
Root Locus and Frequency Analysis  
 

 

 

 

Second-order systems are commonly encountered in practice, and are the simplest type of dynamic 

system to exhibit oscillations. Examples include mass-spring-damper systems and RLC circuits. 

In fact, many true higher-order systems may be approximated as second-order in order to facilitate 

analysis. 

 

The canonical form of the second-order differential equation is as follows 

𝑚�̈� + 𝑏�̇� + 𝑘𝑦 = 𝑓(𝑡)    or     �̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑦 = 𝑘𝑑𝑐𝜔𝑛

2 𝑢(𝑡) 

 

 

The canonical second-order transfer function has the following form, in which it has two poles and 

no zeros. 

𝐺(𝑠) =  
1

𝑚𝑠2 + 𝑏𝑠 + 𝑘
=

𝑘𝑑𝑐𝜔𝑛
2

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑦

 

 

The parameters 𝑘𝑑𝑐, 𝜁, and 𝜔𝑛 characterize the behavior of a canonical second-order system. 

 

DC Gain 

 

The DC gain, 𝑘𝑑𝑐, again is the ratio of the magnitude of the steady-state step response to the 

magnitude of the step input, and for stable systems it is the value of the transfer function when 𝑠 =
0. For the forms given, 

𝑘𝑑𝑐 =
1

𝑘
  

 

Damping Ratio 

 

The damping ratio 𝜁 is a dimensionless quantity characterizing the rate at which an oscillation in 

the system's response decays due to effects such as viscous friction or electrical resistance. From 

the above definitions, 

𝜁 =
𝑏

2√𝑘𝑚
  

 

Natural Frequency 

 

The natural frequency 𝜔𝑛 is the frequency (in rad/s) that the system will oscillate at when there is 

no damping, 𝜁 = 0. 

𝜔𝑛 = √
𝑘

𝑚
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Poles / Zeros 

 

The canonical second-order transfer function has two poles at: 

𝑠𝑝 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛√1 − 𝜁2  

 

Underdamped Systems 

 

If 𝜁 < 1, then the system is underdamped. In this case, both poles are complex-valued with 

negative real parts; therefore, the system is stable but oscillates while approaching the steady-

state value. Specifically, the natural response oscillates with the damped natural 

frequency, 𝜔𝑑=𝜔𝑛√1 − 𝜁2 (in rad/sec). 

 

k_dc = 1; 

w_n = 10; 

zeta = 0.2; 

  

num = [k_dc*w_n^2]; 

den = [1 2*zeta*w_n w_n^2]; 

  

G1 = tf(num,den) 

  

figure 

pzmap(G1) 

axis([-3 1 -15 15]) 

  

figure 

step(G1) 

 

Overdamped Systems 

 

If 𝜁 > 1, then the system is overdamped. Both poles are real and negative; therefore, the system is 

stable and does not oscillate. The step response and a pole-zero map of an overdamped system are 

calculated below: 

 

k_dc = 1; 

w_n = 10; 

zeta = 1.2; 

  

num = [k_dc*w_n^2]; 

den = [1 2*zeta*w_n w_n^2]; 

  

G2 = tf(num,den) 

  

figure 

pzmap(G2) 

axis([-20 1 -1 1]) 
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figure 

step(G2) 

 

 

Critically-Damped Systems 

If 𝜁 = 1, then the system is critically damped. Both poles are real and have the same 

magnitude, 𝑠𝑝 = −𝜁𝜔𝑛. For a canonical second-order system, the quickest settling time is achieved 

when the system is critically damped. Now change the value of the damping ratio to 1, and re-plot 

the step response and pole-zero map. 

 

k_dc = 1; 

w_n = 10; 

zeta = 1; 

  

num = [k_dc*w_n^2]; 

den = [1 2*zeta*w_n w_n^2]; 

  

G3 = tf(num,den) 

  

figure 

pzmap(G3) 

axis([-20 1 -1 1]) 

  

figure 

step(G3) 

 

Undamped Systems 

 

If 𝜁 = 0, then the system is undamped. In this case, the poles are purely imaginary; therefore, the 

system is marginally stable and the step response oscillates indefinitely. 

 

k_dc = 1; 

w_n = 10; 

zeta = 0; 

  

num = [k_dc*w_n^2]; 

den = [1 2*zeta*w_n w_n^2]; 

  

G4 = tf(num,den) 

  

figure 

pzmap(G4) 

axis([-20 1 -1 1]) 

  

figure 

step(G4) 
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axis([0 5 -0.5 2.5]) 

 

Plotting the Root Locus of a Transfer Function 

Consider an open-loop system which has a transfer function of: 

𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

(𝑠 + 7)

𝑠(𝑠 + 5)(𝑠 + 15)(𝑠 + 20)
 

 

num = [1 7]; 

den = conv(conv([1 0],[1 5]),conv([1 15],[1 20])); 

  

H = tf(num,den) 

  

rlocus(H) 

axis([-22 3 -15 15]) 

 

 

In our problem, we need an overshoot less than 5% (which means a damping ratio of greater than 

0.7) and a rise time of 1 second (which means a natural frequency greater than 1.8). Enter the 

following in the MATLAB command window: 

 

sgrid(0.7,1.8) 

 

To make the overshoot less than 5%, the poles have to be in between the two angled dotted lines, 

and to make the rise time shorter than 1 second, the poles have to be outside of the dotted 

semicircle. So now we know what part of the root locus, which possible closed-loop pole locations, 

satisfy the given requirements. All the poles in this location are in the left-half plane, so the closed-

loop system will be stable. 

From the plot above we see that there is part of the root locus inside the desired region. Therefore, 

in this case, we need only a proportional controller to move the poles to the desired region. You can 

use the rlocfind command in MATLAB to choose the desired poles on the locus: 

 
[k,poles] = rlocfind(H) 

 

In order to verify the step response, you need to know the closed-loop transfer function. 

 
sys_cl = feedback(k*H,1) 
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