
ENCS5337: Chip Design Verification

Spring 2023/2024

SystemVerilog II

Dr. Ayman Hroub

STUDENTS-HUB.com

https://students-hub.com

2

Outline

 Classes

 Static Properties and Methods

 Aggregate Classes

 Inheritance

 Polymorphism

 Randomization

STUDENTS-HUB.com

https://students-hub.com

3

Classes (1)

 Class is a user-defined data type

 Classes must be declared in a module, package, interface, or a

program.

 Class declaration contains data items (attributes/properties), and

subroutines (tasks and functions) operate on these data items

 Class objects can be dynamically created and deleted during

simulation

 Used in Object-Oriented (OO) programming for testbenches and

simulation models
module myModule

class myClass

bit[7:0] address;

bit[7:0] data;

endclass

…

STUDENTS-HUB.com

https://students-hub.com

4

Classes (2)

 A variable of a class type is called a handle whose unintialized
value is null.

 A class instance must be created for handle using a constructor.

 Procedural call to function new

 It allocates memory area to hold the instance

 SystemVerilog has no destructor, i.e., automatic garbage

collection
module myModule

class myClass

bit[7:0] address;

bit[7:0] data;

endclass

myClass obj1 = new;

…

STUDENTS-HUB.com

https://students-hub.com

5

Class Attributes and Methods

class myClass

int address;

int data;

task setData (input int newData)

data = newData

endtask

function int getData()

return data;

endfunction

...

endclass

myClass obj1 = new;

initial begin

obj1.data = 10; // or obj1.setData(10)

end

STUDENTS-HUB.com

https://students-hub.com

6

External Method Declaration

 It is used for better readability

 Define the method prototype in the class prefixed by the
keyword extern

 The prototype is the first line that identifies the method

type, name, and arguments

extern function int getData();

 Then, the method is implemented outside the class

declaration, but in the same scope

function int myClass::getData();

return data;

endfunction

STUDENTS-HUB.com

https://students-hub.com

7

External Method Example

STUDENTS-HUB.com

https://students-hub.com

8

Implicit (Default) Class Constructor

 Method new is special class method called

constructor.

 Defined by default for all classes.

 When the object is created using the new

constructor, the object’s fields are

initialized to their default initial values

based on their data type

STUDENTS-HUB.com

https://students-hub.com

9

Explicit Class Constructor

 You can explicitly define the constructor to

initialize the object’s fields

 The function new will not have a return

type, even it is not allowed to have a void

as a return value

class myClass

int address;

function new()

address = 100;;

endfunction

...

endclass

myClass obj1 = new; //obj1.data is 100

STUDENTS-HUB.com

https://students-hub.com

10

Explicit Constructor with Arguments

class myClass

int address;

function new(input int a)

address = a;;

endfunction

...

endclass

myClass obj1 = new (200); //obj1.data is initialized to 200

STUDENTS-HUB.com

https://students-hub.com

11

Complete Class Example

STUDENTS-HUB.com

https://students-hub.com

12

this Keyword

 The this keyword is used to unambiguously refer to

class properties, value parameters, local value

parameters, or methods of the current instance.

 this keyword shall be used within non-static class

methods, constraints, etc.

class Demo;

integer x;

function new (integer x);

this.x = x;

endfunction

endclass

STUDENTS-HUB.com

https://students-hub.com

13

Outline

 Classes

 Static Properties and Methods

 Aggregate Classes

 Inheritance

 Polymorphism

 Randomization

STUDENTS-HUB.com

https://students-hub.com

14

Static Attributes

 The class attributes are dynamic by default,

i.e., each class instance has its own copy of

the attributes

 Regarding static attributes, one copy of the

attribute is shared among all class objects

 They are allocated in memory at elaboration

 They can be accessed using null handles

STUDENTS-HUB.com

https://students-hub.com

15

Static Attributes: Example

STUDENTS-HUB.com

https://students-hub.com

16

Static Methods

 Can only access static attributes or other

static methods

 Besides any class handle, they can be

called from the class name using the

resolution operator ::

STUDENTS-HUB.com

https://students-hub.com

17

Static Methods Example

STUDENTS-HUB.com

https://students-hub.com

18

Outline

 Classes

 Static Properties and Methods

 Aggregate Classes

 Inheritance

 Polymorphism

 Randomization

STUDENTS-HUB.com

https://students-hub.com

19

Aggregate Classes

 A class attribute can be an instance of

another class

 The constructors of the class attributes

must be called explicitly.

 Instance handles must be chained to

reach into hierarchy

STUDENTS-HUB.com

https://students-hub.com

20

Aggregate Class Example

STUDENTS-HUB.com

https://students-hub.com

21

Outline

 Classes

 Static Properties and Methods

 Aggregate Classes

 Inheritance

 Polymorphism

 Randomization

STUDENTS-HUB.com

https://students-hub.com

22

Inheritance (1)
 A class extends another class using the keyword extends.

 Only single inheritance is allowed, i.e., each subclass has

only one parent

 The subclass inherits all the members of the parent class

 It can add more members

 It can re-declare (override) parent members

 Parent members are accessed as if they were members of

the subclass

 The parent’s constructor is automatically called by the

subclass constructor

 As the first line of the of the subclass’s constructor

STUDENTS-HUB.com

https://students-hub.com

23

Inheritance (2)

STUDENTS-HUB.com

https://students-hub.com

24

Inheritance (3)
 Super keyword allows the subclass to access the parent

members

 You can only pass arguments one level at a time.
super.super.new() is NOT allowed

STUDENTS-HUB.com

https://students-hub.com

25

Simple Inheritance Example

STUDENTS-HUB.com

https://students-hub.com

26

Inheritance with Constructors Example

STUDENTS-HUB.com

https://students-hub.com

27

Polymorphism (I)

 Polymorphism allows the use of a variable of the

superclass (even if it is an abstract class) type to hold

subclass objects and to reference the methods of those

subclasses directly from the superclass variable

(handle).

 packets[1].send(); shall invoke the send method

associated with the TokenPacket class

BasePacket packets[100];

EtherPacket ep = new; // extends BasePacket

TokenPacket tp = new; // extends BasePacket

packets[0] = ep;

packets[1] = tp;

STUDENTS-HUB.com

https://students-hub.com

28

Polymorphism (II)

STUDENTS-HUB.com

https://students-hub.com

29

Virtual Methods

 A method of a class may be identified with the keyword
virtual

 A virtual method shall override a method in all of its base classes

 A non-virtual method shall only override a method in that class

and its descendants

 Virtual method overrides in subclasses shall have the same

prototype of the function in the superclass including the

arguments names.

 However, the return type of a virtual function shall be either a

matching type or a derived class type

STUDENTS-HUB.com

https://students-hub.com

30

Virtual Methods Example

STUDENTS-HUB.com

https://students-hub.com

31

Abstract Classes & Pure Virtual Methods (1)

 A base class may be characterized as being abstract by
identifying it with the keyword virtual

 We cannot construct objects directly from an abstract class

 The abstract class constructor may only be called indirectly

through the chaining of constructor calls originating in an

extended non-abstract object.

 A pure virtual is a method in an abstract class that is declared

as a prototype only without providing an implementation

 The pure virtual method shall be indicated with the
keyword pure together without an implementation

 An extended subclass may provide an implementation by

overriding the pure virtual method with a virtual method

having a method body.

STUDENTS-HUB.com

https://students-hub.com

32

Abstract Classes & Pure Virtual Methods (2)

 Abstract classes may be extended to further abstract

classes

 But, all pure virtual methods shall have overridden

implementations in order to be extended by a non-

abstract class

 Any class may be extended into an abstract class, and

may provide additional or overridden pure virtual

methods.

STUDENTS-HUB.com

https://students-hub.com

33

Abstract Class Example

STUDENTS-HUB.com

https://students-hub.com

34

Outline

 Classes

 Static Properties and Methods

 Aggregate Classes

 Inheritance

 Polymorphism

 Randomization

STUDENTS-HUB.com

https://students-hub.com

35

Randomization

 Class attributes can be defined as random using rand

and randc

 rand: random with uniform distribution

 randc : random-cyclic randomly iterates through all

values without repetition

– When an iteration is complete, a new random iteration

automatically starts

STUDENTS-HUB.com

https://students-hub.com

36

randomize() Function

 randomize() function randomizes the object’s random

attributes.

 Every class has a built-in randomize() virtual method.

 You cannot re-declare this method

 It returns 1 on success, 0 otherwise.

STUDENTS-HUB.com

https://students-hub.com

37

pre_randomize()and post_randomize()

 randomize() automatically calls two “callback”

functions:

– pre_randomize() before randomization.

– post_randomize() after successful randomization.

 If defined, these methods are automatically called on

randomization.

 The pre/post_randomize declarations must match

the prototypes shown, i.e., they must be void functions

with no arguments.

STUDENTS-HUB.com

https://students-hub.com

38

pre_randomize()and post_randomize()Example

STUDENTS-HUB.com

https://students-hub.com

39

Randomization in Aggregate Classes

 Randomize can operate hierarchically on aggregate

classes

– The class instance property must be declared as rand.

– Otherwise, that instance is skipped for randomization.

STUDENTS-HUB.com

https://students-hub.com

40

Randomization in Aggregate Classes: Example

STUDENTS-HUB.com

https://students-hub.com

41

In-Line Random Variable Control with randomize()

 Specific class variables can be randomized by passing

them as arguments.

– This allows nonrandom (state) properties to be randomized (not

cyclic)

STUDENTS-HUB.com

https://students-hub.com

42

Controlling Randomization: rand_mode()

 Every random attribute has an enable switch rand_mode

– Enabled by default (1)

– If disabled (0), the attribute will not be randomized

 Mode can be written with task rand_mode and read with

function rand_mode

 Called off a random property, the task changes the mode

of that property.

 Called off an instance, the task changes the mode or all

random properties of the instance.

 Only random attributes have rand_mode

– Calling method off a non-random attribute generates a compile

error

STUDENTS-HUB.com

https://students-hub.com

43

rand_mode()Example

STUDENTS-HUB.com

https://students-hub.com

44

Constraint Blocks

 Constraints restrict the random data generation to exclude

values or change the probability distribution

 Constraints can be embedded in classes using constraint

blocks

 You declare a constraint block as a class member with the
constraint keyword, followed by an identifier, followed

by a list of constraint items enclosed within curly braces {}

 A block can contain any number of any form of constraints

STUDENTS-HUB.com

https://students-hub.com

45

Constraint Blocks Example

STUDENTS-HUB.com

https://students-hub.com

46

Constraint Block Inheritance
 Constraint blocks are class members and are inherited

just like any other members

STUDENTS-HUB.com

https://students-hub.com

47

inside Operator

 The inside operator is particularly useful in constraint

expressions.

– The operator can also be negated to generate a value outside of a set.

STUDENTS-HUB.com

https://students-hub.com

48

Weight Distributions

 You can change distribution by defining weights for values using
the operator dist operator .

– Default value is 1

 := operator assigns weight to the item or every value in the range

 :/ operator divides the weight by the number of values in the

range, i.e., for a range of n values and a weight of w, the weight of

each individual value is w/n.

 Fractional weights are possible

 Negative weights are not possible

STUDENTS-HUB.com

https://students-hub.com

49

Weight Distributions Examples

STUDENTS-HUB.com

https://students-hub.com

50

Conditional Constraints

 Implication, using -> operator

 if … else

STUDENTS-HUB.com

https://students-hub.com

51

Iterative Constraints

 You can use a loop to apply separate constraints to each

array element

 Can affect performance for large arrays or complex

constraints.

STUDENTS-HUB.com

https://students-hub.com

52

Constraint_mode()

 Every constraint block has an enable switch called
constraint_mode.

– Enabled by default (1).

– If disabled (0), the constraint block will not be used.

 Mode can be written with task constraint_mode.

 Mode can be read with function constraint_mode.

 Only constraint blocks have constraint_mode.
STUDENTS-HUB.com

https://students-hub.com

53

Constraint_mode() Example

STUDENTS-HUB.com

https://students-hub.com

54

Randomization Procedure and Its Effects

 Randomization proceeds as follows:

– All randc properties randomized simultaneously.

– Then all rand properties randomized simultaneously.

– Then constraints are checked.

– Cycle iterates until a solution is found or the random space is

exhausted.

▪ You can only order rand variables of integral types.

STUDENTS-HUB.com

https://students-hub.com

