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Computer Arithmetic
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Arithmetic - The heart of 

instruction execution
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Arithmetic & Logic Unit (ALU)

◼ Part of the computer that actually performs arithmetic and 
logical operations on data

◼ All of the other elements of the computer system are there 
mainly to bring data into the ALU for it to process and then to 
take the results back out

◼ Based on the use of simple digital logic devices that can store 
binary digits and perform simple Boolean logic operations

◼ Does the calculations

◼ Handles integers

◼ May handle floating point (real) numbers

◼ May be separate FPU (maths coprocessor)

◼ May be on chip separate FPU (486DX +)
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Figure 10.1  ALU Inputs and Outputs
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Positional Number Systems
◼ Different Representations of Natural Numbers

◼ XXVII Roman numerals (not positional)

◼ 27 Radix-10 or decimal number (positional)

◼ 110112 Radix-2 or binary number (also positional)

◼ Fixed-radix positional representation with k digits
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Binary Numbers

◼ Each binary digit (called bit) is either 1 or 0

◼ Bits have no inherent meaning, can represent

◼ Unsigned and signed integers

◼ Characters

◼ Floating-point numbers

◼ Images, sound, etc.

◼ Bit Numbering

◼ Least significant bit (LSB) is rightmost (bit 0)

◼ Most significant bit (MSB) is leftmost (bit 7 in a 8-bit number)
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Hexadecimal Integers

◼ 16 Hexadecimal Digits: 0 – 9, A – F

◼ More convenient to use than binary numbers
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Converting Binary to Hexadecimal

◼ Each hexadecimal digit corresponds to 4 binary bits
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Integer Storage Sizes
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Signed Integers

◼ Several ways to represent a signed number

◼ Sign-Magnitude

◼ Biased

◼ 1's complement

◼ 2's complement

◼ Divide the range of values into 2 equal parts

◼ First part corresponds to the positive numbers (≥ 0)

◼ Second part correspond to the negative numbers (< 0)

◼ Focus will be on the 2's complement representation

◼ Has many advantages over other representations

◼ Used widely in processors to represent signed integers
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Sign Bit

◼ Highest bit indicates the sign

◼ 1 = negative

◼ 0 = positive

◼ For Hexadecimal Numbers, check most significant digit

◼ If highest digit is > 7, then value is negative

◼ Examples: 8A and C5 are negative bytes

◼ B1C42A00 is a negative word (32-bit signed integer)

◼ Problems

◼ Need to consider both sign and magnitude in arithmetic

◼ Two representations of zero (+0 and -0) in sign-mag & 1’s comp
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Biased Representation

◼ Other type of binary number representations

◼ A fixed value called Bias is added for the binary value

◼ Typically, the bias equals (2k-1-1), where K is the number of 

bits in the binary number.

◼ e.g for 4 bit representation,

◼ The bias value= 24-1-1= 7

◼ Representation of +8 => 8+7=15 => 1111

◼ Representation of -7 => -7+7=0   => 0000
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Two's Complement Representation
◼ Positive numbers

◼ Signed value = Unsigned value

◼ Negative numbers

◼ Signed value = Unsigned value – 2n

◼ n = number of bits

◼ Negative weight for MSB

◼ Another way to obtain the signed 
value is to assign a negative weight 
to most-significant bit

◼ = -128 + 32 + 16 + 4 = -76
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Forming the Two's Complement
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Sign Extension

◼ Step 1: Move the number into the lower-significant bits

◼ Step 2: Fill all the remaining higher bits with the sign bit

◼ This will ensure that both magnitude and sign are correct
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Ranges of Signed Integers
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Negation

◼  Twos complement operation

◼ Take the Boolean complement of each bit of the integer 

(including the sign bit)

◼ Treating the result as an unsigned binary integer, add 1

◼ The negative of the negative of that number is itself:

+18 = 00010010 (twos complement)

bitwise complement = 11101101

                                         +              1

                                          11101110 = -18

-18 =  11101110 (twos complement)

bitwise complement =  00010001

                                         +               1

                                            00010010 = +18
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Negation Special Case 1

      0    =                00000000    (twos complement)

Bitwise complement  =                 11111111

Add 1 to LSB                         +                 1

Result            100000000

Overflow is ignored, so:

  - 0 = 0 
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Negation Special Case 2

              -128     =        10000000    (twos complement)

Bitwise complement   =         01111111

Add 1 to LSB           +                1

Result                     10000000

So:

-(-128) = -128   X

Monitor MSB (sign bit)

It should change during negation
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Character Storage

◼ Character sets

◼ Standard ASCII: 7-bit character codes (0 – 127)

◼ Extended ASCII: 8-bit character codes (0 – 255)

◼ Unicode: 16-bit character codes (0 – 65,535)

◼ Unicode standard represents a universal character set

◼ Defines codes for characters used in all major languages

◼ Used in Windows-XP: each character is encoded as 16 bits

◼ UTF-8: variable-length encoding used in HTML

◼ Encodes all Unicode characters

◼ Uses 1 byte for ASCII, but multiple bytes for other characters

◼ Null-terminated String

◼ Array of characters followed by a NULL character
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Binary Addition

◼ Start with the least significant bit (rightmost bit)

◼ Add each pair of bits

◼ Include the carry in the addition, if present
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Binary Subtraction

◼ When subtracting A – B, convert B to its 2's complement

◼ Add A to (–B)

◼ Final carry is ignored, because

◼ Negative number is sign-extended with 1's

◼ You can imagine infinite 1's to the left of a negative number

◼ Adding the carry to the extended 1's produces extended zeros
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Unsigned Multiplication

◼ m-bit multiplicand × n-bit multiplier = (m+n)-bit product

◼ Accomplished via shifting and addition

◼ Consumes more time and more chip area
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Multiplying Negative Numbers

◼ This does not work!

◼ Solution 1

◼ Convert to positive if required

◼ Multiply as above

◼ If signs were different, negate answer

◼ Solution 2

◼ Booth’s algorithm

31

Uploaded By: anonymousSTUDENTS-HUB.com



32

Booth’s algorithm

https://www.grahn.us/projects/booths-algorithm/
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Figure 10.14  Examples Using Booth's Algorithm 
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How it works

◼ Consider a positive multiplier consisting of a block of 1s 

surrounded by 0s. For example, 00111110.  The product is 

given by :

◼ where M is the multiplicand.

◼ The number of operations can be reduced to two by 

rewriting the same as

◼ Note that:
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How it works

◼ So, the product can be generated by one addition and one 

subtraction

◼ In Booth’s algorithm

◼ perform subtraction when the first 1 of the block is encountered 

(1 - 0)

◼ perform addition when the last 1 of the block is encountered (0 - 

1)

◼ (1 - 0) and (0 - 1) are observed from Q0 – Q-1 (see previous 

example)
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Division

◼ More complex than multiplication

◼ Negative numbers are really bad!

◼ Based on long division

36

Uploaded By: anonymousSTUDENTS-HUB.com



Figure 10.15  Example of Division of Unsigned Binary Integers
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Figure 10.17  Example of Restoring Twos Complement Division (7/3) 
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Real Numbers

◼ Numbers with fractions

◼ Could be done in pure binary

◼ 1001.1010 = 23 + 20 +2-1 + 2-3 =9.625

◼ Where is the binary point?

◼ Fixed?

◼ Very limited

◼ Moving?

◼ How do you show where it is?
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Exponential Notation

◼ The following are equivalent representations of 1,234
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Floating Point

◼ An IEEE Std 754 floating point representation consists of

◼ A Sign Bit (no surprise)

◼ An Exponent (“times 2 to the what?”)

◼ Mantissa (“Significand”), which is assumed to be 1.xxxxx (thus, 

one bit of the mantissa is implied as 1)

◼ This is called a normalized representation

◼ So a mantissa = 0 really is interpreted to be 1.0, and a 

mantissa of all 1111 is interpreted to be 1.1111

◼ Special cases are used to represent denormalized mantissas 

(true mantissa = 0), NaN, etc.
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Representation Format

42

TYPES SIGN
BIASED 

EXPONENT

NORMALISED 

MANTISA
BIAS

Single precision 1(31st bit) 8(30-23) 23(22-0) 127

Double precision 1(63rd bit) 11(62-52) 52(51-0) 1023
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Example
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+
Example

◼ What number is represented by the single precision float 

11000000101000…00
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Example
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+
Converting from Floating Point

◼ E.g., What decimal value is represented by the following 32-

bit floating point number?

◼ C17B000016
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+
Converting from Floating Point

◼ E.g., What decimal value is represented by the following 32-

bit floating point number?

◼ C17B000016
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Converting to Floating Point

◼ E.g., Express 36.562510 as a 32-bit floating point number (in 

hexadecimal)
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+
Converting to Floating Point

◼ E.g., Express 36.562510 as a 32-bit floating point number (in 

hexadecimal)
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Figure 10.21   IEEE 754 Formats
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FP Arithmetic +/-

◼ Check for zeros

◼ Align significands (adjusting exponents)

◼ Add or subtract significands

◼ Normalize result
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Figure 10.22  Floating-Point Addition and Subtraction (Z     X ±  Y)
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•Overflow

•The exponent is too large to be 

represented in the Exponent field

•Underflow

•The number is too small to be 

represented in the Exponent field
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Example
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+
Example
Step 1: Decompose Operands

◼ Add the floating point numbers 3.75 and 5.125 to get 8.875 by directly 
manipulating the numbers in IEEE format.

◼ For 3.75, the sign bit is 0 (+), the exponent is 128 (1 unbiased), the 
mantissa (including the implicit 1 shown in bold) is: 0000 0000 1111 
0000 0000 0000 0000 0000 = 0x00f00000 

◼ For 5.125, the sign bit is 0 (+), the exponent is 129 (2 unbiased), the 
mantissa (including the implicit 1 shown in bold) is: 0000 0000 1010 
0100 0000 0000 0000 0000 = 0x00a40000 
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Example
Step 2: Equalizing Operand Exponents 

◼ If the first exponent is smaller than the second, we shift the 

first mantissa to the right and add the absolute difference in 

exponents to the first exponent. If vice versa, we do the same 

to the second mantissa and exponent.

◼ For this example the first exponent is 128, second exponent 

is 129, absolute difference is 1, so first exponent is smaller, so 

we must adjust the first mantissa and exponent, and leave the 

second mantissa and exponent unchanged.

◼ Shift first mantissa right by 1: 0x00f00000 >> 1 = 0x00780000

◼ Increase the first exponent by 1: 128 + 1 = 129
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Example
Step 3: Convert operands from signed magnitude to 2’s 
complement

◼ For each operand that is negative, convert the mantissa to 2’s 
complement by inverting the bits and adding 1. Neither operand 
is negative in this example, so nothing needs to be done.

Step 4: Add Mantissas

◼ Both operands have an exponent of 129, so we can just add 
mantissas to get a positive result with the same exponent.

◼ 0x00780000 + 0x00a40000 = 0x011c0000 = 0000 0001 0001 1100 0000 
0000 0000 0000

Step 5: Convert result from 2’s complement to signed 
magnitude

◼ If the result is negative, convert the mantissa back to signed 
magnitude by inverting the bits and adding 1. The result is 
positive in this example, so nothing needs to be done.
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Example
Step 6: Normalize Result

◼ Because the leftmost 1 bit is not in the right place, we must shift the 

mantissa right or left to put it back into the IEEE format, and adjust 

the exponent accordingly. 

◼ If the leftmost 1 bit is left of bit 23, we must shift the mantissa to the 

right and increase the exponent. If the leftmost 1 bit is at bit 23, 

there is no normalization required. If the leftmost 1 bit is right of bit 

23, we must shift the mantissa to the left and decrease the exponent. 

In the example, we see the first case:
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+
Example
Step 7: Compose Result
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+
FP Arithmetic x/÷

◼ Check for zero

◼ Add/subtract exponents

◼ Multiply/divide significands (watch sign)

◼ Normalize

◼ Round

◼ All intermediate results should be in double length storage
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Figure 10.23  Floating-Point Multiplication (Z     X     Y)
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Example
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Figure 10.24  Floating-Point Division (Z     X/Y)
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