
10/28/2022

1

Thinking Thinking
in Objectsin Objects

By: Mamoun Nawahdah (PhD)
2022/2023

Liang, Introduction to Java Programming and Data Structures,
Twelfth Edition, (c) 2020 Pearson Education, Inc. All rights reserved.

Class Abstraction and Encapsulation
 Class abstraction means to separate class
implementation from the use of the class.

 The creator of the class provides a description of the
class and let the user know how the class can be used.

 The user of the class does not need to know how the
class is implemented.

 The detail of implementation is encapsulated and
hidden from the user.
Class implementation is
like a black box hidden

from the clients Class
Class Contract

(Signatures of public
methods and public

constants)

Clients use the
class through

the contract of
the class

STUDENTS-HUB.com

https://students-hub.com

10/28/2022

2

Class Relationships
 Association
 Aggregation
 Composition
 Inheritance (Next Chapter)

Association: is a general binary relationship
that describes an activity between two classes.

Aggregation
 Aggregation models has-a relationships and
represents an ownership relationship between two objects.
 The owner object is called an aggregating object and its
class an aggregating class.
 The subject object is called an aggregated object and its
class an aggregated class.

 Composition is actually a special case of the
aggregation relationship.

STUDENTS-HUB.com

https://students-hub.com

10/28/2022

3

5

Aggregation Between Same Class
 Aggregation may exist between objects of the
same class.

 For example, a person may have a supervisor:

public class Person {
// The type for the data is the class itself

private Person supervisor;
...

}

6

Designing a Class
 (Coherence) A class should describe a

single entity, and all the class operations
should logically fit together to support a
coherent purpose.

 You can use a class for students, for
example, but you should not combine
students and staff in the same class, because
students and staff have different entities.

STUDENTS-HUB.com

https://students-hub.com

10/28/2022

4

7

Designing a Class cont.
 (Separating responsibilities) A single entity

with too many responsibilities can be broken into
several classes to separate responsibilities.

 Example: the classes String, StringBuilder, and
StringBuffer all deal with strings, for example, but have
different responsibilities:

 String class deals with immutable strings.

 StringBuilder class is for creating mutable strings.

 StringBuffer class is similar to StringBuilder except that
StringBuffer contains synchronized methods for updating strings.

8

Designing a Class cont.

 Classes are designed for reuse.
 Users can incorporate classes in many different
combinations, orders, and environments. Therefore,
you should design a class that imposes no
restrictions on what or when the user can do with it:

 Design the properties to ensure that the user
can set properties in any order, with any
combination of values.

 Design methods to function independently of
their order of occurrence.

STUDENTS-HUB.com

https://students-hub.com

10/28/2022

5

9

Designing a Class cont.

 Follow standard Java programming style
and naming conventions:

 Choose informative names for classes, data
fields, and methods.

 Always place the data declaration before the
constructor, and place constructors before
methods.

 Always provide a constructor and initialize
variables to avoid programming errors.

10

Wrapper (غلاف) Classes
 Boolean
 Character
 Short
 Byte
 Integer
 Long
 Float
Double

NOTE:

(1) The wrapper classes do not have
no-arg constructors.

(2) The instances of all wrapper
classes are immutable, i.e.,
their internal values cannot be
changed once the objects are
created.

STUDENTS-HUB.com

https://students-hub.com

10/28/2022

6

11

The Integer and Double Classes

12

BigInteger and BigDecimal

 If you need to compute with very
large integers or high precision floating-
point values, you can use the BigInteger
and BigDecimal classes in the java.math
package.
 Both are immutable.

import java.math.BigInteger;

STUDENTS-HUB.com

https://students-hub.com

10/28/2022

7

13

BigInteger and BigDecimal
BigInteger a = new BigInteger("9223372036854775807");
BigInteger b = new BigInteger("2");
BigInteger c = a.multiply(b); // 9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);
System.out.println(c);

STUDENTS-HUB.com

https://students-hub.com

