10/28/2022

%"m’

BIRZEIT UNIVERSITY

Thinking "
in Objects R

;\‘.. w
Liang, Introduction to Java Programming and Data Structures,
Twelfth Edition, (c) 2020 Pearson Education, Inc. All rights reserved.

By: Mamoun Nawahdah (PhD)
2022/2023

Class Abstraction and Encapsulation

¢ Class abstraction means to separate class
implementation from the use of the class.

+»*» The creator of the class provides a description of the
class and let the user know how the class can be used.

+* The user of the class does not need to know how the
class is implemented.

+* The detail of implementation is encapsulated and
hidden from the user.

Class implementation is "
like a black box hidden Class Contract Clients use the

from the clients CI ass (Signatures of public class through

methods and public the contract of
% constants) the class

STUDENTS-HUB.com


https://students-hub.com

STUDENTS-HUB.com

Class Relationships

+*» Association

+» Aggregation
+* Composition
+* Inheritance (Next Chapter)

Association: is a general binary relationship
that describes an activity between two classes.

Take p Teach
| 5..60 03

*
Student | Course |

! Faculty I

Teacher

e

Aggregation

% Aggregation models has-a relationships and
represents an ownership relationship between two objects.

+» The owner object is called an aggregating object and its
class an aggregating class.
+» The subject object is called an aggregated object and its
class an aggregated class.

% Composition is actually a special case of the
aggregation relationship.

Composition

N

e [ |

Aggregation

‘/113

£

Address

10/28/2022


https://students-hub.com

STUDENTS-HUB.com

Aggregation Between Same Class

+» Aggregation may exist between objects of the
same class.

+» For example, a person may have a supervisor:

1

Person |[O———

. Supervisor

public class Person {

// The type for the data is the class itself

private Person supervisor;

e ]

Designing a Class

% (Coherence) A class should describe a
single entity, and all the class operations
should logically fit together to support a
coherent purpose.

+* You can use a class for students, for
example, but you should not combine
students and staff in the same class, because
students and staff have different entities.

Eiad :

10/28/2022


https://students-hub.com

STUDENTS-HUB.com

Designing a Class cont.

< (Separating responsibilities) A single entity
with too many responsibilities can be broken into
several classes to separate responsibilities.

+» Example: the classes String, StringBuilder, and
StringBuffer all deal with strings, for example, but have
different responsibilities:

= String class deals with immutable strings.
= StringBuilder class is for creating mutable strings.

= StringBuffer class is similar to StringBuilder except that
StringBuffer contains synchronized methods for updating strings.

E.iad :

Designing a Class cont.

+¢ Classes are designed for reuse.

¢ Users can incorporate classes in many different
combinations, orders, and environments. Therefore,
you should design a class that imposes no
restrictions on what or when the user can do with it:

= Design the properties to ensure that the user
can set properties in any order, with any
combination of values.

= Design methods to function independently of

their order of occurrence. .

10/28/2022


https://students-hub.com

10/28/2022

Designing a Class cont.

% Follow standard Java programming style
and naming conventions:

= Choose informative names for classes, data
fields, and methods.

= Always place the data declaration before the
constructor, and place constructors before
methods.

= Always provide a constructor and initialize
variables to avoid programming errors.

E.iad :

Wrapper (-><) Classes

" Boolean  NOTE:
= Character (1)The wrapper classes do not have

= Short no-arg constructors.

= Byte (2) The instances of all wrapper

= Integer classes are immutable, i.e.,
their internal values cannot be

" Long changed once the objects are

=" Float created.

#:Double {@1\}%"’5‘%

STUDENTS-HUB.com


https://students-hub.com

STUDENTS-HUB.com

The Integer and Double Classes

e

java.lang.Integer

java.lang.Double

-value: int
+MAX WVALUE: int
+MIN VALUE: int

-value: double
+MAX VALUE: double
+MIN_VALUE: double

+Integer(value: int)

+Integer(s: String)

+byteValue(): byte
+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float
+doubleValue():double
+compareTo(o: Integer): int
+toString(): String

+valueOf(s: String): Integer
+valueOf(s: String, radix: int): Integer
+parselnt(s: String): int
+parselnt(s: String, radix: int): int

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float
+doubleValue():double
+compareTo(o: Double): int
+toString(): String

+valueOf{s: String): Double
+valueOf(s: String, radix: int): Double
+parseDouble(s: String): double
+parseDouble(s: String, radix: int): double

Biginteger and BigDecimal

i

+** If you need to compute with very
large integers or high precision floating-
point values, you can use the Biginteger
and BigDecimal classes in the java.math
package.

** Both are immutable.

import java.math.BigInteger;

10/28/2022


https://students-hub.com

10/28/2022

Biginteger and BigDecimal

Biginteger a = new Biglnteger("9223372036854775807");

new Biglinteger("2");
a.multiply(b); // 9223372036854775807 * 2

Biginteger b
Biginteger c
System.out.printin(c);

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);

System.out.printin(c);

e 13

STUDENTS-HUB.com


https://students-hub.com

