Introduction to Information Theory and Coding ENEE5304
Lecture Outline Lecture 1

e Explain the course objectives
* List the subjects to be covered
* Provide a general description of a digital communication system

e Model the additive white Gaussian noise and its effect on error rate in
transmission

* Introduce the term: system reliability
* Introduce the term: system sfficiency
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Information Theory ENEE5304

* Course Objective: The aim of this course is to introduce the undergraduate
students to the fundamental concepts in information theory and coding
and to indicate where and how the theory can be applied. Focus will be on
interpretation of results. Try to avoid complex proofs of some theorems.

* Developed and Formulated by C. E. Shannon in 1948

* Fundamental to understanding and characterizing the performance of
communication systems.

* Originally intended to study communication systems, then evolved to
encompass other sorts of applications such as the stock market,
probability, economics, investment, ...

* Gave essential impacts on today’s digital technology

e data compression
* wired/wireless communication/broadcasting
e cryptography, linguistics, bioinformatics, games, ...
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Course Qutline

* Information Theory: Uncertainty, * Error-Control Coding: Block Codes,
Information, Entropy, Discrete Linear Codes, Hamming Codes,
Memory-less Sources, Extension of Generator Matrix, Parity-Check Matrix,
DMS, Markov Sources, Source- Syndrome, Cyclic Redundancy Check.
Coding Theorem, Data Basics of automatic repeat request.

Compression, Prefix-Free Codes,
Kraft Inequality, Huffman Coding,
Lempel-Ziv Coding, Discrete
Memoryless Channels (DMC), The
Binary Symmetric Channel, Mutual
Information, Capacity of the
Discrete Memory-less Channel,
Capacity of the Gaussian Channel,
Channel Coding Theorem,

Information Capacity Theorem.
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* Convolutional Codes: Convolutional
Encoder, General Rate 1/n Constraint
Length-K Code, Tree, Finite-State
Machine , and Trellis Representation of
Convolutional Codes, Maximum
Likelihood Decoding of a Convolutional
Code, Viterbi Decoding Algorithm, Free
Distance of a Convolutional Code.



A Basic Communication System Block Diagram

Transmitter

Analog message Source source channel | channel
(o ' ADC " Encoder |codeword’| Encoder |codeword" Modulator
//' (Digital) (Digital)
//S - {s . {1, 0} {1, 0} s1(t) X(t): Transmitted
ad 17 seer oM s, (t) Waveform (analog)
Information Source and Compression Error control coding Channel : AWGN Noise
Input Transducer C n(t)
Receiver y(t)=x(t) +n(t)
S={s . Received
. Bt Ui ad Waveform (analo
estimated estimated estimated v ( €)
message DAC Source |_ source Channel | _channel Demodulator
m (t) Decoder | codeword | Decoder | ,qeword
(Digital) (Digital)

User (destination) and

output transducer
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What is Information Theory about?

* Information theory answers two fundamental questions:

 Given a source, how much can we compress the data? Is there any limit?
(Entropy H)

 Given a channel, how noisy can the channel be, or how much parity bits
are necessary to minimize error in decoding?

* What iIs the maximum rate of communication? (Channel Capacity C)

* In early days, It was thought that increasing transmission rate over a
channel increases the error rate.

« Shannon showed that this is not necessarily true as long as rate Is
below Channel Capacity.
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Modulation and Error Probability

* Binary digits from the channel encoder are assigned electrical pulses for
transmission over the channel.

* Transmitted pulses are corrupted by AWGN
* Noise will cause transmission error

1-p

Digit 0 ->s,(t) Yo~ 0 Oy, =0

Discrete Input Discrete Output

Digit1->51(t) =10 20 3=
: . n(t) Continuous Output Discrete output
Discrete Input Continuous Input AWGN
input 1 output {1, 0}
{1, 0} Modulator Pt channel o\, b Demodulator
x(t) y(t)
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Communication System: Additive White Gaussian Noise

o Additive White Gaussian Noise is a basic noise model used in communication
systems to mimic the effect of many random processes that occur in nature.

* This noise comes from many natural noise sources, such as the thermal
vibrations of atoms in conductors (referred to as thermal noise), shot
noise, black-body radiation from the earth and other warm objects, and from
celestial sources such as the Sun.

* The central limit theorem of probability theory indicates that the summation
of many random processes will tend to have distribution called Gaussian or

Normal. Digit 1 -> s () J x(t): Transmitted
» Transmitted signal: x(¢); Digit 0> 5,(8) —— "1t e
» Channel Output: y(t) = x(t) + n(t); "
+ The pdf of n(t) follows the Gaussian distribution ‘ s
* The power spectral density Is a constant over a

1 Demodulator

wide range of the frequency spectrum
STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh




Communication System: Optimum Binary Receiver Performance

* In a digital data transmission, the receiver has to decide which symbol was
transmitted such that the probability of making errors in minimized. The
receiver which satisfies this criterion is called an optimum receiver.

[T (s1(D-s2(0)"dt

« Bit Error Probability (in the binary case): p = Q

2N
V 0
* 7: binary symbol duration
* No: AWGN power
_ 1-p , ,
Digit 0 -> s,(t) Yo~ 0 - > Oy, =0

Discrete Input Discrete Output

O N =1
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Digit1-> s, (t) x.=1 0O
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Bit-error probability and data rate

Motivating Example: Binary PSK
"5,(t) = Acos(2rtfyt); 0<t<rt; T =kT,; Representing digit 1
"s5,(t) = —Acos(2mfyt);; 0 <t < 7; Representing digit 0

_ fot(sl(t)—sz(t))zdt _ A2\ A2
e [Bora) o ) of )

* How to minimize the error probability?
* Increase the signal power (by increasing A); quite obvious
= Reduce the data rate R,

"asR, T, xof Q(x) | and, therefore, P, T.
= Q(.) is the complementary Gaussian distribution function.

= X
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Bit-error and block error probabilities

AZ
1-bit p=4Q - 0 as R, — 0,or power (A) - ©
RpNg
N
Block error
t T T T probability of

| Channel with | error - Ofora
capacity C finite data date

R}, and a finite
Block of k bits power

bit bit bit bit — Encoding Scheme

Remark: Information theory promises that the probability of error can
be made arbitrarily small (for a finite rate and a finite power) as long

as the transmission rate iIs below a Channel Capacity.
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Efficiency and Reliability of a Digital Communication System

Lecture 2

Lecture Outline

* Distinguish between bit error and block error probabilities in a digital
communication system

* Define the efficiency of a digital communication system
* Explain the difference between fixed and variable length codes
* Define the reliability of a digital communication system
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Modulation and Error Probability

* In a digital data transmission, the receiver has to decide which symbol was transmitted such
that the probability of making errors in minimized. The receiver which satisfies this criterion
is called an optimum receiver.

[T (s1(O)-s2(D)dt

 Bit Error Probability (in the binary case): p = Q \/

2N
T T T
Digit 0 -> s5(t) x =0 1-p .07, =0
Discrete Input Discrete Output
Digit 1-> S1 (t) x, =1 O >O v =1
AWGN | n(t)
Channel Encoder —|  Modulator nput =| channel ==-’é= output "' Demodulator
X(t) —
y(t) (10}
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Bit-error probability and data rate

Motivating Example: Binary PSK
" 5,(t) = Acos(2rfyt); 0 <t <Tt; T =kT, Representingdigit1
" 5,(t) = —Acos(2mfyt);; 0 < t < 1; Representing digit 0

_ fot(sl(t)—sz(t))zdt _ A2\ A2
o [Bara) o ) of )

* How to minimize the error probability?
* Increase the signal power (by increasing A); quite obvious
= Reduce the data rate R,

"asR, T, xof Q(x) | and, therefore, P, T.
= Q(.) is the complementary Gaussian distribution function.

= X
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Bit-error and block error probabilities

AZ
1-bit p=4Q - 0 as R, — 0,or power (A) - ©
RpNg
N
Block error
t T T T probability of

| Channel with | error - Ofora
capacity C finite data date

R}, and a finite
Block of k bits power

bit bit bit bit — Encoding Scheme

Remark: Information theory promises that the probability of error can be made
arbitrarily small (for a finite rate and a finite power) as long as the transmission

rate is below a Channel Capacity.
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Problem One: Reliability

* transmitted information # received information

ABCADC
@'ABCABC Noisy - @
\'J \@

21N

Channel

. Errors of this kind are in real communication.
In the usual conversation, we sometimes overcome these errors by
- Repeating the sentences
- Using phonetic codes.

ABC == Apple, Banana, Charlie =
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Phonetic Code

Apple

the real redundant information
information for correcting possible errors

* A phonetic code adds redundant characters (parity characters)
* The redundant part helps correcting possible errors.
—> Use this mechanism over 0-1 data, and we can detect and correct errors?
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Redundancy to Improve Reliability
Q. Can we add “redundant bits” to binary data?

A. Yes. One possibility is to use parity bits.

A parity bit is: a binary digit, which is added to make the number of 1’s in the data
message even.

e 00101 - 001010 (two 1’s - two 1’s)
* 11010 - 110101 (three 1’s - four 1’s)

One parity bit may tell you that there are odd numbers of errors. But not more than that,
i..e., Error Detection (odd number of bits)

Example: Receive 001010 (even number of bits) = accept (received = transmitted)
Example: Receive 001011 (odd number of bits) = Reject (one bit in error)
Example: Receive 001001 (even number of bits) = accept even though 2 bits in error

Note: Error detection is employed in the data link layer of computer networks. There,
Cyclic Redundancy Check (CRC) error detection codes are used. We shall consider that
faterinthe gourse Uploaded By: Mohammad Awawdeh



Problem Two: Efficiency

* Given a source S. Source encoder assigns binary digits for each source
symbol such that

* the average number of digits/symbol is minimum (efficient representation)
* the code is uniquely decodable

{51; ooy SM} Source Encoder {C1; ceey CM}

Source alphabet
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Problem Two: Efficiency

Example: We need to record the weather of a given city every day.
 Weather = {sunny, cloudy, rainy}; three possible states.
* We can use only “0” and “1”, cannot use blank spaces.
* The source alphabet M=3.

weather | codeword m 2-bit record everyday (equal length
sunny 00 code) ; m = [log(3)]; => m=2
cloudy 01 s M=3 symbols need 2 binary digits
rainy 10 m (100 days, need 200 bits)
A 35\'f4{ /\Q\ AN L The source consists of 3 messages each one is mapped
T ‘/Q\' < } ' i,,,.\&; into a sequence of binary digits (source codewords)

0100011000 Creerrrnreneens Can we shorten the representation?
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A Better Code: Variable Length Code

weather | code A| codeB R\ e R I e
sunny 00 |00 (2 digits) == ”Q\ === ? "Q‘
cloudy 01 |01 (2 digits)
rainy 10 |1 (1digit) code A...0100011000

code B...010001100

Code B gives a shorter than Code A.

* Can we decode Code B correctly?
* Yes, as far as the sequence is processed from the beginning.

* Is there a code which is more compact than code B?
e Let us try that (= next slide).
* The probability distribution of the source need to be known
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Mean and Variance of a Random Variable

Definition: The mean value or expected value or average value of a random variable X is_

defined as: ,
— . L The mean is analogous to
ty =E{X}= Z x; P(X=x;) if X is discrete the center of mass of a
- weight distribution
u, =E{X}= I X Iy (X)dx if X is continuous
N P(X=x)
fx(x) 04
0.3
0.5 Probability Mass Function
fx(x)Ax 0.2
0.1
1 ¥ X 1 X > X
0 1 2 3
Mean 4L
E(X) = (0)(0.4)+(1)(0.3)+(2)(0.2)+(3)(0.1) =1 Mean Point of equilibrium
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Mean and Variance of a Random Variable

Definition: The variance of a random variable X is defined as: The variance is
[ analogous to the

Gi; — E{(X =L, )2 } — Z (X =L, )2 P(X: X, ) gX is discrete centralized moment

of inertia

6 =E{(X-un,)’}= J.(}: -u, ) fy(x)dx  if X is continuous

Oy =+/0% is the standard deviation
The variance is the measure of the spread of the distribution.
os JJx() i (20 P(X=x)  Mean(X) =1
. 2 0.4 Var(X) =1
- Probability Mass Function
fx(x)Ax
0.2
0.1
-2 4 x 2 05 & *os | . x

0 1 2 3 -
Mean

Mean
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Average Length of Codes

Sometimes, events are not equally likely...
-> Probability comes into play

weather | probability| code A | code B | code C
sunny 0.5 00 00 1
cloudy 0.3 01 01 01

rainy 0.2 10 1 00

m For Code A: 2.0 bit / event (always), (fixed length coding)
m Codes B and C are variable length source encoders.
m For Code B, (without a calculated knowledge)
2x0.5 + 2x0.3 + 1x0.2 = 1.8 bit / event (on the average)
m For Code C, (educator’s guess: Symbol probabilities exploited)

1x0.5 + 2x0.3 + 2x0.2 = 1.5 bit / event (on the average)
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The Best Code

Question: Can we represent information with 1.1 binary digit/ per event
(on the average)?

Answer: NO, To be investigated later in the course...
* It is likely that
* Shannon investigated the limit mathematically.

-> For this event set, we need 1.485 per event.
A
weather | probability
sunny 0.5 This is also the average amount of
cloudy 0.3 information provided by the source.
rainy 0.2

How do we arrive at the 1.4857

LATER
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Discrete Memory-less Information Sources
Lecture Outline

Lecture 3

 Two models are used describe discrete-time information sources
e Discrete memory-less sources (DMS)
* Markov sources; used to model sources with memory

e Markov sources are treated in the next lecture

* This lecture addresses DMS; two relevant concepts are introduced
e Statistical Independence
e Stationarity
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Modeling Discrete Time Digital Information Sources

Two models are used to describe discrete information sources:
e Discrete memory-less sources (DMS)
e Markov information sources

Xy X, Xi

Discrete-time source { T NC a3
a,..,Jd a,..Jd 17 =*» YUy
S={ay, ..., ay} v time

Assumptions on the source model:

* Discrete: the set of possible symbols S is finite and countable. The number of
elements in S is the size of the alphabet |S|=M

* The source generates one symbol from the set § ={a,, ..., a,,} each time unit.
Hence the name M-ary discrete-time information source.

Remark: A continuous-time and/or analogue information sources can be converted
into discrete source through sampling & quantization, as we have explained earlier.
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A Basic Communication System Block Diagram: Revisited

Transmitter

Analog message source channel
ADC | Source | Channel »  Modulator
Encoder |codeword | Encoder |codeword
(Digital) (Digital)
S={s 5.} {1, 0} {1, 0} s1(1) X(t): Transmitted
PrTm s, (1) Waveform (analog)
Information Source and . :
Input Transducer Compression Error control coding Cha(r:mel « AWG::tTO'SQ
Receiver y(t)=x(t) +n(t)
S={s 5.} Received
i - e M Waveform (analo
estimated estimated estimated v ( g)
message
: DAC K Source |_ source Chan(r;el channel Demodulator
m(t) Decoder | codeword | Decoder | . qeword
(Digital) (Digital)
{1, 0} {1, 0}

User (destination) and

output transducer
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The Source Encoder

S={sy, ..., S}

Source source
ADC > >
1 Encoder codeword
Analog message (Digital)
{1, 0}

Analog Source
(continuous in time,
continuous in amplitude)

Digital Source
Key-board output
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Quantization: the two-bit quantizer

* Example: The signal x(t) = cos(2mt) is sampled uniformly at a rate of 20 samples per
second. The samples are applied to a four-level uniform quantizer with input-output
characteristic

(075, 05<x<1 N _ _
025 0<X<05 x1=_0.75 x2=—0.25 x3=0-25 X4=0.75
*YUID =3 025, —05<x<0 ] . —
—0.75, =1 <x < =05 -1 -0.5 0.5
x(t) x(KkTy) y(kT) = {X1,X3, X3, X4}
Analog Source |———| Sampler *| Quantizer [—
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Quantization: the two-bit quantizer

X(®) = cos(2mt) Wy ——
% - \ - 5 1 1 ’ 3 - - \ Sampled Signal
=0 ozl [[[TTTTT 075 1
B 04 e e e g S """""""" """""""" """ T
22 ______________ L1y . — _______________ _______________ ______ ]

TS:O.OS 1

y(kT,) = {~0.75,-0.25,-0.25,0.75 } Quantized Signal

Sample Value
2 B o
I
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Discrete Time Digital Information Sources

The concept of statistical independence:

X, X, X,
Discrete-time source | | | ‘
S - {all (XYY aM} {al’ YYY) aM} | {al’ coey aM}l {al' e aM}l time

Two events A and B are said to be statistically independent when:
« PANB) = P(A)P(B)
* The conditional probability of A given B is given as:

P(ANB
+ P(A|B) = I(J(B))

* For independent events,

. . P(ANB) . P(A)P(B) .
P(A|B) = ZL28) = D) — p(a)

 P(A|B) = P(A); whether B is given or not, the probability of A remains the same.
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Discrete Time Digital Information Sources

We apply the concept of statistical independence to the first model of discrete

memory-less sources

Discrete-time source
S - {al’ LELY aM}

X

X;

X,

{a, ..., a,}

{a, ..., ay}

{al, YY) GM} time

* P(X, = x,|X1 = x1) = P(X, = x5); independent source

* Also,

* P(X; = x3 N X1 = x1) = P(X = x2)P(X1 = x1)
* And, in general, for an independent source we have:
¢ P(Xt =xtﬂ ﬂXZ = X2 nX1 =x1) = P(Xt :xt) P(XZ =x2)P(X1 =x1)
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Discrete Time Digital Information Sources

e Assume a discrete-time digital information source X:
* X={ay, ..., a,}... the set of symbols of X (alphabet of X)
(X is said to be an M-ary information source.)
* X,: the symbol which X produces at time t. Can assume any of M values
* The sequence X, ..., X, is called a message produced by X (Here, the
message consists of n symbols).
Example: Tossing a six-faced fair die 9 times independently
X, X, X,

S SN HARIR | | |

| M | =6 {a1r YY) aM} l {ali ceey GM}l {al’ . aM}l time

Let the message be  [H(JEILIEICIILI0 , then

X2=E] X8=E]
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Discrete Memoryless Sources (DMS)

* A discrete memoryless and stationary information source satisfies the independence
(memory-less) condition:

* Memoryless condition: P(X; = x;|X;_1 = X¢_1, ... X2 = X2, X1 = x1) = P(X; = x¢)
* Memoryless condition: “A symbol is chosen independently from past symbols.”
 Stationary condition: The probability mass function is independent of time

* For example, P(X, =a4) = P(X{ = a,), forany time t, and so on

Stationarity: The probability distribution is time-invariant.”

X1 XZ Xt
Discrete-time source | | |
I >

5= {ali sy aM} {ay, ..., ay} | {ay, ..., ay} I {a,, ..., ay} time
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Discrete Memoryless Sources (DMS): Example

* Example: Consider a discrete memory-less source S which emits one of three
possible symbols {a, b, ¢} every time unit with the following probabilities:

* P(a) =0.5, P(b)=0.3, P(c)=0.2

* The probability mass function of the source is shown below.

* For a stationary source, this represents the pmf of X4, X5, ..., X;

* P(X, =b)=0.3,P(X; =b) =0.3,P(X;o=b) =03

*P(X, =bNXg=a)=PX, =b)P(Xg =a) =(0.3)(0.5) =0.15

P(X, = x;)
0.5
4 0.3
X1 XZ Xt O 2
Discrete-time source I '
S - {a, b, C} {a, b, C} {a, b, C} {a; b; C} T
time a b C
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Sources with Memory

* A memoryless and stationary information source satisfies the independence condition:
* Memoryless condition: P(X; = x;|X;_1 = X¢_1, ... X2 = X2, X1 = x1) = P(X; = x¢)
* For a source with memory, past states affect the occurrence of future symbols, i.e.,

* P(X; = x¢|Xp—1 = X1, .. X2 = X2, X1 = x1) # P(X; = %)

* This implies that the probability mass function is time-dependent.

* For example, P(X; =aq1) # PX;-1 = aq) # P(X{ = aq)

The probability distribution is time-dependent

X, X, X,
Discrete-time source | | |

5= {ali sy aM} {ay, ..., ay} | {ay, ..., ay} l {a,, ..., ay} | timé
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Sources with Memory

* Sources with memory: The probability distribution is time-dependent

S t of Xl & :
I hanb]e = BMS Discrete-time source | | |
alphabet as S={a, b, c} fa,b,ct ' fabct ' fabc yme
P(Xl = xl) P(Xz = xZ) P(XIO = xlO)
0.7 0.6
0.5
t t 0.3
0.25 0.29
0.05 0.11 0.2
I t I t I 1
3 b C a b C d b c
t= 1 t= 2 t= 10
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Sources with Memory

»Example From English Language:
In a given short story, one can find the following probabilities:
»P(0) =0.063, P(f) = 0.021, P(of) =0.035493; P(x)= N/N
»Assuming independence: P(of) = P(o)P(f) = (0.063)(0.021) =0.001323
» Note that P(of) >> P(o)P(f)

» Similar examples from the English language (sources with memory)
* English text: Py, x, . (ulq) > Py, x,_, (ulu)

Quality, Prerequisite
Continuum
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Markov Sources
Lecture Outline TRy

* Two models describe discrete-time information sources:
* Discrete memory-less sources (DMS); addressed in the previous lecture
* Markov sources; used to model sources with memory

* Markov sources are the subject of this lecture. The lecture covers
* The state diagram and the state equations of a simple Markov source.
* Transient analysis of the Markov source
e Steady-state solution of the stationary Markov source
* Regular Markov sources
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Modeling Discrete Time Digital Information Sources

Assumptions on the source model:

* Discrete: the set of possible symbols S is finite and countable. The number of
elements in S is the size of the alphabet |S|=M

* The source generates one symbol from the set § ={a,, ..., a,,} each time unit.
Hence the name M-ary discrete-time information source.

Xl XZ Xt
Discrete-time source | | |
S={ay, ..., ay} {ay @y} | {ay, ..y ay} {01 -ons a,v,}l't.
ime
S| =M

2
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Sources with Memory
A memoryless and stationary information source satisfies the independence condition:

Memoryless condition: P(X; = x;|X;_1 = xX4_1, .... X = x93, X1 = x1) = P(X; = x;)

For a DMS source, the probability distribution is time-independent

The random variables X4, X5, ..., X;_1 ,X; are independent

For a source with memory, past states affect the occurrence of future symbols, i.e.,
P(X; = x¢|Xi 1 = X¢-1, .. X2 = X2, X1 = %) # P(X; = %)

* This implies that the probability mass function is time-dependent.

* Forexample, P(X; =aq) # P(X;_1{ = a4) + P(X{ = aq)

P(X; = x;) 0df of a DMS
0.5
Discrete-time source 1 2 t | R 0.3
s={a,b,c | I :
{ ’_ , Cf {a, b, c} ! {a, b, c} | {a, b, c} ' 0.2
ISI =3 time T

STGDENTS-HUB.com Uploaded E‘?ﬂ/: I\/Ioharpmad Awlawdeh



Sources with Memory

e Sources with memory:
* The probability distribution is time-dependent
* The random variables X1, X5, ..., X;_1,X; are dependent

s t of & & :
I hanb]e = SMS Discrete-time source | | |
alphabet as S={a, b, c} fa,b,ct ' {abct | fabctl yme
P(X{=x
e PX2=72) 06 Fia = )
0.5
t t 0.3
0.25 0.29 t
0.05 0.11 0.2
I t I t I 1
3 b C a b C d b ¢
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Sources with Memory

»Example From English Language:
In a given short story, one can find the following probabilities:
»P(0) =0.063, P(f) = 0.021, P(of) =0.035493; P(x)= N/N
»Assuming independence: P(of) = P(o)P(f) = (0.063)(0.021) =0.001323
» Note that P(of) >> P(o)P(f);
»Languages are structured and letters are not randomly chosen in words

» Similar examples from the English language (sources with memory)
* English text: Py, |x, . (ulq) > Py, x,_, (ulu)

Quality, Prerequisite
Continuum
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Sources with Memory: Markov Information Sources
e Used to model information sources with memory.

* For an m-th order Markov source, the occurrence of the current symbol at
time t depends on the past m symbols at t-1, t-2, ..., t-m

* In a simple Markov source, the occurrence of the current symbol at time t
depends only on the previous symbol at time t-1

* Simple Markov Source to be discussed in this lecture,
*P(X; = x¢|X¢1 = X1, ... Xp = %2, X1 = X1) = P(X; = x| X1 = X¢_1)

X X, X1 X,
Markov Source | | | |

| : '
S - {al’ XYY aM} {a].’ b 4 aM} I {al’ 4 aM}l {all eee) aM} {all 0oy aM} time
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Example: Generation of a Simple Markov Source

The figure below shows how to generate a Markov source X;. Let S be a
discrete memoryless and stationary source with P(0) = 0.2, P(1) = 0.8

DMS with
X; = X
ooy c0s LS P - X = SOXey

P(1) = 0.8

Xe-1 R |« Xt 1 S X;

1-bit register 0 0 0

m The table shows the relationship between X;, X;_; and S. 0 1 1
a P(X, =1)=P(X, , =0 NS=1) + P(X, , =1 NS$=0) 1 0 1
s From probability theory, we know that 1 1 0

s P(ANB) = P(A)P(B|A);
a P(X, =1) = P(X,, =0) P(S=1/X,_, =0) + P(X,_, =1) P(S=0/X,_, =1)
m But S is an independent source, hence

ST!JBQI(FI;SMIﬁé)c(gth =O) (0'8) t P(Xt-l =1) (0'2) Uploaded By: Mohammad Awawdeh



Example: Generation of a Simple Markov Source

The figure below shows how to generate a Markov source X;. Let S be a
discrete memoryless and stationary source with P(0) = 0.2, P(1) = 0.8

DMS with w
P(0) = 0.2

P(1) = 0.8

Xi 1

m Similarly, we have

a P(X, =0) = P(X, , =0 NS=0) + P(X, , =1 NS=1)

m P(X, =0) = P(X, , =0) P(5=0/X,_, =0) + P(X, , =1) P(S=1/X,_, =1)
m But S is an independent source, hence

s P(X, =0)=P(X,_, =0) (0.2) + P(X,_, =1) (0.8)

m Also, P(X,=0)=1-P(X,=1)

STUDENTS-HUB.com

R

<

1-bit register

> Xy = 50X
X¢-1 S X¢
0 0 0
0 1 1
1 0 1
1 1 0
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The Simple Markov Source

DMS with
P(0) = 0.2 » X; = SOX; 4
P(1)=0.8

Xi 1 R |«

1-bit register

4 N

Basic State Equations

P(X, =1)=P(X,_, =0) (0.8)+ P(X,., =1) (0.2)

P(X, =0)=P(X,, =0)( 0.2)+ P(X,_, =1) (0.8)
" %

Distribution at time t depends on the distribution at time t-1
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State Representation of the Simple Markov Source

* In the previous slides, we have seen that X;, S, and X;_{ € {0, 1}.
The state equations are
P(X, =1)=P(X,, =0) (0.8)+ P(X,, =1) (0.2)
P(X, =0)=P(X, ; =0)( 0.2)+ P(X,_, =1) (0.8)

* These equations can be represented in a state-diagram called the finite-state machine
model.

* The arrows represent the transition probabilities from a given state to another state.

Finite State Machine Model

DMS with Xe = 50OX¢—1 0.2 0.8

P(0) fo.z @ CE >
P(1) =0.8 - @ Q

1-bit register 0.8 0.2
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Transient Analysis of the Simple Markov Source

* The state equations are t P(X;=1) P(X; =0)
* P(X,=1)=P(X,, =0) (0.8)+ P(X,; =1) (0.2) 0 0 1
* P(X,=0)=P(X,,=0)(0.2)+ P(X,,=1) (0.8) 1 0.8 0.2
e Suppose that at t=0, system starts from state zero, 5 0.32 0.68
* j.e,,P(X,,=0)=1,sothat P(X,,=1)=0.
e, P(X,;=0) =1, sothat P(X,, = 1) 3 0.608 0.392
* With these initial conditions, we get
4 0.4352 0.5648
* P(X,=1) =P(X,,=0) (0.8)+ P(X, ; =1) (0.2)
* P(X, =0) = P(X,, =0)( 0.2)+ P(X,, =1) (0.8) 6 0.476672  0.523328
= (1)(0.2) + (0)(0.8) = 0.2. 7 0.5139968  0.4860032
* These values serve as initial conditions for the next time 8 0.49160192 0.50839808
instance t = 2. The probabilities as a function of time are 0c 0c
00 - .
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Steady-State Solution of the Simple Markov Source

* The state equations are
* P(X, =1)=P(X,, =0) (0.8)+ P(X,, = 1) (0.2)
* P(X, =0)=P(X,, =0)( 0.2)+ P(X, , =1) (0.8)
* At steady-state, we have P(X, =1) = P(X, ; =1) = a ; time-independent
* P(X;=0) =P(X,;=0) =B ;
 Therefore,
* P(X,=1)=P(X,, =0) (0.8)+ P(X,, =1) (0.2)
o =B (0.8) + a (0.2)
0.8a=(0.8)pB
* Hence, a= B =0.5
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Example: a three-state simple Markov source

Consider the stationary Markov source with three states of order 1 and transition
probabilities as shown in the figure.

* Write down the state equations.

* Write down the steady-state state equations.

* Find the steady-state probabilities of the three states

0.9
Plala) =0.9 P(bla) =0.05 Plcla)=0.05 0.1 0.05
Plalb) =0.1 P(blb) =08 P(clb)=0.1
Plalc) =03 P(blc) =0 Plcle) = 0.7 0.05 0.3
———— I
0.1
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Theorem of Total Probability

* In this example, we make use of the theorem of total probability.

*letA, A, ..., A be aset of events defined over S such that:
*S=A;UAU.UA ; AnA=0 fori#j, andP(Ai)>0 fori=1,2,3,..n
* For any event (B) defined on S,

P(B) = P(A)P(B/Ap) + P(AQ)P(B/A7) At B | A

+ P(A3)P(B/A3) i&i@gﬁ;ﬁ >

B
\\\% \\},ﬁ \&é‘g L ’xl
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Example: a three-state simple Markov source

For the source shown on the previous slide, we can write the following

state equations.
0.9

m P(X, =a)=P(X, ; =a) P(X, =a/X, ; =a) + P(X, , =b) P(X. =a/X, , =b)

+ P(X,_; =c) P(X, =a/X,_, =c) @
n P(Xt =b)=P(Xt_1 =a) P(Xt =b/Xt-1 =a) + P(Xt-l =b) P(Xt =b/Xt_1 =b) 0.1 0.05
+ P(X, ; =¢) P(X, =b/X, =)

m P(X, =c)=P(X, , =a) P(X, =c/X, , =a) + P(X,_; =b) P(X, =c/X,_, =b)
+ P(X,_; =c) P(X, =c/X,_; =c) 0.8 | 07

m Substituting the transition probabilities into the state equations above, we get

m P(X, =a)=P(X,; =a) (0.9) + P(X,_, =b) (0.1) + P(X,_, =c) (0.3)

m P(X, =b)=P(X,_, =a) (0.05) + P(X, , =b) (0.8) + P(X,_, =c) (0)

m P(X, =c)=P(X,_, =a) (0.05) + P(X,_, =b) (0.1) + P(X, , =c) (0.7)
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Example: a three-state simple Markov source

Steady-state solution
m Note that the probabilities at time t are dependent on the probabilities at time (t-1).
m In the steady-state case, we have
m P(X._,=a)=P(X,=a)=P(a) ; P(X,,=b)=P(X,=b)=P(b); P(X,,=c)=P(X,=c)=P(c)

m The state equations now become 09

= P(a)=P(a) (0.9) + P(b) (0.1) + P(c) (0.3) #El

= P(b)=P(a) (0.05) + P(b) (0.8) + P(c) (0)
m P(c)=P(a) (0.05) + P(b) (0.1) + P(c) (0.7)

P(b) P(c)

m Solving the above equations, we get 0.8 0.7
m P(a)=4/6; P(b)=1/6; P(c)=1/6 (the following steady-state probabilities
STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh



Two Important Properties of Markov Sources

Irreducible Markov Source
* Any state is accessible from any other state in a finite number of steps

this example is NOT irreducible :
If we start at B, we cannot reach either A or C

aperiodic Markov source: Source does not have a ‘
periodic behavior

°.° irreducible + aperiodic = regular
\

(also known as ergodic).

)

Periodic Source
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Ergodic (Regular) Markov Process

Definition: A finite-state Markov chain is ergodic (regular) if all
states are accessible from all other states and if all states are
aperiodic, i.e., have period 1.

/An important fact about ergodic Markov chains is A

that the chain has steady-state probabilities p(s) for

KaII states. y
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Measure of Information T
Lecture Outline

« Consider a discrete-time finite-alphabet source S of size M with a given
probability distribution over its symbols.

* In this lecture, we will try to answer the following questions:
 How do we measure the information produced by the source S?
« What is the amount of information contained in each symbol?
« What is the average amount of information per symbol in S?
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The Source Entropy

« Main Theme: Consider a discrete-time finite-alphabet source S of size M

X1 Xz Xt
Discrete-time source | | |
S = {51’ 0oy SM} {s]_I ey SM} l {51; TYY) SM} l {51; YYY) SM} l timer

with a probability distribution over its symbols given by
M
P(s=S,) = P,,M=12.,M and » p, =1
m=1

Symbol sl sz SM

Probability P4 p, P
Question to be answered In this lecture:

 How do we measure the amount of information produced by the source?
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Uncertainty, Information, and Entropy

° Question: What does the word “information” mean?
* There is no exact definition !!!

* Information in a message is meaningful only if the recipient is able to interpret
it (For example, A chemist may a explain complex chain of reactions to kinder-
garden students or he may present the same work to a group of specialists).

* Information is also about something which adds to your knowledge
* Motivation for defining information: Consider the following three sentences

1) The sun will rise tomorrow from the east. (certain event; none of us will be
surprised )

2) The average grade in this class will be 85 and no one will fail the course (it is
unlikely; some of you will be surprised)

3) No attendance is required in this course, no exams will be given, and all
students will receive A (almost improbable event; all of you will be surprised).
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Information and Uncertainty
* Information in a message is a measure of surprise or unpredictability

* sentence 1 has low information content (high predictability)
e sentence 2 has higher information content (less predictable)
* sentence 3 has even higher information content (it is an unlikely event).

* Information content of an event is related to the uncertainty of that event
* Uncertainty is defined as the inverse of probability

* The less expected the event is (smaller probability), the more information it
contains.

* Shannon’s answer is: The information content of a message is simply the number
of 1s and Os needed to represent it.

* Hence, the elementary unit of information is a binary unit: a bit

* One of the basic postulates of information theory is that information can be
treated like a measurable physical quantity ( such as density or length) with
sTunbitsdmbEsom Uploaded By: Mohammad Awawdeh



Uncertainty, Information, and Entropy

Two conditions on the information measure

 First Condition: The self information of event A may be related to the
inverse of P(A)

No Suprize = No Information .

Probability of (A)

« Second Condition: If Ais a surprise event and B is another
Independent surprise event, then the total information of a
simultaneous event A and B Is:

Information in Event (A) «

Informationin (AN B) = Information in (A) + Information in (B)

* The logarithmic function satisfies the above two conditions
I(s,;,) = log, (pi); bits Self Information of Symbol s_
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Properties of Information

I(s,,,) = log, (pi); Information in each symbol (units in bits)
1.1(s,)) = Oforp_=1 S R
2.1(s ) 20 for 0<p_ <1

m Information Log,(1/p,) Log,(1/p,) .. Log,(1/p,\,)

3.1(s) > I(s) for p, <p
4.1(s, ns)=1(s, )+ 1(s;),if s, and s statist. indep.
=log (1/P(s, ns;)) =log (1/P(s,))+log (1/P(s;))

Sm

Probability P, p, Pm

Log(ab) = Log(a) + Log(b)

1: A certain event (p = 1) contains no information (log(1) = 0)
2. Information is nonnegative (since 0 < x < 1), then Is1 > log (1) > 0)

X X
3. The smaller the prob. of an event is, the more information it carries
3. Info in the intersection of two independent events = sum of information
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The Average Information per Source Symbol
Source Entropy

* The average information per source symbol, is the expected value of the
random variable /.

M M
E()=)p 1, =D plog,(t/p) bits/symbol ™ s m e
=1 =1 Probability P, P, P

M
E(I)=H(S)= Z o |og2(]_ / pl) Source Entropy Information Log(1/p)) Log,(1/p,) ..  Logy(1/py)
=1

* This is known as: Entropy of Source S E(I) = Zpili =2pilog2(1/pi)
* If all symbols are equally probable p, = 1/M . :_lepilogz(pi)
M
1
H(X) =Zmlog2 M =log, M
=1
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Examples of Entropy Computation
(7
2
e Toss a Coin, S={H, T}, P(H) =P(T) =0.5 %
H(S) =-0.5log,(0.5)—0.5log, (0.5) =1 bit/symbol

* Rolling a fair die, S={1, 2, 3, 4, 5, 6}, P(si) =1/6

%%

Oa/
Qeﬁ/

H(S) = —6[% log, (%)] _ 2585 bit/symbol A

* A biased die, P(1) = 0.9, P(s) =0.02, s=(2, 3, 4, 5, 6) M
. H(S) = —Epilogz(pi)
H(S)=-0.9log, 0.9-5[0.02log, 0.02] =0.701 bit/symbol i=1

* Note that the entropy of the fair die is higher than that of the biased die. Why?
* The fair die has higher uncertainty than the biased one; hence higher entropy
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Average Information Content in English Language

Example 1: Calculate the average information in bits/character in English
assuming each letter is equally likely

M M
H(S) = 2 pilog,(1/p;) = —2 pilog,(p;)
i=1 i=1

H = L, !
- 26 2\ 26

i=1
= 4.7 bits/c har
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Average Information Content in English Language

Example 2: Calculate the average information in bits/character in English.

Since characters do not appear with the same frequency, we may use the
following approximate probabilities

P=0.10fora,e, o, t M M
P=0.07forhinrs H(S) = ) piloga(1/p) = = ) piogz()
£P=0.02 forc,d ,f,I,m,p,u,y = =
P=0.01forb,g,jk,a,v,w,X,z

4 x 0.1log,(0.1) + 5 x 0.07log,(0.07)

|48 x 0.02log,(0.02) + 9 x 0.01log,(0.01)

= 4.17 bits|character
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The Source Entropy
Lecture Outline

Lecture 6

 Define the source entropy
 Study the entropy of the binary source
* Prove that: 0 < H(S) < log,M
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The Source Entropy

« Main Theme: Consider a discrete-time finite-alphabet source S of size M
X1 XZ Xt
Discrete-time source
S - {51’ YY) SM} {s]_I seey SM} {51; seey SM} {51’ cee SM} t|me
with a probability distribution over its symbols given by

M
P(s=S,) = P,,M=12.,M and » p, =1
m=1

» The information content of each symbol is

1 . Symbol eee
« I(s,,) = log, (—), bits 51 52 S
Pm Probability P, p, Pwm
Information Log,(1/p,) Log,(1/p,) .. Log,(1/p,,)
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The Average Information per Source Symbol
Source Entropy

* The average information per source symbol, is the expected value of the
random variable /.

M M
E(l) =Z Pil; =Z p. log,(d/ p;) bits/symbol
=1 =1

Symbol S, S, Sm

Probability p, p, Pwm

M
E(I) — H (S) — Z pi |0g2(1/ pl) Source EntrOpy Infornl‘ation Log,(1/p;) Log,(1/p,) ... Log,(1/py)
i1=1

* This is known as: Entropy of Source S Entropy is interpreted as:

* If all symbols are equally probable p.=1/M + Measure of information in the

v source
H(X)= Z_ Iog2 M = Iog2 V]  Measure of uncertainty in the
1 source
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Entropy of the Random Binary Source

* Consider a random binary source S with probability assignment over its
symbols as: P(S=1) = p, P(S=0)= 1-p. The entropy of the source is:

* H(p) = —plog,p — (1 —p)log,(1 — p) bits/symbol
* The binary entropy as a function of p is plotted below

* Note: lim,_,o(p)log(p) = lim,_,; (p)log(p) = 0; VERIFY

1.0

H(p) m H(p) =0atp=0andat p=1(one event is certain)

m H(p) is maximum ( =1) when p =% (symbols are
equally probable, and hence uncertainty is

maximum
X1 XZ Xt

Discrete-time source
s ={1, 0} {1,0} {1, 0} {1, 0} time
inary entropy function)
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Properties of the Entropy Function
Lemma: For an M-ary information source S,
0 < H(S) < log,M
* min H(S) = 0 (one symbol occurs with prob. 1, the others with 0)

* max H(S) = log,M (when all symbols are equally likely, i.e., when P(s; = %)

* Proof : min H(S) =
* When one probability = 1 and the rest are zeros, we can make use of the
limits: limpﬁo(p)log(p) = limpﬁl(p)log(p) =0

H(S) = z pilog, (1/p:) = Z pilog, ()
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Properties of the Entropy Function
* Here, we show that entropy is maximum when source probabilities are equal (p, = 1/M )

We prove that in two steps:

Define the relative entropy D(X, Y) between two distributions X and Y as

M P(X = x)
* D(X,Y) =Z. pjlog(p—]:) P

J=1 Y t P,
* First Step, we show that D(X,Y) > 0 Pm
* Xis a random variable with distribution p; (the given pmf) ] 1
* Y is a reference random variable with distribution q; PY=y) X X, Xm
* Rewrite D(X,Y) as: as

* D(X,Y) = Zjilpj log (2—;) = —Zilpj log (Z—j_) q]l ? Awm
T

« —D(X,Y) = ZM p-log(ﬂ)
’ j=1 J pbj Y1 Y2 Ym
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Properties of the Entropy Function
Since log(x) < (x - 1) we have:

M M y y=x-1
q;j q;j )
—D(X,Y) = Jog| — | < 1——1 =In(x)
1) zp’ g<m> pr(pj 3,
=1 =1
M M 0 — .
<> aj- ) p=D-1)=0
j=1 j=1 1
yd
c—D(X,Y) <0

* Therefore D(X,Y) > 0
* Equality (i.e., D(X,Y) = 0) when ¢; = p,.

* This is the first step in the proof
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Properties of the Entropy Function

* Second step: Now let Y be a uniform distribution , then q; = 1/M since j
ranges from 1 to M.

P(X = x)

D(X,Y) —Ep] 10g< ) ZPJ logp; — ZPJ logq; i p
= —H() - Z pjlog(1/M) = —H(X) ~ log(1/M) Z p) I T
=1 P(Y=1) " " XM
*D(X,Y) =log(M)—H(X) =0 dy a, A
* Note that: 2 pj =1 [ ] I
J
* Therefore, since D(X,Y) 20, H(X) < log(M) Y1 Y2 Ym
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Entropy of a Discrete Memory-less Source
Lecture Outline

Lecture 7

* Find the entropy of a discrete memory-less source (DMC)
* Define the n’th order extension of a DMS information source.
* Evaluate the first, second,... and n’th order entropies of a DMS

* Find the relationship between the entropy per symbol and the entropy per
message.
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Discrete-time Information Sources

* Assumptions on the source model:

* Discrete: the set of possible symbols S is finite and countable.
* Discrete-time: The source generates one symbol from the set S = {ay, ..., a,,} each time

unit.

A memoryless and stationary information source satisfies the independence condition:

e Two models:

* Discrete memoryless sources: P(X; = x¢|X;_1 = X¢_1, ... X2 = X9, X1 = x1) = P(X; = x{)
 Sources with memory: P(X; = x;|X;_1 = X4_1, .... X2 = x93, X1 = x1) # P(X; = x;); Markov Sources

* For a DMS source, the probability distribution is time-independent

* The random variables X, X5, ..., X;_1,X; are independent

Discrete-time source
S={a, b, c}

X

XZ
I

Xi

STUDENTS-HUB.com

{a, b, c}

{a, b, C} I {al b} C} .

time

pdf of a DMS is

P(X; = x;) time-invariant

0.5
+ 0.3

| 7
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The Source Entropy

 Main Theme: Consider a discrete-time finite-alphabet source S of size M
X1 XZ Xt
Discrete-time source
S={a,, ..., ap} {ay . ay} ! {ay, oy o} a0 amtl e

with a probability distribution over its symbols given by
M
P(s=a,) = p,,M=12.,Mm and ) p, =1
m=1

* The information content of each symbol is

1 . Symbol a, a, ay
e I(s,;,) = log, (—), bits
Pm Probability Py p, Pm
Information Log,(1/p,) Log,(1/p,) .. Log,(1/p,,)
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The Average Information per Source Symbol
Source Entropy

* The entropy of S is given as:
*H(S) = XM, —p;logzp;  (bit/symbol)
* So far, we have two interpretation for the entropy

a. The average amount of information in the source
b. It is a measure of uncertainty in the source

Symbol S, S, Sw
Probability P, p, Pwm
Information Log,(1/p,) Log,(1/p,) .. Log,(1/p\)
Discrete-time source
n symbols n symbols n symbols

S={ay, ..., a,} X
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Extension of Information Sources

Consider a source S with symbol probability distribution
P(a;))=p;;i=1,2,...M

The n’th order extension of the source, denoted S", consists of messages of n-symbols drawn from S.

Any message m; = {Xy,X3, ..., Xn}; j = 1,2,3, o, M x. = {aq,ay, ..., M}

The probability of any message m; is: n symbols
{xl,xz, ...,xn}

P(mj) = P{x{, X%, ..., xn}; = P(x1)P(x|x1)P(x3]|x1, x3) . P(Xp | X1, vov) Xpp—1)

. P(mj) = P{xq, X, ..., xn}; = P(x1)P(x,)P(x3)P(x,,), Fora DMS

Below, is an example of a second order extension (Here, the message consists of two symbols)

A message of S” is a block of n symbols

% 1001000111 1001 00 01 11

g M = {0, 1}; the original alphabet. M? = {00, 01, 10, 11}; extended alphabet or
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Entropy per source symbol and entropy per message

* Consider a source S with symbol probability distribution
P(a;)=p;;i=1,2,...M
* The source entropy is H(S) = — Y12, p;logp;  bits/symbol

* If a message m; consists of n symbols, then the entropy of the extended
source 5" is:

H(S") = ZMlP logP; bits/message

P(mj) = P{xq, X5, ..., X}
We need to find the relationship between H(S) and H(S™) for both of
* Discrete memoryless sources (DMS)
* Markov sources

s | u) S He

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh




Find H(S) and H(S?)

First and Second Order Entropies of a DMS

Example: Consider a DMS, S, which emits either a 1 or a 0 with the following
probability: P(0)=0.8, P(1)=0.2.

Note that for a DMS: P(x,x,) = P(x,)P(x,); Statistical Independence

> o

1

0.8
0.2

00
01
10
11

0.64
0.16
0.16
0.04

Entropy per message = n(Entropy per symbol)

, Entropy per symbol =

STUDENTS-HUB.com

First Order Entropy
H(S)=—0.8log0.8 — 0.2l0g0.2 = 0.72 bits/symbol

Second Order Entropy

H(S?)= —0.64log0.64 — 0.16l0g0.16
—0.16l0g0.16 — 0.0410g0.04

=1.44 b't/message * Information in one message = twice

H(SZ) =2 H(S), the information in one symbol.

* Amount of uncertainty in one
message = twice the amount of

uncertainty in one symbol
Entropy per message
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Proof for the Entropy of a DMS

Theorem: If S is a discrete memory-less and stationary source, then
Sketch of the proof, for the case n =2 Memoryless (i.e., independence)
P(xo, x;) = P(x,)P(x,)

H,(S*)=-2 > P(Xy,x;)log P(X,,x,)

XM xeM

=—>" 3 P(X,)P(x,)log P(x,)P(x,)

X X

==Y > P(X)P(x;)log P(x) = > > P(X,)P(x,)log P(x,]

Xg % Xo X

logP (x0)P(x1) = logP(xo) + logP (x1)

- —Z P(x,)log P(xo)z P(x,) - Z P(x,)log P(Xl)z P (X, the sum of
P(x,) is 1
- _Z P(x,)log P(x,) - Z P(x,) log P(x,)
= Hl(S) +H,(S)
H,(S%)=2H,(S)
- = n*
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Entropy of a DMS

Summary
For the n’th order extension source (S™), of a DMS (S),

P(m]-) = P{x1,%3, e, Xn}; = P(x1)P(x1) ... P(x1)
H(S™) =nH(S)
H(S) = H(j")
H(S) = constant independent of n.
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Entropy of a Simple Markov Source
Lecture Outline octure &

* Find the first order entropy of a simple Markov source.

* Define the n’th extension of a Markov information source.

* Find the Entropy per source symbol and the entropy per message.
* Evaluate the first, second,... and n’th order entropies.

* Find the average (expected value) of the entropy.
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Discrete Memory-less Sources
* Memoryless property: P(X; = x¢|X;—1 = X4_1, .... Xp = X2, X1 = x1) = P(X; = x¢)
* For a DMS source, the probability distribution is time-independent
* The random variables X, X5, ..., X;_1,X; areindependent
* P(X, = x,|X1 = x1) = P(X, = x5); independent source
* P(X; = x3 N X1 =x1) = P(X; = x2)P(X1 = xq)
* And, in general, for an independent source we have:
*PX;,=x;Nn-NXy=x,NX;1=x¢) =PX;=x{)..P(Xy = x2)P(X1 = Xx1)

X, X, X,
Discrete-time source | | |
S= {01, cesy GM} {ay, .., ay} | {ay, .., Gy} {a,, ..., a,\,,}I

—r

time

2
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The Average Information per Source Symbol
Source Entropy

* The entropy of S is given as:
*H(S) = XM, —p;logzp;  (bit/symbol)
 So far, we have two interpretation for the entropy

a. The average amount of information in the source
b. It is a measure of uncertainty in the source

* Information/message= n*information/symbol

Symbol S, s, Sm
Probability P, p, Pm
. Information Log,(1/p,) Log,(1/p,) .. Log,(1/p,)
I(Sm) = logZ (E‘)r
1 symbol 1 symbol 1 symbol
Discrete time source
n symbols n symbols n symbols
S=

aM} >
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Entropy per symbol and entropy per message

Summary
For the n’th order extension source (S™), of a DMS (S),

P(mj) =P{x;Nnx;N--Nxy}; = P(x)P(xq) ... P(x1)

H(S™) = nH(S)

H(S™)
n

H(S) = ; constant independent of n.
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Sources with Memory: Markov Information Sources
e Used to model information sources with memory.

* In a simple Markov source, the occurrence of the current symbol at time t
depends only on the previous symbol at time t-1

* For a simple Markov source,
* P(X; = x¢|Xp—q = X1, - X2 = X2, X1 = %1) = P(X; = x| X1 = X¢-1)

X X, X1 X,
Markov Source | | | |

I |
S - {al’ XYY aM} {a].’ b 4 aM} | {al’ °e%r aM}l {all eee) aM} {all 0oy aM} time

—t
»
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Ergodic (Regular) Markov Process

Definition: A finite-state Markov chain is ergodic (regular) if all
states are accessible from all other states and if all states are

aperiodic, i.e., have period 1.
e : .. N
An important fact about ergodic Markov chains is

that the chain has steady-state probabilities p(s) for

KaII states. y
0/09 01
P(X..; = a)) = P(X, = a;) = P(a,); for all states j @‘@‘
o/0.4  1/06
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First and Second Order Entropy of a Markov Source

Consider a Markov source with two states as shown in the figure. It can be shown
that the steady-state probabilities are:
P(X;=0), P(X;, =1))=(0.8, 0.2); steady-state probabilities (verify)

_vM _
First order entropy H(S) = Xiz1 —Pilog; p;
H,(S)=-0.8l0g0.8 — 0.2l0g0.2

= 0.72 bits/symbol

H,(5?) = -0.72l0g0.72 - 0.08l0g0.08 -
O | 0.8:0.9+0.2:0.4=0.80 0.08log0.08 — 0.12l0g0.12

1| 0.8:0.1+0.2:0.6=0.20 =1.2914

00 | 0.8:0.9:0.9+0.2:0.4-0.9=0.72
01 | 0.8:0.9-:0.1 +0.2:0.4-0.1 =0.08 H,(s?) = 1.2914
10 | 0.8:0.1:0.4 +0.2:0.6:0.4 = 0.08 H,(S) = H,(5%)/2 =
11 | 0.8:0.1:0.6 + 0.2:0.6:0.6 =0.12
B= 0.4+ 0.9B (B= 0.8, a. =0.2); P(B) = P(4,)P(B|A,) + P(4,)P(B|A,)

o= 0.6a + 0.1[3; Steady State Equations
STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh




First and Second Order Entropy of a Markov Source

define the of S
H.(S) = H,(S™") Entropy of a message
"Y' mn number of symbols in message

Entropy H = 1111_)1(1310 H{(S")/n
First Order Entropy H(S) = P(SA)H(S/Sa) + P(Sp)H(S/Sp)
H,(S) = 0.72 bits/symbol

Second Order Entropy
H(S?%) = 1.2914/2 = 0.6457

What happens whe n=3? What is H3(S)? 3

8 H{(S)>H,(S)> H3(S) >H4(S) > - > LIMIT
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The Entropy of Markov Sources
* For a Markov source, we have H,(S) > H,(S) > ...H(S) (limit entropy)

* Theorem:
H,(S)

n=1 n=2 n=3 n

How to compute the limit entropy of a Markov source:
1. Determine the stationary probabilities of the states
2. ldentify the outgoing probability of each state.
3. Compute entropies of each state (using those of Part 2)
4. Determine the weighted average of the state entropies.

H(S) = P(S4)H(S/S4) + P(Sp)H(S/Sp)
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Example: Entropy of A Markov Source

Consider the Markov source in the figure. Earlier, it was found that
the stationary probabilities are (B, o) = (0.8, 0.2)

1/0.1 0=0.2 When in state A, source emits 0 and 1 with

0/0.9 probabilities: {P(0)=0.9, P(1)=0.1}
The source entropy is: - 1/0.1
B=0.8 /0.6 H(S/S,)=-0.910g0.9 — 0.1l0g0.1= 0.469 '
0/0.4 |
When in state B, source emits 0 and 1 with probabilities: B=0.8
{P(0)=0.4, P(1)=0.6}. The source entropy is
a=0.2

H(S/S;g) = —0.4l0g0.4 — 0.6l0g0.6 = 0.971 .

The expected value (mean value of the entropy) 1/0.6
H(S) = P(Sa)H(S/S4) + P(Sp)H(S/Sp) 0/0.4

Ig‘sr:%rrTO8XO469 + 02X0971—05694bl%fogé’g
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