5474. In fact if
we use the ‘Find root’ program in MATHEMATICA (or a similar program in
MATLAB), we would obtain

b=0.948421 (TEy mode) and b = 0.547390 (TE, mode)

GNU Program 19 . : ! :

set yrange[-10:10]
set xrange[0.:1.0]
set nokey 571 ()
set ytics

set xtics

v=11.815 0
p0(x)=0.

pl(x)=0.5*V*sqgrt (1-x)
p2(x)=0.5*V*sgrt (x) *cos (pl (%)) _5

p3(x)=pl(x)*sin(pl(x))
Q(x)=p3(x) -p2 (x)
plot pO(x)w!8,Q0(x)wl8

~10 1 1 1 1
0 0.2 0.4 0.6 0.8 1

— /)

Fig. 19.4 The program for the GNU plot and (b) the corresponding variation of Q(b)

GNU Program 0.2
set yrange[-0.2:0.2] 0.15 ¢
set xrange[0.945:0.950]
set nokey 0.1 Q(b)
set ytics 0.05 +
set xtics
0
v=11.815
0 (x)=0. -0.05
pl(x)=0.5*V*sqgrt (1-x) —0.1
p2(x)=0.5*V*sqgrt (x) *cos (pl (x))
p3(x) =pl (x) *sin (pl (x)) -0.15
Q(x)=p3(x) -p2 (x) ~0.2 . . i ;
plot pO(x)wl8,Q(x) wl8 0.945 0.946 0.947 0.948 0.949 0.95

 — )1

Fig. 19.5
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GNU Program
g 0.04 |

set yrange[-0.05:0.05]

set xrange[0.547:0.548] Q(b)
set nokey 0.02

set ytics

set xtics 0

v=11.815

0(x)= -0.02
pl(x)=0. S*V*sqrt(l x)

2(x)=0.5*V*sqrt (x) *cos (pl (x)
p3(x)=pl (x) *sin (pl (x)) =
0 (x)=p3(x) -p2 (x)
plot pO(x)w!8,0Q(x) wl8 0.547 0.5472 0.5474 0.5476 0.5478 0.548

—— b

Fig. 19.6
Similarly, the transcendental equation for anti-symmetric modes [see Eq. (31)]
1 1 1
— = — t| — — = —
(ZV 1 b)co (21/ 1 b) Vb
can be written as

R(b)—( l—b)cos(%V l—b]+%V\/I;sin(%V 1—b)=0

GNU Program

set yrange[-8.0:8.0]
set xrange[0.:1.0]

set nokey R(b)
set ytics

set xtics

(= A

v=11.815

0(x)=
1(x)=0. 5*V*sqrt(1 X) - L
2(x)=0.5*V*sqgrt (x) *sin (pl (x))
3(x)=pl (x) *cos (pl(x))

( ) P3( )+p2 (x) &

plot pO(x) w8, R(x)wl8 0 0. 0. 0. 0. 1

Fig. 19.7

One can again use any program to plot Q(b) as a function of b in the region 0 < b
<1 (see Fig. 19.7). The figure clearly shows that there are two TE (antisymmetric)
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modes one around b = 0.8 (TE; mode) and the other around 5 = 0.2 (TE3 mode). In
order to get greater accuracy, one may plot Q(b) in the vicinity of the roots as we
have done in Figs 19.8 and 19.9. One finds that the values of b are close to 0.800 and
0.224. In fact if we use the ‘Find root’ program in MATHEMATICA (or a similar
program in MATLAB), we would obtain

b=0.795397 (TE; mode) and b =0.223714 (TE; mode)

set yrange[-0.3:0.3] 0.3
set xrange[0.790:0.80]
set nokey 0.2 R(b)
set ytics
set xtics 0.1
v=11.815 0
0(x)=0
1(x)=0. 5*V*sqrt(l %) -0.1
2(x)=0.5*V*sqgrt (x) *sin (pl (x))
p3(x)=pl (x) *cos (pl(x)) -0.2
R (x)=p3(x)+p2 (x)

plot pO(x)wl8,R(x)wl8 -0.3
0.79 0.792 0.794 0.796 0.798 0.8

Fig. 19.8

0.3

set yrange[-0.3:0.3]
set xrange[0.22:0.23]
set nokey

0.2

set ytics

set xtics 0.1 R(b)
v=11.815 0

X

0(x)=
1(x)=0. 5*V*sqrt(1 x) —0.1
2(x)=0.5*V*sqgrt (x) *sin (pl (x))
3(x)=pl (x) *cos (pl (x)) -0.2 t
( x) p3( )+p2 (%)
plot pO(x) w8, R(x)wl8 -0.3
0.22 0.222 0.224 0.226 0.228 0.23

Fig. 19.9

The corresponding values of kﬁ can easily be obtained by using the equation

0
% = [n3 + b = n3))]
and we get, B/ky = 1.4885 for the first symmetric mode which is denoted as
the TEj mode,

= 1.4839 for the first anti-symmetric mode which is denoted
as the TE; mode,
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= 1.4765 for the second symmetric mode which is denoted

as the TE, mode,
= 1.4668 for the second anti-symmetric mode which is

denoted as the TE; mode.

Now, B/kq = nycos 0= 1.49cos 6. Thus,

cos ™! (%) =cos! (1'4885) = 2.6° for the TE, mode,
n

and

o= 1.49
Similarly,
=cos ! ( 29 ) ° for the TE; mode,
=cos ! (1 46 ) 7.7° for the TE, mode, and
=cos ! 1.4668 3 _ 10.1° for the TE; mode.
1 49

19.10 (a) n;=1.503, n, =1.500 and d =4 um. and Ay = 1 um. Thus,

v=2Zg it = 21—” x 4 x \[1.503* ~1.500° = 2.3855

)’—0 1
Now, b(V'=2.375) = 0.529300 and b (¥ =2.500) = 0.551571. Thus,
b(V = 2.3855) = 0.529300 + (0.551571 — 0.529300) x 0112055
~0.5312 o
Now, £ = \J[n2 +b(n? = n2)] = 1.5 +0.5312x (1.503* — 1.5%)
0
~1.5016
(b) V=4771
Now, b(V'=4.750) ~0.788321 and 0.235151
and b(V=4.875) ~ 0.795686 and 0.256461.
Thus, for the first mode
b(V=4771) = 0788321 + (0.795686 - 0.788321) x ?;;
~0.7896
kﬁ = U2 + b — nd)] = \J1.5% +0.7896 x (15037 — 1.5%)
0
~ 1.5024
Similarly, for the second mode
b(V=4771) = 0235151 + (0.256461 - 0.235151) X 2 ?;;
~0.2387 '

kﬁ = J173 +b(n? — nd)] = \1.5>+0.2387 x (15037 — 1.5%)

= 1.5007
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19.11 We will show that if
n*(x) = n*(-x) (47)

i.e., if the refractive index distribution function is symmetric about x = 0 then
the eigen functions of the wave equation are either symmetric functions of x
[i.e., w(x) = y(—x)] or antisymmetric functions® of x [ie., W(x) =—-w(—x)];
we are representing £, (x) by y(x). In order to prove this, we first rewrite the
wave equation [Eq. (4)] in the form

d*y(x
VD s ki y) = By (48)
Making the transformation x — —x we get
d*y(-x)
LT R @y = Fu) (49)

where we have used the fact that nz(x) = nz(—x). Comparing the above two
equations, we see that y(x) and w(—x) are eigenfunctions belonging to the
same eigenvalue Bz. Thus, y(—x) must be a multiple of y(x):

Y(-x) = Ay (x)
Clearly, Y =Ay(x) =y x)
so that A =1 or 1=+ 1. Hence,
y(=x) =ty (x) (50)

proving the theorem.

19.12 Substituting the solution in Eq. (4) we obtain the following equation:

2
- - Kax®- =0

Wo Wo
In order that the above equation be satisfied for all values of x, the coefficient
of x* on both sides must be equal and so also with the x-independent term.

Thus, we obtain

wg = 1
N
and B2 =kin}—kyJa

19.13 (a) For the given waveguide parameters, V' = kyd +/ (n12 - n22 ) =2.683m. Thus,
the waveguide will support three TE modes and three TM modes.

2 The theorem is strictly true for nondegenerate states only. By a nondegenerate state, we
imply that there is only one wave function for a particular value of [32. If for the same
value of [32, there are more than one linearly independent wave function, we have what
is known as a degenerate state. For degenerate states the wave functions need not be
symmetric or antisymmetric functions of x. However, even for degenerate states one
can always construct appropriate linear combinations which are either symmetric or
antisymmetric functions of x.
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(b) The maximum and minimum values of b of the TE1 mode would be 2.3k,
and 2.2k, respectively.
(¢) The waveguide will be single moded in the range 0 < d < 0.745 um.

19.14 For guided modes, the field distribution should decay in the cladding region.
Hence, the guided modes will have their propagation constants in the range
ny > ﬁ > ns.

19.15 No, such a waveguide cannot support any guided modes.

19.16 For exciting the TE mode of the waveguide, the incident polarisation must
be along the y-direction while for exciting the TM mode of the waveguide,
the incident polarisation must be along the x-direction. When light polarised
at 45° to the x-axis and lying in the x-y plane is incident on the waveguide,
then the incident light is a linear combination of the x- and y-polarisations and
thus it will excite both the TE and the TM modes of the waveguide. Since the
propagation constants of the TE and TM modes are unequal they will develop
a phase difference as they propagate and this will change the polarisation state
of the propagating wave. The polarisation will repeat itself when the phase
difference between the two modes becomes equal to 2.

Thus, if L is the distance for the polarisation to return to the incident
polarisation, then we have

(Bre-Brm)L=27 or L= 27

(Bre— Brm)
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Mode Fibers

iﬁ A Quick Review }i

Most of the discussion in this chapter will correspond to a step index fiber which is
characterised by the following refractive index distribution (see Fig. 20.1):

n(r) =m 0<r<a core
=m r>a cladding (1)
where we are using the cylindrical system of coordinates (7, ¢, z). In actual fibers,
n—n
L2 <0.01 2)
n
n(r)
n, "
n
C.ore ] 1 Core Cladding
Cladding L,
le r
(a) (b)

Fig.20.1 (a) A step index fiber is a cylindrical structure in which the refractive index is n; forO< r< a
and n, for r> a (b) The refractive index variation of a step index fiber.

When the above condition is satisfied we have what is usually referred to as the
weakly guiding approximation in which, the transverse component of the electric
field (E, or E,) satisfies the scalar wave equation

P’ _n’ *Y 3)
or?

V2lIJ = 80/10712

where ¢ [= \/1_] ~3x 108 m/s is the speed of light in free space. In most practical
EoMo

fibers depends only on the cylindrical coordinate » and therefore it is convenient
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to use the cylindrical system of coordinates (r, ¢, z) and the solution of Eq. (3) can
be written in the form

I ;
¥, 9,2, 1) =R(r){:§l$}e'<w’-ﬂz>; 1=0,1,2,... @)

where o is the angular frequency, S is known as the propagation constant and R(r)
satisfies the radial part of the equation

2
PAR RGP~ B1P-PYR =0 (5)
dar? dr
where, ko = Dy 27 6)
c A

is the free space wave number. As in the previous chapter, Eq. (4) defines the modes
of the system. For each value of / there can be two independent states of polarisation;
modes with / > 1 are four-fold degenerate (corresponding to two orthogonal
polarisation states and to the ¢ dependence being cos /¢ or sin /¢). Modes with /=0
are ¢ independent and have two-fold degeneracyl. For an arbitrary cylindrically
symmetric profile having a refractive index that decreases monotonically from a
value n; on the axis to a constant value n, beyond the core-cladding interface r = a
[see Fig. 20.2], we can make the general observation that the solutions of Eq. (5) can
be divided into two distinct classes [compare with the discussions in the previous
chapter]; the first class of solutions correspond to

2
n < - ni  GUIDED MODES (7)
ks
n(r)
ny
Core Cladding
ny
a

Fig. 20.2 A cylindrically symmetric refractive index profile having a refractive index that decreases
monotonically from a value ny on the axis to a constant value n, beyond the core-cladding
interface r= a.

! The word degeneracy means that for the same value of the propagation constant there are

more than one field profiles. For / = 0 we will have two independent state of polarisation;
thus the mode is said to be 2 fold degenerate. On the other hand, for / =1, 2, 3... the
mode will be 4 fold degenerate because (for the same value of 3 %) we will have two field
profiles: one proportional to cos /¢ and the other to sin /¢ and for each field profile, we
will again have two independent states of polarisation.
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For ﬂ2 lying in the above range, the field R(r) are oscillatory in the core and decay
in the cladding and [32 assumes only discrete values; these are known as the guided
modes of the waveguide. For a given value of /, there will be a finite number of
guided modes, these are designated as LP;,, modes (m =1, 2, 3, ...).

The second class of solutions correspond to

B> <kin3  RADIATION MODES ®)

For such 3 values, the fields are oscillatory even in the cladding and f can assume a
continuum of values. These are known as the radiation modes®.

If we solve Eq. (5) corresponding to a step index fiber [see Eq. (1)], we would
obtain the following expressions for the complete field pattern:

A Ur | €OsI® | - p2)
A (o : <
J,0) l(a)[sinlq)}e T
Y(r, ¢,z,0) = ) i \[coslo ©)
4 r _r) i(wf—ﬂZ); >
K,07) l(a Linlq)}e T

where J;(x) is the Bessel function and K,(x) is the modified Bessel function; 4 is
a constant and we have assumed the continuity of y at the core-cladding interface
(r = a). Further,

U = akin} — B* (10)

and W= ayB? - kin? (11

Because of Eq. (7), both U and W are real. The normalised waveguide parameter
is defined by

V= U+ W? =koa\nt —n} (12)

In terms of the wavelength,

=i—70ta w2 — (13)

14

Continuity of dy/dr at r = a and use of identities involving Bessel functions
[see, e.g., Ref. Ir1 and Gh5] give us the following transcendental equations which
determine the allowed discrete values of the normalised propagation constant b of

the guided LP,,, modes:
T [V 1= ]

kv 5]

vfil-b X d=_pfp———=; I>1 14
J[vir=¢] v K [vb] =
and 14 l—le[V— Vl_bJ=V\/ZM- 1=0 (15)

Jo[1=0] K [vib]

% For more details about radiation modes and also excitation of leaky modes, see, e.g.
Ref. Gh5 and Sn1.
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The solution of the above transcendental equations will give us universal curves
describing the dependence of b (and therefore of U and W) on V. For a given value
of /, there will be a finite number of solutions and the m™ solution m=1,2,3,...)
is referred to as the LP;,, mode. The variation of » with ¥ form a set of universal
curves, which are plotted in Fig. 20.3. Table 20.1 gives the numerical values of b
(corresponding to the LP,, mode) for values of V lying between 1.0 and 2.5. It is
convenient to define the normalised propagation constant

2
b=t s )
nl _n2 V
Thus, w=vb (17
U=vJi-b (18)

and

(19)

Fig. 20.3 Variation of the normalised propagation constant b with normalised waveguide parameter V
corresponding to a few lower order modes [Calculations courtesy Ms. Triranjita Srivastava).

NUMBER OF MODES

From Fig. 20.3 we see that the value of b decreases as we decrease the value of V.
For every mode, there is a value of ¥ when b becomes zero (i.e., when B/k, becomes
equal to n,) and the mode ceases to be a guided mode. The value of V for which b
becomes zero is known as the cutoff frequency of the mode. Now, for a given step-
index fiber, the value of V' decreases as we increase the wavelength [see Eq. (13)]
and the value of the wavelength at which b becomes zero is known as the cutoff
wavelength for that mode.

20.1 “ CUT-OFF FREQUENCIES AND
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We can see from Eq. (15) that the cutoff frequencies of the LP,, modes will occur
at the zeroes of J;(V), i.e., when V=0 (LPy,), 3.8317 (LPy,), 7.0156 (LP3), 10.1735
(LP04), e

Similarly, we can see from Eq. (14) that the cut-off frequencies of the LP,,, modes
will occur at the zeroes of Jy(V), i.e., when V'=2.4048 (LPy;), 5.5201 (LP,), 8.6537
(LPy3), 11.7915 (LPy),...; cut-off frequencies of the LP,,, modes occur at the zeroes
of J1(V) (excluding the value V' = 0), i.e., when V' = 3.8317 (LP,;), 7.0156 (LP»,),
10.1735 (LPy3),....

For /> 1, cutoff frequencies of the LP;,, modes will occur at the zeroes of J,_; (V)
(excluding the value V = 0); thus® cut-off frequencies of the LP;,, modes occur
when V' = 5.1356 (LP3;), 8.4172 (LP3,), 11.6198 (LPs3); cutoff frequencies of the
LP,,, modes occur when V' = 6.3802 (LP4;), 9.7610 (LP4,), 13.015 (LP43); cutoff
frequencies of the LPs,, modes occur when V'=7.5883 (LPs,;), 11.0647 (LPs,); cutoff
frequencies of the LPg,, modes occur when V' =8.7715 (LPg;), 12.3386 (LP¢»), ...

Thus, as can also be seen from the figure:

For 0 < V< 2.4048 we will only have the LP;; mode (which is referred to as the
fundamental mode); V"= 2.4048 represents the cutoff of the LP;; mode where (for the
LP,; mode) b becomes 0, i.e., B/ky becomes equal to n,.

For 2.4048 < V' < 3.8317 we will only have LP(; and LPy; modes; V' = 3.8317
represents the cutoff of the LP, and the LP,; modes where (for the LPy, and the LP,;
modes) b becomes 0, i.e., B/kqy becomes equal to 7,.

For 3.8317 < V' < 5.1356 we will only have LP;, LPy,, LP,; and LP,; modes;
V' =5.1356 represents the cutoff of the LP5; mode.

Thus at a particular V" value, the fiber can support only a finite number of modes.
We must mention here that each LP,, mode is two fold degenerate; i.c., there are
two independent modes with the same value of b, corresponding to two independent
states of polarisation. Further each LP;,, mode (/ > 1) is 4 fold degenerate; i.e., there
are four independent modes with the same value of b, corresponding to ¢-dependence
of cos /¢ and sin /¢ with each mode having two independent states of polarisation.
The total number of modes in a highly multimoded (¥ = 10) step index fiber is
approximately given by

~Lp2
N = 5 14 (20)
20.2 EMPIRICAL FORMULA FOR THE NORMALISED
PROPAGATION CONSTANT

For a single mode step index fiber, a convenient empirical formula for 5(V) is given

b,
Y e
b(V)=(A—7) 3 A8 Vis 2.5 (21)

3 The values of the zeros of the Bessel functions are taken from Ref. Ab1.
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with 4 = 1.1428 and B = 0.996. The above formula gives values of » which are within
about 0.2% of the exact values (see Table 20.1).

Table 20.1 Values of b, (bV) and V(bV)” vs V for a
step index fiber; the values in the second,
fourth and fifth columns are generated by
solving Eq. (15) for a step index fiber using
the software given in Ref. Gh3 and Gh4.

|4 b b [using Eq. (30)] % (b¥) V(bv)”
1.5 0.229248 0.229249 0.849 1.063
1.6 0.270063 0.270712 0.913 0.919
1.7 0.309467 0.310157 0.965 0.785
1.8 0.347068 0.347471 1.006 0.664
1.9 0.382660 0.382653 1.039 0.556
2.0 0.416163 0.415767 1.065 0.462
2.1 0.447581 0.446911 1.086 0.380
22 0.476969 0.476200 1.102 0.309
2.3 0.504416 0.503754 1.114 0.248
24 0.530026 0.529693 1.124 0.195
25 0.553915 0.554131
203 |  SPOT SIZE OF THE FUNDAMENTAL MODE

For most single mode fibers, the fundamental mode field distributions can be well-
approximated by a Gaussian function, which may be written in the form

2
x'+y2

w(x,y) =de ¥ =de W (22)

where w is referred to as the spot size of the mode field pattern and 2w is called the
mode field diameter (MFD). MFD is a very important characteristic of a single mode
optical fiber. For a step index fiber one has the following empirical expression for w
(see Ref. Mal):

1.619  2.879.
32 yo

% ~0.65 + 0.8<V<25 (23)
where a is the core radius. Many data sheets describing a commercially available
single mode fiber would not always give the actual refractive index profile. They
would instead give the MFD may be at more than one wavelength. They would also
give the cutoff wavelength (see for example Ref. My 1). For example, the standard
single mode fiber designated as G.652 fiber when operating at 1.3 um has a MFD of
9.2 + 0.4 um; the same fiber when operating at 1.55 pm has a MFD of 10.4 £ 0.8 pm.
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20.4 SPLICE LOSS DUE TO TRANSVERSE

MISALIGNMENT

The most common misalignment at a joint between two similar fibers is the transverse
misalignment similar to that shown in Fig. 20.4. Corresponding to a transverse
misalignment of u the loss in decibels is given by

o (dB) = 4.34 (u/w)? (24)

Thus a larger value of w will lead to a greater tolerance to transverse misalignment.
For a single mode fiber operating at 1300 nm, w = 5 um, and if the splice loss is to
be below 0.1 dB, then from Eq. (24) we obtain # < 0.76 um. Thus, for a low-loss
joint, the transverse alignment is very critical and connectors for single-mode fibers
require precision matching and positioning for achieving low loss. For w = 5 um,
and a transverse offset of 1 wm the loss at the joint will be approximately 0.17 dB;
on the other and, for w = 3 um, a transverse offset of 1 pm will result in a loss of
about 0.5 dB.

Fig. 20.4 A transverse alignment between two fibers would result in a loss of the optical beam.

20.5 || PULSE DISPERSION IN SINGLE MODE FIBERS

In single-mode fibers since there is only one mode and there is no intermodal
dispersion. However, we have (in addition to material dispersion) waveguide
dispersion which is characteristic of the transverse refractive index variation. The
total dispersion is given by the sum of material and waveguide dispersions:

Dtotal =Dm+Dw (25)

In Chapters 16 and 18 we have discussed material dispersion which arises because
of the wavelength dependence of the refractive index and had obtained the following
expression for the material dispersion coefficient:

AT, 104 d*n . . .
AL —%{/13 m ps/km.nm (Material Dispersion Coefficient) (26)

where Ay is measured in wm and the quantity inside the square brackets is
dimensionless. Now, even if n; and n, are independent of wavelength (i.e., even if
there is no material dispersion), the group velocity of a particular mode will depend
on the wavelength; physically this arises because of the dependence of the spot
size on wavelength. This leads to what is known as the waveguide dispersion. The
waveguide dispersion coefficient D,, is approximately given by

D, = —% x10” f(V) ps/km.nm 27
0
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where A is measured in nanometers and we have assumed ¢ = 3 x i m/ps [meters
per picosecond] and

Jy = V— (bY) (28)

For a step index fiber, b as a function of V' is an universal curve; therefore the
variation of f(V) with V will also be universal (see Table 20.1). A convenient
empirical formula for a step index fiber is given by [Ref. Ma2]

F(V) =0.080 +0.549(2.834 — V)%, 13<V<24 29)

A comparison between the above empirical values with the exact values have
been made in Ref. Gh 5. Thus the waveguide dispersion coefficient is approximately
given by

D —ﬂzfﬂxm?[o 080 + 0.549 (2.834 — ¥)*] ps/km.nm (30)

Y LAA, 34 ) ' ' '

where A, is measured in nanometers. In the single-mode regime, the quantity
within the bracket in Eq. (30) is usually positive; hence the waveguide dispersion is
negative indicating that longer wavelengths travel faster. Since the sign of material
dispersion depends on the operating wavelength region, it is possible that the two
effects namely, material and waveguide dispersions cancel each other at a certain
wavelength. Such a wavelength, which is a very important parameter of single-mode
fibers, is referred to as the zero-dispersion wavelength (4 p).

PROBLEMS g

20.1 Consider a step index fiber with n; = 1.474, n, = 1.470 and having a core
radius @ = 4.5 um Determine the cut-off wavelength.

20.2 Consider a step index fiber with n; = 1.5, n, = 1.48 and having a core radius
a = 6.0 um. Determine the operating wavelength A, for which V' = 8.

20.3 In continuation of the previous problem, (a) calculate the total number of
modes for =8 and (b) compare with the approximate value given by Eq. (20).

20.4 Consider a step index fiber with n; = 1.474, n, = 1.470 and having a core
radius @ = 3.0 um operating at a wavelength 0.889 um. Calculate the spot size
of the fundamental mode.

20.5 We consider a step index fiber with n; = 1.5, n, = 1.49 and the core radius
a=3.0 um. Calculate the range of the values of A, for which LPy;, LP;, LP;,
and LP(, modes will exist.

20.6 Consider a step index fiber with n; = 1.5, n, = 1.48 and core radius a = 6.0 um.
Assuming the operating wavelength Ay = 1.3 um calculate the number of
modes and compare with that obtained by using the approximate formula
[Eq. (20)].

20.7 We consider a step index fiber with n, = 1.447, A = 0.003 and a = 4.2 um.
Calculate the domain of single mode operation. Find the value of A, for which
V= 2.0 and therefore use Table 20.1 to determine b and then the values of
Blkq and of .
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20.8 In continuation of the previous problem, we consider the same step index fiber
[n, = 1.447, A= 0.003 and a = 4.2 um] now operating at Ay = 1.55 um. Use
Table 20.1 and linear interpolation to determine » and then the values of B/k,
and of .

20.9 Fibers used in IV generation optical communication systems (operating at
1.55 wm) have a small value of core radius and a large value of A. Consider
a fiber with n, = 1.444, A = 0.0075 and @ = 2.3 um. Assuming the operating
wave length to be Ay= 1.55 um, calculate the values of b and f/k.

20.10 Consider a step index fiber (operating at 1300 nm) with n, = 1.447, A= 0.003
and a = 4.2 um (see Problem 20.3). Using the empirical formula [Eq. (23)],
calculate the spot size of the fundamental mode at Ay = 1300 nm and at
Ao=1550 nm.

20.11 For a step index fiber with n, = 1.444, A = 0.0075 and a = 2.3 um (see
Problem 20.5). Using the empirical formula [Eq. (23)], calculate the spot size
of the fundamental mode at A, = 1300 nm and at A, = 1550 nm and show that
the spot size increases with wavelength.

20.12 Assume the single mode fiber to have a Gaussian spot size w = 4.5 um.
Calculate the splice loss at a joint between two such identical fibers with a
transverse misalignment of 1, 2 and 3 um.

20.13 Consider a step index fiber with n, = 1.447, A = 0.003 and a = 4.2 um (see
Problem 20.7).

Calculate and plot D,,, D, and Dy, and determine the wavelength
corresponding to zero total dispersion.

20.14 We next consider the fiber discussed in Problem 20.9 for which n, = 1.444,
A=0.0075 and a=2.3 um. Calculate and plot D,,, D,, and D, and determine
the wavelength corresponding to zero total dispersion.

20.15 The modal field is said to be normalised if

[Jlwees P axdr=1

Show that the normalised Gaussian field is given by

x2+y2 VZ
l,,(xy)z\ﬁie- - :\Eiﬁ
’ Tw T w

20.16 Consider two identical single mode fibers joined together with a transverse
misalignment of  (along the x-axis). The fractional power that is coupled to
the fundamental mode of the second fiber is given by the overlap integral

2
r=[[Jvi v e e

2
Show that 7= exp (_u_zj Thus,
w

LossindB =10 log T=4.34( )

u
w
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20.17 Consider a parabolic index fiber characterised by the following refractive
index variation

2 x2+y2
n*(r) = ni 1—2A(;) =ni|1-20=—— 0<r<a core
a

= n? r>a cladding

The corresponding propagation constants for guided modes are approxi-

mately given by
J2A
B2=PB2, ~k2n?—2(m+n+1)ykem,n=0,1,2,3,... where y = —L :

(a) Show that the group velocity is independent of the mode number.
(b) Assuming Eq. (7), calculate approximately the number of modes for a
given value of V.

20.18 For a singlemode fiber operating at 1300 nm, the mode field diameter is
approximately 10 um. For far field measurements, at what distance from the
fiber tip should the detector be placed?

20.19 Two different step index fibers have the same value of V" at some wavelength.
How will their spots sizes be related?

20.20 Show that the excitation efficiency of the LP; mode in a step index fiber is
zero for an incident Gaussian beam given by

Y(r, ¢) = e

20.21 Identity the following transverse modal field patterns from a fiber

8 e () e

(a) (b) () (d)
(% SOLUTIONS
2r 3.068
20.1 V= l—()a nlz —n22 - T
Thus,
v=2%afnt -2 =308 24045 =398 5 ~ 128 um.
Ao Ay A,
202 V= i—”a nt—ni = 9;& Thus, V=8 would imply Ay = 1.15 um.
0 0
20.3 There will be
2 LPy; modes

2 LPy, modes
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2 LPy; modes
4 LP,; modes
4 LPy, modes
4 LP,; modes
4 LP,, modes
4 LP3; modes
4 LP,4, modes
and 4 LPs; modes

In above we have used the fact that the /= 0 modes are two fold degenerate
because of two independent states of polarisation; on the other hand, for
! >1, modes are four fold degenerate because for each independent state of
polarisation the ¢ dependence can be either cos /¢ or sin /¢. Thus, there will
be a total of 34 modes. The approximate formula [Eq. (20)] will give

1

N=% V?=32.
204 V= i—’:a,/ ”12 - n% = 2.3. For a step index fiber, the empirical expression for
w is given by
¥ 065+ 100 289 g cp<ns
a vV vV

where a is the core radius. Thus,

% ~0.65+0.464 +0.0194=1.13
and since a = 3 um, we get w = 3.4 um.

2r 3.2594
205 V= l—()a n12 —n22= T
the cutoff wavelength of the LP;; mode will be 1.355 um,
cutoff wavelengths of the LP,; and LP(, modes will be 0.8506 um,
cutoff wavelength of the LP3; mode will be 0.6347 um,...
The LPy; mode has no cutoff. Thus for Ay > 1.355 um, we will only have the
LPy; mode and for 0.8506 um < Ay < 1.355 um, we will have LPy; and LPy;
modes. For 0.6347 um < 4, < 0.8506 um, we will have LP,, LP;;, LP,; and

where A is measured in m. Thus,

LP(, modes.
206 V=2Eafn? —n2 =229 _ 7 080,

Thus we will have two each of LP;, LPy, and LPy; modes, four each of
LP”, LP]2, Lle, LP22, LP3| and LP4[ modes and we will have a total of 30
modes. For V'=7.0796, we get N = 25. For higher value of V' the values given
by Eq. (20) will become closer to the exact value.

2.958
20.7 V= A

will be single moded. The cutoff wavelength A, (for which V' = 2.4045) is

, where Ay is measured in um. Thus for Ay > 1.23 um, the fiber
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1.23 um. We assume the operating wavelength Ay = 1.479 um so that V= 2.0
and therefore (from Table 20.1)

b =04162 = kﬁ =~ny JI+ (2A)b = 1.4488 = B~ 6.1549 x 10° m™".
0

20.8 ¥V = 1.908 and we have a single mode fiber. Using Table 20.1 and linear
interpolation we get

b =0.382660 + 0.416163 — 0.382660 % 0.008 = 0.38534

0.1
kﬁ =~y 1+ (2A)b = 1.4487 = B~ 5.8725x 10° m™".
0

=

20.9 At2g=1.55um

V= % x 2.3 x 1.444 x J0.015 = 1.649

Thus, the fiber will be single moded at 1.55 pum and

b =0.270063 + 0'3094670_10'270063 % 0.049 = 0.28937

= kﬁ ~m JI+(2A) = 1.447

0

2.556

Further, for the given fiber we may write V'= and therefore the cut off

wavelength will be A, = 2.556/2.4045 = 1.06 um. ’

20.10 At Ay = 1300 nm, V' = 2.28 giving w = 4.8 um. The same fiber will have a V'
value of 1.908 at A, = 1550 nm giving a value of the spot size = 5.5 um. Thus
the spot size increases with wavelength.

20.11 AtAy=1300nm, V= 1.97 giving w = 3.0 um. The same fiber, at A, = 1550 nm,
will have a ¥ value of 1.65 giving a value of the spot size w = 3.6 um. Thus,
we again obtain the result that the spot size increases with wavelength.

2
20.12 T=exp (_u_zJ and therefore
w

2 2
Splice loss in dB =~10 log o 7= 10 (log g €) X “— = 4.34 =
w w
Thus, splicaloss indB =0.21 dB for =1 pum
=0.86dB for u=2pum
=1.93dB for #=3pum
20.13 V = %, where A is measured in nanometers. Substituting in Eq. (30),
0
we get
4 2
D, =- 147 x10, '447/1)( 10 |:0.080 +0.549 (2.834 - 2358j } ps/km.nm
0 0
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Elementary calculations show that at A5 = 1300 nm, D,, = —2.8 ps/km.nm.
The variations of D,,, D,, and Dy, with A, are shown in Fig. 20.5; the
variation of D,, is taken from Table 20.1 of Chapter. The total dispersion
passes through zero around Ay = 1300 nm which is the zero total dispersion
wavelength. These fibers are usually referred to as G 652 (or SMF 28) fibers
and are extensively used in optical communication systems.

30 T T T T
CSF e
20 F T
D, .-~
10 ,/" D T

—— Dispersion (ps/nm-km)

1.1 1.2 1.3 1.4 L5 1.6
—_— ).0 (um)
Fig. 20.5 The wavelength dependence of Dy,, D,, and D,y for a typical conventional single

mode fiber (CSF) with parameters as given in Problem 20.13. The total dispersion
passes through zero around Ay = 1300 nm which is known as zero dispersion

wavelength.
2556 ; . s
20.14 V = 1 where A, is measured in nanometers. Substituting in Eq. (30),
0
we get
4 2
D, = w [0.080 +0.549 (2.834 - 2256) } ps/km.nm
0 0

Elementary calculations show that at Ay = 1550 nm, D,, = —20 ps/km.nm.
On the other hand, the material dispersion at this wavelength is given by [see
Table 20.1]

D,,=+20 ps/km.nm

We therefore see that the two expressions are of opposite sign and almost
cancel each other. Physically, because of waveguide dispersion, longer
wavelengths travel slower than shorter wavelengths and because of material
dispersion, longer wavelengths travel faster than shorter wavelengths—and the
two effects compensate each other resulting in zero total dispersion around
1550 nm. The corresponding variation of D,,, D,, and D, with wavelength
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is shown in Fig. 20.6. As can be seen from the figure, we have been able to
shift the zero dispersion wavelength by changing the fiber parameters; these
are known as the dispersion shifted fibers. Thus, dispersion shifted fibers are
those fibers whose total dispersion becomes zero at a shifted wavelength.
Commercially available dispersion shifted fibers (which are abbreviated as
DSF and referred to as G 653 fibers) do not usually have a step variation of
refractive index; the refractive index variation is bit complicated and is such
that the total dispersion passes through zero around 1550 nm wavelength.

30 T T T T
DSF

20 b -=7 4

— Dispersion (ps/nm-km)

Fig. 20.6 The wavelength dependence of D,,,, D,, and D, for a typical dispersion shifted fiber
(DSF) with parameters as given in Problem 20.14. The zero dispersion wavelength
is around 1550 nm.

20.15 Let the normalised Gaussian field be given by
_ x2 + y2 r
y(x,y) =Ne * =Nev

Thus, the normalisation condition

[Jrw ey dsdr=1

will give us

+ oo _E +oo _2y2 n_wz 2
1 =N? J.dxe W J.dye W | =N? BN

—oo —o0

where we have used the integral

+oo

2+ Bx 2
Joe - oo | 2]
o 4o
2

— o0

Thus, N= l\/:
wNTT
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The normalisation condition can also be written as
[[rve.o)Praras=1
which will give us

+oo 27 2z 5 2t «
1 =N? jrdr e v |x J.dq) =N?| 2o | 2]
0
0

0

2
- N2|
wl]

Thus, N = i\/z
w\ 1

20.16 Consider two identical single mode fibers joined together with a transverse
misalignment of « (along the x-axis). The fractional power that is coupled to
the fundamental mode of the second fiber is given by the overlap integral

r={[[wice v deas|

where v (x, y) and y, (x, y) are the normalised field patterns of the fundamental
mode of the two fibers. Thus,

x+y?

yi(x,y) =Ne

Since for the second fiber, we have a transverse misalignment of u (along
the x-axis), we will have
G’y

WZ(x’y) = Ne W

Thus, T =nN*

where we have used the integral

¥ 2
—ox® +fx _ | ﬁ_i|
J. e dx \/; exp [405

—o0

2
Thus, T =exp (—M—ZJ .
w
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20.17 B*=B2, ~kini—2(m+n+1)yky; mn=0,1,2,3,...

2

1/2
Thus, B =By = kom | 1= 2(m+n+1)—~
ko nj

:konl—(m+n+1)l:9nl—(m+n+l)l
n o c n

Thus, — "=

independent of the mode number and, in this approximation, all modes travel
with the same group velocity.
20.18 For far field, we must have

2
z>>d7=77um

The detector is usually placed at a much greater distance than 77 um.

20.19 Using the approximate expression for the spot size dependence on V-number
(see Eq. 23), we see that if the core radii of the two fibers are a; and a, and
their spot sizes are w; and w, then

i _4a
W 4
20.20 The excitation efficiency is proportional to the overlap integral between the
field distribution of the exciting field and the modal field distribution. The
field distribution of the LP;; modal field has a ¢ dependence of the form cos ¢
or sin ¢. Since the incident field distribution has no ¢ dependence when the
overlap integral is evaluated over the range from 0 to 27, the integral will
vanish. Thus, the excitation efficiency would be zero.
20.21 (a) LP“ (b) LP]Z (C) LPZ] (d) LP22.
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k A Quick Review ¥.

Integrated optics deals with optical devices on a planar substrate much like integrated
electronic circuits. By having the optical components like source, modulators,
switches, taps, etc. the integrated optical circuit is to process optical signals in an
efficient way and also have lower power consumption. Using waveguides for guided
propagation of light among different devices on the same integrated optical chip, it
is possible to achieve very efficient functions of modulation, switching, filtering, etc.

Figure 21.1 shows a planar waveguide in which a high index planar region is
surrounded by lower index regions. The high index region is usually fabricated on
a substrate and the upper region is referred to as cover. If the refractive indices of
the substrate and the cover are the same, then such a waveguide is referred to as
a symmetric planar waveguide. If the two refractive indices are different then it
corresponds to an asymmetric planar waveguide.

X

Fig. 21.1

In a planar waveguide the modes split into two groups namely TE and TM modes.
In the case of TE modes the electric field is purely transverse (along y-direction
in Fig. 21.1) while the magnetic field has both x and z components. Similarly for
the TM mode the magnetic field is purely transverse (along the y-direction) and the
electric field has components along x and z. For a given refractive indices of the
film, substrate and cover and a film thickness and a wavelength of operation the
waveguide would support only a finite number of guided TE and TM modes. In a
symmetric planar waveguide the fundamental modes TE, and TM,, have no cutoffs
while in an asymmetric waveguide even the fundamental modes have a finite cutoff.
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The guided modes of a planar waveguide have to satisfy boundary conditions
on the interface and also the fields should tend to zero at large distances from the
waveguide (see Chapter 19). For a step index planar waveguide with a film index of
ny, substrate index of n and cover index of n,, the propagation constant of TE modes
is obtained as solutions of the following transcendental equation:

Ye [ Vs
tankyd = L (1)
Kr
where, Ky = kom
Vs = ko (nie— 1) (2)

Ye = ko (g —n0)

Here n.y represents the effective index of the mode. We also define the
V-parameter by the following equation:

V =kod (= n?) 3)

The electric field distribution of the TE mode is given by'

E, = de” 7%, x=0
=A[cos;</-x—ksin1<fx} 0=2x>-d
Ky
= A{coslcfd+Z—Csiand}eys(x+d); x<—d 4)
. ; .

where 4 is a constant and is determined by the power carried by the mode.
The propagation constant of TM modes is determined from the following
eigenvalue equation:

1V, 17
K K
tan k;d = Nk ks (5)
’ _ 1 YeYs
2
nr: ky
2 2
where, n=" p=le (©)
ny "y
The field profiles of the TM modes are given by
H, = de” 7 x20

! TE and TM modes have been defined in Chapter 19.
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2
-4 "f Ve o , S
= A| cosK yx ——5 —=sink ;x |; 0>2x>-d
n, Kr
n2
=4 cosxfd+—/;zc siand e”s(“d); x<-d (7
n, Ky

The cut off of the modes are given by
VcTE =tan '\a + mm; TE modes
y M = tan ! (\/a_/yz )+ mm; TM modes (8)

A directional coupler consists of two closely lying waveguides in which there
is an interaction between the two waveguides through the evanescent fields. If the
amplitudes of the modes of the two waveguides are given by 4 and B, then they
satisfy the following coupled equations (neglecting self coupling terms):

% — _ikBe P ©)
% —_ixde AP (10)

where x is the coupling co-efficient which depends on the waveguide parameters, the
wavelength of operation and the distance between the two waveguides. The quantity
A Brepresents the difference in the propagation constant of the two interacting modes.

If at the input power is coupled into one of the waveguides, then the fractional
power at any value of z in the coupled waveguide is given by

2 . AB?
Py(2) = K7251n2l (K‘2+T) z} (11)
2 AB

The fractional power remaining in the input waveguide is 1 — P,(2).

When AB =0, i.e., when the two modes have the same propagation constant then
there is complete power exchange between the two waveguides. If Af # 0 then the
power transfer is incomplete. This is used in realising optical switches using the
electro optic effect.

A periodic variation in the waveguide property such as refractive indices of core
or cladding or the thickness of the waveguide can lead to coupling of light between
a forward propagating and a backward propagating mode. If the effective index of
the mode is nq¢r, then the spatial period A required for efficient coupling to the same
mode propagating in the backward direction is

Ap

2R gy

(12)

where A is called the Bragg wavelength. Such a device behaves as a wavelength
filter. The peak reflectivity of such a periodic structure is given by

wAnLl
Ag

R, = tanh’ ( (13)
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where 7(0 < I < 1) is an overlap integral between the interacting modes and the
periodic perturbation, An represents the peak value of refractive index modulation of
the periodic variation and L represents the length of the periodic medium.

Assuming the modes to have an approximate Gaussian transverse field profile we
obtain for the overlap integral

I =120 (14)

where a is the width of the region having the periodic variation (assumed to be
symmetrically placed in the core of the waveguide) and wy is the Gaussian spot size
of the mode.

If the length of the grating is L and the coupling coefficient for the coupling is
denoted by x then the bandwidth of the filter is given by

2 2
AL =B [H(AWH (15)

Negr L Ag

PROBLEMS g

21.1 Consider an x-cut and a z-cut LiNbOj crystal. Planar waveguides are grown
on these by proton exchange techniques. What modes can the waveguides
support when light propagates along the ‘y’ and ‘z’ directions in the x-cut
waveguide and along the ‘x” and ‘y’ directions in the z-cut waveguide?

21.2 A directional coupler with two identical waveguides is designed to have a
coupling length of 2 mm. What is the permissible variation in the fabrication
of the length of the coupler so that in the cross-state if unit power is incident
on waveguide 1, the power emanating from the same waveguide is less than

—20 dB.
21.3 Consider two directional couplers, the cross-sections of which are shown in

Fig. 21.2;

d d
b I m g m b 1 ) g n
a a a a
(a) (b)
Fig. 21.2

If ny > n,, which coupler has a larger coupling length and why?

21.4 A directional coupler with 50% coupling ratio is to be fabricated so that it is
least sensitive to fabrication errors in the coupler length. What value of AfB/k
would you chose and why?

21.5 Consider a symmetric planar waveguide with n; = 2.3, n, =2.2 and d =2 pm
operating at Aq = 1.0 um.

(a) How many guided TE and TM modes will the waveguide support?
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(b) What are the minimum and maximum possible values of 7. of the TE;
mode?
(¢) In what range of A values will the waveguide be single moded (TE, and
TMy)?
21.6 Consider a symmetric planar waveguide with the following refractive index
profile:

n

ny

n3

—d, —d, 0 d, d,

Fig. 21.3

For ny > neg > ny, write down the solution for ), for symmetric TE modes
in various regions defining all the quantities.
21.7 Consider an asymmetric planar waveguide with n, = 1.5, n, = 1.0 and
n,=1.495. If the waveguide is operated at 1 wm, then
(a) In what range should the thickness lie so that only TE, mode can
propagate.
(b) What is the penetration depth of the mode in the cover when it is just at
the cutoff?
21.8 Consider a planar inhomogeneous waveguide described by a refractive index
variation;
n(x) =1.48+0.02¢7% x>0
=1.0; x<0
where, x is measured in pm.
(a) Aray (A=1 um) enters the waveguide horizontally at x = 5 um.

(i) Calculate the propagation constant of the ray.
(i) The angle at which the ray will strike the surface at x = 0.
(b) What is the range of n.g for guided modes in the waveguide?

(¢) A mode with B/ky = 1.49 is propagating in the waveguide. What are the
turning points of the rays corresponding to this mode?
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21.9 Consider a symmetric step index planar waveguide with a film index n,and a
substrate and cover index of n;. If the effective index of the fundamental mode
iS megp, Obtain an expression for the approximate mode size if the wavelength
is )v().

21.10 In the figure below is shown the cross-section of a strip waveguide with
electrodes for fabricating a phase modulator using LiNbO;.

Fig. 21.4

What should be the direction of the optic axis of the crystal and the state of
polarisation of the mode for minimum voltage for & phase shift. (Electro-optic
effect is discussed in Chapter 22).
21.11 In the figure below is shown a Y-branch with input as shown. If the power
in the input waveguide is P, what would be the output power? Assume all
branches to be single mode waveguides.

Output

Fig. 21.5

21.12 Obtain the variation of power in the two waveguides of a directional coupler
(with AB = 0) with the following initial conditions;
(@ a(0)=1, b0)=1
(b) a(0)=1, b(0)=-1
(¢) a(0)=1, bO)=i
(d) a(0)=1, b(0)=-i
21.13 An acousto-optic tunable filter is to be made in LiNbO; with an effective
index difference between the TE and TM modes of 0.07 at Ao = 1.3 um. What
should be the acoustic frequency if the acoustic velocity is 4 km/s? (Acousto-
optic effect is discussed in Chapter 23).
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21.14 The coupled mode equations for periodic coupling between two modes
propagating in the same direction (with a period satisfying the phase matching
condition, I" = 0) are given as;

% =—ikB,; %=—ik‘A
where 4 and B represent the amplitude of the two modes and k represents
the coupling co-efficient. For efficient coupling between two modes with
effective indices 1.5086 and 1.5046 at A, = 0.6 um, what periodicity would
you choose?

21.15 In a Mach-Zehnder interferometer with unequal arm lengths, as the input
wavelength is varied, the output power reaches a maximum at 1.53 um and
becomes zero at 1.56 um (with no other zero between 1.53 um and 1.56 um).
Assuming the mode effective index to be 1.5 (at both wavelengths) calculate
the difference in arm lengths.

L+AL

—S

L
Fig. 21.6
21.16 Shown below is P,(z) in a directional coupler when unit power is incident at

z=0 in waveguide #1. The maximum coupled power is 0.81 and the coupling
length is 5 mm.

1 T T T T T
09 r =
08 -
0.7 -
0.6 -
0.5 -
04 -
03 -
02 .

0.1 -

0

0 5 10 15 20
Fig. 21.7

(a) Obtain the values of x and Af of the directional coupler.
(b) What is the distance from the input end where the power is equally
divided between the two waveguides?
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€ /> SOLUTIONS

21.1 In proton exchange technique only the extraordinary index increases in
the exchanged region. Hence x-cut y-propagating crystal will support only
TE modes while x-cut z-propagating crystal no modes would be supported.
Similarly, in the z-cut x-propagating or y-propagating crystals, only TM
modes will be supported.

21.2 Power remaining in the input waveguide at any length L is given by

L
P, =cos’ | =~
1 = cos (2Lj

(4

If the length of the coupler is exactly L., then the power exiting the first
waveguide would be zero. If the length is L. £ AL then the power exiting the
first waveguide would be

/4 AL . 2w AL
P, = 2\ 1+ = = bl
1 COoS (2|: ) sin 5 )

If the power exiting the first waveguide should be less than 0.01 then
assuming AL << L, we obtain

AL<0.2 %zO.l?a mm

21.3 Since n; > ny, the individual waveguide modes in the first coupler are more
confined to the core than in the second coupler. This implies that the coupling
co-efficient of the first coupler would be smaller than that of the second
coupler. Hence, the first coupler would have larger coupling length.

21.4 Since the coupler is required for a 3 dB splitting, if we fabricate a coupler for
which the maximum energy transfer corresponds to 3 dB, then the variation
of coupled power with length will reach a maximum value of 50% and hence
such a coupler would be least sensitive to errors in length. For such a coupler
we need to have A= 2k.

21.5 (a) The V value of the waveguide is 2.68 7. Hence, the number of guided TE
and TM modes supported by the waveguide would each be 3.
(b) The maximum and minimum values of n.g of the TE| mode are 2.3 and
2.2 respectively.
(¢) The waveguide will be single moded in the region 0 < V' < 7. Thus for 1>
2.683 um, the waveguide would be single moded.

21.6 In the region —d| <x < d|, the solution would be
E,, = Asin kx + B cos kKx
K” = ko (n} — nggr)
For symmetric solution 4 = 0 and for antisymmetric solution B = 0.

Ford, <x<d,

E, = Ce% + De %"
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8 = kg (neer —n3)
Ford, <x
E,=Ee""
v? = ki (ngge —n3)

21.7 (a) For the given waveguide, the asymmetry parameter is a = 8§2.47. Hence,
for the waveguide to support only the fundamental TE mode, the V'
number must be less than 1.461 which implies that the thickness should
be less than 1.9 um.

(b) The depth of penetration is given by 1/y, and at cutoff since the effective
index of the mode is n, the depth of penetration is 0.143 um.

21.8 (a) (i) B=kon(xp) =9.375 um '
(i) Theray will make an angle of 5.9° with the interface of the waveguide.
(b) The range of effective indices of the guided modes would be 1.48 < nqg <
L.5.
(¢) The turning points would be x = 6.93 um and x = 0.

21.9 The modal size would be approximately given by the sum of the waveguide
width and the depths of penetration of the mode into the surrounding cladding
regions. The depth of penetration is the distance from the interface where the
field drops to 1/e of its value on the interface and is given by 1/y where

Y= ko \/ (”esz_ ”52)

Hence, the modal width would be approximately

2 2
w=d+==d+ —————
4 kox/ (”esz _nsz)

21.10 Since the largest electro-optic co-efficient in lithium niobate is r33, for
maximum electro-optic change the electric field should be applied along
the z-direction and the polarisation should be oriented along the z-direction.
Since the electrodes are oriented such that the electric field on the waveguide
is horizontal, the crystal must be either x-cut, y-propagating or y-cut,
x-propagating and the incident light should be polarised parallel to the surface
of the waveguide.

21.11 Since all waveguides are single moded, the output power would be half of
the input power. The other half of the power will get radiated away into the
substrate.

21.12 Cases (a) and (b) correspond to the excitation of the fundamental mode and
the first excited mode of the directional coupler. Hence, in these two cases
there will be no exchange of power between the waveguides.

In cases (¢) and (d), the two waveguides have equal power but the amplitudes
of the electric field are 7/2 out of phase. In one of the cases, as the waves
propagate the power will start to get transferred to the first waveguide and in
the other case to the second waveguide. In both cases after complete transfer
the power will exchange periodically between the waveguides.
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21.13 The acoustic wave provides for periodic coupling between the two modes. For
efficient coupling the following condition needs to be satisfied:

K=—=Aﬂ=i—:Aneff
where K is the propagaton constant of the acoustic wave and A is the acoustic
wavelength. Substituting for the values we obtain the required acoustic
frequency as 215 MHz.

21.14 The required periodicity is 150 um.

21.15 If the wavelength corresponding to maximum intensity is A; and the
wavelength corresponding to the adjacent minimum intensity is A4,, then we

have
%neﬁ Al =2mm;

2R, AL =Q2m+ D)7

=

Eliminating m from the above two equations we obtain the required value
of Al=26.52 um.

21.16 The maximum power transfer is given by

P2> max

This happens when,

Using the above two equations and the given parameters from the figure,
we obtain k=907m ' and AB=87.18 m"".

The length at which the power gets equally divided among the two
waveguides is given by

2 2
P2(L)=K—Sin2 Kz_l_ﬂ L’'l=05
2 4
2, AB
K2+ ——

Using the various values obtained earlier, we get L’ = 2.88 mm.
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Electro-Optic Effect 2 2

* A Quick Review ?

1. When an external electric field is applied to a medium, then this applied field
can change the optical properties such as refractive index, anisotropy, etc., of
the medium. This effect is referred to as the electro-optic effect.

2. If changes in the refractive index are proportional to the applied field, then this
is referred to as the linear electro-optic effect or Pockels effect. If the changes
are quadratic with respect to the applied electric field, then this is referred to
as the Kerr effect. Only crystals possessing no inversion symmetry posses the
Pockels effect; however Kerr effect is present in all materials.

3. The linear electro-optic effect is defined by the changes in the co-efficient of
the index ellipsoid equation:

1 ..
A== Y mBo bi=1,2,3 (M)
k=123

The co-efficient ;. is the electro-optic tensor and is a characteristic of the
material. Since 7 and j can be interchanged, we can contract the two indices
using the following standard convention:

11->1, 22->2, 33->3, 23,32->4, 13,31->5, 12,21->6

Hence Eq. (1) can be written as

1 .
A[_ZJ: Z”ikEk; i=1,2,3,...6 2)

n; k=123

4. In the absence of the electric field, the index ellipsoid equation in the principal
axis system is given by

2 2

3)

ol

2
Y

+o5 4+
ny

3 |N

NN
Il
—_

where n,, n, and n, are the principal refractive indices of the medium.
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5. Inthe presence of the applied electric field, the equation for the index ellipsoid
in the principal axis system becomes

X2 (%+"‘11Ex+r12Ey+ rl3Ezj + y2 (Lz-'- r21Ex +r22Ey+r23Ez]

X ny

+y? (% +rE +rE + 3, j +2yz(rp Ex +rypE, triE;)

V4
T2xz(rs1Ex trss By T rs3EL) + 2xy (re 1 Ex tre By HreE2) =1 (4)

6. The r tensor for KDP and ADP is

0o 0 O
0o 0 O
0o 0 O
R 5)
0 n, O
0 0 g

The values of the coefficients for KDP are r4; = rs, = 8.77 x 1072 m/V,
re3=10.5x 1072 m/V.
7. When an electric field is applied along the z-direction in KDP, then the index
ellipsoid equation becomes
2 2 2
#+Z—2+2rﬁ3xyEz =1 (6)
nO e
Since the index ellipsoid contains a cross term, in the presence of the electric
field, the orientation of the principal axes have changed. Since the equation is
symmetric in x and y, the new principal axes must be rotated by 45° about the
z-axis. The new principal refractive indices are

3
n 1 E
’_ . 0 "63~z
L
3
n roE
’r _ - 0"'63%z
ny, =ny=n, + — 7

n,=n,=n,
Thus, the crystal becomes biaxial in the presence of the electric field along
the z-direction.
8. For lithium niobate and lithium tantalite the electro-optic tensor is

0 -r 5
0 +ry K3
0 0 33
[r] = 0 x 0 (3
s 0 0
—Ty 0 0
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9. Lithium niobate is a uniaxial crystal and hence the index ellipsoid in the
absence of an electric field is given by

2 2 2
+

al 2y +—22=1 )
n,

n,

In the presence of an electric field applied along the z-direction, the index
ellipsoid equation becomes

x? %+1’13EZ -i-y2 Lz+r13Ez +x2 Lz+r33Ez =1 (10)
nO nO ne

In the presence of the electric field along the z-direction, the direction of the
principal axes remains the same. The new principal indices are given by

3
r narl3Ez
T o m =
’ n rl3E
I’ly =N, — '% (1 1)
n3rE
n; ~n,— e _;3 z
Thus, the crystal remains uniaxial but all the three principal indices have

changed.
10. The values of the various co-efficients for lithium niobate are

ry3 =30.8x 1072 m/V
ri3 =8.6x 102 m/V
rs; =28 x 102 m/V
ryy =3.4x 102 m/vV

11. The longitudinal configuration corresponds to the case when the applied
electric field is along the propagation direction of the light beam. In this case,
the required voltages for inducing a phase shift are independent of the length
of the crystal.

12. The transverse configuration is one in which the electric field is applied
perpendicular to the direction of the propagation of the light wave. In this
case, the phase shift is determined by the length of propagation while the
electric field for a given voltage is determined by the spacing between the
electrodes which is nothing but the thickness of the crystal. Hence, in this
case, the voltage required for a given phase change depends on the ratio of
thickness to the length of the crystal.

13. In the longitudinal configuration, the half wave voltage for a modulator based
on KDP is given by

Ao

3
2n,rgs

Vi=
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14. In the transverse configuration the half wave voltage for a modulator based on

KDP is given by
A (d
o= eli)
1,763

Here d is the thickness of the crystal and L the length of the modulator.
15. In the case of lithium niobate operating in the transverse configuraration with
the electric field applied along the optic axis, the half wave voltage is given by

A d
e
(’73’”33_”2’”13) L

16. Inthe transverse configuration, the length and the thickness are not independent
due to diffraction. For a given length of the crystal, in order that the beam fit
into the crystal the minimum thickness is given by

d=2]*
T

where A is the wavelength within the medium and L is the length of the crystal,

d is the thickness of the crystal (see Fig. 22.1)
l y
[ e
T Ty
Fig. 22.1

PROBLEMS g

22.1 Linearly polarised light (polarised along x) at a wavelength of 500 nm
propagates along the z-direction in a KDP crystal of length 2 cm in which
an external electric field is applied along the z-direction. State whether the
intensity of the output will change as the applied voltage is changed.

22.2 Consider a modulator shown in Fig. 22.2 and state in which cases there would
be phase modulation and in which cases there would be amplitude modulation
of the output light

P

Polariser
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(a) Input light LP along z, output polariser pass axis at 45° to z-axis.
(b) Input light LP at 30° to z, and output polariser pass axis along z.
(c) Input light LP at 30° to z, and output polariser pass axis at 30° to z.
(d) Input light CP, and output polariser at 45° to z axis.
(LP: Linearly Polarised, CP: Circularly Polarised)
22.3 For BaTiOj; (a uniaxial medium) the only nonzero electro optic coefficients
are
135 ¥23 =113, 133, P42, 51 = T'ap. (12)
Write down the equation of the index ellipsoid in the presence of an electric
field along the y-direction.
22.4 Consider a uniaxial medium with the following electro-optic tensor:

0 -n, n;
0 +ry n3
0 0 r
1=, > (13)
s 0
s 0 0

(a) Obtain the equation of the index ellipsoid in the presence of an electric
field along y-direction.

(b) Which polarisations directions are coupled by the field?

(c) If a uniform electric field is applied will it lead to efficient coupling
between the polarisations? Give reasons. Suggest a solution for
increasing the efficiency.

22.5 Consider an isotropic crystal having the following nonzero electro-optic
co-efficients:
ra1, F'sy =7T41, F63 = T4 (14)
(a) Obtain the equation of the index ellipsoid in the absence and in the
presence of an electric field along the x-direction.

(b) What are the new principal axes and the corresponding principal
refractive indices?

(c) For propagation along x direction what are the eigen polarisations?
22.6 Consider a KDP electro-optic intensity modulator as shown below:

2 cm

-
— Nz=y

B
White light
& [ 2]

V=827kV
Pass axis Pass axis

Fig. 22.3
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Which wavelengths in the visible region (400 to 800 nm) will be absent in
the output? Given that for KDP g = 1.512, g3 = 10.5 x 102 m/V.

22.7 Consider the following arrangement with lithium niobate crystal. What will
be the output intensity variation with the applied voltage V if the pass axis of
the analyser is (a) parallel to x and (b) is parallel to the pass axis of the input
polariser. Given n, = 2.30, n,=2.21, o= 1 um, length of the crystal = 10 mm.

y
Polariser @\
z "
Pass axis @ X Analyser

Fig. 22.4

22.8 Consider a KDP phase modulator operating in the longitudinal configuration
with an applied voltage given by ¥ = 100 sin (27 X 10°¢) volts and an input
light beam with a wavelength of 0.6 um.

(a) What frequency components would be present in the output beam?

(b) Calculate the approximate power in the first upper side band frequency.

You may use the following parameters of KDP: n, = 1.51, n, = 1.47,
Vg3 = 10_11 m/V.

22.9 Suppose you wish to fabricate a KDP transverse electro optic modulator
having a modulation bandwidth of 200 MHz. Calculate the values of /, 4 and
V of the modulator. Given n, = 1.51, rg3 = 10 X 1072 myv, Ao=1um, R,=
100 Q, k=21, g5 =8.85 % 1072 mks units, safety factor S =2.

22.10 An electro-optic phase modulator (in the transverse configuration) in lithium
niobate is 25 mm long. Given that the refractive index of lithium niobate is
2.2, at what modulation frequency will one have zero depth of modulation?

22.11 A laser beam (Ay = 1 wm) passes through an electro-optic phase modulator
operating at 1 GHz in the longitudinal configuration in ADP. (Given that for
ADP, ng = 1.53, n, = 1.48 and the only non-zero terms in the » matrix are 74,
1£7) and r, 63‘)

(a) What is the required wavelength resolution of a Fabry-Perot
interferometer that can resolve the different frequency components in
the phase modulated beam?

(b) For a peak applied voltage of 1 kV, the ratio of the intensity of the first
side band to the fundamental frequency is found to be 2.25 x 1073,
Calculate the value of rg;3.

22.12 Consider an electro-optic intensity modulator in the transverse configuration
in KDP with a crystal length of 25 mm operating at 1500 nm.

(a) What cross sectional dimension can one choose to obtain minimum half
wave voltage (assume a safety factor of unity).
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(b) What will be the corresponding half wave voltage?

(c) If the total resistance of the modulator circuit is 1000 Q, calculate
the modulator bandwidth. (For KDP, n, = 1.51, k = 21. g = 8.85 X
1071281 units)

22.13 Consider an electro-optic modulator made of lithium niobate consisting of
two parts of lengths L; =3 mm and L, = 1 mm with their optic axes pointing
in opposite directions as shown. Calculate the electro optically induced phase
change suffered by a wave polarised along the z-axis, when a voltage of 100 V
is applied.

z V

O

=
Fig. 22.5
n, =2.28
n, =2.20

ry3 =30x 1072 m/vV
ri3 =8 x 1072 m/v
A’O =1 um

t =2 mm

% SOLUTIONS

22.1 No the intensity will not change. Only the state of polarisation will change.
For converting this to an intensity change, the output needs to be sent through
an analyser.

22.2 (a) Phase modulation

(b) Phase modulation
(¢) Amplitude modulation
(d) Amplitude modulation

22.3 For the given crystal

0 0 n;
0 0 n;
0 0 s
= 15
I PO (1s)
5 00
0O 0 O
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The change in the co-efficients of the index ellipsoid will be given by

&

A=
nxx
o)
Ty 0 0 7y 0
AL) 0 0 g 0
2
n _ 0 0 33 E _ 0 (16)
A% 0 7 0 Oy s E,
n, 5, 00 0
| 0 0 0 0
AT
nxz
1
Al —
)

Hence, the equation of the index ellipsoid in the presence of the electric

field would be
2, .2 2
X"+ z
2+ 2+ 2yzrg B, =1 (17)
nO e

22.4 (a) Equation of the index ellipsoid:

2
x? [%_FZZEyJ"' yz(%+r22Ey)+Z—2+2yzr5]Ey =1 (18)
nO no e

(b) Since the cross term contains the product yz, the components along the
y-direction and z-direction will get coupled.

(¢) No a uniform field will not induce efficient coupling since the phase
velocities of the waves polarised along y and z are not equal. One would
have to use periodic electrodes to overcome this problem.

22.5 (a) In the absence of the applied electric field the index ellipsoid equation is
given by
X+ y? 4 2

n2

=1 (19)

where 7 is the refractive index of the medium.

In the presence of an applied electric field along the x-direction, the index

ellipsoid equation becomes
Pyt 2

n2

+2ry Eyz =1 (20)

(b) Since the equation is symmetric in y and z, the new principal axes (x, ", z")
are rotated by 45° from the x-y-z directions about the x-axis.
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The new principal indices of refraction are given by

ne=n.
nryE

ny =n - —— = X (21)
wry E

”z’ zn-’-%

(c) For propagation along the x-direction, the eigen polarisations are oriented
along y” and z’.
22.6 The phase difference introduced between the two eigen polarisation states is
given by
A ¢ = 2—” l’lg re3 V
Ao
Since the polariser and analyser pass axes are parallel to each other, those
wavelengths for which A¢ is mm will be absent in the output. Thus, the
wavelengths that will be absent will be given by

0.6
Ay ==—um
m

where m is an integer. Within the visible spectrum, the only wavelength that
will be completely absent from the output would correspond to m = 1 which
gives 0.6 um.

22.7 (a) If the pass axis of the analyser is along x, then since the eigenmodes of
propagation in the absence or presence of the electric field are along x
and z, the applied voltage would induce a phase difference between the
two components. If the analyser is along the x direction, then the analyser
passes only the x-component and hence there would be no change in
intensity as the voltage is changed.

(b) If the analyser pass axis is parallel to the input polariser, then analyser
passes components of both x- and z-eigen modes and depending on the
phase difference between these two components, the output intensity will
change.

22.8 (a) The phase modulator leads to a sinusoidal phase modulation of the input
light wave. Phase modulation creates side bands and hence the frequencies
in the output phase modulated light will be (v + m X 10%) Hz where m =
1523

(b) The power in the first side band would be J2({) where ¢~ 1.8 x 107>

22.9 The bandwidth of the modulator is given by

1
- 27RC

Av

where C is the capacitance of the modulator and R is the resistance in the
circuit. Assuming the transverse cross section of the modulator to be a square
of side d and the length of the modulator to be L, the capacitance of the
modulator would be given by C = gyxdL/d = gyx L. Using the expression
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for C in the bandwidth expression and substituting the numerical values we
obtain L ~ 43 mm. The transverse dimension, assuming a safety factor of 2
would be d ~ 1.9 mm. Substituting in the expression for the half wave voltage
in the transverse configuration we obtain V,~ 1.28 kV.

22.10 ~5.4 GHz.

22.11 (a) The phase modulator produces side bands at the frequency of modulation.
Since the frequency of modulation is 1 GHz, the output would have
side bands separated by 1 GHz. At the given wavelength of 1 um, this
corresponds to a wavelength spacing of 3.3 pm. Hence, the Fabry—Perot
should have a resolution of better than 3.3 pm.

(b) Theratio of the intensity of the first side band to the fundamental frequency

is given by
2
R = le ©) 22)
Jo(S)
3
where; ¢ = Telo 23)
2’0

Substituting the values of various parameters the ratio can be evaluated.
22.12 (a) Due to diffraction effects, the transverse width d of the crystal and its
length L are related through the following equation:

d= 2\/E (24)
T

where A is the wavelength in the medium. Since the length of the crystal
given is 25 mm, we can substitute all the parameter values and obtain

d~0.18 mm.
(b) The corresponding half wave voltage will be given by
22, A
Ve=—S" [ =3.7kV
n0r63 n-no

(c) The capacitance of the modulator would be €L = 4.65 pF. Hence, the RC
time constant would be about 215 MHz.

22.13 Since the directions of the optic axes are opposite in the two parts of the
crystal, for an applied electric field, the refractive index changes would be
opposite in sign in the two parts. Hence, the total phase change suffered by the
wave would be

3
Ap=2E1 0064
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k A Quick Review ¥.

When an acoustic wave is launched into a medium, it creates a periodic strain
variation which propagates alongwith the acoustic wave. The strain causes a change
in the refractive indices of the medium through the strain optic effect. Acousto-optic
effect refers to the change in the optical properties of a medium in the presence of an
acoustic wave. The presence of the acoustic wave creates a periodic refractive index
variation in the medium and this periodic variation leads to diffraction of an incident
light beam. In the regime of Raman Nath diffraction, the medium behaves as a thin
phase grating and one observes multiple order diffraction while in the regime of
Bragg diffraction, the medium behaves as a volume phase grating and one observes
a single order diffraction.

1. If L is the length of the medium, & is the propagation constant of the light wave
and K is the propagation constant of the acoustic wave, then Raman Nath
diffraction occurs when

k

L << el 1)
2. For Bragg diffraction we must satisfy
L >> % )

3. The angle of diffraction (within the medium) corresponding to the mth order
of Raman Nath diffraction is given by
A
sin@, =m—>; m=0,+1,+2,... (3)
nyA
where A is the free space optical wavelength, n is the refractive index of the
medium in the absence of the acoustic wave and A is the wavelength of the
acoustic wave.
4. The diffraction efficiency into the mth order Raman Nath diffraction is given
by
M = (©) @)

where § = kyAnL with An is the peak refractive index modulation due to
the presence of the acoustic wave and L is the length of interaction with the
acoustic wave.
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5. Coupled mode equations for small Bragg angle diffraction

dA . dA .
%0_ _ K‘ZJrelAax; j = —KkAse iAox )
where, K~ AN (6)
Ao
Ao =o— oy @)
B.=B+K ®)
K =kl = (o + B = (od+ BD) ©)
The powers carried by the incident and diffracted waves are |14~10|2 and |;1 +|2
respectively.
6. Power coupled in small angle Bragg diffraction
2 2
P, = L S— sinzl K2+ Aa x] (10)
Ao’ 4
K2+ 28
4
7. Coupled mode equations for large Bragg angle diffraction:
dx;lo B _- iABz d21+ B, —iABz
— =— 04,7, — =——"—04e (11)
@ TIp O A TR
where, o= 7An (12)
o
AB=p+K-p: (13)
oL =o (14)
K =kl = (o + B = (o + B (15)

and |z:10 |2 and |A+| represent the power carried by the incident light wave and
the +1 order diffracted light wave.

8. For codirectional coupling, the signs of 8 and 3, are the same while in contra
directional coupling they have opposite signs

9. Power coupled in codirectional coupling

2 2
Pi(L) = —Z— sin ,}a +i (16)
o+ AB°
4
10. Power coupled in contradirectional coupling with Bragg condition satisfied
P, =tanh’*cL (17)
11. Bandwidth for codirectional interaction
AL = iﬁ (18)

12. Bandwidth of reflection in contra dlrectlonal coupling

S = ;B J©@ I+ 1% (19)
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13. Relationship between acoustic intensity and strain s in the medium

I =%pv352 (20)

PROBLEMS g

23.1 Light undergoes Raman Nath diffraction from acoustic waves propagating in
water. State what will happen to the diffracted light waves as (a) the frequency
of the acoustic wave is changed (b) as the amplitude of the acoustic wave is
changed.

23.2 Consider Raman Nath diffraction of a light wave at A, = 1 um from acoustic
waves of frequency 10 MHz propagating in water (n = 1.33). If the cell
width is 1 cm and An produced by the acoustic waves is 2 X 107, obtain the
approximate diffraction efficiency into the first order.

23.3 A light beam consisting of two wavelength components at 0.6 and 0.61 um
falls normally on a Raman Nath cell filled with water and undergoes diffrac-
tion. In the first order, the angular separation between the diffracted beams is
0.1434 x 1072 degrees. Assuming the angles of diffraction to be small, calcu-
late the frequency of the acoustic wave. Assume v, = 1500 m/s and refractive
index of water 1.33.

23.4 Raman Nath diffraction of light at 500 nm occurs from a standing acoustic
wave at frequency 10 MHz propagating in water. What time dependent
intensity variation, if any, of light do you expect to observe along the direction
of the first order? [v, = 1500 m/s, n = 1.33].

23.5 Consider a thin medium (of thickness d along x) with a refractive index
variation given by

nz) =ny—az; z

A plane light wave is incident normally as shown in —
the figure. Obtain the field at the output plane (x = d) —%
and interpret the result. — x
23.6 A laser beam at a wavelength of 1500 nm is propagating in an isotropic
medium of refractive index 1.5 and v, =4 km/s. An acoustic wave at a specific
frequency is launched in such a direction that a frequency upshifted diffracted
light wave satisfying the Bragg condition appears at an angle (within the
medium) making 2° to the incident light wave. Calculate the frequency
difference between the incident and the diffracted light waves.
23.7 Suppose you wish to design a Bragg fiber reflector with the following
characteristic:
Center wavelength A, = 1550 nm

Peak reflectivity R = 81%

(a) If the fiber grating has An =5 X 10>, what should be the length of the
grating?
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(b) What would you do to reduce the spectral width of the grating without
changing the peak reflectivity?

23.8 When light at Ay = 1.06 um is passed through flint glass with » = 1.92 and
v, = 3.1 km/s, we observe an acousto optically diffracted beam appearing
at right angles. What is the frequency and direction of propagation of the
acoustic wave in the medium?

23.9 Consider a glass slide of refractive index 1.5 with a thickness varying as

t=ty+ Atsin 600 7z (z in m)
with #, = 1 mm, A¢ = 0.03 um. Light wave at a wavelength of 600 nm is
incident normally on the slide and undergoes Raman Nath diffraction

(a) Obtain the angle or which you will observe the 7 order in air.
(b) Calculate the approximate power of the / order.

23.10 Consider Bragg reflection under normal incidence from a medium with
n=15+0.001sin 57z, (zis measured in um)

Obtain the wavelength corresponding to peak reflectivity.
23.11 Light of wavelength Ay = 1 um undergoes +1 order Bragg diffraction by
acoustic waves of frequency f;, in a medium with ny = 2.0 and v, = 5 km/s.
The figure below shows the dependence of P, on the angle of incidence 0 for
a length of interaction of 10 mm.

Q
075~ ~~7° 6= 0.025 rad

Fig. 23.1

(a) Calculate the acoustic frequency.
(b) Obtain the coupling coefficient k.

23.12 An acousto-optic tunable filter is to be made with collinear codirectional
interaction in LiNbO; for which ng = 2.28, n, = 2.20 and v, = 3.6 km/s and
with both the light beam and the acoustic beam propagating perpendicular to
the optic axis along the same direction.

(a) For Ag= 1500 nm, what should be the acoustic frequency for maximum
conversion?

(b) If the filter is to be used for filtering 1500 nm and 1500.8 nm, with
negligible cross talk, what should be the minimum length of the device?

(c) If the input light has ordinary polarisation, will the diffracted light
correspond to +1 or —1 order?

23.13 A particular Bragg reflector has a peak reflectivity of 64%. By what factor the
length of the periodic refractive index region needs to be increased/decreased
for the peak reflectivity to be 81%. (Ans. 1.34)
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23.14 A medium is characterised by a refractive index variation of the form
n(z)=15+0.001sin Kz (z is measured in um)

has maximum reflectivity at Ay = 1.5 wum when illuminated normally.

(a) What is the value of K?
(b) If the peak reflectivity is 0.25 what is the length of the interaction?

23.15 The figure below shows the measured reflectivity under normal incidence
as a function of wavelength from a Bragg reflector made in a medium with
ng = 1.5.
(a) Calculate the period, the length and the peak refractive index modulation
of the grating.
(b) What modification would one do to decrease the bandwidth of the
reflector without changing the peak reflectivity?

=

A (nm)
1549.9 1550 1550.1

Fig. 23.2

23.16 Consider large angle Bragg diffraction when Bragg condition is satisfied.
Show that in the case of codirectional coupling

d 502,312
. A -0.
4P+ P) =0

23.17 Consider large Bragg angle diffraction when Bragg condition is satisfied.
Show that in the case of contra directional coupling

d 72 1302
S (AP -4 P) =0,

fg& SOLUTIONS

23.1 (a) As the frequency of the acoustic wave changes, the angle of diffraction of
all orders will change and the diffracted beams would scan angularly.
(b) As the amplitude of the acoustic wave changes, the diffraction efficiency
of all orders will change leading to an intensity modulation of all orders.
23.2 The diffraction efficiency of the first order is given by J 12(4’ ) where
{ = 27/ Ay)AnL. For small diffraction efficiency, we can approximate J;(x)
by x/2. Substituting the values of various parameters we obtain a diffraction
efficiency of 3.95 x 1074
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23.3 The angle of emergence (in air) of the first order in Raman Nath diffraction is
given approximately by
Ao/,
0,= 0Ja
d 1%

a

For two closely lying wavelengths the difference in deflection angles would
be

AGd — (A/’LO )fa
1%

a

Substituting the values of various parameters we obtain the acoustic
frequency of 3.75 MHz.

23.4 A standing acoustic wave consists of acoustic waves propagating in both
directions. Each of the acoustic waves would induce Raman Nath diffraction
along the same set of directions. However, since the two acoustic waves are
propagating in opposite directions, the frequency shift produced by the two
acoustic waves will be of opposite signs. Hence, the diffracted beams in each
order will beat with each other producing sinusoidal intensity modulation.
For the acoustic frequency of 10 MHz, the intensity in the first order will be
modulated at a frequency of 20 MHz.

23.5 On the plane x = 0, the incident plane wave propagating along the x-direction
will be given by

E=4

The thin medium induces phase changes at different values of z depending
on the refractive index at z. Thus, assuming the medium to be thin, the field
distribution at the output of the medium at x = d will be given by

E=Ae "9 = gexp[—iknyd + ikdaz)

The above expression represents a plane wave propagating with a
z-component of propagation vector —kc. Thus, the emerging wave is a plane
wave propagating along a direction making an angle of sinﬁl((xd) with the
x-axis and propagating along the —z-direction.

23.6 When small angle Bragg diffraction takes place, the angular deviation between
the incident and diffracted beam is 2605 where 03 is the Bragg angle. In the
given problem the angle of deviation is given as 2°. Hence, the Bragg angle
must be 1°. Using the formula for Bragg angle, we obtain the frequency of the
acoustic wave to be 139.6 MHz. Hence, the frequency of the diffracted beam
is upshifted by 139.6 MHz with respect to the incident beam.

23.7 (a) Using Eq. (17) for the peak reflectivity, we find that for a peak reflectivity
of 0.81, we must have oL ~ 1.472. Using the expression of 0, we get the
required length of the grating as 1.4 cm.

(b) This can be achieved by increasing the grating length and decreasing An
such that AnL remains constant.

23.8 Since the diffracted light wave makes an angle of 90° with the incident light
wave, the acoustic wave must be propagating at an angle of 45° with respect
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to the light wave. Using the Bragg condition we obtain for the frequency of
the acoustic wave
_ N,

fom 5

Substituting the various values we obtain for the acoustic frequency
7.94 GHz.
23.9 (a) First order Raman Nath diffraction occurs at an angle given by

O=sin"! (ﬁ) ~0.01°
A

(b) The power in the first order is given by J7 () where { = kynAt. Substituting
the values we obtain {= 0.47. Since for small {, J;({) = £/2, the diffraction
efficiency is approximately given by 0.055.
23.10 The wavelength corresponding to peak reflectivity is given by Ao = 2nA.
Using the various values we obtain the peak wavelength as 1.2 um.
23.11 (a) Since the Bragg angle is 0.025 rad, the frequency of the acoustic wave is
500 MHz.
(b) The maximum diffraction efficiency is 0.75. Hence we have sin kL = NEYoA
Using L = 10 mm, we obtain k= 1.05 x 102m.
23.12 (a) In the acousto-optic wavelength filter, the incident and diffracted waves
have orthogonal polarisations. Thus, the required Bragg condition is
given by:

K:ko_ke: i_:)t(no_ne)

Using the various values, the frequency of the acoustic wave is
192 MHz.

(b) Using the expression for the bandwidth, we obtain L > 3.04 cm.

(c) Since the incident light wave and the acoustic wave are propagating in the
same direction and the incident wave is an ordinary wave, the diffraction
corresponds to —1 order diffraction.

23.13 If the reflectivity is R, then tanh oL = JR.If L; and L, are the two lengths
with reflectivities R and R,, then

tanh 6L, = \/R_l
tanh 6L, = /R,

Using the given values, we obtain the values of 6L, and o, and ratio of the
two lengths as 1.34.
23.14 (a) K=4mum .
(b) For the given parameters, 0=2.09 X 1073 p.Lm_l. Since the peak reflectivity
is 0.25, the length of interaction is 0.26 mm.
23.15 From the figure, we can see that the center wavelength is 1550 nm. Hence,
using the Bragg condition, we obtain the period of index modulation as
0.517 um. Since the peak reflectivity is 0.81, we use Eq. (17), and obtain
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oL ~1.4722. Since the bandwidth of the reflection spectrum is 0.1 nm, we can
use Eq. (19) to obtain the length of the grating as 1.768 cm.
Using various values in Eq. (12), we obtain An ~ 7.26 X 107
23.16 For large Bragg angle diffraction with Bragg condition satisfied and co-
directional coupling,

dA, ~ dA ~
— = 04,; t=—-0o
dx T dx Ao
assuming that both 8 and B, are positive. Now,

d < n.5 o wddy < ddy - dd, - dA,
— +|4 =4 —+A4)——+ A4 —— + 4 =
dz (4" 1417 = 4y dz A dz *odz *dz 0

23.17 For large Bragg angle diffraction with Bragg condition satisfied and contra
directional coupling,

dd, 0_;1+; d4, _ 0';10

dx dx
assuming 3 to be positive and S, to be negative. Now,
d  ~ 2 52 ~% d;lo ~ d/]; ~% dzi+ ~ d;li
— -4 =A,—+ 4,— - 4 -4 =
dz (41" =14.1 dz dz *dz * dz 0
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K A Quick Review ?

1. For large intensities of light, matter behaves in a nonlinear fashion and we can
describe the electric polarisation of the medium by the following equation:

o =&XET 2£0d£2+ 80)((3)E3+... (1

Here the first term on the right hand side is the linear polarisation term, y
represents the linear susceptibility and the second and third terms represent
nonlinearities. The co-efficients d and )((3) represent second order and third
order susceptibilities respectively.

2. The second term corresponds to second order nonlinearity and is present only
in media possessing no inversion symmetry. The third term corresponds to
third order nonlinearity and is found in all media.

3. The second term leads to second harmonic generation, sum and difference
frequency generation and parametric amplification. The third term leads to
self phase modulation, cross phase modulation and four wave mixing. This is
very important in optical fiber communications.

4. The coupled equations describing second harmonic generation are given by

dE x
—L :*l'K'E2E1 eilAkZ;
dz
& = _ikEZe™, )
dz
_od
cny
Ak = k2 — 2k1 (3)

where £, and E, represent the electric field amplitudes of the fundamental
wave at frequency w and the second harmonic at frequency 2@ and r; and n,
represent the refractive indices of the media at these frequencies respectively.
ky and k, represent the propagation constants at frequencies @ and 2w

respectively.
5. The second harmonic generation efficiency is given by
P(L) _ 2u,0° R
n= AL _ _/.tga) d*L* “L sinc? (—Akl') 4)
BO)  cntn, 4 2
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where P; and P, represent the powers at frequencies w and 2@, respectively,
A is the area of cross section of the beams and L is the length of interaction.
6. In vectorial form the nonlinear polarisation for second harmonic generation is
given by
PP = eydy EfVE(”; i), k=1,2,3 (5)

where £ j(a’) represents the jth component of the electric field at @ frequency
and similarly E(? represents the k™ component of the electric field at @
frequency. dj;; is a tensor of rank three. The last two indices can be contracted
and the tensor in contracted form is represented by dj; with i = 1, 2, 3 and
j=12..6.

7. The components of nonlinear polarisation at the second harmonic and the
electric field components of the fundamental frequency are related through
the following equation:

E)(ca)) E)(Cco)
(0) (o)
. k7 Ey
P, dyy dyp dy dy dis dyg E® E©
| =€ da dy dyy dyy dys dyg Y@ p@) (6)
P, dy dy dyy dy dys dyg o
2E@ E®)
2E(” E(
where, P*® = %[éez(“”_k‘zhrc.c.] (7

8. The nonlinearity tensor of lithium niobate is given by

0 0 0 0 dis —dy
[dl=|-dy dy 0 ds 0 0 (3

9. Using a periodic variation of nonlinearity along the propagation direction, it
is possible to achieve high conversion efficiency. This technique is referred to
as quasi phase matching. The quasi phase matching spatial period required for
second harmonic generation is given by

_ Tc _ ﬂv()
0n2w) —n(@)  2|n(20) - n(o)

)

where n(w) and n(2w) are the refractive indices of the material at the
fundamental and second harmonic frequencies respectively and A, is the
fundamental wavelength in free space.

10. The second harmonic generation can be considered to be a process in which
two photons at frequency @ merge to form a single photon at frequency
2®. The phase matching condition is nothing but momentum conservation
condition for this process.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

318 Problems and Solutions in Optics and Photonics

11. In sum frequency generation one photon at frequency ®@; and one photon at
frequency @, merge to form a single photon at frequency @ given by

W3 =W+ W (10)

Phase matching needs to be satisfied in this process also. If ki, k, and k3
are the propagation constants of the waves at the frequencies ®;, @, and w;
then for efficient sum frequency generation we must satisfy the following
condition:

k3 :k1+k2 (11)

12. An optical fiber does not possess the second order nonlinearity and the
nonlinear polarisation is given by

P, =exVE’
13. The refractive index of a medium possessing third order nonlinearity is given
by
n=ny+nyl (12)
(3)
where, ny = 3. X (13)
4 cgyny
14. In the presence of nonlinearity, the propagation constant of the mode is given
by
Byr =B+ 7P (14)
2
kn . (J.I//2 (r)rdr)
where, Y= /(1) 2. Ag=2m~— L (15)
eff Jl//4 (r)rdr

15. The phase shift suffered by an optical beam in propagating through a length L
of the optical fiber is given by

L
® = [Bdz=BL+ yPoLen (16)
0
_ ol
where, Lo = % a7

is called the effective length for nonlinear effects. Here a is the attenuation

co-efficient of the fiber.
PROBLEMS g

24.1 Two plane waves at frequencies @; and @, are incident on a nonlinear medium.
What decides whether the nonlinear effect will lead to the generation of sum
frequency (w; + @) or difference frequency (w; — ®,)?

24.2 The refractive index of a medium at wavelengths of 1000 nm and 500 nm
are given by 2.16 and 2.27 respectively. What is the velocity of the nonlinear
polarisation generated at the second harmonic frequency?
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24.3 Lithium niobate is a crystal with #( > n,and in which phase matching for SHG
is possible for propagation along the X direction (X YZ represents the principal
axis system). From phase matching considerations, state what should be the
state of polarisation of the fundamental and that of the second harmonic. Write
down the corresponding phase matching condition.

24.4 Consider SHG in quartz for which corresponding to a fundamental wavelength
of 694 nm,

n®=1541;  a®=1550; nf?=1566; a7 =1577.

Can one obtain birefringent phase matching? Give brief reasons.
24.5 Consider sum frequency generation as shown below. Obtain the maximum
power at the sum frequency that can be generated.

Tpm, 1'W Nonlinear

medium

1.5 um, I mW ———

24.6 Consider sum frequency generation with wavelengths of 2 um and 1 pm.

(a) What is the wavelength of the generated wave?
(b) Write the corresponding phase matching condition in terms of refractive
indices at different wavelengths.

24.7 Consider second harmonic generation in lithium niobate and assume that the
fundamental is an e-wave at 1 um leading to an e-wave at 0.5 um. Given that
the refractive indices at these two wavelengths are 2.15 and 2.25 respectively,
obtain the maximum efficiency of second harmonic generation if the input
power is 1 W and the area of the beam is 1 mm?. Assume d=30x 10"2 m/V.

24.8 A parametric amplifier operates with a pump wavelength of 1 um and a signal
wavelength of 1.5 um.

(a) Obtain the wavelength of the idler.

(b) If the input pump power is 1 W and an input signal power of 1 mW is
amplified to 1.5 mW at the output, obtain the output power at the idler
frequency.

249 The ordinary and extraordinary refractive indices of lithium niobate for
1.06 um and 0.53 um are given below:

n,(1.06 um) = 2.2323; 1,(1.06 pm) = 2.1561
1, (0.53 wm) = 2.3247; 1,(0.53 um) = 2.2355

(a) If both w and 2w waves are extraordinary waves propagating along the
x-direction, what period Ay would you choose for QPM to generate SHG
most efficiently?

(b) IfIchoose the 1.06 um to be an ordinary wave and that at 0.53 um to be
an extraordinary wave what would be the corresponding OPM period?
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24.10 LiNbOs is a uniaxial medium with ny > n, with a d tensor given by Eq. (8).
It is found that one can achieve noncritical phase matching for SHG while
propagating along the X-axis of the crystal. XYZ are principal axes of the
crystal. Given that

PR =d,, E/ E (18)

and that the input at @ is Y polarised, obtain the components of the nonlinear
polarisation at 2. Which component of the nonlinear polarisation will be
responsible for SHG?

24.11 The nonlinear polarisation in an optical fiber is given by
P =gy E (19)

Assuming the incidence of waves at frequencies ; and @, (with propagation
constants 3; and f3,) obtain an expression for the nonlinear polarisation
generated at frequency .

24.12 (a) Consider an optical fiber with n, =3.2 X 1072° m%/W and an effective mode
area of 50 umz. If we couple 100 mW into the fiber, obtain the change in the
refractive index in the fiber due to nonlinearity, (b) If we propagate a distance
of 20 km in the fiber obtain the change of phase due to nonlinearity. Assume a
wavelength of 1550 nm and neglect attenuation of the fiber.

24.13 Waves corresponding to frequencies @; and w, are input into an optical fiber.
(a) Obtain an expression for the nonlinear polarisation at a frequency @; =2®,
— m,, and (b) What is the velocity of the nonlinear polarisation wave at @;?

24.14 Light waves at frequencies @y and @y, + A@(Aw << @) are incident in an
optical fiber. Under what condition will the generation of the frequency
Wy — Aw be efficient?

24.15 Consider SHG for a fundamental wavelength of 1 um over a crystal of length
2.5 cm. Estimate the maximum allowed value of Ak so that the reduction in
peak efficiency due to nonphase matched operation is not less than 81% of the
phase matched case.

24.16 The threshold condition of a parametric oscillator is given by

1+ RR;

hg,l = ————
cosh g, R+R

(20)
where symbols have their usual meaning. Show that the threshold gain required
for a singly resonant OPO is much higher than that of a doubly resonant OPO.

24.17 Give all possible wavelengths that can be generated using inputs at 800 nm
and 1200 nm in a )((2) nonlinear medium.

24.18 The phase matched SHG efficiency of a 5 cm long KDP crystal is 1%. For
what value of Ak will the SHG efficiency become zero?

24.19 In an SHG experiment the second harmonic conversion efficiency is 2% when
the input power is 1 W. If the input wavelength is 1 um, how many photons at
the second harmonic frequency are exiting per unit time from the medium?

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

Nonlinear Optics 321

€/ SOLUTIONS

24.1 The phase matching condition would determine which of the two processes will
take place. If the phase matching condition for the sum frequency generation
is satisfied, then it will lead to sum frequency generation. Similarly, if the
phase matching condition for the difference frequency generation is satisfied
then it will lead to difference frequency generation.

24.2 The nonlinear polarisation at the second harmonic frequency travels at the
same velocity as the electromagnetic wave at the fundamental frequency.
Hence, the velocity of the nonlinear polarisation at the second harmonic
frequency is ¢/2.16.

24.3 Since the refractive index increases with increase in frequency and for the
given crystal n, > n,, the fundamental should have ordinary polarisation and
the second harmonic should have extraordinary polarisation so that the phase
matching condition of n,(w) = n,(2w) can be satisfied.

24.4 Since nC?, n%? > p@ 1@ it is not possible to achieve birefringent phase
matching in this case.
24.5 The wavelength A, corresponding to the sum frequency is given by

Ll
1715

s

which gives us A, = 0.6 um.

For complete power conversion by sum frequency generation, the entire
power at 1.5 um would get converted to the sum frequency. In sum frequency
generation, one photon at 1.5 um and 1 photon at 1 um fuse to form one photon
at the sum frequency. Hence, if all the power at 1.5 pm is converted to the sum
frequency, then the number of photons exiting at the sum frequency will be
equal to the number of photons incident at the wavelength of 1.5 um. The
number of photons corresponding to 1.5 um (referred to here as the frequency
) entering the crystal per unit time is

P
ho,

which should equal the number of photons exiting the crystal at 0.6 um.
Hence, the power exiting the sum frequency would be
[0 4 1.

P,=nho,= KSP= ),_P: 0—1=2.5mW
1 .

S

=)}

24.6 (a) Wavelength of the generated wave will be 0.666 um.
(b) The phase matching condition is given by

n(4;) _ n(4) + n(4;)
A3 A A
where 7(A) is the refractive index of the medium at the wavelength A and A’s
represent free space wavelengths.

e2))
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24.7 The efficiency for second harmonic generation is given by Eq. (4). In the
present case the two waves are not phase matched and hence Ak is nonzero.
Substituting values of various parameters we find the efficiency to be
approximately 8 x 107'°. This extremely small value of efficiency is due to
nonphase matched interaction.

24.8 (a) Idler wavelength is given by

= s (22)

Substituting values of the pump and signal wavelengths we obtain the
idler wavelength to be 3 um.

(b) The signal power increases by 0.5 mW. Since the number of photons
generated at the idler must be equal to the number of signal photons added
to the signal, the exiting power at the idler must be equal to the number of
additional signal photons multiplied by the idler photon energy:

AP, A

hw;= ->AP;=0.25 mW
h(/)s wl A‘ s m

1

P;

249 (a) The QPM period required is given by Eq. (9). Substituting the values of
the extraordinary indices at @ and 2 frequencies we obtain the required
QPM period to be 6.67 um.

(b) In this case, we need to use the ordinary index at 1.06 um and the
extraordinary index at 0.53 um to obtain the QPM period which comes
out to be 165.6 um.

24.10 Since the fundamental wave is Y-polarised, we have

E® =0, E®%0, E”=0 (23)

Hence, the nonlinear polarisation generated is given by the following:

0
- (@) (@)
| =g -dyy dyy O ds O 0 g
z d31 d3l d33 0 0 0
0
0
0
= | dpEVE 24
dy E\VE(®

Since the phase matching is achieved using birefringence phase matching,
the generated second harmonic would be z-polarised (extraordinary polarisa-
tion). Hence, the z component of the nonlinear polarisation will be responsible
for the generation of the second harmonic.
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24.11 The total incident electric field will be given by
E =E cos(wt— Bz) + Eycos(wyt — B,2)
= % (B @~ P9) yce) + % (Epe @' =Py e (25)

Substituting in the expression for the nonlinear polarisation we obtain the
nonlinear polarisation at the frequency @, to be given by

(3)
1 .
P = 2L B P+ 615, B P) + ce) 26)

The first term within the brackets represents self phase modulation and the
second term the cross phase modulation.
24.12 (a) Using the expression for the change in index we obtain

=~6x 107!

An= n21= ny
eff

(b) The nonlinear change in phase is given by

A¢NL=2—”AnL= 2T 65107 x20% 10° = 1.557
0

A 1.55x107°
which represents a large change in index. The change in phase is large
inspite of a very small index change since the length of propagation is
very large compared to the wavelength.
24.13 Using a similar procedure as in Problem 24.11 we obtain the nonlinear
polarisation at @; to be

3
807(( )

P = = BETE expli(oy 2By )] +ee]  @2D)
The velocity of the nonlinear polarisation wave is given by
@3
UNL = = (28)
M 2B - B

24.14 From Problem 24.12, we see that this situation corresponds to @; = @y, and
@, = @y — Aw. For efficient generation of the new frequency, we need to
satisfy the condition that the velocity of the nonlinear polarisation and the
electromagnetic wave at @y, — A be the same. This would happen if

AB = f(ay + Aw) — {2(ay) - B(wy — Aw)} =0 (29)
Since Aw << @, we can make Taylor series expansion of the propagation
constants about the frequency @, and obtain the following condition:

d Aw)* d°
Aﬁ=ﬁ(wo)+Aa)£ +%d_w€
d 2 d2
_ Zﬁ(wo)—ﬁ(w0)+Aw£‘ _%ﬁ
d*p
= Gy 5 =0 30
(Aw) da’zw:% (30)
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Thus, the required condition is that the fiber should have zero dispersion at
= Q. AKL
24.15 The second harmonic efficiency decreases as sinc? (T) . Thus, if the

efficiency has to be higher than 81% for the case with Ak = 0, then we must
have AkL/2 < 1.1 or Ak<0.88 cm .
24.16 In a singly resonant oscillator R; = 0. Thus, the threshold condition is given by
1
1
> (3D

s

coshgy L = —

For high reflectivity, R, ~ 1 and we can write R, = 1 — §, with §, << 1.
Simplifying the above equation we get,

gmsL = 2(1=R)) (32)

For the doubly resonant oscillator assuming R; ~ 1, we get

gmal = A= R)(1-R;) (33)

Thus, the ratio of the threshold gain coefficients is given by

gth,s _ 2 (34)

gth,d (1 - Ri)

which is very large for R; ~ 1 showing that the threshold gain coefficient for
singly resonant oscillator is much higher than the threshold gain coefficient
for a doubly resonant oscillator.

24.17 The new wavelengths would correspond to second harmonics of the two
waves, the sum and difference frequencies. These correspond to 400 nm,
600 nm, 480 nm, and 2400 nm.

24.18 The efficiency would be zero when Ak L/2 = m. This corresponds to Ak =
0.4 cm .

24.19 Since the efficiency is 2%, the output power at the second harmonic is
given by 20 mW. For a wavelength of 500 nm, this corresponds to about

5%10' photons.

Table 24.1 Values of second order nonlinear
co-efficients of KDP and Lithium

Niobate
Material dij(m/V)
KDP dys=0.42x 10712
diy=042x107"2
LiNbO, dy; =ds; =5.95x 10712
dy3 =344 % 10712
dyy =3.07x 10712
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APPENDIX

Multiple Choice Questions

1. Spherical aberration of a thin lens can be reduced by
(a) Using monochromatic light
(b) Using a doublet combination
(c) Using a circular annular mask over the lens
(d) Increasing the size of the lens

2. A short linear object of length b lies along the axis of a thin convex lens of
focal length f'at a distance u from the center of the lens. The size of the image
is approximately equal to

1/2
(7 5“7
@ [ - ® o[
f 1/2 f 2
(©) b(—u—f) (d) b(—u—f)

3. A converging lens is used to form an image on a screen. When the upper half
of the lens is covered by an opaque screen, then

(a) The upper half of the image will disappear
(b) The lower half of the image will disappear
(¢) The complete image will be formed
(d) The image will become smaller
4. Consider a thin lens (of refractive index 1.5) placed in air. The radii of the first
and second surfaces are R; =+20 cm and R, =—20 cm. The focal length of the
lens will be

(a) +20cm (b) 20 cm
(c) + % cm (d) Infinite

5. If the radius of curvature of a spherical mirror is 20 cm, the focal length of the
mirror is approximately

(@) 5cm (b) 10 cm (¢) 20cm (d) 30cm
6. A plane wave given by W (x, y, z, f) = Ade' (@' +2)

(a) Propagates along the +z direction

(b) Propagates along the —z direction

(c) Propagates in the x-y plane

(d) Represents a standing wave

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

326 Problems and Solutions in Optics and Photonics

7. A light wave with a free space wavelength of 1000 nm and propagating in

a medium of refractive index /3 is incident at 60° at an interface with free
space. The speed of propagation of the wave in the rarer medium is

(@) 2x10% m/s (b) 3 x10%m/s

(©) 243 x 10° m/s (d) 3 x10°m/s
8. In the case of total internal reflection

(a) There is no energy in the rarer medium.

(b) Energy is present in the rarer medium and it propagates parallel to the
interface.

(c) Energy is present in the rarer medium and it propagates normal to the
interface.

(d) Energy is present in the rarer medium and propagates towards the
interface.

9. When a light wave propagates from one medium to another, which of the

following associated quantity does not change

(a) Velocity (b) Frequency

(c) Wavelength (d) Intensity

10. A wave of frequency @ and wave vector (X + y — z)w/c is propagating
through a medium. The magnitude of the phase difference between the points
A(0,1,2)and B(2, 1, 0) is

@ 2 ®) 0 © 2 @ 22

11. Which of the following represents a wave propagating along the negative
z-direction (here ¢ is measured in seconds and y and z are measured in

centimeters)
(a) y=2cosm(z—2t) (b) w=3sin w(z + 4¢)
(¢) w=3sin wzcos 27t (d) w=3sin2mte

12. The displacement represented by the following equation
y(x, ) =acos (kx + wt)
represents a
(a) Transverse wave propagating in the +x direction
(b) Longitudinal wave propagating in the +x direction
(c) Transverse wave propagating in the —x direction
(d) Longitudinal wave propagating in the —x direction
13. A wave is represented by the following equation

y(x, f) = Ssin(2x + 37)

where, x and y are measured in meters and ¢ is seconds. The velocity of the
wave is

(@) 3m/s (b) % ms () % ms () % m/s
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14. The displacement associated with a wave is described by the equation
Y(x,y,z,t)=Acos(3y—4z—51)
where, x, y and z are measured in centimeters and ¢ is seconds. The wave
length of the wave is given by
(a) 4r cm™! (b) 04rn cm!
(c) 4cm’! (d) 0.4 cm™
15. The displacement associated with a wave is described by the equation
Y(x,y,z,f)=Acos(3y —4z—5%)
where x, y and z are measured in centimeters and ¢ is seconds. The unit vector
along the propagating of the wave is given by
(a) 0.6y—-0.8z (b) —0.6y+0.82
(c) 0.6y+0.8z (d) -0.6y-0.82
16. In a medium characterised by the refractive index variation " x)= n% - 7/2 X2,
the ray paths are given by
(@) x(z)=A4+Bz
(b) x(z)=Ae* + Be™**
(c) x(z)=Asin(I'z+ ¢)
(d) x(z)=A+Bz*
where 4, B, a, ¢ and T" are constants.
17. Wavelength of gamma rays is of the order of

(a) 5000 A (b) 1cm () 10%em () 1A
18. The k vector for the wave described by the equation £; =4 cos {wz - M}
is given by 2
0, O, O . o -
a) k=—x+—z b) k=—F—x+—F12
(a) : e (b) N,
© k=25%-2; ) k=232

C c C\/E X C\/E z
19. Two sources are said to be coherent when

(a) Their phase difference is 7

(b) They are in phase

(c) Their phase difference remains constant with time

(d) Their phase difference depends on time

20. A medium characterised by
n(z)=1.5+0.001sin 2roz)

(z is in um) has a maximum reflectivity at a wavelength of 1500 nm under
normal illumination. The value of « (in um_l) is

(a) 2 (b) 1 © ) 0.5

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

328

21.

22.

23.

24.

25.

26.
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In an interference pattern between two coherent sources, the maximum of
intensity is 9/ and the minimum is /. The intensities of the individual waves
are

(a) Iyand [, (b) 5Iyand 4/,

(c) 4lyand I, (d) 91yand I,
The entire setup of Young’s double hole experiment is immersed in water. The
fringe spacing will

(a) Increase (b) Decrease

(¢) Remain the same (d) No fringes will be observed

A water film (refractive index 4/3) in air is illuminated by light of wavelength
600 nm at normal incidence. In the reflected light, an interference minimum is
observed. If instead, an interference maximum is to be observed, the minimum
change required in the thickness of the film (in nm) is

(a) 1125 (b) 225.0 (c) 300.0 (d) 600.0
In a Young’s double hole experiment, both holes are covered by thin sheets
of refractive indices n; and n, and thicknesses #; and #, respectively. If it is
required that the fringes should occupy the same position as in the absence of
the two sheets, the ratio ¢,/#, should be equal to
ny—1 m—1
nm—1 © ny—1

() ’;—j (b) (d) Z—;
o(x+z)

2

simultaneously propagating through a medium. The planes describing
intensity maximum would be given by

(@) x+z=mA
(b) x—z(2-1)=m21
() x—z=mA
@ x+z(2-1)=m22

S7 and S, are two coherent sources (see Fig. 1). The interference fringes
formed on the screen LL” will be

Two waves E; = Acos {a)t— } and £, = 4 cos[a)t—ﬂ} are
c

L e
Q

Fig. 1
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(a) Strictly circular
(b) Strictly hyperbolae but approximately straight lines
(c) Strictly straight lines
(d) Strictly elliptical with major axis not equal to minor axis
27. S; and S, are two coherent sources (see Fig. 2). The interference fringes
formed on the screen PP’ will be
(a) Strictly circular
(b) Strictly hyperbolae but approximately straight lines
(c) Strictly straight lines
(d) Strictly elliptical with major axis not equal to minor axis

y
P
N N
ol 02 [0
P/

Fig. 2

28. Two coherent plane waves, moving at angle 6 with respect to each other,
are incident on a screen, placed normal to one of them. They form bright-
and-dark fringes on the screen. The separation between two bright fringes is
1 mm and the wavelength of the waves is 6.33 x 107° cm. The angle O will be

approximately
(a) 0.0036° (b) 0.036° (c) 0.36° (d) 3.6°
29. A patch of oil on the surface of water produces beautiful colours. This is due
to
(a) Diffraction (b) Interference
(c) Total internal reflection (d) Dispersion

30. A microscope lens of refractive index 1.55 is to be coated with a
MgF, film (» = 1.38) to increase transmission of normally incident yellow
light (A = 5500 A). The minimum thickness of the film deposited on the lens
will be about

(@) 107 cm (b) 107 cm
(¢) 107 cm (d) 107! em

31. Newton’s rings are formed by reflection in the air film between a plane surface
and a spherical surface of radius 100 cm. If the radius of third dark ring is
0.09 cm and of twenty eighth 0.25 cm, the wavelength of light used is

(@) 1.038x107° cm (b) 2.176 x 10> cm
(c) 4.352x107° cm (d) 8.704x107° cm

32. A Gaussian beam is incident on a converging lens of focal length f with its

waist at the front focal plane of the lens. The intensity distribution on the back

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

330 Problems and Solutions in Optics and Photonics

focal plane of the lens (assumed to have a transverse dimension much larger
than the Gaussian beam width) would be
(a) An Airy pattern
(b) A Gaussian distribution of the same width as at input.
(c) A Gaussian distribution with a width that is inversely proportional to the
width of the incident Gaussian beam.
(d) A Gaussian distribution with a width that is directly proportional to the
width of the incident Gaussian beam.
33. Diffraction of light
(a) Always leads to divergence of the beam
(b) Can lead to convergence or divergence
(c) Always leads to convergence
(d) Does not take place if the slit size is large
34. Resolution of a telescope
(a) Depends only on the objective lens
(b) Depends both on the objective and the eye piece
(c) Depends on the eye piece only
(d) Depends on the spatial separation between the objective and the eyepiece
35. Consider a grating with d = 3b. The ratio of the intensity of the first order to
that in the zero order is
(a) 1 (b) 27/47* (c) 9/4r? (d) 3/4

36. A laser beam of diameter 25 is incident on a convex lens of diameter 2a with
a > b. The radius of the spot on the focal plane of the lens would be about

@) Afla (b) Aflb ©) Aalf ) Ablf

37. A plane light wave of wavelength A, is incident on a converging lens. The
intensity at the focus is . If the wavelength is increased to 24, and the
incident intensity remains the same, the intensity at the focus will be

(@) I, (b) Iy/2 (c) Iy/4 ) 21,

38. In a single slit Fraunhoffer diffraction pattern, the intensity of the central
maximum is /. If the slit width is doubled, the intensity of the central
maximum would be

() I (b) /2 (©) 21 (d) 4l
39. A beam of light of wavelength 600 nm from a distant source falls on a single
slit 1 mm wide and the resulting diffraction pattern is observed on a screen
placed 2 m away. The distance between the first dark fringes on either side of
the central bright fringe is
(a) 1.2cm (b) 1.2 mm (c) 24cm (d) 2.4 mm

40. The Fraunhoffer diffraction pattern of a circular aperture is observed on a
screen placed at the focal plane of the lens. If the aperture is shifted upwards
along its plane

(a) The diffraction pattern will shift downwards.
(b) The diffraction pattern will shift upwards.
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(c) The diffraction pattern will not shift.
(d) The diffraction pattern will disappear.

41. A single slit is illuminated by light of wavelengths A; and A, so chosen that
the first diffraction minimum of A, coincides with the second minimum of A,.
This implies that A,/4, is equal to

(a) 32 (b) 2/3 (c) 112 (d 2
42. Asthef # of a camera lens increases

(a) The image resolution becomes better.

(b) The image resolution worsens.

(c) The image resolution does not change.

(d) The image becomes brighter.

43. For a converging lens forming an image on a screen,

(a) The resolution is determined only by the diameter of the lens.

(b) The resolution is determined by both the diameter and the focal length of
the lens.

(c) The resolution is determined only by the focal length of the lens.
(d) The resolution does not depend on the focal length of the lens.
44. Aparallel beam of light (1= 6 x 10~’ m) passes through a circular aperture of
radius 7. A good geometrical shadow will be formed on the screen when
(@) r=1cm b) r= 10 cm
(c) r=6x% 107 cm d) r= 10% cm
45. The resolution by a microscope will be better if
(a) Wavelength of light is increased
(b) Wavelength of light is decreased
(c) Focal length of the eyepiece is increased
(d) Focal length of the eyepiece is decreased
46. The spatial frequencies in an object distribution given by

g(x)=A+ Bcos6bmx; (xin mm)

are
(a) 0and3 mm' (b) 0and 6 mm !
(¢) 3mm ™! (d) 6mm!

47. The field distribution on the front focal plane of a lens is given by

glx,y)=2+ cos’ (%)
On the back focal plane of the lens we would observe
(a) 5 spots along the x-axis
(b) 5 spots along the y-axis
(c) 2 spots along the x-axis and 2 spots along the y-axis with one spot at the
center
(d) 2 spots along the x-axis
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48. When a linearly polarised light wave passes through a quarter wave plate, the
output state of polarisation is
(a) Always circularly polarised
(b) Can be only circularly or linearly polarised
(c) Always linearly polarised
(d) Can be linearly or circularly or elliptically polarised
49. When a light wave propagates in a uniaxial medium
(a) SOP changes if the propagation direction is along the optic axis.
(b) SOP changes for any direction of propagation.

(c) SOP changes if the propagation direction is other than along the optic
axis.

(d) SOP does not change for any propagation direction.

50. A right circularly polarised wave is incident normally on a block of uniaxial
medium of thickness 4 um and having n, = 1.66 and n, = 1.49; the optic axis
of the medium is parallel to the surface of the block. If the wavelength of the
wave is 680 nm, the SOP of the emerging light will be

(a) Same as at input

(b) Linearly polarised

(c) Left circularly polarised

(d) Linearly polarised along the optic axis

51. An elliptically polarised wave can always be converted to a linearly polarised
light wave with the help of a

(a) A/4 plate (b) A/2 plate
(c) Aplate (d) 2Apate

52. The state of polarisation of a wave with electric field E = 0.5(x + y)

cos(wt — kz) is
(a) Right circular (b) Left circular
(c) Elliptical (d) Linear

53. A left circularly polarised beam is incident normally on a polaroid. The

intensity of the emergent beam
(a) Will be almost zero
(b) Will almost remain the same
(c) Will decrease by about half
(d) Will increase slightly

54. Aright circularly polarised beam is incident normally on a quarter wave plate.

The emergent beam will be
(a) Unpolarised
(b) Left Circularly polarised
(c) Linearly polarised
(d) Elliptically polarised but not circularly or plane plane polarised
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55. A right circularly polarised beam is incident normally on a half wave plate.
The emergent beam will be
(a) Unpolarised
(b) Left Circularly polarised
(c) Linearly polarised
(d) Elliptically polarised but not circularly or plane plane polarised
56. A polarised beam is described by the following equations
E.=Acos(wt—kz) and E,=Asin(of - kz).
The wave is
(a) Right Circularly polarised
(b) Left Circularly polarised
(c) Linearly polarised
(d) Elliptically polarised but not circularly or plane plane polarised

N

57. A plane wave propagates along a direction with the unit vector K = BB

1.. . . . L
+ Szina uniaxial medium. The unit vector along the direction of the D of

the extraordinary wave is

N 1. NEIN
= _ o+ M2
@ n=-2y+
. 1. 3.
= s
(b) n Ytz

- 1. 3.
(¢) n 2y 2z

(d n=x
58. Suppose you wish to make a resonator in which one of the mirrors is a convex
mirror of radius of curvature 1 m. If the length of the resonator is to be 1 m,
for the resonator to be stable the second mirror should be
(a) A plane mirror
(b) A concave mirror of radius of curvature between 1 m and 2 m
(c) A concave mirror of radius of curvature greater than 2 m
(d) A concave mirror of radius of curvature less than 1 m
59. A gas laser of length 15 cm oscillates simultaneously in two adjacent
longitudinal modes around a wavelength of 600 nm. The wavelength spacing
between two longitudinal modes is

(a) 1.2 pm (b) 1.2 nm (¢) 2.4 pm (d) 2.4 nm
60. The SI unit of Einstein’s B co-efficient is

(@) Js! (b) m’s!

) J Tslm? (d J s'm?

61. If A and B represent the Einstein co-efficients corresponding to a pair of
nondegenerate energy levels separated by energy /v, then the ratio 4/B
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(a) Does not depend on v
(b) Is proportional to v
(c) Is proportional to Vv
(d) Is proportional to v
62. A laser can be made to operate in a single longitudinal mode
(a) By increasing the length of the cavity
(b) By increasing the diameter of the cavity
(c) By decreasing the length of the cavity
(d) By increasing the pump power
63. Consider an optical fiber having a loss coefficient of 0.25 dB/km. If a power
of 0.5 mW is launched at the input, the power exiting the fiber after 68 km of
propagation would be
(a) 10 uW (b) 0.125 mW
(c) 0.05 mW (d) 0.1 mW
64. Consider a parabolic index medium with the following refractive index

variation:
2
nz(x) = n% [1 - 2A(£) :|
a

where A is positive. A ray is launched at x = a/10, z = 0 parallel to the z-axis.
The

(a) Ray will propagate straight without any bending.
(b) Ray will bend away from the axis.

(c) Ray will bend towards the axis.

(d) The ray cannot propagate in the medium.

65. When a ray propagates in the x-z plane in a medium with a refractive index
depending only on x-co-ordinate, if 6(x) is the angle made by the ray with the
z-axis, then as the ray propagates

(a) n(x)sin O(x) remains constant
(b) n(x)cos B(x) remains constant
(c) n(x)tan 6(x) remains constant
(d) sin O(x)/n(x) remains constant
66. In a symmetric step index planar waveguide
(a) All modes have a finite cutoff /-value
(b) Only the fundamental TE mode has no cutoff
(c) Only the fundamental TM mode has no cutoff
(d) Both the fundamental TE and the fundamental TM modes have no cutoff

67. If the intensity pattern corresponding to an LP;,, mode has one zero along the

radial direction and four zeros the azimuthal direction, then the values of / and

m are
(a) 1 and 1 respectively (b) 0and 1 respectively
(c) 2and 1 respectively (d) 2 and 2 respectively
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68. Two perfectly aligned single mode fibers will have no loss
(a) Only if both fibers are identical.
(b) If both fibers have the same mode field diameter.
(c) Ifboth fibers have the same V-number.
(d) If both fibers have the same core radius.
69. Consider a multimode optical fiber having a numerical aperture of 0.2. When
all the modes are equally excited, then at the output
(a) The maximum angle of emergence of the cone of rays is less in water
than in air
(b) The maximum angle of emergence of the cone of rays is more in water
than in air
(c¢) The maximum angle of emergence of the cone of rays is the same in
water as in air
(d) The change in the maximum angle of emergence of the cone of rays
would depend on the core diameter.
70. If the output power is 0.001 mW for an input power of 1 mW, the attenuation
in the fiber is
(a) 10dB (b) 20dB (c) 30dB (d) 0.001 dB
71. Intermodal dispersion is highest in
(a) Step index single mode fiber
(b) Step index multimode fiber
(c) Parabolic index multimode fiber
(d) Graded index single mode fiber
72. Consider a pulse propagating in the +x direction. At x = 0, the time variation
is given by
w(x=0,1) =Eje '™ |1|< %T
1

=0 1> 57

The spectral widths Aw of the pulse is given by
o, 1 1
@ ~— ) ~opr (9 ~ @~
73. Consider a Gaussian pulse given by
2 .
v(x=0,1)=Eyexp {— t—z} e ™!
27
The spectral widths Aw of the pulse is given by
[0) 2 1 1
(@) ~— (b) ~awgr (¢) ~— d ~—
72 0 T 72

74. The power of a 2 mW laser beam decreases to 15 uW after traversing through
25 km of a single mode option fiber. The attenuation of the fiber is

(a) 0.085 dB/km (b) 0.85 dB/km
(¢) 8.5dB/km (d) 85 dB/km
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75. A5 mW laser beam through a 26 km fiber of loss 0.2 dB/km. The power at the
output end is

(a) 3 mW (b) 1.5 mW
(¢) 0.3 mW (d) 0.15mW
76. Consider a step index fiber with n; = 1.5, a =40 um and A = nl;_nz =0.01
1

operating at 850 nm with a spectral width of 20 nm. The value of
2

d—g =0.0297 (um)’z. The material dispersion is
Ao

(a) 0.17 ns/km (b) 1.7 ns/km

(c) 17 ns/km (d) 170 ns/km

77. Forpuresilica, n(Ag) = 1.451 —-0.003 (ﬂ,g - %J where A is measured in um.
0

The zero material dispersion wavelength is approximately given by
(a) 0.8 um (b) 1.32 um
(c) 1.55pum (d) 2.5um
78. In a phase matched difference frequency generation setup an incident wave
at 1000 nm and having a power of 1 W interacts with a wave at 1500 nm and
having a power of 1 mW. If the power exiting at 1500 nm is 1.1 mW, the
power exiting at the difference frequency would be
(a 0.1 mW (b) 0.05 mW
(c) 0.5mW (d) 1mW
79. Consider a medium with n,=2.26 and n, = 2.20. A light wave having ordinary
polarisation and propagating along the — x direction interacts with an acoustic
wave propagating along +x direction and gets diffracted to a wave propagating
along —x direction. If Bragg condition is satisfied, the diffracted wave will
(a) Have the same frequency as the incident wave
(b) Have a higher frequency than the incident wave
(c) Have a lower frequency than the incident wave
(d) Will contain both higher and lower frequencies
80. For the extra-ordinary wave propagating in an uniaxial crystal (with the optic
axis along the z-direction)
(a) D-Kkis always zero.
(b) D, is always zero.
(c) D is always at right angles to E.
(d) D x Kk is always zero.
81. For a Gaussian beam (whose phase front is plane at z = 0) and whose spot size
at z = 0 is wy, the spot size at large values of z is approximately given by

(@) wx)=

Tz

A
(®) W)= 2o

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



The McGraw-Hill companies

82.

11.
16.
21.
26.
31.
36.
41.
46.
51.
56.
61.
66.
71.
76.
81.
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WO z
A
Wz

(c) w(z)=

(d wi) =

A
A nonlinear medium has the following refractive indices: at 1000 nm,
n, =4.80, n, = 6.25 and at 500 nm, »n, = 4.86 and n, = 6.32. If this medium is
used for birefringence phase matching, then
(a) The fundamental will be ordinary (o) and second harmonic will be
extraordinarily (e) polarised
(b) The fundamental will be e-polarised and the second harmonic will be
o-polarised
(c) Both fundamental and second harmonic will be o-polarised
(d) Both the fundamental and second harmonic will be e-polarised

Answers to Multiple Choice Questions

. (b) 2. (d) 3. () 4. (a) 5. (b)

. (b) 7. (a) 8. (b) 9. (b) 10. (d)
(b) 12. () 13. (0) 14. (b) 15. (a)
©) 17. (c) 18. (b) 19. () 20. (a)
(©) 22. (b) 23. (a) 24. (b) 25. (b)
(b) 27. (a) 28. (b) 29. (b) 30. (b)
(b) 32. (c) 33. (b) 34. (a) 35. (c)
(b) 37. (o) 38. (d) 39. (d) 40. (c)
(d) 42. (b) 43. (b) 44. (a) 45. (b)
(a) 47. (a) 48. (d) 49. (c) 50. (a)
(a) 52. (d) 53. (c) 54. (c) 55. (b)
(a) 57. (a) 58. (b) 59. (a) 60. (c)
(©) 62. (c) 63. (a) 64. (c) 65. (b)
(d) 67. () 68. (b) 69. (a) 70. (c)
(b) 72. (c) 73. () 74. (b) 75. (b)
(b) 77. (b) 78. (b) 79. (b) 80. (a)
(b) 82. (b)
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