
Advanced ILP Techniques 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Pipelining Delivers CPI = 1 at Best

❖ How to get CPI < 1?

 Issuing and completing multiple instructions/cycle

 Challenge: checking and resolving dependences among the instructions 

issued at the same cycle

❖ Lecture outline:

 Multiple issue 

 Dynamic scheduling, multiple issue, and speculation 

 Multithreading: exploiting thread-level parallelism to improve uniprocessor 

throughput

2
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Issuing Multiple Instructions/Cycle

❖ Static multiple issue

 Compiler handles data and control hazards and decides what instructions 

can be issued in the same cycle

 Often restrict mix of instructions can be initiated in a clock

 Recompilation required for machines with diff. pipelines 

❖ Dynamic multiple Issue

 Fetch, decode, and commit multiple instructions

 Use dynamic pipeline scheduling, HW-based speculation and recovery

 Always beneficial if compiler can help, but recompiling not required for 

new machines

3
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Hardwere Strategies for Multiple Issue

❖ Superscalar: varying number of instructions/cycle (1 to 8), 

scheduled by HW (dynamic)

 IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium 4, i7

❖Multithreading: exploiting thread-level parallelism to improve 

uniprocessor throughput

 IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium 4, i7

❖ Vector Processing: Explicit coding of independent loops as 

operations on large vectors of numbers

 Multimedia instructions being added to many processors

4
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Multiple Issue 

❖ Issue packet: group of instructions from fetch unit that could 

potentially issue in 1 clock

 If instruction causes structural hazard or a data hazard either due to earlier 

instruction in execution or to earlier instruction in issue packet, then instruction 

does not issue

 0 to N instruction issues per clock cycle, for N-issue

❖ Performing issue checks in 1 cycle could limit clock cycle 

time: 

 => issue stage usually split and pipelined

 1st stage decides how many instructions from within this packet can issue,

 2nd stage examines hazards among selected instructions and those already 

been issued

 => higher branch penalties => prediction accuracy important

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



❖ If more instructions issue at same time, greater 
difficulty of decode and issue:
 Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 1 

or 2 instructions can issue

 Register file: need 2x reads and 1x writes/cycle

 Rename logic: must be able to rename same register multiple times in 
one cycle!  For instance, consider 4-way issue:

add r1, r2, r3 add p11, p4, p7

sub r4, r1, r2  sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)

add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!

 Result buses: Need to complete multiple instructions/cycle

▪ So, need multiple buses with associated matching logic at every 
reservation station.

▪ Or, need multiple forwarding paths

Multiple Issue Challenges

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



❖ The Tomasulo dynamic scheduling algorithm is extended to issue more than 
one instruction per cycle.

❖ However the restriction that instructions must issue in program order still holds 
to avoid violating instruction dependencies (construct correct dependency graph 
dynamically). 

 The result of issuing multiple instructions in one cycle should be the same as if they were 
single-issued, one instruction per cycle.

❖ How to issue two instructions and keep in-order instruction issue for Tomasulo?  

❖ Simplest Method: Restrict Type of Instructions Issued Per Cycle

❖ To simplify the issue logic,  issue one  integer  +  one  floating-point instruction 

per cycle (for a 2-way superscalar). 

 1  Tomasulo control for integer, 1 for floating point.

❖ FP loads/stores might cause a dependency between integer and FP issue:

 Replace load reservation stations with a load queue; operands must be read in the order they 
are fetched (program order).

 Replace store reservation stations with a store queue; operands must be written in the order 
they are fetched.

▪ Load checks addresses in Store Queue to avoid RAW violation

– (get load value from store queue if memory address matches)

▪ Store checks addresses in Load Queue to avoid WAR, and checks Store Queue to avoid WAW.

Superscalar Dynamic Scheduling

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



❖ Three techniques can be used to support multiple instruction issue in Tomasulo

without putting restrictions on the type of instructions issued per cycle: 

1 Issue at a higher clock rate so that issue remains in order.

 For example for a 2-Issue  supercalar issue at 2X Clock Rate.

2 Widen the issue logic to handle multiple instruction issue

 All possible dependencies between instructions to be issues are detected at once and the result of the 
multiple issue  matches in-order issue 

Issue

First

Instruction

Issue

Second

Instruction

One Cycle

Check

Instruction

Dependencies

Issue

Both

Instructions

One Cycle

0, 1 or 2 instructions issued per cycle

for either method

2-Issue  superscalar

For correct dynamic construction of dependency graph:

The result of issuing multiple instructions in one cycle should 

be the same as if they were single-issued, one instruction per cycle.

Why?

Superscalar Dynamic Scheduling

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



3 To avoid increasing the CPU clock cycle time in the last two approaches, multiple 

instruction issue can be spilt into two pipelined issue stages:

 Issue Stage One: Decide how many instructions can issue simultaneously checking 

dependencies within the group of instructions to be issued + available RSs, ignoring instructions 

already issued.

 Issue Stage Two: Examine dependencies  among the selected instructions from the group and 

the those already issued.

❖ This approach is usually used in dynamically-scheduled  wide superscalars that can 

issue four or more instructions per cycle.

❖ Splitting the issue into two pipelined staged increases the CPU pipeline depth and 

increases branch penalties 

 This increases the importance of accurate dynamic branch prediction methods.

❖ Further pipelining of issue stages beyond two stages may be necessary as CPU clock 

rates are increased.

❖ The dynamic scheduling/issue control logic for superscalars is generally very complex 

growing at least quadratically with issue width. 

 e.g 4 wide superscalar ->  4x4 = 16 times complexity of single issue CPU 

Superscalar Dynamic Scheduling

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Example
❖ Consider the execution of the following loop, which increments each 

element of an integer array, on a two-issue processor, once without 
speculation and once with speculation:

❖ Assume that there are separate integer functional units for effective 
address calculation, for ALU operations, and for branch condition 
evaluation. Assume that up to two instructions of any type can 
commit per clock.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Performance for a two-issue, dynamically
scheduled processor, without speculation

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Performance for a two-issue, dynamically
scheduled processor, with speculation

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Limits to Multi-Issue Processors

❖ Inherent limitations of ILP

 Need about Pipeline Depth x No. Functional Units of independent 

operations to keep all pipelines busy

 Difficulties in building HW

▪ Easy: more instruction bandwidth, duplicate FUs 

▪ Hard: increase ports to RF and memory (bandwidth)

❖Most techniques for increasing performance also increase 

power consumption 

 Growing gap between peak issue rates and sustained performance →

performance gain is not linearly proportional to power increase

13
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



How to Find More Parallelism?

❖ Hardware?

❖ Compiler?

❖ Runtime environment, e.g., virtual machine?

❖ The key is to find independent instructions

❖ But, our attentions are focused mainly on the current thread of 

execution

→ why not from other programs or threads? 

→ the instructions are completely independent

❖ Programmer may need to be involved

 Parallel programming, program annotations, ...

14
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Multi-Threading

❖ A multithreaded CPU is not a parallel architecture, strictly speaking; 

multithreading is obtained through a single CPU, but it allows a 

programmer to design and develop applications as a set of programs 

that can virtually execute in parallel: namely, threads.

❖ If these programs run on a “multithreaded” CPU, they will best 

exploit its architectural features.

❖ What about their execution on a CPU that does not support 

multithreading?

❖ A multithreaded CPU is not a parallel architecture, strictly speaking; 

multithreading is obtained through a single CPU, but it allows a 

programmer to design and develop applications as a set of programs 

that can virtually execute in parallel: namely, threads.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Multi-Threading

❖ Multithreading is solution to avoid waisting clock cycles as the 

missing data is fetched: making the CPU manage more peer-

threads concurrently; if a thread gets blocked, the CPU can

execute instructions of another thread, thus keeping functional

units busy.

❖ So, why cannot be threads form different tasks be issued as well?

❖ To realize multithreading, the CPU must manage the

computation state of each single thread.

❖ Each thread must have a privateProgram Counter and a set of 

private registers, separate from other threads.

❖ Furthermore, thread switch must be much more efficient than 

process switch, that requires usually hundreds or thousands of

clock cycles (process switch is a software procedure, mostly)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Use Multithreading to Help ILP

❖ One idea: allow instructions from different threads to be mixed 

and executed together in the pipeline
 Original: pipeline with internal forwarding

 Multithreaded pipeline:

17

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW    r1, 0(r2)

<bubble>

T1: SUB  r5, r1, r4

T1: AND r4, r1, r3

T1: SW   0(r7),  r5

t9

F D X M W

F D X M W

F D X M W

F D X M W

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW    r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW   0(r7),  r5

T1: SUB  r5, r1, r4

t9

F D X M W

F D X M W

F D X M W

F D X M W

No need for 

internal 

forwarding

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Strategies for Multithreaded Execution 

18Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fine-grained Multi-Threading
❖ Fine-grained Multithreading: switching among threads happens at each

instruction, independently from the the fact that the thread instruction has

caused a cache miss.

❖ Instructions “scheduling” among threads obeys a round robin policy, and 

the CPU must carry out the switch with no overhead, since overhead 

cannot be tolerated

❖ If there is a sufficient number of threads, it is likely that at least one is active 

(not stalled), and the CPU can be kept running.

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW    r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW   0(r7),  r5

T1: SUB  r5, r1, r4

t9

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads, T1-T4, 5-stage pipe, no internal forwarding

Prior instruction in a 
thread always 
completes write-
back before next 
instruction in same 
thread reads register 
file

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fine-grained Multi-Threading

❖ (a)-(c) three threads and associated stalls (empty slots).

❖ (d) Fine-grained multithreading. Each slot is a clock cycle, and

we assume for simplicity that each instruction can be completed

in a clock cycle, unless a stall happens.

❖ In this example, 3 threads keep the CPU running, but what if A2 

stall lasts 3 or more clock cycles?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fine-Grained Multithreading Pipeline

❖ Carry thread-select down pipeline to ensure correct state bits 

read/written at each pipe stage

 Appears to software (including OS) as multiple, albeit slower, CPUs

21

+1

2
Thread 

select

PC

1PC

1PC

1PC

1

I$ IR
GPR1

GPR1
GPR1

GPR1

X

Y

2

D$

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Multithreading Costs

❖ Each thread requires its own user state

 PC 

 GPRs 

❖ Also, needs its own system state 

 Virtual-memory page-table-base register 

 Exception-handling registers 

❖ Other overheads: 

 Additional cache/TLB conflicts from competing threads 

▪ or add larger cache/TLB capacity 

 More OS overhead to schedule more threads (where do all these threads 

come from?)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fine-grained Multi-Threading

❖ CPU stalls can be due to a cache miss, but also to a true data 

dependence, or to a branch: dynamic ILP techniques do not always 

guarantee that a pipeline stall is avoided.

❖ With fine-grained multithreading in a pipelined Architecture, if: the

pipeline has k stages,

❖ there are at least k threads to be executed,

❖ and the CPU can execute a thread switch at each clock cycle

❖ Then there can never be more than a single instruction per thread

in the pipeline at any instant, so there cannot be hazards due to 

dependencies, and the pipeline never stalls ( … another

assumption is required …).

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fine-grained Multi-Threading

❖ Fine-grained multithreading in a CPU with a 5-stage pipeline:

 There are never two instructions of the same thread concurrently active in 

the pipeline.

 If instructions can be executed out of order, then it is possible to keep the

CPU fully busy even in case of a cache miss.

A1 A2 A3 A4 A5 A6 ...

B1 B2 B3 B4 B5 B6 ...

C1 C2 C3 C4 C5 C6 ...

D1 D2 D3 D4 D5 D6 ...

E1 E2 E3 E4 E5 E6 ...

E1

IF

D1

ID

C1

EX

B1

MEM

A1

WB

A2

IF

E1

ID

D1

EX

C1

MEM

B1

WB

B2

IF

A2

ID

E1

EX

D1

MEM

C1

WB

clock5 threads in execution:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Thread Scheduling Policies

❖ Fixed interleave

 Each of N threads executes one instruction every N cycles 

 If thread not ready to go in its slot, insert pipeline bubble

❖ Software-controlled interleave

 OS allocates S pipeline slots for N threads 

 Hardware performs fixed interleave over S slots, executing whichever 
thread is in that slot 

❖ Hardware-controlled thread scheduling

 Hardware keeps track of which threads are ready to go 

 Picks next thread to execute based on hardware priority scheme

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Sun Niagara Multithreaded Pipeline

❖ Each SPARC core 

has hardware 

support for four 

threads. 

❖ The four threads 

share the 

instruction, the 

data caches, and 

the TLBs. 

❖ Each SPARC core 

has simple, in-

order, single 

issue, six stage 

pipeline.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fine-Grained Multithreading

❖ Advantage:

 Hide both short and long stalls, e.g., latency of memory operations, dependent instructions, 

branch resolution, etc., since instructions from other threads executed when one thread 

stalls → latency hiding 

 No need for dependency checking between instructions (only one instruction in pipeline from 

a single thread) 

 No need for branch prediction logic 

 Otherwise-bubble cycles used for executing useful instructions from different threads 

 Improved system throughput, latency tolerance, utilization

❖ Disadvantage: 

 Extra hardware complexity: multiple hardware contexts, thread selection logic

 Slow down execution of individual threads, since a thread ready to execute without stalls will 

be delayed by instructions from other threads

 There might be fewer threads than stages in the pipeline (actually, this is the usual case), so 

keeping the CPU busy is no easy matter.

 Requiring an efficient context switch among threads

 Resource contention between threads in caches and memory 

 Dependency checking logic between threads remains (load/store)
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Coarse-Grained Multithreading

❖ Switches threads only on costly stalls, such as L2 cache misses or when an 

explicit context switch instruction is encountered

 Instructions from one thread use the pipeline for a certain period of time

❖ At this point, a switch is made to another thread. When this thread in turn

causes a stall, a third thread is scheduled (or possibly the first one is re-

scheduled) and so on.

❖ This approach potentially wastes more clock cycles than the fine- grained

one, because the switch happens only when a stall happens.

❖ but if there are few active threads (even just two), they can be enough

to keep the CPU busy.

❖ Possible stall events

 Cache misses

 Synchronization events (e.g., load an empty location)

 FP operations

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Coarse vs Fine-grained Multi-Threading

❖ (a)-(c) three threads with associated stalls (empty slots). 

❖ Fine-grained multithreading. 

❖ Coarse-grained multi-threading

any error in this schedule?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Coarse-Grained Multithreading

❖ Advantages: 

 Relieve the need to have very fast thread-switching

 Do not slow down thread, since context-switch only when the thread 

encounters a costly stall 

 Priority may be given to critical thread

❖ Disadvantages: 

 Instructions must be drained and refilled on a context switch → bad for 

long pipeline, good only for costly stalls

 Fairness: a low cache miss thread gets to use pipeline longer and other 

threads may starve

▪ Possible solution: low miss thread may be preempted after a time slice 

expires, forcing a thread switch

30
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fine Grained vs Coarse Grained

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Simultaneous Multithreading (SMT) 

❖ Modern superscalar, multiple issue and dynamic scheduling pipeline

architectures allow to exploit both ILP (instruction level) and TLP

(thread level) parallelism.

 ILP + TLP = Simultaneous Multi-Threading (SMT)

❖ SMT is convenient since modern multiple-issue CPUs have a 

number of functional units that cannot be kept busy with 

instructions from a single thread.

❖ By applying register renaming and dynamic scheduling, instructions 

belonging to different threads can be executed concurrently.

❖ In SMT, multiple instructions are issued at each clock cycle, possibly

belonging to different threads; this increases the utilization of the

various CPU resources

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Simultaneous Multithreading (SMT) 

❖ In superscalar CPUs with no multithreading, multiple issue can be 

useless if there is not enough ILP in each thread, and if a long lasting

stall (a L3 cache miss) freezes the whole processor.

❖ In coarse-grained MT, long-lasting stalls are hidden by thread 

switching, but a poor ILP level in each thread limits CPU resource 

exploitation (e.g., not all issue slots available can effectively be used)

❖ Even in fine-grained MT, a poor ILP level in each thread limits CPU

resource exploitation.

❖ SMT: instructions belonging to different threads are (almost 

certainly) independent, and by issuing them concurrently, CPU 

resources utilization raises.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



SMT Pipeline Architecture

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



SMT Pipeline Architecture

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Resources in Typical SMT

❖ Per thread:

 State for hardware context (separate PC, arch register file, rename 

mapping table, reorder buffer, L/S queues, etc.)

 Instruction commit/retirement, exception, subroutine return stack

 Per thread id in TLB

 BTB may be shared or have separate thread id (optional)

 Ability to fetch instructions for multiple threads (I cache port)

❖ Shared

 Physical register, cache hierarchy, TLB (with TID), branch predictor and 

branch target buffer, functional units

36
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



SMT Fetch

❖ Duplicate fetch logic

❖ Cycle-multiplexed fetch logic

I$

fetch

fetch

fetch

Decode, Rename, Issue
PC0

PC1

PC2

RS

I$

PC0

PC1

PC2

cycle % N

Round robin

fetch Decode, etc.

RS

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Effects of SMT on Cache

❖ Cache thrashing

I$ D$

Thread0 just fits in

the Level-1 Caches

Executes

reasonably

quickly due

to high cache

hit rates

Context switch to Thread1

I$ D$

Thread1 also fits

nicely in the caches

I$ D$

Caches were just big enough

to hold one thread’s data, but

not two thread’s worth

L2

Now both threads have

significantly higher cache

miss rates

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Observations on SMT

❖ Higher throughput

 May be useful for server

❖May incur longer latency for a single thread

 Instruction fetch complexity

 Increase associativity of TLB and L1 cache

 Larger L2 cache, etc., to handle multiple threads

 May increase cache misses/conflicts 

 Complexity in branch prediction and committing multiple threads 

simultaneously

 More registers (per thread RF, rename mapping table) 

 Stretch hardware design and may affect cycle time

39
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Multithreaded Processors Comparison

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Early Design: Alpha 21464 4-way SMT

41

SMT with 4 threads. Each thread appears to the outside world as executed sequentially

Fetch Decode/

Map

Queue Reg 

Read

Execute Dcache/

Store 

Buffer

Reg 

Write

Retire

Icache

Dcache

PC

Register

Map

Regs Regs

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Intel Multi-Threading

❖ Multithreading was first introduced by Intel in Xeon processor in 2002,

later in the 3,06 GHz Pentium 4, with code name hyperthreading. The

name is attractive, actually hyperthreading supports only two threads in

SMT mode.

❖ According to Intel, designers had speculated that multithreading was the

simplest way to increase performance: an increase by 5% of CPU area

would allow to run a second thread, thus effectively using CPU resources

otherwise wasted.

❖ Intel benchmark suggested an increase of CPU performance by 25% -- 30%.

❖ To the Operating system, a multithreaded processor is indeed a double

processor, with two CPUs sharing caches and RAM: if two applications can

run independently and share the same address space, they can be executed

in parallel in two threads.

❖ A movie editing code can use different filters to be applied in each frame.

The code can be structured as two threads, that process odd/even frames,

and that execute in parallel.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Intel Multi-Threading

❖ Since two threads can use the CPU concurrently, it is necessary to 
design a strategy that allows both threads to effectively use CPU 
resources.

❖ Intel uses 4 different strategies to share resources between the two 
threads.

❖ Replication. Obviously, some resources have to be replicated, in 
order to manage the two threads: two program counters and registers
mapping tables (ISA registers vs rename registers) so that each
thread has an independent set of registers. This replications accounts
for the 5% increase in processor area.

❖ Partitioning. Some hardware resources are rigidly partitioned 
between the two threads. Each thread can use exactly half of each 
resource. This applies to all buffers (for LOAD, STORE instructions)
and to the ROB (“retirement queue” in Intel terminology).

 Partitioning can of course reduce the utilization of the partitioned resources,
when a thread does not use its part of the resource, which could be used by
another thread.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Intel Multi-Threading

❖ Sharing. The hardware resource is completely shared. The
first thread that gets hold of the resources uses it, and the
other thread waits.

 This type of resource management solves the problem due to an 
unused resource (if the thread does not need it), since it can be 
allocated to the second one. Obviously, the reverse problem arises: a
thread can be slowed down if the required resource is completely 
allocated to the other one.

 For this reason, in Intel processor the only resources completely shared
are those available in a great quantity: for them, it is unlikely that a
“starvation” problems arises, e.g. cache lines.

❖ Threshold sharing. A thread can use dynamically the
resource, up to a given percentage; so, a part remains available
for the other task (possibly less than half).

 The scheduler that dispatches uops to the reservation stations uses this
policy.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Intel Multi-Threading Pipeline Datapath

❖Main pipeline

Pipeline prior to trace cache not shown

❖Round-Robin instruction fetching

Alternates between threads

Avoids dual-ported trace cache

BUT trace cache is a shared resource

Uop

Queue
Rename

Allocate

Queue
Sched Register

Read

Registers

Execute

L1 Cache

Data Cache

Store Buffer

Register

Write

Registers

Commit

.   .   . .   .   .

.   .   . .   .   .
Reorder Buffer

I-Fetch

Trace

Cache

Prog.

Counters

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Trace Caches

❖ Trace cache captures dynamic traces

❖ Increases fetch bandwidth

❖ Help shorten pipeline (if predecoded)

Instruction Cache Trace Cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Capacity Resource Sharing

❖Append thread identifier (TId) to threads in shared capacity 

(storage) resource

❖Example: cache memory

TId TId tag dataVtag offset

address

Compare ==

.

.

.

.

.

.

.

.

.

.

.

.

hit/miss

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Effectiveness of Simultaneous Multithreading on 
Superscalar Processors

Speedup from using multithreading on one core on an i7 processor

The speedup from using 
multithreading on one 
core on an i7 processor 
averages 1.28 for the Java
benchmarks and 1.31 for 
the PARSEC benchmarks

An increase by 5% of 

CPU area yields a 

performance increase by 

an average of 30%

Uploaded By: Jibreel BornatSTUDENTS-HUB.com


