ENCS5337: Chip Design Verification
Spring 2023/2024

Coverage

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

https://students-hub.com

Outline

= [ntroduction to coverage

= Code coverage models

= Structural coverage models

= Functional coverage

= Case study and lessons to learn

STUDENTS-HUB.com

https://students-hub.com

Simulation-based Verification Environment

STUDENTS-HUB.com

Test
Plan

N
—

: Biased-Random
Directives Stimuli

Generator

Coverage
nformation

Coverage
w4_ Reports

Coverage
Analysis Tool

https://students-hub.com

Why Coverage?

= Simulation is based on limited execution samples
— Cannot run all possible scenarios, but
— Need to know that all (important) areas of the DUV are verified

= Solution: Coverage measurement and analysis

= The main ideas behind coverage
— Features (of the specification and implementation) are identified
— Coverage models capture these features

STUDENTS-HUB.com

https://students-hub.com

Coverage Goals

= Measure the "quality" of a set of tests

— NOTE: Coverage gives ability to see what has not been verified!

— Coverage completeness does not imply functional correctness of
the design! Why?

= Help create regression suites

— Ensure that all parts of the DUV are covered by
regression suite

* Provide stopping criteria for verification

* Improve understanding of the design

STUDENTS-HUB.com

https://students-hub.com

Coverage Convergence

STUDENTS-HUB.com

Constrained

Many runs,

random tests different seeds
Add Dlrected
constraints testcase Functional
Coverage
dentnf
inimal code ho,esy

modifications

https://students-hub.com

Coverage Types

= Code coverage
= Functional coverage

= Other classifications
— Implicit vs. explicit
— Specification vs. implementation

https://students-hub.com

Code Coverage - Basics

= Coverage models are based on the HDL code

— Implicit, implementation coverage

= Coverage models are syntactic

— Model definition is based on syntax and structure of the HDL

= Generic models — fit (almost) any programming language

— Used in both software and hardware design

STUDENTS-HUB.com

https://students-hub.com

Code Coverage - Scope

Code coverage can answer the question:
“Is there a piece of code that has not been exercised?”

= Useful for profiling:

— Run coverage on testbench to indicate what areas are executed
most often.

— Gives insight on what to optimize!
= Many types of code coverage report metrics/models.

STUDENTS-HUB.com

https://students-hub.com

Types of Code Coverage Models

= Control flow

— Check that the control flow of the program has been fully
exercised

= Data flow

— Models that look at the flow of data in, and between,
programs/modules

= Mutation

— Models that check directly for common bugs by mutating the
code and comparing results

10

https://students-hub.com

Control Flow Models

STUDENTS-HUB.com

Routine (function entry)

— Each function / procedure is called
Function call

— Each function is called from every possible location
Function return

— Each return statement is executed
Statement (block)

— Each statement in the code is executed
Branch/Path

— Each branch in branching statement is taken

= if, switch, case, when, ..

Expression/Condition

— Each input in a Boolean expression (condition) takes true and false
values

Loop
— All possible number of iterations in (Bounded) loops are executed

11

https://students-hub.com

Statement/Block Coverage

STUDENTS-HUB.com

Measures which lines (statements) have been executed by
the verification suite.

v if (parity==0DD || parity==EVEN) begin
Uparity bit = compute parity(data,parity);
end

v else begin
v parity bit = 1'b0;

end
v #(delay time);
v if (stop bits==2) begin

v end bits = 2'bll;
v # (delay time);
end

12

https://students-hub.com

Path/Branch Coverage

Measures all possible ways to execute a sequence
of statements.

— Are all 1£/case branches taken?
— How many execution paths?

vV Lf (pardity==0DD || parity==EVEN} begin
v a_rj_ty_bj_t = Cr\mpuvg_Lar'H‘y(daT ,parity);
nd
v efgT| begin
v pafity bit = 1'b0; Note: 100%
[=Sako)}
| statement coverage
belgin but only 75% path
coverage!
I
v

= Dead code: default branch on exhaustive case
= Don’t measure coverage for code that was not meant to run! (tags)

STUDENTS-HUB.com

https://students-hub.com

Expression/Condition Coverage

Measures the various ways Boolean expressions and

subexpressions are executed.

— Where a branch condition is made up of a Boolean expression, we want to know
which of the inputs have been covered.

v if (parity==0DD
v parity bit =]|co

|| Farity==EVEN) begin
mpute parity(dagta,parity);

end
els¢ begin

parity bit = 17
end
(delay time);

S

end|bits = 2'bl
(delay time);
end

v

AN

1f [(stop bits==p

Note: Only 50%
D) begin expression
L ; coverage!

ol

— Analysis: Understand WHY part of an expression was not executed

= Reaching 100% expression coverage is extremely difficult.

STUDENTS-HUB.com

14

https://students-hub.com

Code Coverage Models for Hardware

* Toggle coverage
— Each (bit) signal changed its value from O to 1 and from 1 to O

= All-values coverage
— Each (multi-bit) signal got all possible values

— Used only for signals with small number of values
» For example, state variables of FSMs

STUDENTS-HUB.com

15

https://students-hub.com

Code Coverage Strategy

STUDENTS-HUB.com

= Set minimum % of code coverage depending on
available verification resources and importance of
preventing post tape-out bugs.

= Generally, 90% or 95% goal for statement, branch or
expression coverage.
— Some feel that less than 100% does not ensure quality.
— Beware: Reaching full code coverage closure can cost a lot of effort!

— This effort could be more wisely invested into other verification
techniques.

= Avoid setting a goal lower than 80%.

16

https://students-hub.com

Structural Coverage

= |mplicit coverage models that are based on common
structures in the code

— FSMs, Queues, Pipelines, ...
= The structures are extracted automatically from the

design and pre-defined coverage models are applied to
them

17

https://students-hub.com

State-Machine Coverage

= State-machines are the essence of RTL design

= FSM coverage models are the most commonly used
structural coverage models

= Types of coverage models
— State

— Transition (or arc)
— Path

18

https://students-hub.com

Code Coverage - Limitations

STUDENTS-HUB.com

Coverage questions not answered by code coverage tools

Did every instruction take every exception?

Did two instructions access the register at the same time?
How many times did cache miss take more than 10 cycles?
Does the implementation cover the functionality specified?
...(and many more)

Code coverage indicates how thoroughly the test suite exercises the
source code!
— Can be used to identify outstanding corner cases

Code coverage lets you know if you are not done!

It does not indicate anything about the functional correctness of the code!

100% code coverage does not mean very much. @
Need another form of coverage!

19

https://students-hub.com

Functional Coverage

STUDENTS-HUB.com

It is important to cover the functionality of the DUV.
— Most functional requirements can’t easily be mapped into lines of code!

Functional coverage models are designed to assure
that various aspects of the functionality of the design are
verified properly, they link the requirements/specification
with the implementation

Functional coverage models are specific to a given
design or family of designs

Models cover

— The inputs and the outputs

— Internal states or microarchitectural features
— Scenarios

— Parallel properties

20

https://students-hub.com

Functional Coverage Model Types

STUDENTS-HUB.com

» Discrete set of coverage tasks

— Set of unrelated or loosely related coverage tasks
often derived from the requirements/specification

— Often used for corner cases
= Driving data when a FIFO is full
» Reading from an empty FIFO

— In many cases, there is a close link between
functional coverage tasks and assertions

= Structured coverage models

— The coverage tasks are defined in a structure that
defines relations between the coverage tasks
= Allow definition of similarity and distance between tasks

* Most commonly used model types
— Cross-product
— Trees
— Hybrid structures

21

https://students-hub.com

Cross-Product Coverage Model

STUDENTS-HUB.com

A cross-product coverage model Is

1.
2.
3.

composed of the following parts:
A semantic description of the model (story)
A list of the attributes mentioned Iin the story

A set of all the possible values for each
attribute (the attribute value domains)

A list of restrictions on the legal combinations
In the cross-product of attribute values

22

https://students-hub.com

Example: Cross-Product Coverage Model 1

STUDENTS-HUB.com

Design: switch/cache unit

Motivation: Interactions of core processor unit command-response
sequences can create complex and potentially unexpected
conditions causing contention within the pipes in the switch/cache
unit when many core processors (CPs) are active.

All conditions must be tested to gain confidence in design correctness.

Attributes relevant to command-response events:

= Commands - CPs to switch/cache [31]

Responses - switch/cache to CPs [16]

Pipes in each switch/cache [2]

CPs in the system [8]

(Command generators per CP chip [2])

How big is the coverage space, i.e. how many coverage tasks?

23

https://students-hub.com

Switch/Cache Unit

STUDENTS-HUB.com

82
§
Memory Subsystem
Storage Control
] Element '
| (SCE) T
Pipe 0 Pipe 1

;580

CMDT lRESP CMDT lRESP CMDT lRESP

Core 0

Core 1

CPO

Core 0| |Core 1
CP1

Core 0||Core 1'

CP7

24

https://students-hub.com

Example: Cross-Product Coverage Model 2

STUDENTS-HUB.com

Size of coverage space:

= Coverage space is formed by cross-product (or, more formally,
the Cartesian product) over all attribute value domains.

= Size of cross-product is product of domain sizes:
— 31x16x2x8x2 = 15872

= Hence, there are 15872 coverage tasks.

Example coverage task:
(Command=20, Response=01, Pipe=1, CP=5, CG=0)

Are all of these tasks reachable/legal?

= Restrictions on the coverage model are:
— possible responses for each command
— unimplemented command/response combinations
— some commands are only executed in pipe 1
= After applying restrictions, there are 1968 legal coverage tasks left.

= Make sure you identify & apply restrictions before you start!

25

https://students-hub.com

Defining the Legal and Interesting Spaces

STUDENTS-HUB.com

In Practice:

= Boundaries between legal and illegal coverage
spaces are often not well understood

= The design and verification team create initial
spaces based on their understanding of the
design

= Coverage feedback modifies the space definition

= Interesting spaces tend to change often due to
shift in focus in the verification process

26

https://students-hub.com

Legal Spaces Are Self-correcting

STUDENTS-HUB.com

Illegal space

Legal space

27

https://students-hub.com

Coverage Terminology

= coverage model is a set of legal and interesting coverage points in
the coverage space.

= coverage point/task
— A point within a multi-dimensional coverage space.
— An event of interest that can be observed during simulation.

Coverage Point

Type (RD, WR)

Destination Transaction
/ Coverage
Model

Metrics \
Length

STUDENTS-HUB.com

28

https://students-hub.com

"Coverage Is a
measure of effort,
not achievement”

https://students-hub.com

Summary: Functional Coverage

Determines whether the functionality of the DUV
was verified.

= Functional coverage models are user-defined.
— (specification driven)
— This is a skill. It needs (lots of) experience!
— Focus on control signals.

= Strengths:
— High expressiveness: cross-correlation and multi-cycle scenarios.
— Objective measure of progress against verification plan.
— Can identify coverage holes by crossing existing items.
— Results are easy to interpret.
= Weaknesses:
— Only as good as the coverage metrics.

— To implement the metrics, engineering effort is required and a lot of
expertise.

STUDENTS-HUB.com

30

https://students-hub.com

Summary: Code Coverage

Determines If all the implementation was verified.

= Models are implicitly defined by the source code.
— (implementation driven)
— statement, path, expression, toggle, etc.

= Strengths:
— Reveals unexercised parts of design.
— May reveal gaps in functional verification plan.
— No manual effort is required to implement the metrics. (Comes for free!)

= Weaknesses:
— No cross correlations.
— Can’t see multi-cycle/concurrent scenarios.
— Manual effort required to interpret results.

STUDENTS-HUB.com

31

https://students-hub.com

Summary: Coverage Models

STUDENTS-HUB.com

= Do we need both code and functional coverage? YES!

Functional | Code Interpretation

Coverage Coverage

Low Low There is verification work to do.

Low High Multi-cycle scenarios, corner cases, cross-correlations
still to be covered.

High Low Verification plan and/or functional coverage metrics
inadequate.
Check for “dead” code.

High High

= Coverage models complement each other!
= No single coverage model is complete on its own.

32

https://students-hub.com

Case Study

Interdependency in a PowerPC
Processor

https://students-hub.com

Interdependency in a PowerPC Processor

* Interdependencies between instructions in the pipeline of
a processor create interesting testing scenarios

— They activate many microarchitectural mechanisms, such as
forwarding and stalling

— Studies have shown that they are the source of many bugs In
processor designs

— Functionality at this level is often related to increasing
processor performance

STUDENTS-HUB.com

34

https://students-hub.com

Lesson No. 1

STUDENTS-HUB.com

= Define coverage models in interesting
areas In the design

— Bug prone, New logic, Complex algorithm

= |n our case:

— Register interdependency activates many
pipeline mechanisms, such as forwarding and
stalling

— Coverage model aims to ensure that all
forward and stall mechanisms are activated

35

https://students-hub.com

First Approach — Black Box Model

STUDENTS-HUB.com

= The motivation (story):

Verify all dependency types of a resource (register)
relating to all instructions

= The semantics of the coverage tasks:

A coverage task Is a quadruplet (I, I, R, DT), where
Instruction [, is followed by Instruction I, and both share
Resource R with Dependency Type DT

= The attributes:
— 1., I, - Instruction: add, sub, ...
— R - Register (resource): G1, G2, ...

— DT - Dependency Type:
= WW, WR, RW, RR and ???

36

https://students-hub.com

First Approach — Black Box Model

STUDENTS-HUB.com

= The motivation (story):

Verify all dependency types of a resource (register)
relating to all instructions

= The semantics of the coverage tasks:

A coverage task Is a quadruplet (I, I, R, DT), where
Instruction [, is followed by Instruction I, and both share
Resource R with Dependency Type DT

= The attributes:
— 1., I, - Instruction: add, sub, ...
— R - Register (resource): G1, G2, ...

— DT - Dependency Type:
= WW, WR, RW, RR and None

37

https://students-hub.com

More Semantics

STUDENTS-HUB.com

= The semantics provided so far Is too coarse

— What if |, is the first instruction in the test and I, is the
1000 instruction?

= Need to refine the semantics to improve
probability of hitting interesting events

= Additional semantics

— The distance between the instructions IS no
more than 5

— The first instruction Is at least the 6th

38

https://students-hub.com

The Legal Space

= Not all combinations are valid
— Not all instructions read from registers
— Not all instructions write to registers

— Fixed point instructions cannot share FP (floating point)
registers

— ... and more

STUDENTS-HUB.com

39

https://students-hub.com

Space and Model Size

= PowerPC has

— ~400 instructions

= (actually this is an old number, current PowerPC has close to 1000
Instructions)

— ~100 registers

= Coverage space size Is 400 x 400 x 100 x 5 = 80,000,000
tasks

= Even after all restrictions are applied, the model size is
still 200,000 tasks

40

https://students-hub.com

Lesson No. 2

= Define a model of realistic size

Ensure good coverage can be achieved with simulation resources
Group similar cases together to reduce model size

= |n our case:

STUDENTS-HUB.com

Original space size is
(400 x 400 x 100 x 5) = 80,000,000 tasks
Many instructions behave similarly in the pipe
* For example add and sub
Many registers are activated in the same way
= All general purpose registers, all floating-point registers

Grouping similar instructions together helps to reduce the model size to a manageable
Size

41

https://students-hub.com

Coverage Results

= A random test generator was used to generate tests that
achieved 100% coverage architecture-level requirements
coverage

* Testing the generated tests against the forwarding and
stalling mechanisms of a specific processor showed that
many such mechanisms were not activated by the tests

42

https://students-hub.com

Lesson No. 3

» Define coverage models at the proper level of abstraction
for the coverage tasks

= |n our case:

— Forwarding and stalling are microarchitectural mechanisms, so the
coverage model should be defined at the microarchitectural level

= |[n general:

— Microarchitecture is the place to look for coverage models

» This is where the complexity of the design hides
— Architecture is not detailed enough
— Implementation is too messy

STUDENTS-HUB.com

43

https://students-hub.com

Grey Box Model

= Microarchitectural model for a specific Processor
— Multithreaded
— In-order execution
— Up to four instructions dispatched per cycle

Dispach

Bl

Data Fetch
Execute B2

Write Back J=kd

Branch Simple Complex Load/Store
(B) Arith (R) Arith (M) (S)

STUDENTS-HUB.com

44

https://students-hub.com

Model Detalls

= Model contains 7 attributes
— Type, pipe and stage of first instruction (11 ,P1 ,S1)
— Same attributes for second instruction (12, P2, S2)
— Type of dependency between the instructions
= RR, RW, WR, WW, None
= Grouping is done in a similar way to the architectural model

= Many restrictions exist, e.g.

— 1f 11 is simple fixed point, then P1lis R (Simple
Arithmetic) or M (Complex Arithmetic)

STUDENTS-HUB.com

45

https://students-hub.com

Analysis of Interdependency Model

= After 25,000 tests 2810 / 4418 tasks were
covered (64%)

4500

3000

0

Tasks

0 7500 15000 22500
Tests

46

https://students-hub.com

Lesson No. 4

= Coverage analysis Is more than a single
number

= |Nn our case:
— 64% 1s not bad but

— Progress report shows that coverage is
progressing slowly

— Hole analysis finds big areas that are covered
very lightly

— Analysis found some problems in test
generators

STUDENTS-HUB.com

a7

https://students-hub.com

Analysis of Interdependency Model

= Coverage hole analysis detected two major areas that are
lightly covered

— Stages S4f and S4b that are specific to thread switching are
almost always empty

= Reason: not enough thread switches during tests

—The address-base register in the store-and-update instruction Is
not shared with other registers in the test

» Reason: bug in the test generator that didn’t consider the register as a
modified register

STUDENTS-HUB.com 48

https://students-hub.com

Lesson NoO. 5

» | ook for large uncovered areas
— Can indicate problems in the testing
— Or missing restrictions

= Constantly update the coverage models
— Makes coverage picture clearer

= |n our case:

— Two large holes caused by problems in the test generator and
test specification

STUDENTS-HUB.com

49

https://students-hub.com

Coverage Progress

4500
< 3000 /
&
|_
(D)
: ﬁ N
(D]
>
§ 1500 N
Causes of hales are fixed
0
0 30000 60000 90000 120000

Tests

STUDENTS-HUB.com

https://students-hub.com

Architecture vs. Microarchitecture

STUDENTS-HUB.com

= Architecture
— No implementation detalls
— Easy to share between designs
— Temporal model

= Microarchitecture
— Pipe implementation knowledge is needed

— Access to microarchitectural mechanisms is needed
» White box or at least grey box
= More for observability than for controllability

51

https://students-hub.com

Summary:. Coverage

STUDENTS-HUB.com

= Coverage Is an important verification tool.
— Code coverage: statement, path, expression

— Functional coverage models: story, attributes, values,
restrictions

= Combination of coverage models required in practice.
— Code coverage alone does not mean anything!

= Verification Methodology should be coverage driven.

52

https://students-hub.com

