
ENCS5337: Chip Design Verification

Spring 2023/2024

Coverage

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

STUDENTS-HUB.com

https://students-hub.com

2

Outline

 Introduction to coverage

 Code coverage models

 Structural coverage models

 Functional coverage

 Case study and lessons to learn

STUDENTS-HUB.com

https://students-hub.com

3

Simulation-based Verification Environment

Test

Plan

Coverage

Reports Coverage

Analysis Tool

Coverage

Information

Biased-Random

Stimuli

Generator Test

Test

Design

Under Test

Fail

Pass
SimulatorDirectives

Checking,

Assertions

STUDENTS-HUB.com

https://students-hub.com

4

Why Coverage?

 Simulation is based on limited execution samples

– Cannot run all possible scenarios, but

– Need to know that all (important) areas of the DUV are verified

 Solution: Coverage measurement and analysis

 The main ideas behind coverage

– Features (of the specification and implementation) are identified

– Coverage models capture these features

STUDENTS-HUB.com

https://students-hub.com

5

Coverage Goals

 Measure the "quality" of a set of tests
– NOTE: Coverage gives ability to see what has not been verified!

– Coverage completeness does not imply functional correctness of

the design! Why?

 Help create regression suites

– Ensure that all parts of the DUV are covered by

regression suite

 Provide stopping criteria for verification

 Improve understanding of the design

STUDENTS-HUB.com

https://students-hub.com

6

Coverage Convergence

STUDENTS-HUB.com

https://students-hub.com

7

Coverage Types

 Code coverage

 Functional coverage

 Other classifications

– Implicit vs. explicit

– Specification vs. implementation

STUDENTS-HUB.com

https://students-hub.com

8

Code Coverage - Basics

 Coverage models are based on the HDL code
– Implicit, implementation coverage

 Coverage models are syntactic
– Model definition is based on syntax and structure of the HDL

 Generic models – fit (almost) any programming language
– Used in both software and hardware design

STUDENTS-HUB.com

https://students-hub.com

9

Code Coverage - Scope

Code coverage can answer the question:
“Is there a piece of code that has not been exercised?”

 Useful for profiling:
– Run coverage on testbench to indicate what areas are executed

most often.

– Gives insight on what to optimize!

 Many types of code coverage report metrics/models.

STUDENTS-HUB.com

https://students-hub.com

10

Types of Code Coverage Models

 Control flow

– Check that the control flow of the program has been fully

exercised

 Data flow

– Models that look at the flow of data in, and between,

programs/modules

 Mutation

– Models that check directly for common bugs by mutating the

code and comparing results

STUDENTS-HUB.com

https://students-hub.com

11

Control Flow Models

 Routine (function entry)
– Each function / procedure is called

 Function call
– Each function is called from every possible location

 Function return
– Each return statement is executed

 Statement (block)
– Each statement in the code is executed

 Branch/Path
– Each branch in branching statement is taken

 if, switch, case, when, …

 Expression/Condition
– Each input in a Boolean expression (condition) takes true and false

values

 Loop
– All possible number of iterations in (Bounded) loops are executed

STUDENTS-HUB.com

https://students-hub.com

12

Statement/Block Coverage

Measures which lines (statements) have been executed by
the verification suite.

 if (parity==ODD || parity==EVEN) begin

 parity_bit = compute_parity(data,parity);

end

 else begin

 parity_bit = 1’b0;

end

 #(delay_time);

 if (stop_bits==2) begin

 end_bits = 2’b11;

 #(delay_time);

end

STUDENTS-HUB.com

https://students-hub.com

13

Path/Branch Coverage

Measures all possible ways to execute a sequence
of statements.
– Are all if/case branches taken?

– How many execution paths?
 if (parity==ODD || parity==EVEN) begin

 parity_bit = compute_parity(data,parity);

end

 else begin

 parity_bit = 1’b0;

end

 #(delay_time);

 if (stop_bits==2) begin

 end_bits = 2’b11;

 #(delay_time);

end

□ □ □ □

 Dead code: default branch on exhaustive case

 Don’t measure coverage for code that was not meant to run! (tags)

Note: 100%

statement coverage

but only 75% path

coverage!

STUDENTS-HUB.com

https://students-hub.com

14

Expression/Condition Coverage
Measures the various ways Boolean expressions and

subexpressions are executed.
– Where a branch condition is made up of a Boolean expression, we want to know

which of the inputs have been covered.

 if (parity==ODD || parity==EVEN) begin

 parity_bit = compute_parity(data,parity);

end

 else begin

 parity_bit = 1’b0;

end

 #(delay_time);

 if (stop_bits==2) begin

 end_bits = 2’b11;

 #(delay_time);

end

□ □

– Analysis: Understand WHY part of an expression was not executed

 Reaching 100% expression coverage is extremely difficult.

Note: Only 50%

expression

coverage!

STUDENTS-HUB.com

https://students-hub.com

15

Code Coverage Models for Hardware

 Toggle coverage

– Each (bit) signal changed its value from 0 to 1 and from 1 to 0

 All-values coverage

– Each (multi-bit) signal got all possible values

– Used only for signals with small number of values

 For example, state variables of FSMs

STUDENTS-HUB.com

https://students-hub.com

16

Code Coverage Strategy

 Set minimum % of code coverage depending on
available verification resources and importance of
preventing post tape-out bugs.

 Generally, 90% or 95% goal for statement, branch or
expression coverage.
– Some feel that less than 100% does not ensure quality.

– Beware: Reaching full code coverage closure can cost a lot of effort!

– This effort could be more wisely invested into other verification
techniques.

 Avoid setting a goal lower than 80%.

STUDENTS-HUB.com

https://students-hub.com

17

Structural Coverage

 Implicit coverage models that are based on common

structures in the code

– FSMs, Queues, Pipelines, …

 The structures are extracted automatically from the

design and pre-defined coverage models are applied to

them

STUDENTS-HUB.com

https://students-hub.com

18

State-Machine Coverage

 State-machines are the essence of RTL design

 FSM coverage models are the most commonly used

structural coverage models

 Types of coverage models

– State

– Transition (or arc)

– Path

STUDENTS-HUB.com

https://students-hub.com

19

Code Coverage - Limitations

 Coverage questions not answered by code coverage tools

– Did every instruction take every exception?

– Did two instructions access the register at the same time?

– How many times did cache miss take more than 10 cycles?

– Does the implementation cover the functionality specified?

– …(and many more)

 Code coverage indicates how thoroughly the test suite exercises the

source code!

– Can be used to identify outstanding corner cases

 Code coverage lets you know if you are not done!

– It does not indicate anything about the functional correctness of the code!

 100% code coverage does not mean very much. 

 Need another form of coverage!

STUDENTS-HUB.com

https://students-hub.com

20

Functional Coverage

 It is important to cover the functionality of the DUV.
– Most functional requirements can’t easily be mapped into lines of code!

 Functional coverage models are designed to assure
that various aspects of the functionality of the design are
verified properly, they link the requirements/specification
with the implementation

 Functional coverage models are specific to a given
design or family of designs

 Models cover
– The inputs and the outputs

– Internal states or microarchitectural features

– Scenarios

– Parallel properties

STUDENTS-HUB.com

https://students-hub.com

21

Functional Coverage Model Types

 Discrete set of coverage tasks
– Set of unrelated or loosely related coverage tasks

often derived from the requirements/specification

– Often used for corner cases
 Driving data when a FIFO is full

 Reading from an empty FIFO

– In many cases, there is a close link between
functional coverage tasks and assertions

 Structured coverage models
– The coverage tasks are defined in a structure that

defines relations between the coverage tasks
 Allow definition of similarity and distance between tasks

 Most commonly used model types
– Cross-product

– Trees

– Hybrid structures

STUDENTS-HUB.com

https://students-hub.com

22

Cross-Product Coverage Model

A cross-product coverage model is
composed of the following parts:

1. A semantic description of the model (story)

2. A list of the attributes mentioned in the story

3. A set of all the possible values for each
attribute (the attribute value domains)

4. A list of restrictions on the legal combinations
in the cross-product of attribute values

STUDENTS-HUB.com

https://students-hub.com

23

Example: Cross-Product Coverage Model 1

Design: switch/cache unit

Motivation: Interactions of core processor unit command-response
sequences can create complex and potentially unexpected
conditions causing contention within the pipes in the switch/cache
unit when many core processors (CPs) are active.

All conditions must be tested to gain confidence in design correctness.

Attributes relevant to command-response events:

 Commands - CPs to switch/cache [31]

 Responses - switch/cache to CPs [16]

 Pipes in each switch/cache [2]

 CPs in the system [8]

 (Command generators per CP chip [2])

How big is the coverage space, i.e. how many coverage tasks?

STUDENTS-HUB.com

https://students-hub.com

24

Switch/Cache Unit

STUDENTS-HUB.com

https://students-hub.com

25

Example: Cross-Product Coverage Model 2

Size of coverage space:

 Coverage space is formed by cross-product (or, more formally,
the Cartesian product) over all attribute value domains.

 Size of cross-product is product of domain sizes:
– 31x16x2x8x2 = 15872

 Hence, there are 15872 coverage tasks.

Example coverage task:

(Command=20, Response=01, Pipe=1, CP=5, CG=0)

Are all of these tasks reachable/legal?

 Restrictions on the coverage model are:
– possible responses for each command

– unimplemented command/response combinations

– some commands are only executed in pipe 1

 After applying restrictions, there are 1968 legal coverage tasks left.

 Make sure you identify & apply restrictions before you start!

STUDENTS-HUB.com

https://students-hub.com

26

Defining the Legal and Interesting Spaces

In Practice:
 Boundaries between legal and illegal coverage

spaces are often not well understood

 The design and verification team create initial
spaces based on their understanding of the
design

 Coverage feedback modifies the space definition

 Interesting spaces tend to change often due to
shift in focus in the verification process

STUDENTS-HUB.com

https://students-hub.com

27

Legal Spaces Are Self-correcting

Coverage spaceIllegal space

Legal space

Covered space

STUDENTS-HUB.com

https://students-hub.com

28

Coverage Terminology
 coverage model is a set of legal and interesting coverage points in

the coverage space.

 coverage point/task

– A point within a multi-dimensional coverage space.

– An event of interest that can be observed during simulation.

Destination

Length

Metrics

Coverage Space

Read

Memory

Len = 8

Coverage Point

Type (RD, WR)

Transaction

Coverage

Model

STUDENTS-HUB.com

https://students-hub.com

29

“Coverage is a

measure of effort,

not achievement”

STUDENTS-HUB.com

https://students-hub.com

30

Summary: Functional Coverage

Determines whether the functionality of the DUV
was verified.

 Functional coverage models are user-defined.

– (specification driven)
– This is a skill. It needs (lots of) experience!

– Focus on control signals.

 Strengths:
– High expressiveness: cross-correlation and multi-cycle scenarios.

– Objective measure of progress against verification plan.

– Can identify coverage holes by crossing existing items.

– Results are easy to interpret.

 Weaknesses:
– Only as good as the coverage metrics.

– To implement the metrics, engineering effort is required and a lot of
expertise.

STUDENTS-HUB.com

https://students-hub.com

31

Summary: Code Coverage

Determines if all the implementation was verified.
 Models are implicitly defined by the source code.

– (implementation driven)

– statement, path, expression, toggle, etc.

 Strengths:
– Reveals unexercised parts of design.

– May reveal gaps in functional verification plan.

– No manual effort is required to implement the metrics. (Comes for free!)

 Weaknesses:
– No cross correlations.

– Can’t see multi-cycle/concurrent scenarios.

– Manual effort required to interpret results.

STUDENTS-HUB.com

https://students-hub.com

32

Summary: Coverage Models

 Do we need both code and functional coverage? YES!

Functional

Coverage

Code

Coverage

Interpretation

Low Low There is verification work to do.

Low High Multi-cycle scenarios, corner cases, cross-correlations

still to be covered.

High Low Verification plan and/or functional coverage metrics

inadequate.

Check for “dead” code.

High High High confidence in quality.

 Coverage models complement each other!

 No single coverage model is complete on its own.

STUDENTS-HUB.com

https://students-hub.com

Case Study

Interdependency in a PowerPC

Processor

STUDENTS-HUB.com

https://students-hub.com

34

Interdependency in a PowerPC Processor

 Interdependencies between instructions in the pipeline of

a processor create interesting testing scenarios

– They activate many microarchitectural mechanisms, such as

forwarding and stalling

– Studies have shown that they are the source of many bugs in

processor designs

– Functionality at this level is often related to increasing

processor performance

STUDENTS-HUB.com

https://students-hub.com

35

Lesson No. 1

 Define coverage models in interesting

areas in the design

– Bug prone, New logic, Complex algorithm

 In our case:

– Register interdependency activates many

pipeline mechanisms, such as forwarding and

stalling

– Coverage model aims to ensure that all

forward and stall mechanisms are activated

STUDENTS-HUB.com

https://students-hub.com

36

First Approach – Black Box Model

 The motivation (story):

Verify all dependency types of a resource (register)

relating to all instructions

 The semantics of the coverage tasks:

A coverage task is a quadruplet (Ii, Ik, R, DT), where

Instruction Ii is followed by Instruction Ik, and both share

Resource R with Dependency Type DT

 The attributes:

– Ii, Ik - Instruction: add, sub, ...

– R - Register (resource): G1, G2, ...

– DT - Dependency Type:

 WW, WR, RW, RR and ???

STUDENTS-HUB.com

https://students-hub.com

37

First Approach – Black Box Model

 The motivation (story):

Verify all dependency types of a resource (register)

relating to all instructions

 The semantics of the coverage tasks:

A coverage task is a quadruplet (Ii, Ik, R, DT), where

Instruction Ii is followed by Instruction Ik, and both share

Resource R with Dependency Type DT

 The attributes:

– Ii, Ik - Instruction: add, sub, ...

– R - Register (resource): G1, G2, ...

– DT - Dependency Type:

 WW, WR, RW, RR and None

STUDENTS-HUB.com

https://students-hub.com

38

More Semantics

 The semantics provided so far is too coarse
– What if Ii is the first instruction in the test and Ik is the

1000 instruction?

 Need to refine the semantics to improve
probability of hitting interesting events

 Additional semantics

– The distance between the instructions is no
more than 5

– The first instruction is at least the 6th

STUDENTS-HUB.com

https://students-hub.com

39

The Legal Space

 Not all combinations are valid

– Not all instructions read from registers

– Not all instructions write to registers

– Fixed point instructions cannot share FP (floating point)

registers

– … and more

STUDENTS-HUB.com

https://students-hub.com

40

Space and Model Size

 PowerPC has

– ~400 instructions
 (actually this is an old number, current PowerPC has close to 1000

instructions)

– ~100 registers

 Coverage space size is 400 x 400 x 100 x 5 = 80,000,000
tasks

 Even after all restrictions are applied, the model size is
still 200,000 tasks

STUDENTS-HUB.com

https://students-hub.com

41

Lesson No. 2

 Define a model of realistic size
– Ensure good coverage can be achieved with simulation resources

– Group similar cases together to reduce model size

 In our case:
– Original space size is

(400 x 400 x 100 x 5) = 80,000,000 tasks

– Many instructions behave similarly in the pipe

 For example add and sub

– Many registers are activated in the same way

 All general purpose registers, all floating-point registers

– Grouping similar instructions together helps to reduce the model size to a manageable
size

STUDENTS-HUB.com

https://students-hub.com

42

Coverage Results

 A random test generator was used to generate tests that

achieved 100% coverage architecture-level requirements

coverage

 Testing the generated tests against the forwarding and

stalling mechanisms of a specific processor showed that

many such mechanisms were not activated by the tests

STUDENTS-HUB.com

https://students-hub.com

43

Lesson No. 3

 Define coverage models at the proper level of abstraction
for the coverage tasks

 In our case:
– Forwarding and stalling are microarchitectural mechanisms, so the

coverage model should be defined at the microarchitectural level

 In general:
– Microarchitecture is the place to look for coverage models

 This is where the complexity of the design hides

– Architecture is not detailed enough

– Implementation is too messy

STUDENTS-HUB.com

https://students-hub.com

44

Grey Box Model

 Microarchitectural model for a specific Processor
– Multithreaded

– In-order execution

– Up to four instructions dispatched per cycle

B1

B2

B3

R1

R2

R3

M1

M2

M3

S1

S2

S3
S4f S4b

Branch
(B)

Complex
Arith (M)

Load/Store
(S)

Simple
Arith (R)

Dispatch

Data Fetch

Execute

Write Back

STUDENTS-HUB.com

https://students-hub.com

45

Model Details

 Model contains 7 attributes
– Type, pipe and stage of first instruction (I1 ,P1 ,S1)

– Same attributes for second instruction (I2, P2, S2)

– Type of dependency between the instructions
 RR, RW, WR, WW, None

 Grouping is done in a similar way to the architectural model

 Many restrictions exist, e.g.
– if I1 is simple fixed point, then P1 is R (Simple

Arithmetic) or M (Complex Arithmetic)

STUDENTS-HUB.com

https://students-hub.com

46

Analysis of Interdependency Model

 After 25,000 tests 2810 / 4418 tasks were

covered (64%)

0

1500

3000

4500

0 7500 15000 22500

Tests

T
as

ks

STUDENTS-HUB.com

https://students-hub.com

47

Lesson No. 4

 Coverage analysis is more than a single
number

 In our case:

– 64% is not bad but

– Progress report shows that coverage is
progressing slowly

– Hole analysis finds big areas that are covered
very lightly

– Analysis found some problems in test
generators

STUDENTS-HUB.com

https://students-hub.com

48

Analysis of Interdependency Model

 Coverage hole analysis detected two major areas that are

lightly covered

–Stages S4f and S4b that are specific to thread switching are

almost always empty

 Reason: not enough thread switches during tests

–The address-base register in the store-and-update instruction is

not shared with other registers in the test

 Reason: bug in the test generator that didn’t consider the register as a

modified register

STUDENTS-HUB.com

https://students-hub.com

49

Lesson No. 5

 Look for large uncovered areas

– Can indicate problems in the testing

– Or missing restrictions

 Constantly update the coverage models

– Makes coverage picture clearer

 In our case:

– Two large holes caused by problems in the test generator and

test specification

STUDENTS-HUB.com

https://students-hub.com

50

Coverage Progress

0

1500

3000

4500

0 30000 60000 90000 120000

Tests

C
o

v
e
ra

g
e
 T

a
s
k
s

Causes of holes are fixed

STUDENTS-HUB.com

https://students-hub.com

51

Architecture vs. Microarchitecture

 Architecture

– No implementation details

– Easy to share between designs

– Temporal model

 Microarchitecture

– Pipe implementation knowledge is needed

– Access to microarchitectural mechanisms is needed

 White box or at least grey box

 More for observability than for controllability

STUDENTS-HUB.com

https://students-hub.com

52

Summary: Coverage

 Coverage is an important verification tool.
– Code coverage: statement, path, expression

– Functional coverage models: story, attributes, values,
restrictions

 Combination of coverage models required in practice.
– Code coverage alone does not mean anything!

 Verification Methodology should be coverage driven.

STUDENTS-HUB.com

https://students-hub.com

