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Arithmetic & Logic Unit (ALU)

m Part of the computer that actually performs arithmetic and
logical operations on data

m All of the other elements of the computer system are there _
mainly to bring data into the ALU for it to process and then to
take the results back out

m Based on the use of simple digital logic devices that can store
~ binary digits and perform simple Boolean logic operations

m Does the calculations

m Handles integers

m May handle ﬂoating point (real) nﬁmbers
m May be separate FPU (maths coprocessor)

m May be on chip separate FPU (486DX +)
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Figure 10.1 ALU Inputs and Outputs
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v
Positional Number Systems

m Different Representations of Natural Numbers

~ m XXVII Roman numerals (not positional)
m 27 Radix-10 or decimal number (positional)

m 11011, Radix-2 or binary number (also positional)

m Fixed-radix positional representation with k digits

Number N in radix r = (d,_,d, , . . . d,d,)

Value =d,_,xr*'+d, ,xr* 2+ .. +d,xr+d,

Examples: (11011), = 1x24 + 1x23+ 0x22+ 1x2 + 1 = 27
(2103), = 2x43+ 1x42 + 0x4 + 3 = 147
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o . . . .
Binary Numbers | |
m Each binary digit (called bit) is either 1 or O - '

m Bits have no inherent meaning, can represent

= Unsigned and signed integers Most Least
m Characters Significant Bit Significant Bit
» Floating-point numbers | \ /
| | ) 7 6 5 4 3 2 1 0
= Images, sound, etc. (1]ofof1[1[2]0[1]
3 ; A 27 26 25 94 93 22 31 20
m Bit Numbering

m Least significant bit (LSB) is rightmost (bit 0)
= Most significant bit (MSB) is leftmost (bit 7 in a 8-bit number)
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Hexadecimal Integers

m 16 Hexadecimal Digits:0-9,A-F

m More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents
Binary | Decimal | Hexadecimal Binary Decimal | Hexadecimal

LN i L] | LR by =

(M | | | k] Y Li

(K10 2 2 | Q0 1] A

LR 3 3 (D] | B

1M 4 4 | 1{M) 12 C

0101 5 5 | 1001 |3 I3

(k110 (] L] [ 11400 14 E

RN 7 7 1111 15 5
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:
Converting Binary to Hexadecimal

m Each hexadecimal digit corresponds to 4 binary bits

Example:
Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 O100

Solution:

1110 | 1011 | 0001 | 0110|1010 (0111 | 1001 | O100
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Integer Storage Sizes

Byte| 8 |
Half Word 16 Stnrage Sizes
Word 32
Double Word | 64 |

Storage Type Unsigned Range Powers of 2
Byte 0 to 255 0to (28 —1)
Half Word 0 to 65,535 0to (216 — 1)
Word 0 to 4,294,967,295 0to (232 -1)
Double Word 0 to 18,446,744,073,709,551,615 0to (254 - 1)
What is the largest 20-bit unsigned integer?
Answer: 220 — 1 = 1,048,575
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Signed Integers

m Several ways to represent a signed number

. m Sign-Magnitude
= Biased
= 1's complement

m 2's complement

m Divide the range of values into 2 equal parts
m First part corresponds to the positive numbers (2 0)

m Second part correspond to the negative numbers (< 0)

m Focus will be on the 2's complement represerntation
- m Has many advantages over other representations

m Used widely in processors to represent signed integers
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Decimal Sigl?ed Ones Twos Biased | Biased
Magnitude | Complement | Complement | B=+8 | B=+7

+8 - - - - 1111
+7 0111 0111 0111 1111 1110
+6 0110 0110 0110 1110 1101
+5 0101 0101 0101 1101 1100
+4 0100 0100 0100 1100 1011
+3 0011 0011 0011 1011 1010
+2 0010 0010 0010 1010 1001
+1 0001 0001 0001 1001 1000
+0 0000 0000 00d0 1000 0111
-0 1000 1111 0000 - -

-1 1001 1110 1111 0111 0110
-2 1010 1101 1110 0110 0101
-3 1011 1100 1101 0101 0100
-4 1100 1011 1100 0100 0011
-3 1101 1010 1011 0011 0010
-6 1110 1001 1010 0010 0001
-7 1111 1000 1001 0001 0000
-8 - - 1000 0000 -
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Sign Bit

m Highest bit indicates the sign | gign bit
|
m 1 = negative | LT O[] O] Negative

}
m 0 = positive ofofofof1]o|1|o0]l Ppositve

m For Hexadecimal Numbers, check most significant digit
- m If highest digit is > 7, then value is negative

m Examples: 8A and CS5 are negative bytes
m BI1C42A00 is a negative word (32-bit signed integer)

m Problems
= Need to consider both sign and magnitude in arithmetic

m Two representations of zero (+0 and -0) in sign-mag & 1’s comp
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Biased Representation

m Other type of binary number representations

m A fixed value called Bias is added for the binary value

m Typically, the bias equals (2¥!-1), where K is the number of
bits in the binary number.

m e.g for 4 bit representation,
m The bias value= 2%1-1=17
m Representation of +8 => 8+7=15 => 1111
m Representation of -7 => -7+7=0 => 0000
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Two's Complement Representation

m Positive numbers — - ‘
= Signed value = Unsigned value 8-bit Binary | Unsigned | Signed
- - value value value
m Negative numbers 00000000 0 0
m Signed value = Unsigned value — 2n 00000001 1 +1
= n = number of bits
00000010 2 +2
N Negatlve vvelght for MSB
m Another way to obtain the s1gned 01111110 126 +126
value is to assign a negative weight
to most-significant bit 01111111 127 +127
1101 {1T]0[1T]0|0 | 10000000 128 -128
-128 54 32 16 8 4 2 1 10000001 129 -127
m=-128+32 + 16+4 -16
11111110 254 -2
11111111 255 -1
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Forming the Two's Complement

starting value 00100100 = +36
step1: reverse the bits (1's complement) 11011011
step 2: add 1 to the value from step 1 + 1
sum = 2's complement representation 11011100 = -36

Sum of an integer and its 2's complement must be zero:
00100100 + 11011100 = 00000000 (8-bit sum) = Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the Os to its right unchanged
Complement all the bits to its left

Binary Value

2

— |east

00100 0 O significant 1

's Complement

11011(1Jo0
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Sign Extension

m Step 1: Move the number into the lower-significant bits

m Step 2: Fill all the remaining higher bits with the sign bit

m This will ensure that both magnitude and sign are correct

Examples
< Sign-Extend 10110011 to 16 bits

10110011 = -77 = [111111:%0110011
< Sign-Extend 01100010 to 16 bits

01100010 = +98 [ [0000003%1100010 = +98

-77

Infinite Os can be added to the left of a positive number

Infinite 1s can be added to the left of a negative number
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Ranges of Signed Integers

For n-bit signed integers: Range is -2"' to (21 -1)
Positive range: 0 to 271 — 1

Negative range: -2 to -1

Storage Type Signed Range Powers of 2

Byte —-128 to +127 -2"t0 (27 -1)

Half Word -32,768 to +32,767 210 (275 -1)

Word —2,147,483,648 to +2,147,483,647 —23110 (231 -1)
—9,223,372,036,854,775,808 to

Double Word —263t0 (263 - 1)
+9,223,372,036,854,775,807

Practice: What is the range of signed values that may be stored in 20 bits?
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subtraction addition subtraction addition
of positive of positive of positive of positive
numbers numbers numbers 000...0 numbers

010...0

98-76-5-4-3-2-1012345¢6738Y9

(a) 4-bit numbers (b) n-bit numbers

Figure 10.5 Geometric Depiction of Twos Complement Integers
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Negation

m Twos complement operation

m Take the Boolean complement of each bit of the integer
(including the sign bit)

m Treating the result as an unsigned binary integer, add 1

+18 = 00010010 (twos complement)
bitwise complement = 11101101
15 1
11101110 =-18

m The negative of the negative of that number is itself:

-18 = 11101110 (twos complement)
bitwise complement = 00010001
+ 1
00010010 = +18
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. | | |
Negation Special Case 1

0 = OOOOOOOO. (twos compiement)
Bitwise complement = 11111111
Bad o ien ol s e e
Result - | 100000000

Overflow is ignored, so:

-0=0
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Negation Special Case 2

-128 = 10000000 (twos complement)
Bitwise complement = 01111111
Add 1 to LSB | s
Result | | 10000000

So:
.(-128)=-128 X
Monitor MSB (sign bit)

It should change during negation
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Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Range —2""! through 2"~! — 1

Number of Representations
One

of Zero

Negation Take the Boolean complement of each bit of the corresponding
positive number, then add 1 to the resulting bit pattern viewed
as an unsigned integer.

Expansion of Bit Length Add additional bit positions to the left and fill in with the value
of the original sign bit.

Overflow Rule If two numbers with the same sign (both positive or both nega-
tive) are added, then overflow occurs if and only if the result has
the opposite sign.

Subtraction Rule To subtract B from A, take the twos complement of B and add
it to A.
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Character Storage

m Character sets

. m Standard ASCII: 7-bit character codes (0 — 127)
m Extended ASCII: 8-bit character codes (0 — 255)
m Unicode: 16-bit character codes (0 — 65,535)

m Unicode standard represents a universal character set

= Defines codes for characters used in all major languages

m Used in Windows-XP: each character is encoded as 16 bits
= UTF-8: variable-length encoding used in HTML

m Encodes all Unicode characters

m Uses 1 byte for ASCII, but multiple bytes for other characters:

m Null-terminated String

N Array of characters followed by a NULL character
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Binary Addition
m Start-with the least significant bit (rightmost bit)
m Add each pair of bits

m Include the carry in the addition, if present

carry 1 1 1 1

+

bit position: 7 6 5 4 3 2 1 0

>4
29

(83)
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Binary Subtraction

m When subtracting A — B, convert B to its 2's complement

m Add A to (-B)

borrow: I 1 1 carry: 1 1 1 1
01001101 01001101
00111010 171000110 (2's complement)
00010011 00010011 (same result)

m Final carry is ignored, because
m Negative number is sign-extended with 1's
= You can imagine infinite 1's to the left of a negative number

= Adding the carry to the extended l's produces extended zeros
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1001 = —7
+0101 = 5
1110 = —2

(@) (=7) + (+5)

1100 = —4
+0100 = 4
10000 = O

(b) (=4) + (+4)

0011 = 3
+0100 = 4
0111 = 7

(€) (+3) + (+4)

1100 = —4
e TIE — =1
11011 = -5

(d) (=4) + (=1

0101 = 65
+0100 4
1001 = Overflow

(e) (+5) + (+4)

1001 = —7
+1010 —6

10011 = Overflow

) (=7) + (-6)

Figure 10.3 Addition of Numbers in Twos Complement

Representation

OVERFLOW RULE: If two numbers are added, and they are both positive or both
negative, then overflow occurs if and only if the result has the opposite sign.
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0010 = 2 0101 = 5
+1001 = =7 +1110 = =2
1011 = =5 10011 = 3
(a) M =2 = 0010 (b) M = 5 = 0101
S =17 0111 S = 2 0010
—S = 1001 -S = 1110
1011 = =5 0101 = 5
+1110 = —2 40010 = 2
w1001 = —7 0111 = 7
(c) M = —5 = 1011 (dy M = 5 = 0101
S = 2 = 0010 S = =2 = 1110
—S = 1110 —S = 0010
0111 = 7 1010 = —6
+0111 = 7 +1100 = —4
1110 = Overflow 10110 = Overflow
(e) M = 7 = 0111 (f£) M = —6 = 1010
S = -7 = 1001 S = 4 = 0100
—=5N= 0111 —ch= 1100

Figure 10.4 Subtraction of Numbers in Twos Complement
Representation (M — S)

SUBTRACTION RULE: To subtract one number (subtrahend) from another

(minuend), take the twos complement (negation) of the subtrahend and add it to the
minuend.
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B Register ‘ A Register .

Complementer

OF = Overflow bit
SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardware for Addition and
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Unsigned Multiplication

Paper and Pencil Example:
Multiplicand 1100, = 12
Multiplier X 1101, = 13
1100 : —————
0000 Binary T‘nL.JInphc_atlon IS easy
1100 ?xm”:tfp:fcang:n N
1100 x multiplicand = multiplican
Product 10011100, = 156

m m-bit multiplicand X n-bit multiplier = (m+n)-bit product

m Accomplished via shifting and addition

m Consumes more time and more chip area

STUDENTS-HUB.com

1011 Multiplicand (11)
X1101 Multiplier (13)
1011
0000
1011 Partial products
1011
10001111 Product (143)

Figure 10.7 Multiplication of
UnsignedBinadedinBygersonymous




Multiplicand

C, A< 0 L,T\_/

M < Multiplicand Add

Q < Multiplier > n-bit adder < Shift and add

Count <« n control logic
/\L’_\ Shift right
““'—"—T—_‘—‘—” Multiplier

(a) Block diagram
]
CCA—A+M ; C A Q M

0 0000 1101 1011 Initial values

0 1011 1101 1011 Add } First
0 0101 1110 1011 Shift cycle

Shift right C, A, Q
Count < Count-1

0 0010 1111 1011 Shift

Second
} cycle

0 1101 1111 1011 Add } Third

0 0110 1111 1011 Shift cycle
No
Product | 1 0001 1111 1011 Add } Fourth
inA, Q 0 1000 1111 1011 Shift cycle

. . ; e . (b) Example from Figure 10.7 (product in A, Q)
Figure 10.9 Flowchart for Unsigned Binary Multiplication

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication

STUDENTS-HUB.com ; '. Uploaded By: anonymous




v | | | |
Multiplying Negative Numbers

m This does not work!

= Solution 1
= Convert to positivé if required
m Multiply as above

m If signs were different, negate answer

. Solut_ion 2

m Booth’s algorithm |
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( START )

Y

A—0,Q_;<0
M « Multiplicand
Q < Multiplier : _
Count < n
, L]
- Booth’s algorithm
Y
=10 g o =0 https://www.grahn.us/projects/booths-algorithm/
L =11 Y
=00
A<A-M A=A +M
Y
Arithmetic shift A Q Q-1 L .
o Right:A,Q,Q_;, | 0000 0011 0 0111 Initial values
Count < Count — 1
1001 0011 0 0111 A=A -M First
1100 1001 1 0111 Shift cycle
) } Second
1110 0100 1 0111 Shift cycle
Figure 10.12 Booth’s Algorithm for Twos
Complement Multiplication 0101 0100 1 0111 A—A +M Third
0010 1010 0 0111 Shift cycle
. } Fourth
0001 0101 0 0111 Shift cycle

STUDENTS-HUB.com
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0111
“0011 (0)
11111001 1-0
0000000 1-1
000111 0-1
00010101 (21)

0111
“1101 (0)
11111001 1-0
0000111 0-1
111001 1-0
11101011 (—21)

@ (7) - (3) = (21)

(0) (7) ~ (=3) = (-21)

1001
“0011 (0)
00000111 1-0
0000000 1-1
111001 0-1
11101011 (—21)

1001

“1101 0

00000111

000111

(0)
1-0
1111001 0-1
1-0
(21

00010101 21)

© 1" (3)=(21)

(d) (=7) " (-3)=(21)

Figure 10.14 Examples Using Booth's Algorithm
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+ | - ° -
How 1t works
m Consider a positive multiplier consisting of a -block of 1s

- surrounded by Os. For example,00111110. The product is
given by :

Mx"00111110"=Mx(24+2°+2°+2°+2") = M x 62

m where M is the multiplicand.

m The number of operations can be reduced to two by
rewriting the same as

Mx"01000000-10" =M x (2°=2") = M x 62

m Note that:

2n 4 2n-1 . 19n-k = 2n+l1l _ In-k
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How it works

m So, the product can be generated by one addition and one.
- subtraction

m In Booth’s algorithm

m perform subtraction when the first 1 of the block is encountered
(1-0)

~ m perform addition when the last 1 of the block is encountered (O -

1)

m (1-0)and(0-1)are observed from Q, - Q_, (see previous
example)
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Division

m More complex than multiplication

m Negative numbers are really bad!

m Based on long division
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00001101 <«—— Quotient
Divisor ——— 1011/10010011 <«—— Dividend

1011¥
001110
‘//////' 1011
Partial — 001111
remainders
1011

100 <«—— Remainder

Figure 10.15 Example of Division of Unsigned Binary Integers
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A Q
0000 0111 Initial wvalue
0000 1110 Shift
A0 1101 Use twos complement of 0011 for subtraction
M<—Divisor 1101 Subtract
Q<—Dividend 0000 1110 Restore, set Q, = 0
Count<«—n 0001 1100 Shift
1101
1110 Subtract
Shift Left 0001 1100 Restore, set Q, = 0
A, Q 0011 1000 Shift
1101
0000 1001 Subtract, set Qp = 1
0001 0010 Shift
1101
1110 Subtract
0001 0010 Restore, set Q, = 0

Count<—Count — 1

Quotient in Q
Remainder in A

Fi Jrlé ?E%Tﬁbl_vlvlgﬁalcp for Unsigned Binary Division

Figure 10.17 Example of Restoring Twos Complement Division (7/3)
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Real Numbers

m Numbers with fractions

m Could be done in pure binary
= 1001.1010 = 2% + 20 +2-1 + 23 =0.625

m Where is the binary point?

m Fixed?

= Very limited

m Moving?

= How do you show where it is?
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Exponential Notation

m The following are equivalent representations of 1,234

1074

123,400?0 X
12,340.0  x 107
1,234;0  x 10°
1234 x 10
12.34  x 102
1,234 x 10
0,1234 x 10°

-~

(.

N
The representations differ

in that the decimal place —
the “point” -- “floats™ to
the left or right (with the
appropriate adjustment in
the exponent).

STUDENTS-HUB.com
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Floating Point

m An IEEE Std 754 floating point representation consists of

. m A Sign Bit (no surprise)
= An Exponent (“times 2 to the what?”)

m Mantissa (“‘Significand”), which is assumed to be 1.xxxxx (thus,
one bit of the mantissa is implied as 1)

= This is called a normalized representation

m So a mantissa = O really is interpreted to be 1.0, and a
mantissa of all 1111 is interpretedtobe 1.1111

m Special cases are used to represent denormalized mantissas
- (true mantissa = 0), NaN, etc.
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Representation Format

< 32 Bits

8 Bits > <

l Sign H Exponent

«— 1 Bit—> <«

Mantissa

Single Precision

IEEE 754 Floating-Point Standard

23Bits——

< 64 Bits >
Sign Exponent Mantissa
«— 1 Bit—> <«— 11 Bits > < 52 Bits >
Double Precision
IEEE 754 Floating-Point Standard
BIASED NORMALISED
TYPES SIGN EXPONENT MANTISA BIAS

Single precision 1(31st bit) 8(30-23) 23(22-0) 127

Doubl i 1(63rd bit 11(62-52 52(51-0 1023
STUc[))uENe'IPS—IEIIlSJlgr.lcon (63rd bi) ( ) (51-0) Uplopded By: anonymous




Example | @.125 = 281

85.125 1816181.691
1.61981610081 x 276

+ ' ' 85.125
85 = 1812181

sign = @

1. Single precision:

biased exponent 127+6=133

133 = 1eees1al

Normalised mantisa = ©1@1616061

we will add 8's to complete the 23 bits

The IEEE 754 Single precision is:
= B0 18886181 8181e16616L0202000000060
This can be written in hexadecimal form 42AA4000

2. Double precision:

biased exponent 1823+6=1829

1829 = 1000686868161

Normalised mantisa = ©1@1616061

we will add 8's to complete the 52 bits

The IEEE 754 Double precision is:
= B 1eeeeeeelel 9181016861000088208009000000000E02086E000280000080000

! ! This can be written in hexadecimal form 4855480000000000
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o

Example

m What number is represented by the single precision float -

- 11000000101000...00

STUDENTS-HUB.com

1000000101000...00

—S =
— Fraction = 01000...00,

| — Fxponent = 10000001, =129
x = (=1)! x (1 +01,) x 2(129-127)

(—1) x 1.25 x 22
-5.0
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v
Example

Represent —0.75
-—0.75=(-1)'x1.1, x 21
—S =

— Fraction = 1000...00,

— Exponent = -1 + Bias
* Single: -1 +127=126=01111110,
* Double: -1 +1023=1022=01111111110,

Single: 1011111101000...00
Double: 1011111111101000...00
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Converting from Floating Point

m E.g., What decimal value is represented by the following 32-
- bit floating point number?

= C17B0000,,

Step 1
—Express in binary and find S, E, and M
| Step 2
C17B0000,, = —Find “real” exponent, n
—n = E- 127
i 10000010 11110110000000000000000, — 100000102 - 127
S E M = 130 - 127
| =3

1 = negative
0 = positive
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m E.g., What decimal value is represented by the following 32-

Converting from Floating Point

- bit floating point number?

= C17B0000,,

Step 3

mantissa.)

-1.1111011, x 2"

-1.1111011, x 2°

-1111.1011,

—Put S, M, and n together to form binary result
—(Don't forget the implied "1.” on the left of the

STUDENTS-HUB.com

Step 4

—Express result in decimal

—1111-10112
-13 21 =05
23 =0.125
24 =0.0625

0.6875

/
Answer: -15.6875
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Converting to Floating Point

m E.g., Express 36.5625,, as a 32-bit floating point number (in

- hexadecimal) |
Step 1 Step 3
—Express original value in binary —Determine S, E, and M
+1.001001001, x 2&
36.5625,, = s v n —E =+ 127
=5+127
100100.1001, =132
: : =10000100,
Step 2 S =0 (because the value is positive)
—Normalize Step 4
—Put S, E, and M together to form 32-bit binary
result
100100.1001, =
1.001001001. x 25 0 10000100 00100100100000000000000,
. 5 _—
S E M
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m E.g., Express 36.5625,, as a 32-bit floating point number (in

- hexadecimal)

STUDENTS-HUB.com

Converting to Floating Point

Step 5
—Express in hexadecimal

0O 10000100 0O0100100100000000000000, =

0100 0010 0001 0010 0100 0000 OOOO 0000, =

1 2 1 2 4 0 0

Answer: 42124000,

Dlﬁ
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sign  biased 0
bit /exponent -

trailing
significand field

8bhits 23 hits
(a) binary32 format

sign  biased

bit /exponent
|T trailing significand field

» &
» <

11 bits 52 bits
(b) binary64 format

Y

sign

bit
biased L _
|Texponent trailing significand field

< » &
» <

15 bits 112 bits
(c) binary128 format

Y

Figure 10.21 IEEE 754 Formats
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FP Arithmetic +/-

m Check for zeros

m Align significands (adjusting exponents)
m Add or subtract significands

m Normalize result
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SUBTRACT

Exponents
equal?

Change
sign of Y

Yes

Add
signed

>

Increment
smaller
exponent

I

Shift
significand
right

7Y

RETURN

No

Significand

Put other
number in Z

*Overflow

RETURN

*The exponent is too large to be
represented in the Exponent field
*Underflow

*The number is too small to be
represented in the Exponent field

RETURN

significands

Yes
Significand

Significand
overflow?

Shift
significand
right
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Figure 10.22 Floating-Point Addition and Subtraction (Z— X £ Y)
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Beample: |I

Performe.s + (-8.4375)

8.5 = 8.1 x 2% = 1,800 x 2-1 (normalised)
-9.4375 = -2.8111 x 2% = -1.118 x 2°2 (normalised)
1. Rewrite the smaller number such that its exponent matches with the exponent of the larger number.
-1.118 x 272 = -@.1118 = 271

2. Add the mantissas:

1.0 x 271 + -@.111@ x 27! = @.@@1 x 271
3. Normalise the sum, checking for overflow/underflow:
@.e01 x 271 = 1.888 x 27°
-126 <= -4 <= 127 ===»> NoO overflow or underflow
4 Round the sum:
The sum fits in 4 bits so rounding is not required

Check 1.e88 x 2% = e.es25 which Is equal to 2.5 - 2.4375

STUDENTS-HUB.com ; ; Uploaded By: anonymous



+
Example

Step 1: Decompose Operands

m Add the floating pomt numbers 3.75

- manipulating the numbers in IEEE format.

and 5.125 to get 8 815 by d1rect1y

Sign
+1
0

Exponent
21
128

Value:

Encoded as:

Binary: )
Decimal Representation
Binary Representation

Hexadecimal Representation

Sign
+1
0

Exponent
22
129

Value:
Encoded as:
Binary:

&4 |

Decimal Representation

4

Binary Representation

Hexadecimal Representation

g4 00|

After casting to double precision 3.75

After casting to double precision s

Mantissa
1.875
7340032

3.75
0100000001110000000000000000000!

0x40700000

Mantissa

1.28125

2359296
] [ |§4 | | |

5.125
0100000010100100000000000000000
0x40240000

125

For 3.75, the sign bit is 0 (+), the exponent is 128 (1 unbiased), the

mantissa (including the implicit 1 shown in bold) is: 0000 0000 1111
0000 0000 0000 0000 0000 = 0x00f00000

For 5.1235, the sign bit is 0 (1), the exponent is 129 (2 unbiased), the

mantissa (including the implicit 1 shown in bold) is: 0000 0000 1010 -
0100 0000 0000 0000 0000 = 0x00a40000
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Example

Step 2: Equalizing Operand Exponents

m [f the first exponent is smaller than the second, we shift the
first mantissa to the right and add the absolute difference in
exponents to the first exponent. If vice versa, we do the same
to the second mantissa and exponent.

m For this example the first exponent is 128, second exponent
is 129, absolute difference is 1, so first exponent is smaller, so
we must adjust the first mantissa and exponent, and leave the
second mantissa and exponent unchanged.

= Shift first mantissa right by 1: 0x00f00000 >> 1 =-0x00780000
. m Increase the first exponent by 1: 128 + 1 = 129
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Example

Step 3: Convert operands from smned maqmtude to 2’s
complement :

m For each opérand that is négative, convert the mantissa to 2’s
complement by inverting the bits and adding 1. Neither operand
is negative in this example, so nothing needs to be done.

Step 4: Add Mantissas

= Both operands have an exponent of 129, so we can just add
mantissas to get a positive result with the same exponent.

= 0x00780000 + 0x00a40000 = 0x011c0000 = 0000 0001 0001 1100 0000
0000 0000 0000

Step 5: Convert result from 2’s complement to signed
magnitude

m If the result is negative, convert the mantissa back to signed
magnitude by inverting the bits and adding 1. The result is
positive in this example, so nothing needs to be done.
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Example

Step 6: Normalize Result

m Because the leftmost 1 bit is not in the right place, we must shift the
mantissa right or left to put it back into the IEEE format, and adjust
the exponent accordingly.

m If the leftmost 1 bit is left of bit 23, we must shift the mantissa to the
right and increase the exponent. If the leftmost 1 bit is at bit 23,
- there is no normalization required. If the leftmost 1 bit is right of bit
23, we must shift the mantissa to the left and decrease the exponent.
In the example, we see the first case:
BEFORE NORMALIZATION

Sign of result =0
Exponent of result = 129
Mantissa of result = 0000 0001 0001 1100 0000 0000 0000 0000 = 0x011c0000

The leftmost 1 bit is bit 24, so we must shift the mantissa right by 1 and add 1 to the exponent:
AFTER NORMALIZATION

Sign of result =0
Exponent of result = 129 + 1 = 130 = 100000010

: Mantissa of result = 0x011c0000 >> 1 = 0x008¢0000 = 0000 0000 1000 1110 0000 0000 0000 0000
STUDENTS=HUBcoth Uptoaded By: anonymous




Example

Step 7: Compose Result

Sign of result =0

Exponent of result = 130 = 10000010

Mantissa of result (with implicit 1) = 0x008e0000 = 0000 0000 1000 1110 0000 0000 0000 0000
Mantissa of result (remove implicit 1) = 0x000e0000 = 0000 0000 0000 1110 0000 0000 0000 0000

So final result is: 0 10000010 000 1110 0000 0000 0000 0000 = 0x410e0000, as confirmed by the h-schmidt converter:

Sign Exponent Mantissa
Value: +1 23 1.109375
Encoded as: 0 130 917504
Binary: | 4 OO0 ™C JO0ded o | )
Decimal Representation 8.875
Binary Representation 0100000100001 110000000000000000!

Hexadecimal Representation 0x410e0000

After casting to double precision 5875

To summarize the result of the addition:

3.75 (0x40700000) = + 5.125 (0x40a40000) = 8.875 (0x410e0000)

STUDENTS-HUB.com : : Uploaded By: anonymous



FP Arithmetic x/+

m Check for zero

m Add/subtract exponents

m Multiply/divide significands (watch sign)
m Normalize

i Round

m All intermediate results should be in double length storage
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A 4
Subtract Bias

RETURN
Report =
Overflow
Report
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Significands
A 4
Normalize
4 v
Round RETURN

Figure 10.23 Floating-Point Multiplication (Z— XX Y)
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Example

1. Add the biased exponents

2. Multiply the mantissas

J. Normalise (already normalised)

4. Round the result (no change)

5. Adjust the sign.

1.000 x 271 % -1.,110 x 272

(-1 4+ 127) + (-2 + 127) - 127 = 124 ===> (-3 + 127)

1l.2ae

% 1.118
Baeg
leea

laee

+ laae

1116868 ===> 1.110688
The product is 1.1120e0 x 2°3
MNeed to keep it to 4 bits 1.118 = 2°3

At this step check for overflow/underflow by making sure that

-126 <= Exponent <= 127

1 <= Biased Exponent <= 254

Since the original signs are different, the result will be negative
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DIVIDE
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v
Add Bias

Report
Overflow

Report
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Significands
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Figure 10.24 Floating-Point Division (Z+— X/Y)
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