

Machine Design 2 ENME 436

Department of Mechanical and Mechatronics Engineering

Dr. Rashad Mustafa

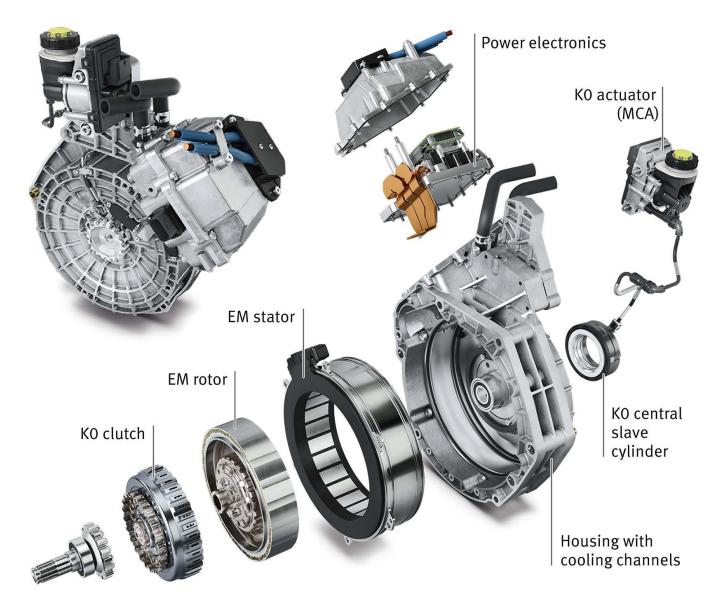
Fundamentals of Mechanics of Material

Fatigue strength means the property of a design or component, the casual occurrences during the operation elasto-plastic cyclic, quasi-static and sudden loads taking into account the environmental conditions, such as corrosion, and to maintain a high temperature and safe operation for the intended period of use.

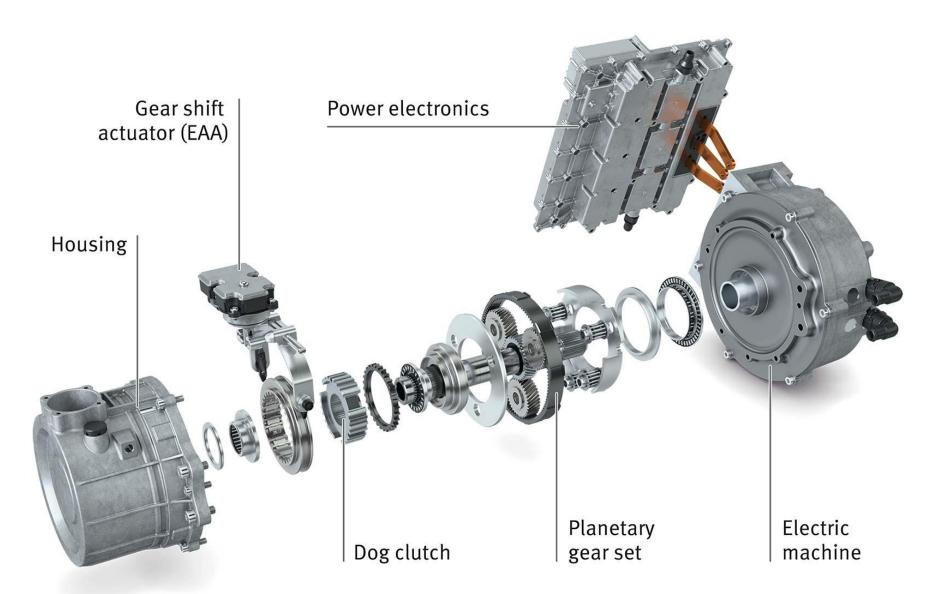
Requirements for the fatigue strength of components and systems

- Designed for customer-specific operating and operating conditions
- Ensuring the required service life
- Ensuring the lowest possible probability of failure
- Consideration of special events and misuse

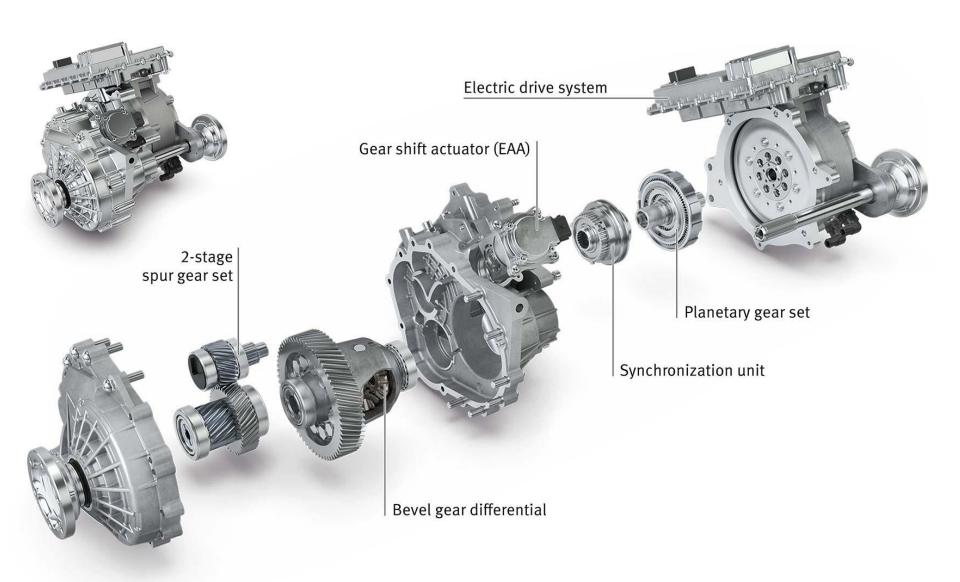
Faculty of Engineering and Technology Department of Mechanical and Mechatronics Engineering Machine Design 2 – ENME436


Text Book:

Mechanical Engineering Design, 10th Edition, Joseph E. Shigley & Charles R. Mischke

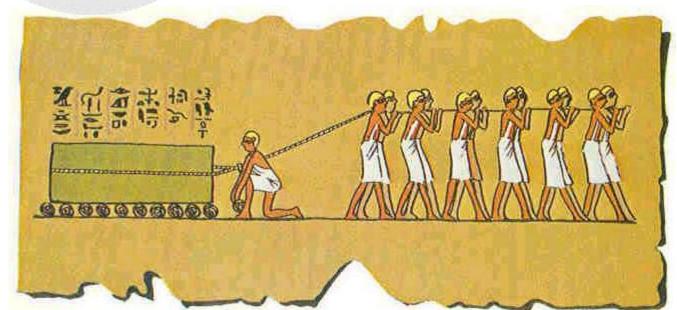

Course Content:

- 1. Friction, wear and lubrication; systems of lubrication.
- 2. Design of sliding bearings; journal and thrust bearings.
- 3. Antifriction bearings; types, selection criteria and calculation procedure.
- 4. Power transmission; Prime mover characteristics and types.
- 5. Design of gear drives; Spur gears, helical gears, bevel gears, worm gears.
- 6. Design of belt drives; Flat belts, V-belts.
- 7. Design of chain drives and rope drives.





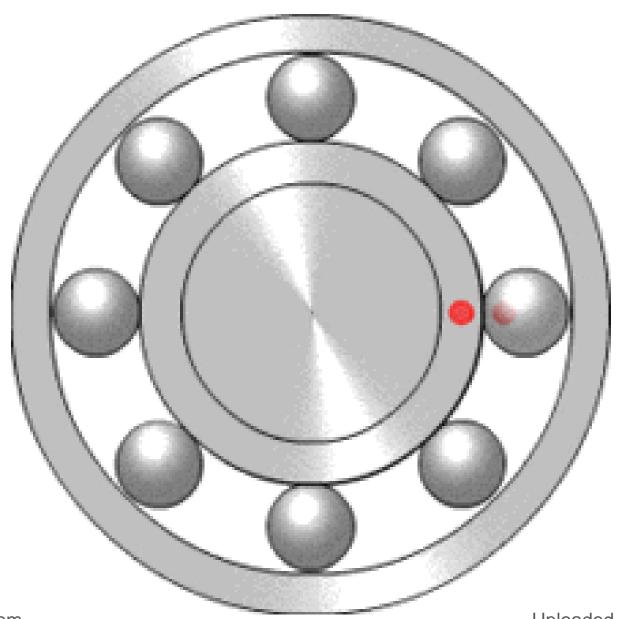
History



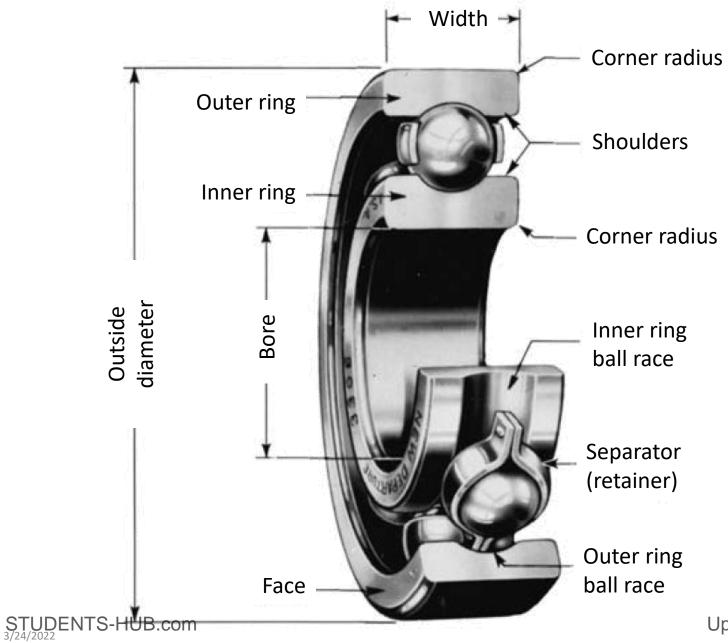
Ancient Egyptians used timbers for transportation of stones for pyramid building. This was roller bearings start.

The terms "rolling-contact bearing", "antifriction bearing", and "rolling bearing" are all used to describe that class of bearing in which the main load is transferred through elements in rolling contact rather than in sliding contact.

Types of rolling contact bearing:

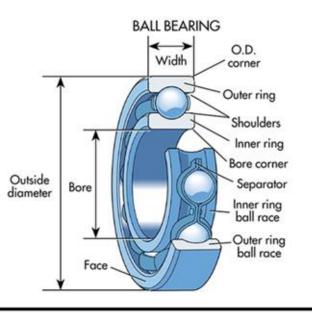

Ball bearing

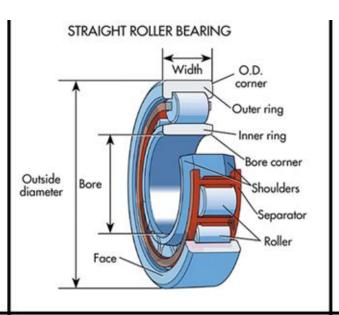
Roller bearing

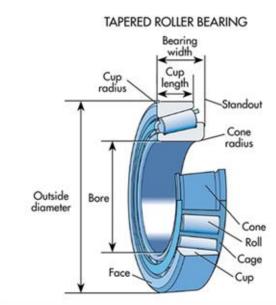


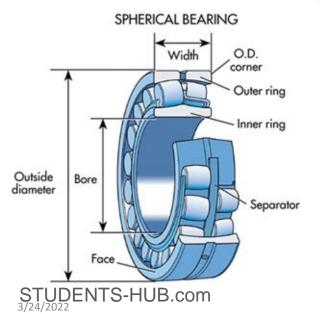
STUDENTS-HUB.com

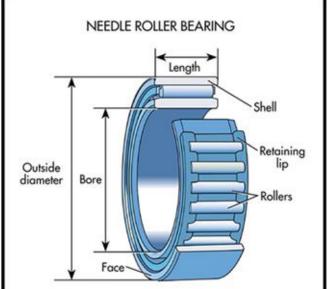
Uploaded By: anonymous₁₁

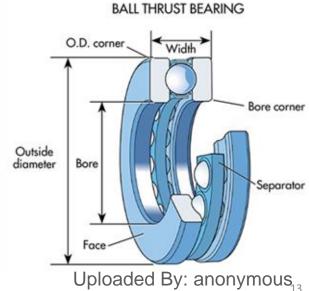

Main Components

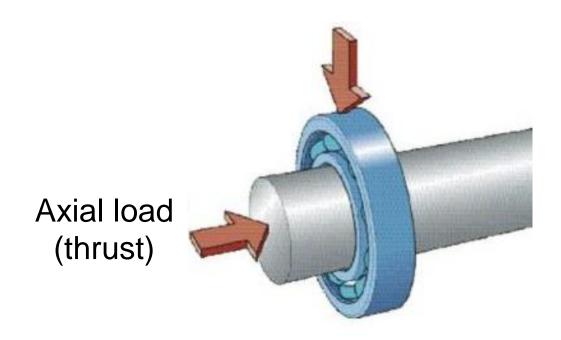





11.1 Bearing Types

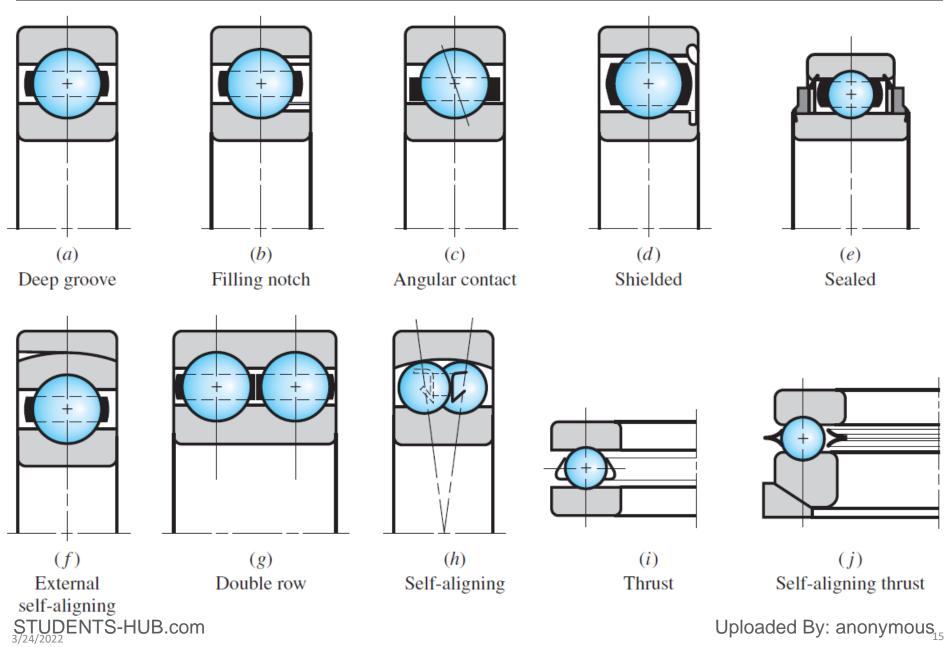






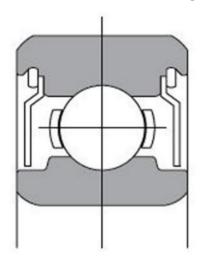
11.1 Classification of Bearing Loads

جَامِعَيْنُ بِ الْمِنْتِيْنِ BIRZEIT UNIVERSITY


- Radial (Carry radial load)
- Thrust, axial contact (carry axial loads)
- Angular-contact (curry axial and radial loads)

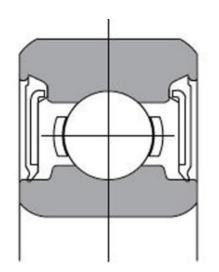
Radial load

11.1 Bearing Types



Uploaded By: anonymous₁₅

11.1 Ball Bearing Types



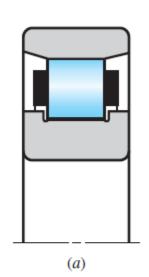
Shield Bearing

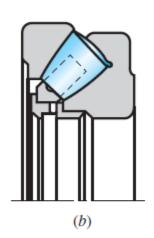
Sealed Bearing

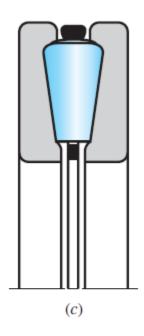
11.1 Ball Bearing Types

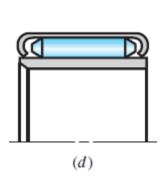
External Self-Aligning

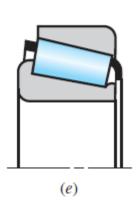
Internal Self-Aligning

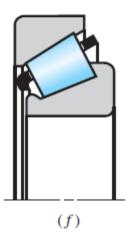

11.1 Bearing Types

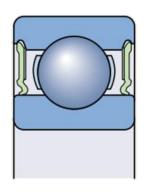



Figure 11-3

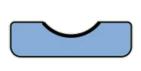

Types of roller bearings:


(a) straight roller; (b) spherical roller, thrust; (c) tapered roller, thrust; (d) needle; (e) tapered roller; (f) steep-angle tapered roller. (Courtesy of The Timken Company.)

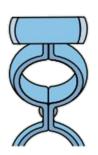




11.3 Bearing Load Life at Rated Reliablity

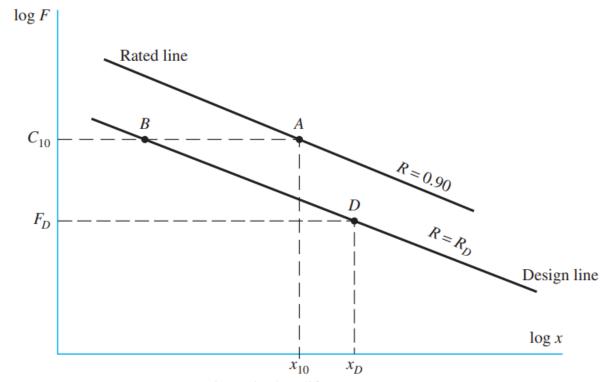


Bearing system life


L_{bearing} = f (L_{raceways}, L_{rolling elements}, L_{cage}, L_{lubricant}, L_{seals})

$$C_{10} = F_R = F_D \left(\frac{L_D}{L_R}\right)^{1/a} = F_D \left(\frac{\mathcal{L}_D n_D 60}{\mathcal{L}_R n_R 60}\right)^{1/a}$$

11.3 Bearing Load Life at Rated Reliablity


Bearing system life: Example:

Roller bearing is to withstand radial load $F_r = 4 \text{ kN}$ and have a life $L_D = 1200 \text{ hr}$ at $n_D = 600 \text{ rpm}$. What value of load rating you will select from TimKen Engineering Company catalog

Figure 11-5

Constant reliability contours. Point A represents the catalog rating C_{10} at $x = L/L_{10} = 1$. Point B is on the target reliability design line R_D , with a load of C_{10} . Point D is a point on the desired reliability contour exhibiting the design life $x_D = L_D/L_{10}$ at the design load F_D .

Dimensionless life measure x

$$C_{10} \approx a_f F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90$$
 (11–10)

$$C_{10} \approx a_f F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90$$
 (11–10)

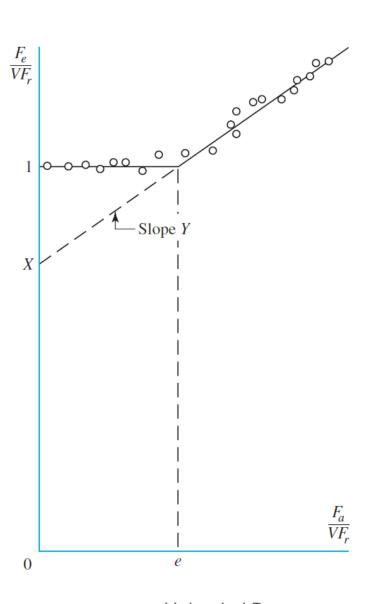
Table 11-6

Typical Weibull Parameters for Two Manufacturers

	Rating Life,	Weibull Parameters Rating Lives			
Manufacturer	Revolutions	X ₀	$\boldsymbol{\theta}$	Ь	
1	90(10 ⁶)	0	4.48	1.5	
2	$1(10^6)$	0.02	4.459	1.483	

Application factor and Life should be taken into account in the Bearing application

Table 11-4	Type of Application		Life, kh					
Bearing-Life		Up to 0.5						
Recommendations for	ns for Aircraft engines							
Various Classes of Machinery	Machines for short or intermittent operation white interruption is of minor importance	4–8						
1- Life	Machines for intermittent service where reliable is of great importance	e operation	8–14					
I LIIC	Machines for 8-h service that are not always fu	ully utilized	14–20					
	Machines for 8-h service that are fully utilized							
	Machines for continuous 24-h service							
	Machines for continuous 24-h service where re of extreme importance	eliability is	100–200					
Table 11-5	Type of Application	Load Factor						
Load-Application Factors	Precision gearing	1.0-1.1						
	Commercial gearing	1.1–1.3						
	Applications with poor bearing seals	1.2						
2 – Application	Machinery with no impact	1.0-1.2						
factor	Machinery with light impact	1.2–1.5						
STUDENTS-HUB.com	Machinery with moderate impact 1.5 Depleaded By: anor							


Figure 11-6

The relationship of dimensionless group $F_e/(VF_r)$ and $F_a/(VF_r)$ and the straight-line segments representing the data.

$$\frac{F_e}{VF_r} = 1$$
 when $\frac{F_a}{VF_r} \le e$

$$\frac{F_e}{VF_r} = X + Y \frac{F_a}{VF_r}$$
 when $\frac{F_a}{VF_r} > e$

A **rotation factor** V is defined such that V = 1 when the inner ring rotates and V = 1.2 when the outer ring rotates

$$F_e = X_i V F_r + Y_i F_a$$

(11-12)

d	bl	е	-

Equivalent Radial Load Factors for Ball Bearings

		$F_a/(VF_a)$.) ≤ e	$F_a/(VF_r) > e$		
F_a/C_0	е	X ₁	Y 1	X ₂	Y ₂	
0.014*	0.19	1.00	0	0.56	2.30	
0.021	0.21	1.00	0	0.56	2.15	
0.028	0.22	1.00	0	0.56	1.99	
0.042	0.24	1.00	0	0.56	1.85	
0.056	0.26	1.00	0	0.56	1.71	
0.070	0.27	1.00	0	0.56	1.63	
0.084	0.28	1.00	0	0.56	1.55	
0.110	0.30	1.00	0	0.56	1.45	
0.17	0.34	1.00	0	0.56	1.31	
0.28	0.38	1.00	0	0.56	1.15	
0.42	0.42	1.00	0	0.56	1.04	
0.56	0.44	1.00	0	0.56	1.00	

^{*}Use 0.014 if $F_a/C_0 < 0.014$.

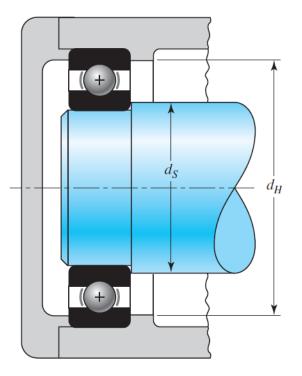
Table 11-2

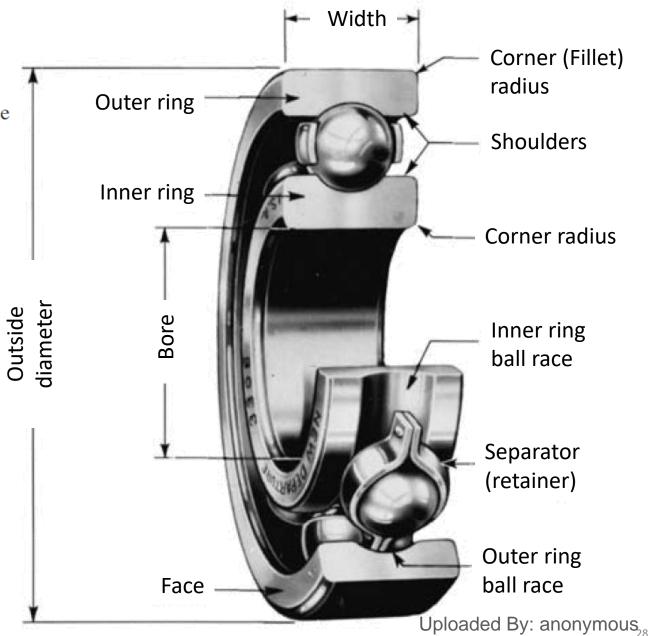
Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

			Fillet	Shou	ılder		Load Ratings, kN			
Bore,	OD,	Width,	Radius,	Diamet	er, mm	Deep C	Proove	Angular	Contact	
mm	mm	mm	mm	ds	d _H	C ₁₀	C o	C ₁₀	C _o	
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12	
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05	
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65	
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75	
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55	
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65	
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0	
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0	
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6	
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2	
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8	
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5	
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5	
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5	
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5	

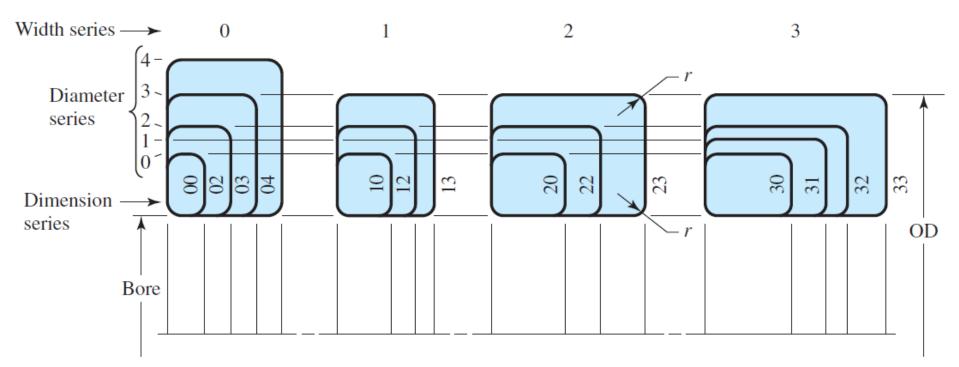
Chapter 11: Rolling Contact Bearing

Table 11-3


Dimensions and Basic Load Ratings for Cylindrical Roller Bearings


		02-5	eries		03-s	eries		
Bore,	OD,	Width,	Load Ra	ting, kN	OD,	Width,	Load Ra	ting, kN
mm	mm	mm	C 10	C o	mm	mm	C 10	C o
25	52	15	16.8	8.8	62	17	28.6	15.0
30	62	16	22.4	12.0	72	19	36.9	20.0
35	72	17	31.9	17.6	80	21	44.6	27.1
40	80	18	41.8	24.0	90	23	56.1	32.5
45	85	19	44.0	25.5	100	25	72.1	45.4
50	90	20	45.7	27.5	110	27	88.0	52.0
55	100	21	56.1	34.0	120	29	102	67.2
60	110	22	64.4	43.1	130	31	123	76.5
65	120	23	76.5	51.2	140	33	138	85.0
70	125	24	79.2	51.2	150	35	151	102
75	130	25	93.1	63.2	160	37	183	125
80	140	26	106	69.4	170	39	190	125
85	150	28	119	78.3	180	41	212	149
90	160	30	142	100	190	43	242	160
95	170	32	165	112	200	45	264	189
\$100 3/24/2022	TS-HUB.com	34	183	125	215	⁴⁷ Uplo	paded ⁰ By: and	onymous ₂₇

Shaft and housing shoulder diameters d_S and d_H should be adequate to ensure good bearing support.



STUDENTS-HUB.com

Figure 11-7: The basic ABMA plan for boundary dimensions.

It shows the variety of bearings that may be obtained with a particular bore

The bearings are identified by a two-digit number called the dimension-series code.

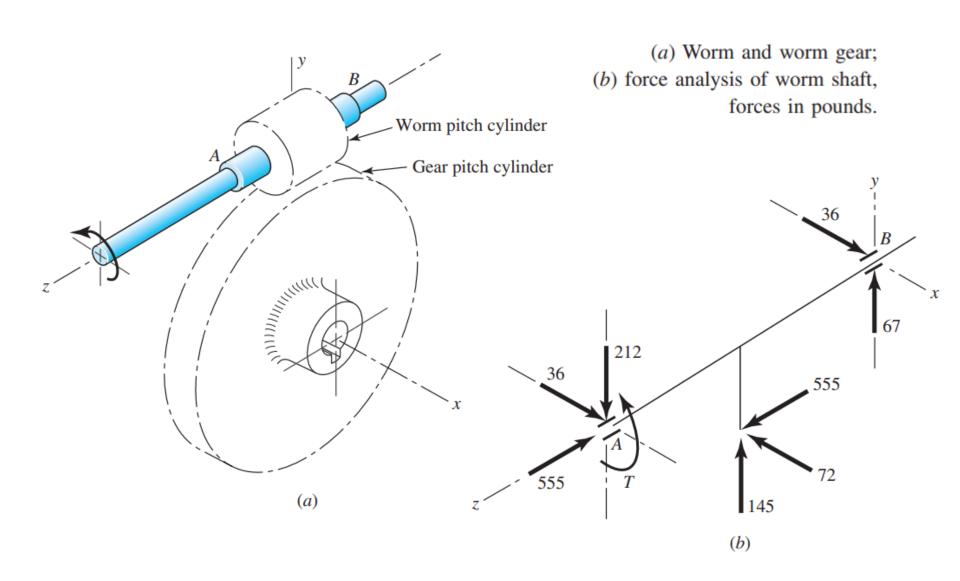
- The first number in the code is from the width series.
- The second number is from the *diameter series* (outside).

Since the dimension series code does not reveal the dimensions directly, it is necessary to resort to tabulations.

Uploaded By: anonymous₂₉

Problem 11-35

The worm shaft shown in part a of the figure transmits 1.2 hp at 500 rev/min. A static force analysis gave the results shown in part b of the figure. Bearing A is to be an angular-contact ball bearing selected from Table 11–2, mounted to take the 555-lbf thrust load. The bearing at B is to take only the radial load, so an 02-series cylindrical roller bearing from Table 11–3 will be employed. Use an application factor of 1.2, a desired life of 30 kh, and a combined reliability goal of 0.99, assuming distribution data from manufacturer 2 in Table 11–6. Specify each bearing.


(a)

Worm pitch cylinder

Gear pitch cylinder

Problem 11-35

$$C_{10} \approx a_f F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90$$
 (11–10)

Table 11-6

Typical Weibull Parameters for Two Manufacturers

	Rating Life,	Weibull Parameters Rating Lives			
Manufacturer	Revolutions	x ₀	$\boldsymbol{\theta}$	Ь	
1	90(10 ⁶)	0	4.48	1.5	
2	$1(10^6)$	0.02	4.459	1.483	

Chapter 11: Rolling Contact Bearing

Table 11-3

Dimensions and Basic Load Ratings for Cylindrical Roller Bearings

		02-Se	03-Series					
Bore,	OD,	Width,	Load Ra	ting, kN	OD,	Width,	Load Ra	ting, kN
mm	mm	mm	C 10	C _o	mm	mm	C 10	C o
25	52	15	16.8	8.8	62	17	28.6	15.0
30	62	16	22.4	12.0	72	19	36.9	20.0
35	72	17	31.9	17.6	80	21	44.6	27.1
40	80	18	41.8	24.0	90	23	56.1	32.5
45	85	19	44.0	25.5	100	25	72.1	45.4
50	90	20	45.7	27.5	110	27	88.0	52.0
55	100	21	56.1	34.0	120	29	102	67.2
60	110	22	64.4	43.1	130	31	123	76.5
65	120	23	76.5	51.2	140	33	138	85.0
70	125	24	79.2	51.2	150	35	151	102
75	130	25	93.1	63.2	160	37	183	125
80	140	26	106	69.4	170	39	190	125
85	150	28	119	78.3	180	41	212	149
90	160	30	142	100	190	43	242	160
95	170	32	165	112	200	45	264	189
\$ 100 EN	TS-HUB.com	34	183	125	215	⁴⁷ Uplo	paded ⁰ By: an	onymous ₃₃

Table 11-2

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

			Fillet	Sho	Shoulder		Load Ratings, kN		
Bore,	OD,	Width,	Radius,	Diame	ter, mm	Deep	Groove	Angular	Contact
mm	mm	mm	mm	d _s	d _H	C ₁₀	C _o	C ₁₀	C _o
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0
90	160	30	2.0	104	146	95.6	62.0	106	73.5
95	170	32	2.0	110	156	108	69.5	121	85.0

STUDENTS-HUB.com

Uploaded By: anonymous₃₄

$$F_e = X_i V F_r + Y_i F_a$$

(11-12)

Table 11-1			$F_a/(VF_r) \leq e$		$F_a/(VF_r) > e$	
Equivalent Radial Load	F_a/C_0	е	X ₁	Y ₁	X ₂	Y ₂
Factors for Ball Bearings	0.014*	0.19	1.00	0	0.56	2.30
	0.021	0.21	1.00	0	0.56	2.15
0.0392———	0.028	20.22	1.00	0	0.56	1.99
0.0392	0.042	0.24	1.00	0	0.56	1.85
	0.056	0.26	1.00	0	0.56	1.71
	0.070	0.27	1.00	0	0.56	1.63
	0.084	0.28	1.00	0	0.56	1.55
	0.110	0.30	1.00	0	0.56	1.45
	0.17	0.34	1.00	0	0.56	1.31
	0.28	0.38	1.00	0	0.56	1.15
	0.42	0.42	1.00	0	0.56	1.04
	0.56	0.44	1.00	0	0.56	1.00

^{*}Use 0.014 if $F_a/C_0 < 0.014$.