Fick's Law for Binary Systems

Molar Fluxes in Binary Systems

$$N_A = cx_A v_A$$

 $N = N_A + N_B$
 $v_M = \frac{N}{-} = \frac{N_A + N_B}{M_A + N_B} = x_A v_A + x_B v_B$

С

$$J_A = N_A - c x_A v_M$$

molar diffusive flux of A (relative to v_M)

С

molar convective
flux of A
(carried by
$$v_M$$
)

Fick's "Law"
$$\mathbf{J}_A = -cD_{AB}\nabla x_A$$

- Fick's law is a MODEL for J_A (has limitations!)
- $D_{AB} = D_{BA}$
- $J_A = -J_B$
- For C > 2 components, everything changes! (graduate school, anyone?)

Often we know something about $x_A(z)$ and v_M . Fick's law lets us get N_A .

- A species "A" in mixture of A & B.
- N_A molar flux of A.
- v_A velocity of A.
- x_A mole fraction of A.
- *c* mixture molar concentration.
- N total molar flux.
- v_M mixture molar-averaged velocity.
- J_A molar diffusive flux of A relative to a molar averaged velocity. (motion of A relative to the mixture motion)
- Diffusive fluxes are only defined relative to a convective and total flux!
- Diffusive and convective fluxes are NOT independent (they must sum to N_A).

$$J_A = -cD_{AB}\frac{\mathrm{d}x_A}{\mathrm{d}z}$$
$$N_A = cx_A v_M - cD_{AB}\frac{\mathrm{d}x_A}{\mathrm{d}z}$$
$$= x_A N - cD_{AB}\frac{\mathrm{d}x_A}{\mathrm{d}z}$$
$$N_B = x_B N - cD_{AB}\frac{\mathrm{d}x_B}{\mathrm{d}z}$$

Uplomentaries the second secon

UNIVERSITY

"Mixture Velocities"

Motorcycle: $u_m = 50$ If there are n_m motorcycles and n_t trucks on the road, what is the average velocity? Dump Truck: $u_t = 30$ $u_t = v_{\#} + v_{t,\text{diff}}^{\#}$ Number averaged: $v_{\#} = \frac{n_m v_m + n_t u_t}{n_m + n_t}$ what if $u_m = v_\# + v_m^\#$ diff $n_m = n_t$? what if Mass averaged: $v = \frac{n_m m_m v_m + n_t m_t u_t}{n_m m_m + n_t m_t}$ $u_t = v + v_{t,\text{diff}}$ $n_m = n_t$ and $u_m = v + v_{m,\text{diff}}$ $m_t \gg m_m$? $v_A = \frac{N_A}{C_A} = \frac{N_A}{C_A}$ Molar flux $N_A = c_A v_M + J_A$ (analogous to number flux) $= x_A c v_M + J_A$ $v_{A,\text{diff}} = J_A/c_A$ $= x_A N + J_A$ $v_M = \frac{N}{c} = \frac{N_A + N_B}{c}$

THE NIVERSITY OF UTAH STUDENTS-HUB.com

Fick's Law gives us a relationship between $J_A \& x_A$.

Uploveded and grikely blander Bo 1992

51117 35.5.1

Steady-State Diffusion in Binary Systems

The Molar Balance Equations (Again)

$$\mathbf{N}_i = c_i \mathbf{v}_M + \mathbf{J}_i = x_i \mathbf{N} + \mathbf{J}_i$$

Differential Forms

In terms of "total" $\frac{\partial c_i}{\partial t}$ species fluxes: $\overline{\partial t}$ In terms of "convective" and
"diffusive" species fluxes: $\frac{\partial c_i}{\partial t}$

UNIVERSIT

STUDENTS-HUB.com

$$\frac{\partial \dot{c}_i}{\partial t} = -\nabla \cdot \mathbf{N}_i + S_i$$
$$\frac{\partial c_i}{\partial t} = -\nabla \cdot (c_i \mathbf{v}_M) - \nabla \cdot \mathbf{J}_i + S_i$$

For a binary system of "A" and "B": $J_A = -cD_{AB}\nabla x_A$

Uplowedse and grikely blanked v Bo 129 tot

51117 85.1.5

Fick's Law Example: Equimolar Counter-diffusion

We previously showed:

- $N_A = J_A$ (no bulk flow/convection)
- N_A is constant (so J_A is constant)

What is the species mole fraction profile through the tube?

$$J_A = -cD_{AB}\frac{\mathrm{d}x_A}{\mathrm{d}z} = \alpha \checkmark$$

$$dx_A = -\frac{\alpha}{cD_A B} dz$$

$$\int_{x_A^0}^{x_A} dx_A = -\frac{\alpha}{cD_A B} \int_0^z dZ$$

$$x_A - x_A^0 = -\frac{\alpha}{cD_A B} z$$

Note: to determine α , we can use $x_A(L) = x_A^L$

$$x_A = x_A^0 + (x_A^L - x_A^0) \frac{z}{L}$$

"Bulb" Balances

Example: Evaporation from a Beaker

(Unimolecular Diffusion)

STUDENTS-HUB.com

The Log-Mean

$$N_{A} = \frac{cD_{AB}}{z - z_{0}} \ln\left(\frac{1 - x_{A}}{1 - x_{A}^{0}}\right)$$
$$(1 - x_{A})_{LM} = (x_{B})_{LM} = \frac{(1 - x_{A_{2}}) - (1 - x_{A_{1}})}{\ln\left[\frac{1 - x_{A_{2}}}{1 - x_{A_{1}}}\right]}$$
$$\log = \frac{x_{A_{1}} - x_{A_{2}}}{\ln\left[(1 - x_{A_{2}})/(1 - x_{A_{1}})\right]}$$

$$N_A = \frac{cD_{AB}}{(1 - x_A)_{\rm LM}} \frac{-\Delta x_A}{\Delta z}$$

This makes things look a bit "cleaner" and allows us to express N_A in terms of Δx_A .

You will see this used more when we start dealing with Mass-Transfer Coefficients (soon)...

Comments on Fick's Law

In this class, we typically assume that the total molar concentration, c, is constant.

- This is usually reasonable for isothermal, isobaric systems or for liquid systems.
- We have only considered binary systems.
 - For multicomponent systems, things become considerably more complex.

Other driving forces:

- other species can cause strange diffusion (push a species against its gradient) for C > 2 components.
- pressure gradients (centrifugation)
- thermal gradients (Soret effect)
- In general, the chemical potential is the correct driving force for diffusion.

