i

BIRZEIT UNIVERSITY

o B v

BIRZEIT UNIVERSITY

Trees_ 3

AVL Trees

MISMABENTO%H \¢HEARmad Abusnaina COMPAZE0AfITS! By, ap



BIRZEIT UNIVERSITY

AVL Trees

Introduction

What is an AVL Tree?

AVL Tree Implementation.

Why AVL Trees?

Rotations.

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



Whatis an AVL Tree? s

* An AVL (Adel’son, Vel’skii, & Lands) tree is a binary search tree with a
height balance property:

For each node v, the heights of the subtrees of v differ by at most 1.
* A subtree of an AVL tree is also an AVL tree.

* An AVL node can have a balance factor of -1, 0, or +1.

Mp M Njoum'€FprOoARmad Abusnaina



Why AVL Trees?

* Insertion or deletion in an ordinary Binary Search Tree can cause
large imbalances.

* |In the worst case searching an imbalanced Binary Search Tree is
O(n).

* An AVL tree is rebalanced after each insertion or deletion.

The height-balance property ensures that the height of an AVL
tree with n nodes is O(log n).

Searching, insertion, and deletion are all O(log n).

Mp M Njoum'€FprOoARmad Abusnaina coMPP32a4i56: A, RRQR



AT o
- - ,A—-.—"{/@,-.' .
BIRZEIT UNIVERSITY

What is a Rotation?

* A rotation is a process of switching children and parents among
two or three adjacent nodes to restore balance to a tree.

* An insertion or deletion may cause an imbalance in an AVL tree.

* The deepest node, which is an ancestor of a deleted or an inserted
node, and whose balance factor has changed to -2 or +2 requires
rotation to rebalance the tree.

O Deepest unbalanced node
Mp M Njoum'€FprOoARmad Abusnaina coMPP32a4i56: A, RRQR




o B ey

BIRZEIT UNIVERSITY

Single Rotation

* There are two kinds of single rotation:
Right Rotation. Left Rotation.

/N N

balance factor: 2

balance factor:2

Mp M Njoum'€FprOoARmad Abusnaina



H

BIRZEIT UNIVERSITY

Double Rotation

* A double right-left :rotation is a right rotation followed by a left rotation.
 Adouble left-right :rotation is a left rotation followed by a right rotation.

O balance factor: 2
A

@ balance factor:-1 Q balance factor: 1 0
palance factor: 0 0
G 9 balance factor: 0

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO

balance factor: 2




Thls node becomes imbalanced
after inserting node-3

LL Rotation
(Rotate Anticlockwise)

Insertion Order:1,2,3

Tree is Imbalanced

=

Insertion Order: 3,1, 2

Thee A MibNahead U B-com

Thls node becomes imbalanced
after inserting node-2

LR Rotation

(LL + RR Rotation)

This node becomes imbalanced
after inserting node-1

RR Rotation

(Rotate clockwise)

=%

Tree is Balanced

Tree is Balanced

Insertion Order:3,2,1

Tree is Imhalanced

This node becomes imbalanced
after inserting node-2

RL Rotation

RR + LL Rotation

0

Tree is Balanced

Tree is Balanced

Insertion Order:1,3,2

Tree is Imbalanced Uploaded By: anonymous



- - H = e g
BIRZEIT UNIVERSITY

Single Right Rotation

* Single right rotation:
The left child x of a node y becomes y's parent.
y becomes the right child of x.
The right child T, of x, if any, becomes the left child of y.

deepest unbalanced node
a right rotation of x about y Q
—

Note: The pivot of the rotation is the deepest unbalanced node
Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO




Single Left Rotation =~ ===

* Single left rotation:
The right child y of a node x becomes x's parent.
x becomes the left child of y.
The left child T, of y, if any, becomes the right child of x.

deepest unbalanced node

Note: The pivot of the rotation is the deepest unbalanced

node
Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



BIRZEIT UNIVERSITY

BST ordering property

* A rotation does not affect the ordering property of a BST.

BST ordering property requirement: BST ordering property require
T,<X<y Ti<Xx<y
X<T,<y Similar X<T,<y
X<y<T; X<y<T,

« Similarly for a left rotation.

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



H

BIRZEIT UNIVERSITY

Double Right-Left Rotation
right rotation of y about A 0

4otation of Y

about X

Note: First pivot is the
right child of the
deepest unbalanced
node;

second pivot is the
deepest unbalanced
node

T
Mp M Njoum' € prOARmad Abusnaina




- H

BIRZEIT UNIVERSITY

Double Left-Right Rotation

Q <«— deepest unbalanced node

Note: First pivot is left rotation of W
the left child of the about X

deepest
unbalanced node;

second pivot is the
deepest
unbalanced node

T
Mp M Njoum' € prOARmad Abusnaina




AVL Search Trees

* |Inserting in an AVL tree
* Insertion implementation

* Deleting from an AVL tree

| Mp M Njoum'€FprOoARmad Abusnaina



o B v
H
BIRZEIT UNIVERSITY

Insertion

* Insert using a BST insertion algorithm.
* Rebalance the tree if an imbalance occurs.

* Animbalance occurs if a node's balance factor changes from-1to -2 o
from+1 to +2.

* Rebalancing is done at the deepest unbalanced ancestor of the inserte
node.

* There are three insertion cases:
Insertion that does not cause an imbalance.

Same side (left-left or right-right) insertion that causes an imbalance.

* Requires a single rotation to rebalance.

Opposite side (left-right or right-left) insertion that causes an imbalance.

* Requires a double rotation to rebalance.

Mp M Njoum'€FprOoARmad Abusnaina coMPP32a4i56: A, RRQR



BIRZEIT UNIVERSITY

Insertion: case 1

* Example: An insertion that does not cause an imbalance.

Insert 14

| Mp M Njoum'€FprOoARmad Abusnaina



H = T e
IRZEIT UNIVERSITY

Insertion: case 2

* Case 2a: The lowest node (with a balance factor of -2) had a

taller and the insertion was on the of
its left child.

* Requires single right rotation to rebalance.

+2

LT
o

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



Rotating Right, node with value
10 as pivot

0
M§W&ENTS-H;B.com Uploaded By: anony



so5n T e
[nsertion: case 2 (contd ===

* Case 2b: The lowest node (with a balance factor of +2) had a talle

and the insertion was on the of its righ
child.

* Requires single left rotation to rebalance.

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO




Example &

-1
A 'oflo
(1) @

-2 0

Left rotate, node with value 30

Taken as pivot
> : ;
0 0 @
H 0

rMﬁm%l‘ﬁ&iHLéﬁﬁpm Uploaded By: anonymou




: g B v
Insertion: case 3 e

* Case 3a: The lowest node (with a balance factor of -2) had a taller

and the insertion was on the of its left
child.

* Requires a double left-right rotation to rebalance.

S
O

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



i

BIRZEIT UNIVERSITY

Insert node 7

Left rotation,
5 as pivot

Right rotation,

40 as pivot

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



*@f,{fw
[nsertion: case 3 (contd ===

* Case 3b: The lowest node (with a balance factor of +2) had a

taller and the insertion was on the of
its right child.

* Requires a double right-left rotation to rebalance.

-2

AN

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



BIRZEIT UNIVERSITY

Insert 15

Right Rotation, 16
as pivot

Left Rotation, 9

< as pivot

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



g B

AVL Rotation Summary
|

+ + 2
2 2
+ -1 +1
1
Single right [_)ouble left- Single left Double right-lef
rotation right rotation rotation
rotation

Mp M Njoum'€FprOoARmad Abusnaina coMPP32a4i56: A, RRQR



- H = T s
BIRZEIT UNIVERSITY

Exercise: Insert into an initially empty AVL tree each of the following keys, in the
order in which they appear in the sequence: 0, 25, 19, 5, -2, 28, 13, -5, 2,6, 14, 7

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



H

D el eti O n BIRZEIT UNIVERSITY

* Delete by a BST deletion by copying algorithm.
 Rebalance the tree if an imbalance occurs.

* There are three deletion cases:
Deletion that does not cause an imbalance.

Deletion that requires a single rotation to rebalance.
Deletion that requires two or more rotations to rebalance.

* Deletion case 1 example:

Mp M Njoum'€FprOoARmad Abusnaina wumbPloaded By, anqn



Deletion' case 2 examples —

Q‘c

Delete 40

Mp M Njoum'€FprOoARmad Abusnaina



Deletion: case 2 examples

)
i




cegp B v

Case 3 : . _ BIRZEIT UNIVERSITY
right rotation, with node 35

(3 " \
(
Delete 40 ) /
(29

Deletion:

Mp M Njoum'€FprOoARmad Abusnaina



- H = T e
IRZEIT UNIVERSITY

Deletion- In Depth- More
Examples

1 2 1
Deleting Node from Performing RO /
Right Sub-tree of A Rotation B
1
1E! (;_ ?'1] T1 & A
(h " (h)
il T2 il {2
T2 1=
h h h h
(0 (0 (h) (h) ) )
AVL Tree Non AVL Tree RO Rotated Tree

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



Exam P le 1 BIRZEIT UNIVERSITY

2
/f\\CrltlcaI Node

\20|

Performing RO
rotation

w

AVL Tree Non AVL Tree RO Rotated Tree

Mp MdeN TS-HUB.com Uploaded By: anog



BIRZEIT UNIVERSITY

1 2 0
Deleting Node from Performing R1
A Right Sub-tree of A Rotation B
1
0
B T3
m ™) m :
X
1l T2 1l T2
T2 T3
(h) (h'l) (h) (h'l] (h-l] (h-l]
AVL Tree Non AVL Tree R1 Rotated Tree

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



Exam pIe 2 BIRZEIT UNIVERSITY

AVL Tree
1 y 2 0
Node A Critical Node f /\ Node A Node B
Performing R1
1 Deleting Node 55 \/ rotation Node A
_—
60 g Node 50 |0
0
@
Node to be deleted

(X)

AVL Tree Non AVL Tree R1 Rotated Tree

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



= H

BIRZEIT UNIVERSITY

1 2 0

Deleting Node from Performing R-1

Right Sub-tree of A Rotation C
-1 0 0
B T4 v B A

X
T 1 T T2 T3 T4
(h-1) (h-1) (h-1) (h-1) (h-1) (h-1)
T2 T3 T2 T3
(h-1) (h-1) (h-1) (h-1)
AVL Tree Non AVL Tree R-1 Rotated Tree

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



- i

BIRZEIT UNIVERSITY

Example 3
1 2 0
Node A Critical Node . Node A Node C
50 @
_ Performing R-1
Node B Deleting Node 60 rotation 0 0
Node to be deleted Node B Node A
(X)
Node C Node C
AVL Tree Non AVL Tree R-1 Rotated Tree

M MARRMNTS-HUB.com Uploaded By: anon:



BIRZEIT UNIVERSITY
Exercise (Previous Built AVL-Tree) :

A- Delete node 2

B- Delete root

C- Delete node 7, then 2 (Try it at home)

| Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



Exercise

* Rewrite the above codes for delete nodes from tree.

* Insert the following Number in AVL tree
{20,50,30,15,3,45,17,25,12,11,7,19,14,2}
Then Delete Number {45,20,15,25}
Show your works after each step (Check Balance)

Mp M Njoum'€FprOoARmad Abusnaina



H

BIRZEIT UNIVERSITY

THANK YOU

Mp M Njoum'€FprOoARmad Abusnaina COMPP32a(B 5 Bk, RO



