
–Chapter 5 

Syntax Analysis(Parser) 

 
 
 A Syntax analyzer is formally defined as : 
 

An Algorithm that Groups the Set of Tokens Sent by the Scanner to Form 

Syntax Structures Such As Expressions, Statements, Blocks, etc. 

Simply, the parser examines if the source code written follows the 
grammar(production rules) of the language. 

 
The Syntax structure of programming languages and even spoken languages can 
be expressed in what is called BNF 

notation, which stands for Bakus Naur Form. 

 

For example, in spoken English, we can say the following:  

 

sentence --> noun-phrase     verb-phrase 

noun-phrase --> article    noun  

article --> THE  |  A  |    AN   ... 

noun --> STUDENT |  BOOK | ... 

verb-phrase --> verb    noun-phrase  

verb --> READS  |    BUYS   |  .... 

 
Note : The BNF Notation uses different symbols, for example, a sentence is 

defined as : 

 

< sentence > ::= < noun-phrase > < verb-phrase > 
 
But this is very cumbersome, so we use the first 

notation, since it is easier to use. Now, let us derive 

a sentence : 

sentence --> noun-phrase verb-phrase 
 

--> article noun verb-phrase 

 
--> THE noun verb-phrase 

 
--> THE STUDENT verb-phrase Uploaded By: Ayham NobaniSTUDENTS-HUB.com
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--> THE STUDENT verb noun-phrase 

 
--> THE STUDENT READS noun-phrase 

 
--> THE STUDENT READS article noun 

 
--> THE STUDENT READS A noun 

 
--> THE STUDENT READS A BOOK 

 
In the same way, the parser tries to derive your source program from 

the starting symbol of the grammar. Let us say we have these 

sentences : 

THE BOOK BUYS A STUDENT  

THE BOOK WRITES A DISH  

 
Syntax-wise, all of these sentences are correct. However, their meaning is not 

correct, and they are not useful. What differentiates 2 sentences that are 

grammatically correct is their meaning or their semantics. You and I can agree 

that the meaning of a grammatically correct sentence is not correct, but how 

does the computer do it? 
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Grammar 

A grammar G=(VN, VT, S, P) where: 

 

1.  VN : A finite set of nonterminals (nonterminals set). 

2.  VT : A finite set of terminals(terminals set). 

3.  S ∈ VN : The Starting symbol of the grammar. 

4.  P = A set of production rules(productions).<-- Pending <==> Basically the 
whole grammar. 

 
Note : 

1. VN ∩ VT = ∅. 

2. VN ∪ VT = V (the vocabulary of the grammar). 

Note : We will use: 
 

1. Uppercase Letters A,B,...,Z for non-terminals. 
 

2. Lowercase Letters a,b,...,z for terminals. 
 

3. Greek letters α,β,γ,... for strings formed 

from VN OR VT = V.  

 
eg, if VN = {S,A,B} , VT = {0,1} 

then 
 

α = A11B  
β = S110B  
γ = 0010 

 

Productions 
 

1. A Production α --> β (alpha derives beta) is a rewriting rule such that the 

occurrence of α can be substituted by β in any string. 

Note: α must contain at least one 

nonterminal from VN, i.e. ∈VN.  

For example, Assume we have the string 

γασ, 

γασ --> γβσ 
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2. A Derivation is a sequence of strings α0, α1, α2, ....,αn, then : 

 

α0--> α1--> α2--> .... -->αn 

Given a grammar G, then : 
 

L(G) = Language Generated By the Grammar. 
 

example, Given the Grammar, G = ({S,B,C},{a,b,c},S,P),  

 
P : 

S --> aSBC  
S --> abC  
CB --> BC 
bB --> bb  
bC --> bc  
cC --> cc 
 

What is L(G)=? 

 
Let us do some derivations: 

S --> abC --> abc(all terminals) ∈ L(G) <--- A sentence 

 
S --> aSBC --> aabCBC --> aabcBC --> blocked, so we try another path 

S --> aSBC --> aabCBC --> aabBCC --> aabbCC --> aabbcC 

--> aabbcc ∈ L(G) <--- A sentence  

S --> aSBC -->........-->aaabbbccc ∈ L(G) <--- A sentence 

Therefore, L(G)={anbncn| n ≥ 1} 
 
As another Example, we have these productions 

 
E --> E+T <-- we can write the productions 1 and 2 as a single production E --> E+T | T  

E --> T 

T --> T*F  

T --> F 

F --> (E) <-- we can write the productions 5 and 6 as a single production F --> (E) | n  

F --> n 

 
Let us follow through some derivations 

E --> T --> F --> n ∈ L(E) 

E --> E+T --> T+T --> T+F --> T+n --> F+n --> n+n ∈ L(E) 

E --> E+T --> T+T --> F+T --> n+T --> n+F --> n + (E) --> n+(T) --> n+(T*F) --> 

n+(F*F) --> n+(n*F) --> n+(n*n) ∈ L(E) 
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Therefore, L(G) = {Any arithmetic expression with * and + operations}, n is an 
operand here. 

 
Note that, if we add the productions  

E --> E+T  |   E-T   | T 

 T --> T*F   |   T/F  |  T%F 

 
We would have a language to express all arithmetic expressions with (* , \ , + , -) 
operations.  
 

Let us Take another Example (Tokens between double quotes are terminals) 
 

program --> block   "#"  

block --> "{"   stmt-List   "}" 

stmt-List --> statement   ";"    stmt-List       |     λ 

statement --> if-stmt | while-stmt | read-stmt | write-stmt | assignment-stmt | block  

if-stmt --> "if"   condition.... 

while-stmt --> "while"   condition..... 

.... 

.... 

read-stmt --> "read" 

write-stmt --> "write" 

 
VN = {program, block, stmt-List, statement, if-stmt, while-stmt,          

read-stmt, write-stmt, assignment-stmt}  

VT = { "{", "}", "#", ";", "if", "while", "read", "write" } 

Let us Follow through some derivations : 

 
Program --> block # --> { stmt-list } # --> { λ } # --> { } # 
Program --> block # --> {stmt-list} # --> {statement ; stmt-list} # -->  
{statement ; statement ; stmt-list} # --> 
{statement; statement ; λ} # --> {statement ; statement ;} # --> {read-stmt ; 
statement ;} # -->{read ; statement ;} # --> 

     {read ; write-stmt ;} # -->      

{read;write;} # 

 
 

Uploaded By: Ayham NobaniSTUDENTS-HUB.com



The language of this language is defined as 
 

L(G) = {Set of all programs that can be written in this language}. 

 
This is only a simple example, of a simple language. For something more 

complex such as C or Pascal, there are hundreds of productions. 

 

 

Algorithms for Derivation 
 

There are two derivation techniques: 
 

Def: A Leftmost derivation is a derivation in which we replace the leftmost 
nonterminal in each derivation step. 
 
EE+TT+TF+Tn+Tn+Fn+n 

 
Def: A Rightmost derivation is a derivation in which we replace the rightmost 

nonterminal in each derivation step. 
 
EE+TE+FE+nT+nF+nn+n 

 
For example, given 

the grammar  

V --> S R $ 

S --> + | - | λ 

R --> .dN  |  dN.N 

N --> dN  |  λ  

 

VN = {V,R,S,N} 

VT = {+, - , ., d, $} 

 
Let us follow through on the leftmost derivation 

 
V --> SR$ --> -R$ --> -dN.N$ --> -ddN.N$ --> -dddN.N$ --> -ddd.N$ --> -ddd.dN$ 
--> -ddd.d$ <-- A sentence. 

 
Let us follow through on the rightmost derivation 

 
V --> SR$ --> SdN.N$ --> SdN.dN$ --> SdN.d$ --> sddN.d$ --> sdddN.d$ --> 
Sddd.d$ --> -ddd.d$ <-- A sentence. 
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Derivation Trees 
 
Def: A Derivation Tree is a Tree that displays the derivation of some sentence in 

the language. For example, let us look at the tree for the previous example
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Note that if we traverse the tree in order, recording only the leaves, we obtain the 

sentence. 

 

Classes of Grammars 
 
According to Chomsky, There are 4 classes of grammars : 

 

1. Unrestricted Grammars : No restrictions whatsoever except the restriction by 

definition that the left side of the production contains at least one nonterminal 

from VN. This grammar is not practical and we cannot work with it. 

2. Context-Sensitive Grammars : For each production α --> β, |α| ≤ |β|, i.e. , 

the length of alpha(α) is less than or equal to the length of Beta(β). This 

means that in this class of grammar, there are no λ productions in the form A 

--> &lambda, since |λ| = 0 and A ≥ 1. 

3. Context-Free Grammar(CFG) : Each production in this grammar class is of 

the form A --> α , where A ∈ VN and α ∈ V* 

that is to say, the left hand side is only one nonterminal. 

 
This is the most important class of grammar. Most programming 

languages structures are context-free. We will mostly be working 

with this class of grammar. Most of the examples we have taken are 

CFG. 
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4. Regular Grammar (Regular Expressions) : Each production in this 

grammar class is of the form A -- > aB or A --> a, where A,B ∈ VN and a 

∈ VT, with the exception of S --> λ 

 
For example, given the grammar: 
  
A --> aA 
A --> a 
 

Therefore, we get L(G)=a+ 

However, adding the production A --> λ 

Results in the grammar 

G(L)=a* 

 
 

Parsing Techniques 
 

There are 2 main parsing techniques used by a compiler. 

 
Top-Down Parsing 

 
In Top-Down Parsing, the parser builds the derivation tree from the 

root(S : the starting symbol) down to the leaves(sentence). 

In Simple words, the parser tries to derive the sentence using leftmost  derivation. 

For example, say we have this grammar :  

   V --> SR$ 

S --> + | - | λ 
 

R --> .dN | dN.N 
 

N --> dN | λ 

 
 Let us examine if the sentence +dd.d$ if it is derived from this grammar. 

 
V --> SR$ --> +R$ --> +dN.N$ --> +ddN.N$ 

+dd.N$ --> +dd.dN$ --> +dd.d$  

 
Major Problem. The Parser does not know which production it should select in 

each derivation step. We will learn how to solve these issues later in the course. 
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Bottom-Up Parsing 

 
In Bottom-Up Parsing, the parser builds the derivation tree from the 

leaves(sentence) up to the root(S : Starting Symbol). This type of tree, built from 

the leaves to the root, is called a B-Tree. 

In Simple words, the parser starts with the given sentence, does 

reduction(opposite of derivation) steps, until the starting symbol is reached. 

Note that the string λ is present everywhere in the string, and 

we can use it wherever we like.  Let us follow the reduction 

of the example given above. 

+dd.d$ --> +ddλ.d$ --> +ddN.d$ --> +dN.d$ --> +dN.dλ$ --> 

+dN.dN$ --> +dN.N$ --> +R$ --> SR$ --> V Which means that the 

sentence is in the grammar. 

Note that we can run into deadlocks here. say we took this path instead : 
 

+dd.d$ --> +ddλ.d$ --> +ddN.d$ --> +dN.d$ --> +dN.dλ$ --> +dN.dN$ --> 

+dNR$ --> +NR$ --> SNR$ --> Deadlock This technique also has a major 

problem : Which substring should we select to reduce in each reduction 

step? 

how do we solve this? 
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The FIRST() Function 

 

Given a string α ∈ V*, then 

FIRST(α) = { a | α --*--> aw, a∈VT, w∈V*} 

in addition, if α --> λ, then we add λ to FIRST(α), that is  λ ∈ FIRST(α). 

 

That is to say, FIRST(α) = Set of all terminals that may begin strings derived from α. 

 

For example 

α --*--> cBx 

α --*--> ayD 

α --*--> ab 

α -----> ddd 

Then 

FIRST(α) = {c,a,d} 

Assume as well that 

α --*--> λ 

then 

FIRST(α) = {c,a,d,λ} 

That is to say, λ appears in the FIRST() function. 

 

 

The FOLLOW() Function 

 

We define the FOLLOW() function for only non-terminals. That is to say 

FOLLOW(A), A∈VN, then 

 

FOLLOW(A) = { a | S --*--> uAβ, where a ∈FIRST(β)} 

That is,    S --*--> uAβ , u∈VT*, A∈VN, β∈V*  and   FOLLOW(A)=FIRST(β) 

 

That is to say, FOLLOW(A) = The set of all terminals that may appear after A in the any 

derivation. 

S --*--> aaXdd 

S --*--> Xa 
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S --*--> BXc 

Then 

FOLLOW(X) = {d,a,c} 

 

 

 

 

 

 

 

Rules To Compute FIRST() and FOLLOW() Sets 

 

1. FIRST(λ) = {λ}. 

2. FIRST(a) = { a }. 

3. FIRST(aα)= {a}. 

4. FIRST(XY) =  FIRST(FIRST(X).FIRST(Y)) OR  

FIRST(X.FIRST(Y)) OR  

FIRST(FIRST(X).Y). 

5. Given the production A --> αXβ, Then :  

a. FIRST(β) ⊂ FOLLOW(X) if β ≠ λ.  

b. FOLLOW(A) ⊂ FOLLOW(X) if β = λ 

 

 

Note that the FIRST() and FOLLOW() sets are made of terminals only 

 

Notes : 

1. λ may appear in FIRST() but it doesn't appear in FOLLOW(). We will see this when 

we define augmented grammars. 

2. Generally, we start computing the FIRST() from bottom to top, But FOLLOW() from 

top to bottom. 

3. When we compute FOLLOW(X), we search for X in the right side of any production. 
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Augmented Grammars 

 

Given the grammar G=(VN,VT,S,P), then the augmented grammar G`=(VN`,VT`,S`,P`) 

can be obtained from G as follows: 

1. VN` = VN ∪ {S`}. 

2. VT` = VT ∪ { $ }. 

3. S` = new starting point. 

4. P = P Ս {S’ -->S$} 

 

For example : 

 

E --> E + T | T 

T --> T * F | F 

F --> (E) | a 

 

Becomes : 

 

G --> E$ 

E --> E + T | T 

T --> T * F | F 

F --> (E) | a 

This is because we want to create a FOLLOW() set for S. 

 

Example 1 : 

S` --> S$ 

S --> AB 

A --> a | λ 

B --> b | λ 

 

Let us compute the FIRST() sets for this grammar : 

FIRST(A) = {a,λ} 

FIRST(B) = {b,λ} 

FIRST(S) = FIRST(AB) = FIRST(FIRST(A).FIRST(B)) 

= FIRST({a,λ}.{b,λ}) 

= FIRST({ab,a,b,λ}) 
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= {a,b,λ} 

FIRST(S`) = FIRST(S$) = FIRST(FIRST(S).FIRST($)) 

= FIRST({a,b,λ}.$)= FIRST(a$,b$,$) 

= {a,b,$} 

 

Now Let us compute the FOLLOW() sets for this grammar : 

FOLLOW(S) = {$} 

FOLLOW(A) = {b,$} 

FOLLOW(B) = {$} 

 

Example 2 : 

S` --> S$ 

S --> aAcb 

S --> Abc 

A --> b | c | λ 

 

Let us take the FIRST() for this grammar : 

FIRST(A) = {b,c,λ} 

FIRST(S) = FIRST(aAcb)∪FIRST(Abc) = {a,} ∪{b,c} 

= {a,b,c} 

FIRST(S`) = FIRST(S$) = FIRST(FIRST(S).FIRST($)) 

= FIRST({a,b,c}.{$}) 

= {a,b,c} 

 

Now let us take the FOLLOW() : 

FOLLOW(S) = {$} 

FOLLOW(A = {c,b} 

 

Example 3: 

 

G --> E$ 

E --> E + T | T 

T --> T * F | F 

F --> (E) | a 
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Let us calculate FIRST() : 

FIRST(F) = {(,a} 

FIRST(T) = FIRST(T* F)∪FIRST(F) = FIRST(T* F)∪{(,a} 

= {(,a} (Because every T will eventually become an F) 

FIRST(E) = FIRST(E + T) ∪ FIRST(T) = {(,a} ∪ {(,a} 

= {(,a} 

FIRST(G) = FIRST(E$) = {(,a} 

 

Now let us Calculate FOLLOW() : 

FOLLOW(E) = {$,+,)} 

FOLLOW(T) = FOLLOW(E) ∪ {*} = {$,+,*,)} 

FOLLOW(F) = FOLLOW(T) = {$,+,*,)} 

But what makes all this so important? 

Well, All of the parsing techniques we are going to depend will heavily on FIRST() and 

FOLLOW(). 

 

Extended BNF Notation 

So far, we have been using BNF Notation(Production rules) to express languages. 

However, there is another form to 

Express a language, which is Extended BNF Notation 

if there is repetition in the grammar, say in the example of the grammar 

 

E --> E + T | T 

T --> T * F | F 

F --> (E) | a 

which can give us a derivation in the form of 

E --> E + T --> E + T + T --> E + T + T + T --> T + T + T + T....+T 

or in the same line, 

 

T --> T* F --> T* F* F --> T* F*F* F --> T* F*F*F.... F 

We can express this grammar as : 

E --> T { + T } 

T --> F { * F } 

F --> (E) | a 
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We know that [x] means that we take x 0 or 1 time only. 

However, { x } means we take x zero or any number of times. This is equivalent to (x)* 

We can also express this grammar as: 

 

E --> T (+ T)* 

T --> F (* F)* 

F --> (E) | a 

 

Syntax Diagrams 
 
Another way to express languages are Syntax Diagrams. These are used only with 

Extended-BNF notation. 

A square shape represents a nonterminal and an oval shape represents a terminal. 

DRAW 
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Recursive Descent Parsing 
 

Recursive Descent Parsing is very simple. It works like this : 

 

Divide the grammar into primitive/simple components 

 

1- For the token "a" : 

 

If(token == "a") 

get-next() 

else 

report-error() 

 

 

2- For    X = α1 α2 ...αn : 

 

Code(X): 

{ Code(α1); 

Code(α2); 

 . 

 . 

 Code(αn); 

} 

 

 

3- For    X = α1  |  α2 |  ...  |  αn ,  If none of the αi’s = λ 

 

 

Code(X):  

{ If (token ϵ FIRST(α1))  

     Code(α1); 

Else 

If (token ϵ FIRST(α2))  

     Code(α2); 

Else 

. 

 . 

  Else 

   If (token ϵ FIRST(αn))  

        Code(αn); 

  Else 

   Report-error(); 

} 

 
Uploaded By: Ayham NobaniSTUDENTS-HUB.com



 

 

 

4- For    X = α1  |  α2 |  ...  |  αn= λ ,  If one of the αi’s = λ, say αn= λ 

 

Code(X):  

{ If (token ϵ FIRST(α1))  

     Code(α1); 

Else 

If (token ϵ FIRST(α2))  

     Code(α2); 

Else 

. 

 . 

  Else 

   If (token ϵ FIRST(αn-1))  

        Code(αn-1); 

  Else 

    If (token  is not ϵ FOLLOW(X))  

    Report-error(); 

} 

 

5- For X= α* 

 

Code(X):  

 

 While (token ϵ FIRST(α)) 

  Code(α); 

 

 

Notes : 

1. Every nonterminal has a code(a function). 

2. S` in augmented grammar is represented by the function "main". 

3. We only start with calling "get-token" in function "main". 

 

 

 

 

 

Example: 

 

G --> E$ 

E --> T( + T )* 

T --> F( * F )* 

F --> ( E ) | a 
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main(){       //represents G 

get-token; 

call E(); 

if(token!="$") 

Error; 

else 

Successful parsing; 

} 

 

function E(){  // E  T (+ T)* 

call T (); 

while(token == "+"){ 

get-token(); 

call T () 

} 

} 

 

function T() { //T--> F (* F)* 

call F (); 

while(token == "*"){ 

get-token(); 

call F (); 

} 

} 

 

function F(){ //F--> ( E )  |  a 

if(token == "(") 

{ 

get-token(); 

call E(); 

if(token == ")") 

get-token();  

else 

ERROR; 

} 

Else 

if(token=="a") 

get-token(); 

else 

ERROR; 

} 

 

Note that ERROR is a function we should write. 
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Example: 

 

Given the grammar : 

Program --> body . 

body --> Begin stmt (; stmt)* End 

stmt --> Read | Write | body | λ 

 

and 

VN = { Program, body, stmt} 

VT = { ., Begin, ;, End, Read, Write} 
 

examples of programs of this language would be: 

 

Begin 

Read; 

Write; 

Read; 

Write; 

End. 

 

Or 

 

Begin 

Read; 

End. 

 

Or 

 

Begin 

Read; 

Begin 

Read; 

Write; 

End. 

Write; 

End. 

 

Or 

 

Begin; 

; 
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; 

; 

End. 

 

Let us write the recursive descent code for this programming language. 

 

main(){ 

get-token(); 

call body(); 

if(token != "."){ 

ERROR; 

} 

Else { 

SUCCESS; 

} 

} 

 

function body()  

{ if(token == "Begin") 

{get-token(); 

call stmt(); 

while(token ==";") 

{ get-token(); 

  call stmt(); 

} 

if(token == "End") 

get-token(); 

else 

ERROR; 

} 

else 

ERROR; 

} 

 

function stmt() 

{ 

if(token == "Read") 

get-token(); 

else  if (token == "Write") 

get-token(); 

else if(token == "Begin") 

call body(); 

else  

if(token != ";" || token != "End" ) 

ERROR(); 

} 
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LL(1) Parsing 

 

This Parsing method is a table-driven parsing method. The LL(1) parsing table 

selects which production to choose for the next derivation step. 

 

Formal Definition of LL(1) 

 

The Formal definition of LL(1) grammars is given by : 

DEF: Given the Productions : 

A --> α1 

A --> α2 

A --> α3 

. 

. 
A --> αn 

then the grammar is LL(1) if : 

1. FIRST(αi)∩FIRST(αJ) = ∅ for all i,j if none of the αi =  λ 

2. if one of αi is λ,αn = λ, in addition to 1 

 FIRST(αi)∩follow(A) = ∅ , for , ∀ i < n 

 

For example, Given the grammar : 

S’ --> S$ 

S --> aABC 

A --> a | bbD 

B --> a | λ 

C --> b | λ 

D --> c | λ 

 

let us see if it is LL(1) 

FIRST(a)∩FIRST(bbD) = ∅ 

FIRST(a)∩FOLLOW(B) = ∅ 

FIRST(b)∩FOLLOW(C) = ∅ 

FIRST(c)∩FOLLOW(D) = ∅ 

Then this grammar is LL(1). 
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Given another Grammar : 

S` --> S$ 

S --> aAa | λ 

A --> abS | λ 

FIRST(aAa)∩FOLLOW(S) = {a}∩{$,a} = {a} ≠ ∅ 

This grammar is not LL(1). 

 

 

LL(1) Parsing Table Building Algorithm 

 

Let us assume that we have a grammar that is LL(1). How do we build the LL(1) parsing 

table? 

 

1.  For each production A --> α in the grammar G, 

Add to the table entry T[A,a] the production A --> α, where a ∈ FIRST(α) 

     If λ ∈ FIRST(α), Add to the table entry T[A,b] the production A --> α , 

∀ b ∈ FOLLOW(A). 

2. All Remaining Entries are Error Entries. 

 

For example, given the grammar : 

V --> SR $1 

S --> +2 | -3 | λ4 

R --> dN.N5 | .dN6 

N --> dN7| λ8 

note that the superscript denotes the  

production number. 

 

FIRST(SR $) = {+,-,d,.} 

FIRST(+) = {+} 

FOLLOW(S) = {d,.} 

FIRST(R) = {d, .} 

FIRST(d) = { d } 

FOLLOW(N) = {d, ., $} Uploaded By: Ayham NobaniSTUDENTS-HUB.com



 

V N 
\V T 

+ - d . $ 

V 1 1 1 1  

S 2 3 4 4  

R   5 6  

N   7 8 8 

 

There should be no conflict(multiple entries) in the LL(1) table. 
L(G) of this grammar = all floating point numbers. 
 
The parser works like this 

Stack Remaining Input Action 

V -dd.d$ Production 1 

SR$ -dd.d$ Production 3 

-R$ -dd.d$ Pop & advance input 

R$ dd.d$ Production 5 

dN.N$ dd.d$ Pop & advance input 

N.N$ d.d$ Production 7 

dN.N$ d.d$ Pop & advance input 

N.N$ .d$ Production 8 

.N$ .d$ Pop & advance input 

N$ d$ Production 7 

dN$ d$ Pop & advance 

N$ $ Production 8 

$ $ Pop and Advance 

λ λ Accept 

 

If at any point the parser reaches a place where the input and the stack have 2 different 
terminal symbols, it throws a syntax error. 
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Let us Take another example. Let the Grammar be : 

program --> block $ 1 

block --> { decls    stmts } 2 

decls --> D ; decls 3 | λ 4 

stmts --> statement ; stmts 5 | λ 6 

statement --> if 7 | while 8 | ass 9 | scan 10 | print11 | block 12 | λ13 

VT = {$,{,},D,;,if,while,ass,scan,print} 

 

V N \V T if while ass scan print { } D ; $ 

Program      1     

block      2     

decls 4 4 4 4 4 4 4 3 4  

stmts 5 5 5 5 5 5 6  5  

statement 7 8 9 10 11 12   13  

 

Another example is the If..else statement with a delimiter. the grammar looks like this : 
 

S` --> S$ 

S --> iCSE 

E --> eS | λ 

S --> a 

C --> c 

 

V N | V T i a e c $ 

S ` 1 1    

S 2 5    

E   3,4  4 

C    6  
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There is a conflict. To solve this, we can add a delimiter. 

 

S` --> S$ 

S --> iCSEd 

E --> eS | λ 

S --> a 

C --> c 

V N \V T i a e c d $ 

S ` 1 1     

S 2 5     

E   3  4  

C    6   

 

 
 
 
 
 
 
 
 
 
 
 
The grammar is now unambiguous.  
 
Alternatively, we can just remove  out the production  4 in the conflict entry from the LL(1) table. 
 
The New table is: 
 

V N \V T i a e c d $ 

S ` 1 1     

S 2 5     

E   3  4  

C    6   
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Note:  
- if a grammar is LL(1), then it is unambiguous. However, the opposite is not 

necessarily true. 
- Another thing to note is that in Top-Down parsing, we should avoid a grammar 

that is not LL(1). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Problems with Topdown parsing; 

 
 

Ambiguity 
 

Given the following grammar :  
 
num --> num d 

num --> d 

 

Let us draw the derivation tree for the sentence  dddd 
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Question : is there another derivation tree that 

represents the sentence? The answer is no. 

If there is only one derivation tree representing the sentence, this means there 

is only one way to derive the sentence. Based on this, we can say that : 

Def: A Grammar G is said to be ambiguous if there is at least 

one sentence with more than one derivation tree. That is, 

there are more than one way to derive the sentence. 

This means that our algorithm is non-deterministic. 

 

 
EX: given the grammar:  

E --> E + E 

E --> E * E  

E --> (E) | a 

 

Take the sentence : a + a * a 

Let us draw the derivation tree 
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Due to the fact that we have 2 trees that give the same result, we can 

say that this grammar is ambiguous. In this case, to enforce the 

associativity rule, this grammar can be re-written as : 

E --> E + E   |   T  

T --> T*T   |   F 

F--> (E)  |  a 

 

Now, Take the sentence a + a * a and find  

the derivation tree now. 
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There is only  possible derivation trees now. This solves the associativity problem 

with + and * of the grammar before with the operations. 

 

But  Let us say we have the sentence : a + a + a 

 

 Let us try to find the derivation tree and any alternative trees. 

 
 
 
 
 
 
 
 
 
 
 

 

We can see here that there is more than 1 derivation tree, and the language is still 

ambiguous. 

 

We can solve this if we rewrite the grammar with the left-associative rule 

 

E --> E + T | T 

T --> T * F | F 

F --> (E) | a 

 

The grammar now is left-associative. This grammar solves the problems of : 

 ambiguity. 

 precedence. 

 associativity. 

 

Let us try rewriting it with the right-associative rule 

E --> T + E | T 

T --> F * T | F 

F --> (E) | a 

Let us try creating the derivation tree of a + a * a 

 
Uploaded By: Ayham NobaniSTUDENTS-HUB.com



 

 

Now let us check the derivation tree of a + a + a 
 

 

 

This new grammar is not ambiguous, however, however it does not solve the fact  

That associativity issue according to our standard. 
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left-recursive Grammar  

 

This causes problems when it comes to Top-down parsing techniques(see why later). 

Def: A grammar is said to be left recursive if there is a production of the form: 

A-->Aα 

Conversely, a grammar is right-recursive if there is a production of the form: 

A-->αA 

which causes no problems in top-down parsing. 

 

The solution is to transform the grammar to a grammar which is not left-recursive. 

 

Algorithm. 

Given that: 

A-->Aα1 | Aα2 | …...| Aαn 

A-->β1 | β 2 |  …...| βm 

 

To do this, we must introduce a new non-terminal, say A`. 

The grammar now becomes : 

A--> β1A` |  β2A` |…...| βmA` 

A`-->α1 A`| α2 A` | …...  |αn A` |  λ 

 

For example, say we have 

A-->Ab 

A-->a 

L(G)=ab* 

 

Then according to the above 

A-->aA` 

A`-->bA` | λ 

 

which results in the same grammar. 

 

 

 

Let us apply this to the grammar : 
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E --> E + T | T 

T --> T * F | F 

F --> (E) | a 

 

Then the new grammar : 

E --> T E` 

E` --> + T E` | λ 

T --> F T` 

T` --> * F T` | λ 

F --> (E) | a 

 

This grammar is now perfect. It solves all our ambiguity issues, and this is a grammar 

we can use to construct the production rules for our programming language. 

 

Another ambiguity in programming languages is the if...else statement. 

 

stmt --> if-stmt   |  while-stmt  | .... 

if-stmt --> IF  condition  stmt 

if-stmt --> IF condition   stmt     ELSE  stmt 

condition --> C 

stmt --> S  

 

This grammar is ambiguous. 

Let us take the following nested if...else statement : 

IF C 

   IF C 

      S 

   ELSE 

     S 

This statement results in 2 derivations trees. 

Draw the two derivation Trees 
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The first results in the ELSE belonging to the first IF , while the second results in the 

ELSE belonging to the second IF .  

The second tree is the correct one since we know that the ELSE statement follows the 

nearest IF . 

 

But how can the compiler behaves in this case? 

There are a bunch of solutions to this problem: 

 

1. Add a delimiter to the IF statement, such as ENDIF or END or FI to the end of the 

statement, resulting in these 

productions : 

 

if-stmt --> IF condition stmt ENDIF 

if-stmt --> IF condition stmt ELSE stmt ENDIF 

Resulting in this statement : 

``` 

IF C 

    IF C 

        S 

    ELSE 

        S 

    ENDIF 

ENDIF 

``` 

The grammar is now unambiguous, since we have to clearly state whenan ```IF``` 

statement ends.  

However, this is not a pretty solution, 

and is extra work for both the programmer and compiler, and result in less readable 

code. 

 

2. Make the compiler always prefers to shift the ELSE when it sees the ELSE  in the 

source code.  
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Left Factoring 

 

Consider the productions : 

A --> αβ 

A --> αγ 

Note how the first part of the productions is the same. This grammar can be 

transformed by introducing a new non-terminal B, 

So what happens now is: 

A --> αB 

B --> βγ 

For our grammar, this results in 

if-stmt --> IF condition stmt 

if-stmt --> IF condition stmt ELSE stmt 

 

becomes: 

if-stmt --> IF conditon stmt else-part 

else-part --> ELSE stmt | λ 

 

Does this solve the ambiguity? No, but it helps in removing choices, since the if-stmt is 

now one production. If we look at the 

statement : 

IF C 

   IF C 

      S 

   ELSE 

     S 

It still has 2 derivation trees 

 

 

 

 

 

 

 

 

 

 Uploaded By: Ayham NobaniSTUDENTS-HUB.com



Bottom-Up Parsing  

 

Recall that in Bottom-Up parsing, the parser starts from the given sentence, applying 

reductions until it reaches the starting symbol of the grammar or a deadlock.  

 

The major problem with Bottom-Up parsing is which substring we should select in each 

reduction step. 

 

The answer to the above question is :  

In each reduction step, we select what is called the handle. 

 

DEF : The Handle is obtained by a rightmost derivation in reverse. 

 

 

For example, Given the grammar : 

 

V --> S R $ 

S --> +|-|λ 

R --> .dN | dN.N 

N --> dN | λ 

 

and the sentence 

-dd.d$ 

 

First, we derive the sentence rightmost. 

V --rm--> SR$ --rm--> SdN.N$ --rm--> SdN.dN$ --rm--> SdN.d$ --rm--> SddN.d$ --rm--

> Sdd.d$ --rm--> -dd.d$ 

 

So our handles would be : 

 

V <-- SR$ <-- SdN.N$<-- SdN.dN$ <-- SdN.dλ$ <-- SddN.d$ <-- Sddλ.d$ <-- -dd.d$ 

 

But Compilers do not work like this. We already derived the sentence, why would we go 

back and do it again? 
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We could not build a Bottom-Up parser for every Context-Free Grammar. However, we 

are fortunate enough that there exist subsets of the Context-Free Grammar for which 

we can build a deterministic Bottom-Up parser i.e. the parser can determine/decide 

precisely where the handle is in each reduction step. 

some of these subsets are: 

 

LR Parsers : 

- SLR(Simple-LR). 

- LALR(Look-Ahead LR). 

- LR. 

Operator Precedence. 

 

We will only be talking about the LR parsers, just to get an idea of how Bottom-Up 

parsing works. 

 

  

SLR Parsing 

 

SLR parsing, and LR parsing in general, is a table driven parsing method. 

All LL(1) grammars are a subset of SLR grammars. 

 

All LR parsers contains : 

 

1. A parsing table. 

2. A stack. 

3. The input string. 

 

As a reminder, the LL(1) parser contains : 

1. A parsing table. 

2. A stack. 

3. The input string. 

 

However, the way we build it is different. 

 

 

Uploaded By: Ayham NobaniSTUDENTS-HUB.com



 

Building the SLR Parsing Table 

 

Def: An LR(0) item of a grammar G is a production in G with a dot(.) at some 

position in the right side. 

 

For example, the production 

A --> aBY 

This production generates the following LR(0) items : 

A --> .aBY 

A --> a.BY 

A --> aB.Y 

A --> aBY. --> complete item 

 

Note that for A --> λ, this generates only A --> λ. . 

Generally speaking, if the right side of the production is of length n, then there are n+1 

LR(0) items. 

 

The LR(0) item 

A --> aB.Y 

Means that the parser has scanned on the input a string derived from aB and expects 

to see a string derived from Y . 

 

We need to define the following 2 functions. 

 

The CLOSURE function 

 

function CLOSURE(I) //  I is a set of LR(0) items 

{ Repeat 

    For (every LR(0) item A-->α.Bβ in I, and for every production B--> δ in G, 

Add the LR(0) item B-->.δ to I)  //  B belong to VN , that is B in noneterminal 

Until no more items to be added; 

} 
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Let us apply this to our grammar : 

(1) E --> E+T 

(2) E --> T 

(3) T --> T*F 

(4) T --> F 

(5) F --> (E) 

(6) F --> a 

 

This grammar is not LL(1) because 

FIRST(T*F)∩FIRST(F) = {(,a} ≠ ∅ 

 

We will need to build the LR(0) sets of items. 

we start with : I0: E` --> .E 

CLOSURE(I0) 

 

I0: E`-->.E  

     E-->.E+T  

     E-->.T  

     T--> .T*F  

     T-->.F  

     F-->.(E)  

     F-->.a 

 

The GOTO function 

 

function GOTO(I,X)  = 

CLOSURE(all items A-->αX.β Where A-->α.Xβ in I) 

 

Let us apply this to the grammar above. groups: 

 

I1 : E-->.E, E-->.E+T 

I2 : E-->.T, T--> .T*F 

I3 : T-->.F 
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I4 : F-->.(E) 

I5 :F-->.a 

and take the CLOSURE for all these sets. The resultant is : 

I0:   E`-->.E  I1 
      E-->.E+T  I1 
      E-->.T  I2 
      T--> .T*F  I2 
      T-->.F  I3 
      F-->.(E)  I4  
      F-->.a  I5 
 
I1 :  E’-->E. C  

E-->E.+T I6 
 

I2 :  E-->T. C  
T--> T.*F I7 
 

I3 :  T-->F.  C 
 
I4 :  F-->(.E) I8  

E --> .E+T I8 
E-->.T I2 
T-->.T*F I2 
T-->.F  I3  
F-->.(E) I4  
F-->.a  I5 
 

I5 :  F-->a.  C 
 
I6 :  E-->E+.T I9 

T-->.T*F I9 
T-->.F  I3  
F-->.(E) I4 
F-->.a  I5 
 

I7 : T-->T*.F I10 
F-->.(E) I4 
F-->.a  I5 
 

I8 :  F-->(E.) I11 
E-->E.+T I6 
 

I9 :  E --> E+T. C   
T --> T.*F I7 
 

I10 :  T --> T*F. C 
 
I11 :  F --> (E). C 
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Constructing the SLR table 

 

Input : LR(0) sets of items 

Output : SLR(1) parsing table 

1. For every item A-->α.aΒ in Ii, a ∈ VT , and GOTO(Ii,a)=Ij, then set: ACTION[i,a]=Sj(shift 

and push j on top stack). 

2. For item A-->α.(complete item) in Ii, ACTION[i,b]=Reduce by A-->α FOR ALL b ∈ 

FOLLOW(A). 

3. For S` --> S. in Ii, ACTION[i,$] = Accept. 

4. If GOTO(Ii,A) = Ij then set, GOTO(i,A) = j. 

5. All remaining entries are error entries. 

 

Let us apply this to the example above and generate the table 

 

 

 

 

   ACTION    GOTO 

State/
token 

a + * ( ) $ E T F 

0 S5   S4   1 2 3 

1  S6    A    

2  R2 S7  R2 R2    

3  R4 R4  R4 R4    

4 S5   S4   8 2 3 

5  R6 R6  R6 R6    

6 S5   S4    9 3 

7 S5   S4     10 

8  S6   S11     

9  R1  S7 R1 R1    

10  R3 R3  R3 R3    

11  R5 R5  R5 R5    
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No conflict --> SLR(1) grammar 
 
 

Parsing The SLR Table 
 
E --> E+T 
E --> T 
T --> T*F 
T --> F 
F --> (E) 
F --> a 
Let us examine the sentence    a + a $ 
 
 

Stack Remaining Action 

0 a + a $ S5 

0 a 5 + a $ R6 

0 F 3 + a $ R4 

0 T 2 + a $ R2 

0 E 1 + a $ S6 

0 E 1 + 6 a $ S5 

0 E 1 + 6 a 5 $ R6 

0 E 1 + 6 F 3 $ R4 

0 E 1 + 6 T 9 $ R1 

0 E 1 $ Accept 
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LR Parsing Techniques 

 

The main difference between LR and SLR is the CLOSURE function,  

  

function CLOSURE(I) //I is a set of LR(1)items 

{   Repeat 

for(every LR(1) item [A-->α.Bβ, a] in I, and for every production B--> δ in G, 

   Add the LR(1)item [B-->. δ, b] where b belongs to FIRST(βa)to I) 

    Until no more items to be added; 

} 

 

Where An LR(1) item is an LR(0) item with a Look-ahead Symbol.  

 

For example [A --> α.Β , a] where a is the look-ahead. The look-ahead symbol "a" has 

no effect whatsoever on an item [A --> α. β,a] β ≠ λ. 

 

(not complete item) However, if the item is a complete [A --> α.,a], this means we reduce 

by the production A --> α on token "a". 

 

For example, Give the grammar : 

 

     S’ --> S 

(1) S --> CC 

(2) C --> cC 

(3) C --> d  

 

I0: 

S` --> .S  $  I1 

S --> .CC $  I2 

C --> .cC c,d  I3 

C --> .d  c,d  I4 

 

I1: 

S` --> S.  $  Accept 

 

I2: 

S --> C.C  $  I5  

C --> .cC  $  I6 

C --> .d  $  I7 

 

I3: 

C --> c.C   c,d  I8 

C --> .cC  c,d  I3 
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I4: 

C --> d. c,d  Complete 

 

I5 : 

S --> CC.  $  Complete 

 

I6 : 

C --> c.C   $  I9 

C --> .cC   $  I6 

C --> .d   $  I7 

 

I7 : 

C --> d.  $  Complete 

 

I8 : 

C --> cC.  c,d  Complete 

 

I9 : 

C --> cC.  $  Complete 

The above are the LR(1) sets of items 
 
 
    ACTION    GOTO 
 

V c d $ S C 

0 S3 S4  1 2 

1   A   

2 S6 S7   5 

3 S3 S4   8 

4 R3 R3    

5   R1   

6 S6 S7   9 

7   R3   

8 R2 R2    

9   R2   

 
 
 
 

No conflict, the grammar is an LR grammar. 
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If we look at the above example, we can see that some sets of items have the 

same core items(LR(0) items), but the look-ahead is different.  

For example (I7 , I4), (I3 , I6), (I8 , I9). Let us say we merge the states.  

 

    ACTION    GOTO 

 

V c d $ S C 

0 S3 S4  1 2 

1   A   

2 S3 S4   5 

3 S3 S4   8 

4 R3 R3 R3   

5   R1   

8 R2 R2 R2   

 

 

 

 

This is now a simplified table. if the parsing table after merging has no conflicts(like in the 

above example), then the grammar is an LALR(1) Grammar. 
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