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Chapter 3 :- “Vectors .”
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‘2 .. Vectors subtraction:
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3 .. Component of vectors :
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Sample Problem 3.02 Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. This means that the direction is not
due north (directly toward the north) but is rotated 22° to-
ward the east from due north. How far east and north is the
airplane from the airport when sighted?
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4 .. Unit vectors :

Points in afarticular direction
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3 A vector has a component of 15 m in the +x direction, a Consider two vectors @ = (5'0)’; _ (4'0).? + (2.0)]"( and

component of 15 m in the +y direction, and a component of 10 m
in the +z direction. What is the magnitude of this vector?

+¢=

(: —2.0m)i + (2_.'0m)]¢ + (5.0m)k, where m is a scalar. Find (a)
, (b) @—b, and (c) a third vector ¢ such that
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12 A caris driven east for a distance of 40 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle

of the car’s total displacement from its starting point.
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! Multioluing vestore :
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Sample Problem 3.05 Angle between two vectors using dot products

What is the angle ¢ between @ =3.0i — 4.0] and b =
—2.0i + 3.0k? (Caution: Although many of the following
steps can be bypassed with a vector-capable calculator, you
will learn more about scalar products if, at least here, you
use these steps.)

2% - (al-ulde( 2} +3k)
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% Right hond tools :-
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Sample Problem 3.06 Cross product, right-hand rule

In Fig. 3-20, vector @ lies in the xy plane, has a magnitude of
18 units, and points in a direction 250° from the positive di-

rection of the x axis. Also, vector b has a magnitude of
12 units and points in the positive direction of the z axis. What
is the vector product ¢ =@ X b?
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Sample Problem 3.07 Cross product, unit-vector notation

1fd@ =3i —4jand b = —2i + 3k,whatis ¢ = @ X b?
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Lecture problems:

3 A vector has a component of 15 m in the +x direction, a
_component of 15 m in the +y direction, and a component of 10 m

in the +z direction. What is the magnitude of this vector?

50 )

=150 +15] 410k

=
IR -./ns\ﬂ (153 4 (of

=234 m

Consider two vectors @ = (5.0)i — (4.0)] + (2.0)k and

L —2.0m)i + (2_.'Om)]é + (5.0m)k, where m is a scalar. Find (a)

, (b) @—b, and (c¢) a third vector ¢ such that
+¢=

o) (50 _ 4] 4 ak) & (20 420 45K}
- 3T 23 27k
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= 70 _ 63 .3k

-
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12 A car is driven east for a distance of 40 km, then north for 30

s
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km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle Z
of the car’s total displacement from its starting point.
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23 Ifb = (3.0 + (4.0)j and__?i =1- j, what is the vector having
the same magnitude as that of b and parallel to a?

%
% Ywe veckor Wove Yhe Sawme magnitwde as b

ot s 4 (332, ()2

=5

¥ Me veckor Parallel 2' :

2, = 21__ Q/ i-L
lal VD)

- -

R-5(L.1)

36 Consider two vectors p) = 41 — 3] + 5k and P, = —6i +
3) — 2k.Whatis (7, + p,) - (P X 5p,)?
- g ~ ~ - “
PoolP oy (uD.33,5K%) . (-6} 3T -2k)
-~ -~
-~ = "2L Y 3k
=) e ~ N ~ -~ - -~
WX5P _ 35 cu4l-37,5%) K5 (-47 +30-2%)
= 7 J *
- -~ —~
4y -3 5 | a(30 _75)7 - ( -40 +150)) 4 [ o _Qq0)k
20 15 -lo - -4sT _ 10l _ 3ok
= = = - ~ -~ - ~ -
= (P 4P). (P x5P,) > (-20 3k . (-495/ nuol -30%)
= (90 - 90)
= O

__ 41 Use the definition of scalar product, @-b = ab cos 6, and

the fact that @-b = ab, +ab, + ab, to calculate the angle be-
—tween the following two vectors: @ = 4.01 + 4.0} + 4.0k and

b = 3.0 + 2.0] + 4.0k.

121 - (49, (4)?

= &£.92

-
oo/ (3%, (2) 4 ()’

- £.38.

~
a-b = (4T , 4T 4R ) 4 (37,20 4 4K)

= (12T 4 8J 4 UF)

= 34.

> D -
a.b - 1a!lbl cosg

34 = (6.92) ( 5.38) Cosg

Cos® = 0.964
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1 If the x component of a vector a, in the xy plane, is half as large
as the magnitude of the vector, find the tan-

gent of the angle between the vector and

the x axis.

ax = L
2

acest = a

Cosf - s € - 406
-

a

L

2
L
2

7 Consider two displacements, one
of magnitude 3 m and another of
magnitude 4 m. Show how the dis-
- placement vectors may be combined
to get a resultant displacement of magnitude (a) 7 m, (b) 1 m, and

(¢)Sm.
D, - 3m
*D_)_.:_‘Lm
Q.) R- D, _%07 5 =0
- 4+ M
= Im
by R= D,-0, , ® =1%0
- 4-3
=1l m
o R : \/(D.\"#(\D,}1 , €=%0
a0, S

— 15 The two vectors @ and b in
Fig. 3-23 have equal magnitudes of
~ 10.0m and the angles are 6, = 30°
and 6, = 105°. Find the (a) x and (b)
~ y components of their vector sum 7,
_ (c) the magnitude of 7,and (d) the an-
gle 7 makes with the positive direc-
__tion of the x axis.

El) = 10cos30 b 4 lOSin303
= 8667 4 5]

> - o

b = 10 cos 1251 . 10sn 1283 — > &© = 30x10S
= <2077 4720770

> - -

r =aaib

(8.66 b 4SN) 4 (7070 , 7.071)

= 1890 4 12.0%7J

LR - / (1.59)°%, (12.07)?
= 1217 m




32 For the vectors in Fig. 3-26, witha = 4,

b = 3,and ¢ = 5, what are (a) the magm-

" tude and (b) the direction of @ X b, (c) the J b
~ magnitude and (d) the direction of @ X ¢,
and (e) the magnitude and (f) the direction .
~ of b X ¢? (The z axis is not shown.) z
a -4
- -a
b=3J
-C = ML, 3]
-
o) @xb
N N
=YL X3
2 IQ’\k
d axé
(4D) x (-9¢ ~33)
~
= -l9k
P Byé
= (30 ) K (-4 -31)
- 12k

35 Two vectors p and ¢ lie in the xy plane. Their magnitudes are ¢

3.50 and 6.30 units, respectively, and their directions are 220° and
75.0°, respectively, as measured counterclockwise from the positive

x axis. What are the values of (a) p X ¢ and (b) - ¢?

i3
P . 3.5 cos 9207 , 3.5 Sia 2204

~ -
= —2.681L .2244

- -
6.3 cos 7S L 4 6.3 sim75)

~l
h

- 16317 4 £.087.

> - ~ -
ay P x9 . (-2680 .2.290) % (1.¢3T , ¢.0%1)

7

=29 3 [
\ \ : 3 p
.2.68 -2324 0 s (o0_6)L - Co-0)7 . (-2365 ,16.23) k
A
.62 468 O = 12.64 k

2 [} a ~
BP9 5 (-2681 . 224) . (1.63] . 6.087)

= -w34? _12.4610

- -17.97.

44  In the product F= qv X B.take q=3,

: =201 +4.0] + 6.0k and F=4.0i —20] + 12k. €128+ 188) T - 4]
What then is B in unit-vector notation if B, = B,? ( 4B, _12B) 3 . j\
F.9V 48 _ 37x8B C 66 - 128) &k 9%
T.oul _20) . 2k G £R = 12
Vel o4) 6% x5 40 12] ¢agk B -2
R T
- 2 A = a
VXB | 6 12 ¢ =4, _ 200 +12k A 1283 _ '€ (-2) -4
B R B, 12 By = ~32 B3 - -2¢




