
+ Chapter 10

Computer Arithmetic

1

Uploaded By: anonymousSTUDENTS-HUB.com

+
Arithmetic - The heart of

instruction execution

2

Uploaded By: anonymousSTUDENTS-HUB.com

+
Arithmetic & Logic Unit (ALU)

◼ Part of the computer that actually performs arithmetic and
logical operations on data

◼ All of the other elements of the computer system are there
mainly to bring data into the ALU for it to process and then to
take the results back out

◼ Based on the use of simple digital logic devices that can store
binary digits and perform simple Boolean logic operations

◼ Does the calculations

◼ Handles integers

◼ May handle floating point (real) numbers

◼ May be separate FPU (maths coprocessor)

◼ May be on chip separate FPU (486DX +)

3

Uploaded By: anonymousSTUDENTS-HUB.com

ALU

Control

Signals

Operand

Registers

Flags

Result

Registers

Figure 10.1 ALU Inputs and Outputs

4

Uploaded By: anonymousSTUDENTS-HUB.com

+
Positional Number Systems
◼ Different Representations of Natural Numbers

◼ XXVII Roman numerals (not positional)

◼ 27 Radix-10 or decimal number (positional)

◼ 110112 Radix-2 or binary number (also positional)

◼ Fixed-radix positional representation with k digits

5

Uploaded By: anonymousSTUDENTS-HUB.com

+
Binary Numbers

◼ Each binary digit (called bit) is either 1 or 0

◼ Bits have no inherent meaning, can represent

◼ Unsigned and signed integers

◼ Characters

◼ Floating-point numbers

◼ Images, sound, etc.

◼ Bit Numbering

◼ Least significant bit (LSB) is rightmost (bit 0)

◼ Most significant bit (MSB) is leftmost (bit 7 in a 8-bit number)

6

Uploaded By: anonymousSTUDENTS-HUB.com

+
Hexadecimal Integers

◼ 16 Hexadecimal Digits: 0 – 9, A – F

◼ More convenient to use than binary numbers

7

Uploaded By: anonymousSTUDENTS-HUB.com

+
Converting Binary to Hexadecimal

◼ Each hexadecimal digit corresponds to 4 binary bits

8

Uploaded By: anonymousSTUDENTS-HUB.com

+
Integer Storage Sizes

9

Uploaded By: anonymousSTUDENTS-HUB.com

+
Signed Integers

◼ Several ways to represent a signed number

◼ Sign-Magnitude

◼ Biased

◼ 1's complement

◼ 2's complement

◼ Divide the range of values into 2 equal parts

◼ First part corresponds to the positive numbers (≥ 0)

◼ Second part correspond to the negative numbers (< 0)

◼ Focus will be on the 2's complement representation

◼ Has many advantages over other representations

◼ Used widely in processors to represent signed integers

10

Uploaded By: anonymousSTUDENTS-HUB.com

+ 11

Uploaded By: anonymousSTUDENTS-HUB.com

+
Sign Bit

◼ Highest bit indicates the sign

◼ 1 = negative

◼ 0 = positive

◼ For Hexadecimal Numbers, check most significant digit

◼ If highest digit is > 7, then value is negative

◼ Examples: 8A and C5 are negative bytes

◼ B1C42A00 is a negative word (32-bit signed integer)

◼ Problems

◼ Need to consider both sign and magnitude in arithmetic

◼ Two representations of zero (+0 and -0) in sign-mag & 1’s comp

12

Uploaded By: anonymousSTUDENTS-HUB.com

+
Biased Representation

◼ Other type of binary number representations

◼ A fixed value called Bias is added for the binary value

◼ Typically, the bias equals (2k-1-1), where K is the number of

bits in the binary number.

◼ e.g for 4 bit representation,

◼ The bias value= 24-1-1= 7

◼ Representation of +8 => 8+7=15 => 1111

◼ Representation of -7 => -7+7=0 => 0000

13

Uploaded By: anonymousSTUDENTS-HUB.com

+
Two's Complement Representation
◼ Positive numbers

◼ Signed value = Unsigned value

◼ Negative numbers

◼ Signed value = Unsigned value – 2n

◼ n = number of bits

◼ Negative weight for MSB

◼ Another way to obtain the signed
value is to assign a negative weight
to most-significant bit

◼ = -128 + 32 + 16 + 4 = -76

14

Uploaded By: anonymousSTUDENTS-HUB.com

+
Forming the Two's Complement

15

Uploaded By: anonymousSTUDENTS-HUB.com

+
Sign Extension

◼ Step 1: Move the number into the lower-significant bits

◼ Step 2: Fill all the remaining higher bits with the sign bit

◼ This will ensure that both magnitude and sign are correct

16

Uploaded By: anonymousSTUDENTS-HUB.com

+
Ranges of Signed Integers

17

Uploaded By: anonymousSTUDENTS-HUB.com

0000

0 +1
+2

+3

+4

+5

+6
+7-8-7

-6

-5

-4

-3

-2
-1

0001

addition

of positive

numbers

subtraction

of positive

numbers

0010

0011

0100

0101

0110

0111
1000

(a) 4-bit numbers

Figure 10.5 Geometric Depiction of Twos Complement Integers

(b) n-bit numbers

1001

1010

1011

1100

1101

1110

1111

0-1-2-3-4-5-6-7-8-9 1 2 3 4 5 6 7 8 9

000…0

0

2
n–2

–2
n–1

–2
n–2

-1

addition

of positive

numbers

subtraction

of positive

numbers

010…0

011…1
100…0

110…0

111…1

–2
n–1

–2
n–1

–1 2
n–1

2
n–1

–1

2
n–1

–1

18

Uploaded By: anonymousSTUDENTS-HUB.com

+
Negation

◼ Twos complement operation

◼ Take the Boolean complement of each bit of the integer

(including the sign bit)

◼ Treating the result as an unsigned binary integer, add 1

◼ The negative of the negative of that number is itself:

+18 = 00010010 (twos complement)

bitwise complement = 11101101

 + 1

 11101110 = -18

-18 = 11101110 (twos complement)

bitwise complement = 00010001

 + 1

 00010010 = +18

19

Uploaded By: anonymousSTUDENTS-HUB.com

+
Negation Special Case 1

 0 = 00000000 (twos complement)

Bitwise complement = 11111111

Add 1 to LSB + 1

Result 100000000

Overflow is ignored, so:

 - 0 = 0

20

Uploaded By: anonymousSTUDENTS-HUB.com

+
Negation Special Case 2

 -128 = 10000000 (twos complement)

Bitwise complement = 01111111

Add 1 to LSB + 1

Result 10000000

So:

-(-128) = -128 X

Monitor MSB (sign bit)

It should change during negation

21

Uploaded By: anonymousSTUDENTS-HUB.com

22

Uploaded By: anonymousSTUDENTS-HUB.com

+
Character Storage

◼ Character sets

◼ Standard ASCII: 7-bit character codes (0 – 127)

◼ Extended ASCII: 8-bit character codes (0 – 255)

◼ Unicode: 16-bit character codes (0 – 65,535)

◼ Unicode standard represents a universal character set

◼ Defines codes for characters used in all major languages

◼ Used in Windows-XP: each character is encoded as 16 bits

◼ UTF-8: variable-length encoding used in HTML

◼ Encodes all Unicode characters

◼ Uses 1 byte for ASCII, but multiple bytes for other characters

◼ Null-terminated String

◼ Array of characters followed by a NULL character

23

Uploaded By: anonymousSTUDENTS-HUB.com

+
Binary Addition

◼ Start with the least significant bit (rightmost bit)

◼ Add each pair of bits

◼ Include the carry in the addition, if present

24

Uploaded By: anonymousSTUDENTS-HUB.com

+
Binary Subtraction

◼ When subtracting A – B, convert B to its 2's complement

◼ Add A to (–B)

◼ Final carry is ignored, because

◼ Negative number is sign-extended with 1's

◼ You can imagine infinite 1's to the left of a negative number

◼ Adding the carry to the extended 1's produces extended zeros

25

Uploaded By: anonymousSTUDENTS-HUB.com

26

Uploaded By: anonymousSTUDENTS-HUB.com

27

Uploaded By: anonymousSTUDENTS-HUB.com

28

Uploaded By: anonymousSTUDENTS-HUB.com

+
Unsigned Multiplication

◼ m-bit multiplicand × n-bit multiplier = (m+n)-bit product

◼ Accomplished via shifting and addition

◼ Consumes more time and more chip area

29

Uploaded By: anonymousSTUDENTS-HUB.com

30

Uploaded By: anonymousSTUDENTS-HUB.com

+
Multiplying Negative Numbers

◼ This does not work!

◼ Solution 1

◼ Convert to positive if required

◼ Multiply as above

◼ If signs were different, negate answer

◼ Solution 2

◼ Booth’s algorithm

31

Uploaded By: anonymousSTUDENTS-HUB.com

32

Booth’s algorithm

https://www.grahn.us/projects/booths-algorithm/

Uploaded By: anonymousSTUDENTS-HUB.com

 0111

 ´0011 (0)

11111001 1–0

0000000 1–1

000111 0–1

00010101 (21)

 0111

 ´1101 (0)

11111001 1–0

0000111 0–1

111001 1–0

11101011 (–21)

(a) (7) ´ (3) = (21) (b) (7) ´ (–3) = (–21)

 1001

 ´0011 (0)

00000111 1–0

0000000 1–1

111001 0–1

11101011 (–21)

 1001

 ´1101 (0)

00000111 1–0

1111001 0–1

000111 1–0

00010101 (21)

(c) (–7) ´ (3) = (–21) (d) (–7) ´ (–3) = (21)

Figure 10.14 Examples Using Booth's Algorithm

33

Uploaded By: anonymousSTUDENTS-HUB.com

+
How it works

◼ Consider a positive multiplier consisting of a block of 1s

surrounded by 0s. For example, 00111110. The product is

given by :

◼ where M is the multiplicand.

◼ The number of operations can be reduced to two by

rewriting the same as

◼ Note that:

34

Uploaded By: anonymousSTUDENTS-HUB.com

+
How it works

◼ So, the product can be generated by one addition and one

subtraction

◼ In Booth’s algorithm

◼ perform subtraction when the first 1 of the block is encountered

(1 - 0)

◼ perform addition when the last 1 of the block is encountered (0 -

1)

◼ (1 - 0) and (0 - 1) are observed from Q0 – Q-1 (see previous

example)

35

Uploaded By: anonymousSTUDENTS-HUB.com

+
Division

◼ More complex than multiplication

◼ Negative numbers are really bad!

◼ Based on long division

36

Uploaded By: anonymousSTUDENTS-HUB.com

Figure 10.15 Example of Division of Unsigned Binary Integers

 00001101

1011 10010011

 1011

 001110

 1011

 001111

 1011

 100

Quotient

DividendDivisor

Remainder

Partial

remainders

37

Uploaded By: anonymousSTUDENTS-HUB.com

START

END
YesNo

No Yes

Quotient in Q

Remainder in A

A 0

M Divisor

Q Dividend

Count n

Shift Left

A, Q

A A – M

Count Count – 1

Q0 1
Q0 0

A A + M

A < 0?

Count = 0?

Figure 10.16 Flowchart for Unsigned Binary Division

38

A Q
0000

0111 Initial value

0000

1101

1101

0000

1110

1110

Shift

Use twos complement of 0011 for subtraction

Subtract

Restore, set Q
0
 = 0

0001

1101

1110

0001

1100

1100

Shift

Subtract

Restore, set Q
0
 = 0

0011

1101

0000

1000

1001

Shift

Subtract, set Q
0
 = 1

0001

1101

1110

0001

0010

0010

Shift

Subtract

Restore, set Q
0
 = 0

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

Uploaded By: anonymousSTUDENTS-HUB.com

+
Real Numbers

◼ Numbers with fractions

◼ Could be done in pure binary

◼ 1001.1010 = 23 + 20 +2-1 + 2-3 =9.625

◼ Where is the binary point?

◼ Fixed?

◼ Very limited

◼ Moving?

◼ How do you show where it is?

39

Uploaded By: anonymousSTUDENTS-HUB.com

+
Exponential Notation

◼ The following are equivalent representations of 1,234

40

Uploaded By: anonymousSTUDENTS-HUB.com

+
Floating Point

◼ An IEEE Std 754 floating point representation consists of

◼ A Sign Bit (no surprise)

◼ An Exponent (“times 2 to the what?”)

◼ Mantissa (“Significand”), which is assumed to be 1.xxxxx (thus,

one bit of the mantissa is implied as 1)

◼ This is called a normalized representation

◼ So a mantissa = 0 really is interpreted to be 1.0, and a

mantissa of all 1111 is interpreted to be 1.1111

◼ Special cases are used to represent denormalized mantissas

(true mantissa = 0), NaN, etc.

41

Uploaded By: anonymousSTUDENTS-HUB.com

+
Representation Format

42

TYPES SIGN
BIASED

EXPONENT

NORMALISED

MANTISA
BIAS

Single precision 1(31st bit) 8(30-23) 23(22-0) 127

Double precision 1(63rd bit) 11(62-52) 52(51-0) 1023
Uploaded By: anonymousSTUDENTS-HUB.com

+
Example

43

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example

◼ What number is represented by the single precision float

11000000101000…00

44

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example

45

Uploaded By: anonymousSTUDENTS-HUB.com

+
Converting from Floating Point

◼ E.g., What decimal value is represented by the following 32-

bit floating point number?

◼ C17B000016

46

Uploaded By: anonymousSTUDENTS-HUB.com

+
Converting from Floating Point

◼ E.g., What decimal value is represented by the following 32-

bit floating point number?

◼ C17B000016

47

Uploaded By: anonymousSTUDENTS-HUB.com

+
Converting to Floating Point

◼ E.g., Express 36.562510 as a 32-bit floating point number (in

hexadecimal)

48

Uploaded By: anonymousSTUDENTS-HUB.com

+
Converting to Floating Point

◼ E.g., Express 36.562510 as a 32-bit floating point number (in

hexadecimal)

49

Uploaded By: anonymousSTUDENTS-HUB.com

trailing significand field

(c) binary128 format

Figure 10.21 IEEE 754 Formats

biased

exponent

trailing significand field

(b) binary64 format

8 bits

sign

bit

trailing

significand field

(a) binary32 format

biased

exponent

23 bits

11 bits 52 bits

15 bits 112 bits

sign

bit

biased

exponent

sign

bit

50

Uploaded By: anonymousSTUDENTS-HUB.com

+
FP Arithmetic +/-

◼ Check for zeros

◼ Align significands (adjusting exponents)

◼ Add or subtract significands

◼ Normalize result

51

Uploaded By: anonymousSTUDENTS-HUB.com

SUBTRACT

RETURN

ADD

RETURN

Yes

No

No

No

No

No

No

Yes

Z Y Z X

X = 0?

Figure 10.22 Floating-Point Addition and Subtraction (Z X ± Y)

Yes

Yes

Yes

Yes

Yes

Y = 0?

Increment

smaller

exponent

Shift

significand

right

Add

signed

significands

Shift

significand

right

Put other

number in Z

Round

result

Increment

exponent

Change

sign of Y

Report

underflow

Report

overflow

RETURN

RETURN

RETURN

RETURN

No

No

No

Yes

Yes
Exponents

equal?

Significand

=0?

Exponent

overflow?

Shift

significand

left

Decrement

exponent

Exponent

underflow?

Results

normalized?

Significand

=0?

Significand

overflow?

Z 0

52

•Overflow

•The exponent is too large to be

represented in the Exponent field

•Underflow

•The number is too small to be

represented in the Exponent field

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example

53

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example
Step 1: Decompose Operands

◼ Add the floating point numbers 3.75 and 5.125 to get 8.875 by directly
manipulating the numbers in IEEE format.

◼ For 3.75, the sign bit is 0 (+), the exponent is 128 (1 unbiased), the
mantissa (including the implicit 1 shown in bold) is: 0000 0000 1111
0000 0000 0000 0000 0000 = 0x00f00000

◼ For 5.125, the sign bit is 0 (+), the exponent is 129 (2 unbiased), the
mantissa (including the implicit 1 shown in bold) is: 0000 0000 1010
0100 0000 0000 0000 0000 = 0x00a40000

54

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example
Step 2: Equalizing Operand Exponents

◼ If the first exponent is smaller than the second, we shift the

first mantissa to the right and add the absolute difference in

exponents to the first exponent. If vice versa, we do the same

to the second mantissa and exponent.

◼ For this example the first exponent is 128, second exponent

is 129, absolute difference is 1, so first exponent is smaller, so

we must adjust the first mantissa and exponent, and leave the

second mantissa and exponent unchanged.

◼ Shift first mantissa right by 1: 0x00f00000 >> 1 = 0x00780000

◼ Increase the first exponent by 1: 128 + 1 = 129

55

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example
Step 3: Convert operands from signed magnitude to 2’s
complement

◼ For each operand that is negative, convert the mantissa to 2’s
complement by inverting the bits and adding 1. Neither operand
is negative in this example, so nothing needs to be done.

Step 4: Add Mantissas

◼ Both operands have an exponent of 129, so we can just add
mantissas to get a positive result with the same exponent.

◼ 0x00780000 + 0x00a40000 = 0x011c0000 = 0000 0001 0001 1100 0000
0000 0000 0000

Step 5: Convert result from 2’s complement to signed
magnitude

◼ If the result is negative, convert the mantissa back to signed
magnitude by inverting the bits and adding 1. The result is
positive in this example, so nothing needs to be done.

56

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example
Step 6: Normalize Result

◼ Because the leftmost 1 bit is not in the right place, we must shift the

mantissa right or left to put it back into the IEEE format, and adjust

the exponent accordingly.

◼ If the leftmost 1 bit is left of bit 23, we must shift the mantissa to the

right and increase the exponent. If the leftmost 1 bit is at bit 23,

there is no normalization required. If the leftmost 1 bit is right of bit

23, we must shift the mantissa to the left and decrease the exponent.

In the example, we see the first case:

57

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example
Step 7: Compose Result

58

Uploaded By: anonymousSTUDENTS-HUB.com

+
FP Arithmetic x/÷

◼ Check for zero

◼ Add/subtract exponents

◼ Multiply/divide significands (watch sign)

◼ Normalize

◼ Round

◼ All intermediate results should be in double length storage

59

Uploaded By: anonymousSTUDENTS-HUB.com

MULTIPLY

RETURN

RETURN

Yes

No

Z 0

X = 0?

Figure 10.23 Floating-Point Multiplication (Z X Y)

Yes

Yes

Yes

Subtract Bias

Add

Exponents

Report

Overflow

Multiply

Significands

Y = 0?

Exponent

Overflow?

Normalize

Round

Exponent

Underflow?

No

No

No

Report

Underflow

60

Uploaded By: anonymousSTUDENTS-HUB.com

+
Example

61

Uploaded By: anonymousSTUDENTS-HUB.com

DIVIDE

RETURN

RETURN

Yes

No

Z 0

X = 0?

Figure 10.24 Floating-Point Division (Z X/Y)

Yes

Yes

Yes

Z ∞ Add Bias

Subtract

Exponents

Report

Overflow

Divide

Significands

Y = 0?

Exponent

Overflow?

Normalize

Round

Exponent

Underflow?

No

No

No

Report

Underflow

62

Uploaded By: anonymousSTUDENTS-HUB.com

	Slide 1: Chapter 10
	Slide 2: Arithmetic - The heart of instruction execution
	Slide 3: Arithmetic & Logic Unit (ALU)
	Slide 4
	Slide 5: Positional Number Systems
	Slide 6: Binary Numbers
	Slide 7: Hexadecimal Integers
	Slide 8: Converting Binary to Hexadecimal
	Slide 9: Integer Storage Sizes
	Slide 10: Signed Integers
	Slide 11
	Slide 12: Sign Bit
	Slide 13: Biased Representation
	Slide 14: Two's Complement Representation
	Slide 15: Forming the Two's Complement
	Slide 16: Sign Extension
	Slide 17: Ranges of Signed Integers
	Slide 18
	Slide 19: Negation
	Slide 20: Negation Special Case 1
	Slide 21: Negation Special Case 2
	Slide 22
	Slide 23: Character Storage
	Slide 24: Binary Addition
	Slide 25: Binary Subtraction
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Unsigned Multiplication
	Slide 30
	Slide 31: Multiplying Negative Numbers
	Slide 32
	Slide 33
	Slide 34: How it works
	Slide 35: How it works
	Slide 36: Division
	Slide 37
	Slide 38
	Slide 39: Real Numbers
	Slide 40: Exponential Notation
	Slide 41: Floating Point
	Slide 42: Representation Format
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Converting from Floating Point
	Slide 47: Converting from Floating Point
	Slide 48: Converting to Floating Point
	Slide 49: Converting to Floating Point
	Slide 50
	Slide 51: FP Arithmetic +/-
	Slide 52
	Slide 53: Example
	Slide 54: Example
	Slide 55: Example
	Slide 56: Example
	Slide 57: Example
	Slide 58: Example
	Slide 59: FP Arithmetic x/÷
	Slide 60
	Slide 61: Example
	Slide 62

