ENCS5337: Chip Design Verification
Spring 2023/2024

SystemVerilog Il

Dr. Ayman Hroub

SSSSSSSSSSSSSSSS

https://students-hub.com

Outline

= Classes

= Static Properties and Methods
= Aggregate Classes

= |[nheritance

= Polymorphism

= Randomization

SSSSSSSSSSSSSSSS

https://students-hub.com

Classes (1)

= (Class is a user-defined data type

= (Classes must be declared in a module, package, interface, or a
program.

= (Class declaration contains data items (attributes/properties), and
subroutines (tasks and functions) operate on these data items

= (Class objects can be dynamically created and deleted during
simulation

= Used in Object-Oriented (OO) programming for testbenches and
simulation models

module myModule
class myClass
bit[7:0] address;
bit[7:0] data;
endclass

STUDENTS-HUB.com

https://students-hub.com

Classes (2)

= A variable of a class type is called a handle whose unintialized
value is null.

= A class instance must be created for handle using a constructor.
= Procedural call to function new
= |t allocates memory area to hold the instance

= SystemVerilog has no destructor, I.e., automatic garbage
collection

module myModule
class myClass
bit[7:0] address;
bit[7:0] data;
endclass

myClass objl = new;

STUDENTS-HUB.com

https://students-hub.com

Class Attributes and Methods

class myClass
int address;
int data;

task setData (input int newData)
data = newData
endtask

function int getData ()
return data;
endfunction

endclass
myClass objl = new;
initial begin

objl.data = 10; // or objl.setData(10)
end

STUDENTS-HUB.com

https://students-hub.com

External Method Declaration

= |tis used for better readability

= Define the method prototype in the class prefixed by the
keyword extern

= The prototype is the first line that identifies the method
type, name, and arguments

extern function int getData() ;

= Then, the method is implemented outside the class
declaration, but in the same scope

function int myClass::getData() ;
return data;

endfunction

SSSSSSSSSSSSSSSS

https://students-hub.com

External Method Example

class myclass;
int number;

task set (input int 1i);
number = 1i;
endtask

|extern function int get();
’ endclass

function int myclass::get();
return number;
endfunction

myclass c2 = new;

initial begin

c2.set (3);

Sdisplay ("c2: %d", cZ.get());
end

STUDENTS-HUB.com

https://students-hub.com

Implicit (Default) Class Constructor

= Method new Is special class method called
constructor.

= Defined by default for all classes.

= When the object Is created using the new
constructor, the object's fields are
Initialized to their default Initial values
based on their data type

https://students-hub.com

Explicit Class Constructor

= You can explicitly define the constructor to
Initialize the object’s fields

= The function new will not have a return
type, even it is not allowed to have a void

as a return value

class myClass
int address;
function new()
address = 100;;
endfunction

endclass

myClass objl = new; //objl.data is 100

SSSSSSSSSSSSSSSS

https://students-hub.com

Explicit Constructor with Arguments

class myClass
int address;
function new(input int a)
address = a;;
endfunction

endclass

myClass objl = new (200); //objl.data is initialized to 200

SSSSSSSS -HUB.com 10

https://students-hub.com

Complete Class Example

class frame;
logic [4:0] addr;
logic [7:0] payload;
logic parity = 0;

function new (input int add, dat);
addr = add;
payload = dat;
genpar () ;

endfunction

function void genpar/();
parity = "“{addr, payload};
endfunction

function logic [13:0] getframe();
return({addr, payload, parity}):;

endfunction

endclass

logic [13:0] framedata;
frame one = new(3, 16);

initial begin

@ (negedge clk);
framedata = one.getframe();

end

STUDENTS-HUB.com

11

https://students-hub.com

this Keyword

= The this keyword is used to unambiguously refer to
class properties, value parameters, local value
parameters, or methods of the current instance.

= this keyword shall be used within non-static class
methods, constraints, etc.

class Demo;
integer X;
function new (integer X);
this.X = X;
endfunction
endclass

STUDENTS-HUB.com

https://students-hub.com

Outline

Classes

Static Properties and Methods
Aggregate Classes

nheritance

Polymorphism

Randomization

SSSSSSSSSSSSSSSS

13

https://students-hub.com

Static Attributes

SSSSSSSSSSSSSSSS

The class attributes are dynamic by default,
l.e., each class instance has its own copy of
the attributes

Regarding static attributes, one copy of the
attribute Is shared among all class objects

They are allocated in memory at elaboration
"hey can be accessed using null handles

14

https://students-hub.com

Static Attributes: Example

class frame;
static int frmcount;
int tag;
logic [4:0] addr;
logic [7:0] payload;
logic parity;

function new (input int add, dat);

addr = add;
payload = dat; £1
genpar () ; frmcount 1
. ta 1
frmcount++; adgr 1 Static property
= frmcount; shared b
tag : count payload 0 both instgnoes
endfunction ////’;mrum 1
frame f1 = new(l, 0);] /\
éﬁéclass = -
frame f2 = new (3, 2); | frmcount 2 frmcount 2
\ tag 1 tag 2
addr 1 addr 3
payload O payload 2
parity 1 parity 1

STUDENTS-HUB.com

https://students-hub.com

Static Methods

= Can only access static attributes or other
static methods

* Besides any class handle, they can be
called from the class name using the
resolution operator ::

SSSSSSSSSSSSSSSS

16

https://students-hub.com

Static Methods Example

class frame;
static int frmcount;
int tag;
logic [4:0] addr;
logic [7:0] payload;

logic parity;

frame £1, £2; Resolution operator access

function new(input int add, dat); int frames;

addr = add; initial begin

payload = dat; frames = frame::getcount(); // O

genpar () ; frames = f2.getcount () ; // 0

frmcount++;

tag = frmcount; fl = new(3,4);
endfunction f2 = new(5,0);

frames = f2.getcount () ; // 2

static function int getcount(); end S~

returnl (frmcount) ; Handle access
endfunction

endclass

STUDENTS-HUB.com 17

https://students-hub.com

Outline

Classes

Static Properties and Methods
Aggregate Classes
nheritance

Polymorphism

Randomization

SSSSSSSSSSSSSSSS

18

https://students-hub.com

Aggregate Classes

= A class attribute can be an instance of
another class

= The constructors of the class attributes
must be called explicitly.

= |[nstance handles must be chained to
reach into hierarchy

SSSSSSSS -HUB.com 19

https://students-hub.com

Aggregate Class Example

f
twoframe rame
2 | addr
. fl:frame
classlframe, <:>—+ payload
logic [4:0] addr; f2:frame parity
l?glc [?:O] payload; new
bit parity; new

function new (input int add, dat);

addr = add;
payload = dat; | lass twoframe;
genpar () ; frame f1;
cee frame £f2;
endfunction
... function new (input int basea, dl, d2);
endclass f1 = new (basea, dl);
£2 = new(baseatl, d2); |iucframe tfl = new(2,3,4);
endfunction initial begin
tfl.f2.addr = 4

Sdisplay("base %$h", tfl.fl.addr);

STUDENTS-HUB.com 20

https://students-hub.com

Outline

Classes

Static Properties and Methods
Aggregate Classes
nheritance

Polymorphism

Randomization

SSSSSSSSSSSSSSSS

21

https://students-hub.com

Inheritance (1)

A class extends another class using the keyword extends.

Only single inheritance is allowed, I.e., each subclass has
only one parent

The subclass inherits all the members of the parent class
= |t can add more members
= |t can re-declare (override) parent members

Parent members are accessed as if they were members of
the subclass

The parent’s constructor is automatically called by the
subclass constructor
= As the first line of the of the subclass’s constructor

STUDENTS-HUB.com

22

https://students-hub.com

Inheritance (2)

STUDENTS-HUB.com

Base Class Derived Class
base functions base functions
base data base data

class Base _
// base functions _
// base data

endclass

class Derived extends Base

// more functions
// more data
endclass

23

https://students-hub.com

Inheritance (3)

= Super keyword allows the subclass to access the parent
members

= You can only pass arguments one level at a time.
super.super.new () IS NOT allowed

SSSSSSSSSSSSSSSS

24

https://students-hub.com

Simple Inheritance Example

/| parent

class frame;/
logic [4:0] addr;
logic [7:0] payload;

bit parity;

class tagframe extends frame;
static int frmcount;
int tag;

endclass subclass

endclass
tagframe one = new();

initial begin
one.addr = 0;

frame

addr
payload
parity

T

tagframe

frmcount
tag

STUDENTS-HUB.comt

parent

subclass

tagframe

addr
payload
parity
frmcount
tag

conceptual

equivalent

25

https://students-hub.com

Inheritance with Constructors Example

parent
class frame;

logic [4:0] addr;
logic [7:0] payload;
bit parity;

function new(input int add, dat);
addr = add;
payload = dat;

genpar () ;
endfunction
endclass
subclass — subclass
class badtagframe extends frame; class goodtagframe extends frame;
function new();] function new (input int add, dat);
super.new() ;™ Au@omatlcally super.new(add, dat) ;
frmcount++; inserted frmcount++; \\\\\\
e A J o e i First line explicit
endfunction endfunction .
Cx’\ call overwrites
Error implicit call
26

STUDENTS-HUB.com

https://students-hub.com

Polymorphism (1)

Polymorphism allows the use of a variable of the
superclass (even If it is an abstract class) type to hold
subclass objects and to reference the methods of those
subclasses directly from the superclass variable
(handle).

packets[1l] .send () ; shall invoke the send method
associated with the TokenPacket class

BasePacket packets[100];

new; // extends BasePacket
new; // extends BasePacket

EtherPacket ep =
TokenPacket tp =
packets[0]
packets[1]

ep;
tp;

STUDENTS-HUB.com

27

https://students-hub.com

Polymorphism (l1)

frame N
errframe
_/
Any sub-class ...can be stored in
instance ... a parent handle
frame cl; » tagframe

Handle type | | Handle Instance

STUDENTS-HUB.com

https://students-hub.com

Virtual Methods

= A method of a class may be identified with the keyword
virtual

= A virtual method shall override a method in all of its base classes

= A non-virtual method shall only override a method in that class
and its descendants

= Virtual method overrides in subclasses shall have the same
prototype of the function in the superclass including the
arguments names.

= However, the return type of a virtual function shall be either a
matching type or a derived class type

https://students-hub.com

Virtual Methods Example

class BasePacket;
int A = 1;
int B = 2;
function woid printA;
Sdisplay("BasePacket::A is
endfunction printA
virtual function wvoid printB;
Sdisplay("BasePacket::B is
endfunction printB
endclass BasePacket

24q4m ,

24" ,

class My Packet extends BasePacket;

int A = 3;
int B = 4;
function void printA;

$display("My Packet::A is %d", A);

endfunction: printA

virtual function void printB;
$display("My Packet::B is %d", B);

endfunction printB
endclass My Packet

STUDENTS-HUB.com

A);

BasePacket Pl =

My Packet P2 = n

B):

P1l
Pl
P1l
P1l
P1l
P2
P2
end

= P2Z;

.printhA;
.printR;
.printh;
.printB;

new;
ew;,

initial begin
.printh;
.printB;

30

https://students-hub.com

Abstract Classes & Pure Virtual Methods (1)

= A base class may be characterized as being abstract by
identifying it with the keyword virtual

= We cannot construct objects directly from an abstract class

= The abstract class constructor may only be called indirectly
through the chaining of constructor calls originating in an
extended non-abstract object.

= A pure virtual is a method in an abstract class that is declared
as a prototype only without providing an implementation

= The pure virtual method shall be indicated with the
keyword pure together without an implementation

= An extended subclass may provide an implementation by
overriding the pure virtual method with a virtual method
having a method body.

SSSSSSSS -HUB.com 31

https://students-hub.com

Abstract Classes & Pure Virtual Methods (2)

= Abstract classes may be extended to further abstract
classes

= But, all pure virtual methods shall have overridden
Implementations in order to be extended by a non-
abstract class

= Any class may be extended into an abstract class, and
may provide additional or overridden pure virtual
methods.

SSSSSSSS -HUB.com 32

https://students-hub.com

Abstract Class Example

virtual class BRasePacket;

pure virtual function integer send(bit([31:0] data);
endclass

class EtherPacket extends BasePacket;
virtual function integer send(bit[31:0] data);
// body of the function

endfunction
endclass

STUDENTS-HUB.com

// No implementation

33

https://students-hub.com

Outline

Classes

Static Properties and Methods
Aggregate Classes
nheritance

Polymorphism
Randomization

SSSSSSSSSSSSSSSS

34

https://students-hub.com

Randomization

= Class attributes can be defined as random using rand

and randc

= rand: random with uniform distribution

= randc : random-cyclic randomly iterates through all
values without repetition

— When an iteration is complete, a new random iteration
automatically starts

class randclass;
rand bit[1:0]
randc bit[1:0]

endclass

pl;
p2;

Each value has an
equal probability (1/4)

pl rand example output: 01 11 00 10 01 11 01 10 11 00 01 11

Close repetition is common

p2 randc example output:lO‘l 11 00 10 AOO 11 10 01 I 10 00 11 lOf

Each iteration cycles through »
all values without repetition Close repetition across

STUDENTS-HUB.com

iterations is possible
35

https://students-hub.com

randomize () Function

randomize () function randomizes the object’'s random
attributes.

Every class has a built-in randomize () virtual method.
You cannot re-declare this method
It returns 1 on success, 0 otherwise.

class randclass; . | .
rand bit[1:0] pl; pl is a random variable

2 is a random-cyclic variable
randc bit[1:0] p2; pzlsara Cyclic varia

endclass l

randclass myrand = new() ; Randon“;esa"ranqon‘
: variables in a class instance
int ok;
initial begin
ok = myrand.randomize () ; Can check return value
if (!'myrand.randomize ())
Sdisplay ("myrand randomize failure");
end

STUDENTS-HUB.com

36

https://students-hub.com

pre randomize ()and post randomize ()

* randomize () automatically calls two “callback”

functions:

— pre_randomize () before randomization.
— post randomize () after successful randomization.

= |f defined, these methods are automatically called on

randomization.

*= The pre/post randomize declarations must match
the prototypes shown, i.e., they must be void functions

with no arguments.

function void pre randomize () ;

endfunction

function void post randomize () ;

endfunction

STUDENTS-HUB.com

37

https://students-hub.com

pre randomize ()and post randomize () Example

class randclass;

rand bit[1:0] pl;
randc bit[1:0] p2;
bit[1:0] parity;

function void post randomize () ;

parity = pl © p2;
endfunction

endclass

Define post randomize

randclass myrand = new () ;
int ok;

initial begin
ok = myrand.randomize () ;

™~

.| randomize automatically
calls post randomize

STUDENTS-HUB.com

https://students-hub.com

Randomization in Aggregate Classes

= Randomize can operate hierarchically on aggregate
classes
— The class instance property must be declared as rand.
— Otherwise, that instance is skipped for randomization.

STUDENTS-HUB.com 39

https://students-hub.com

Randomization in Aggregate Classes

. Example

prw
cl

randwrap randclass
pl

P2

STUDENTS-HUB.com

c1l must be rand for
its p1 and p2 properties
to be randomized

class randclass;
rand bit[1:0] pl;
randc bit[1:0] p2;
endclass

class randwrap;
rand int prw;

|_-rand randclass cl;
function new () ;
cl = new();

endfunction
endclass

int ok;

initial begin

randwrap mywrap = new/() ;

ok = mywrap.randomize () ;

40

https://students-hub.com

In-Line Random Variable Control with randomize ()

= Specific class variables can be randomized by passing
them as arguments.

— This allows nonrandom (state) properties to be randomized (not

cyclic)

class randclass;
rand bit [0:1] pl;
rande bat [1:28] p2;

bit [1:00 sl s2%

endclass

int ok;

initial begin

ok = myrand.

ok = myrand.

ok = myrand.

ok = myrand.
end

randclass myrand = new;

randomize ()

randomize (pl) ;

randomize (pl,sl) ;
s1,82) ;

randomize

(
(
(
(

pl, p2 arerandom properties

s1l, s2 are state properties

randomize p1 and p2 only;

' s1 and s2 not randomized

randomize p1l only;
others unchanged

randomize p1 and s1 only (others unchanged)

STUDENTS-HUB.com

randomize s1 and s2 only (others unchanged)
141

https://students-hub.com

Controlling Randomization: rand mode ()

Every random attribute has an enable switch rand mode

— Enabled by default (1)
— If disabled (0), the attribute will not be randomized

Mode can be written with task rand mode and read with
function rand mode

Called off a random property, the task changes the mode
of that property.

Called off an instance, the task changes the mode or all
random properties of the instance.

Only random attributes have rand mode

— Calling method off a non-random attribute generates a compile
error

function int rand mode () ; task rand mode (bit on off);

SSSSSSSSSSSSSSSS

42

https://students-hub.com

rand mode () Example

class randclass; pl, p2 are random properties

\

rand bit[1:0] pl; ﬂﬁfﬂﬂﬂﬁﬂﬂrﬂﬂ
randc bit[1:0] ;

bit[1:0]
endclass

sl, s2; s1l, s2 are state properties

randclass myrand = new; . . .
Y Disable randomization of all

Error—s1lisnota
state = myrand.sl.rand mode () ;] random variable

end

Lt ok state | random variables of myrand
initial begin
| Re-enable p2 randomization
myrand.rand mode (0) ; ##f###,#
myrand.pZ2.rand mode (1) ; Read o2 de (1)
ead p2 mode
.--'"/
state = myrand.p2.rand mode () ;
| Only p2 randomized
ok = myrand.randomize (); = |
I

STUDENTS-HUB.com

https://students-hub.com

Constraint Blocks

= Constraints restrict the random data generation to exclude
values or change the probability distribution

= Constraints can be embedded in classes using constraint
blocks

= You declare a constraint block as a class member with the
constraint keyword, followed by an identifier, followed

by a list of constraint items enclosed within curly braces {}

A block can contain any number of any form of constraints

SSSSSSSS -HUB.com 44

https://students-hub.com

Constraint Blocks Example

class randclass;
rand bat [L:8] pl;
rand bit [1T:Q] p3;

constraint c3 { p3 >= 64;
endclass
randclass myrand = new;
int ok;

initial begin

end

constraint cl { pl !'= 2'b00; }

ok = myrand.randomize(); —0mwo0__ |

Constrains p1 to the
values 01,10,11

. after each constraint
expression but not
after constraint block

P3 <= 398 }

\ Upper and lower bound

constraints on p3

Randomize p1 using
constraint block c1, and p3
using constraint block c3

STUDENTS-HUB.com

45

https://students-hub.com

Constraint Block Inheritance

= Constraint blocks are class members and are inherited
just like any other members

class randclass;

rand bit [30] pis

constraint not0 {pl != 2'b00;}
endclass N~

~ not0 constraint in base class

class rcxl extends randclass;

constraint not3 {pl != 2'bll;} =—_] rcxl adds constraint not3 to
constraint not0 from randclass

endclass

class rcx2 extends randclass;

constraint not0 {pl != 2'b01;}
endclass [rcx2 overrides constraint not0

class rcx3 extends randclass;
constraint notO {}

; L= " X . rcx3 removes constraint
constraint notl {pl !'= 2'b01;}] si6t0:ard definEs new
endclass constraint not1
rcxl myrand = new;
initial begin oeed Pl IS Q1 0Or10
_ i
ok = myrand.randomize () ;

STUDENTS-HUB.com

https://students-hub.com

inside Operator

= The inside operator is particularly useful in constraint

expressions.

— The operator can also be negated to generate a value outside of a set.

class randclass;
rand bit[7:0] p3;

endclass

randclass myrand = new;

int ok;
initial begin

ok = myrand.randomize () ;
end

constraint ¢l {p3 inside {3, 7, [11:20]};}

c1 constrains p3 to
the set 3,7,11-20

c2 constrains p3 to
outside the set 1,7,10-255

class not inside;

rand bit[7:0] p3;

constraint c2 { !(p3 inside
endclass

{1,

7, [10:2551})) }

a7

STUDENTS-HUB.com

https://students-hub.com

Weight Distributions

= You can change distribution by defining weights for values using
the operator dist operator .

— Default value is 1

= .= operator assigns weight to the item or every value in the range

= :/ operator divides the weight by the number of values in the

range, i.e., for a range of n values and a weight of w, the weight of
each individual value is w/n.

* Fractional weights are possible

= Negative weights are not possible

SSSSSSSS -HUB.com 48

https://students-hub.com

Weight Distributions Examples

STUDENTS-HUB.com

/ gets a weight of 200

101 to 200 each

constraint cl { p4 dist { [101:200]:=200

};

} 101 to 200 each

constraint c2 { p4 dist { [101:200]:/200

};

}

class randclass;
rand 1int p4;

3,

[26:301:/1};)

constraint c3 {p4 dist {7:=5, [11:20]:=
endclass J,//// e
7 h.as a 11-20 each has
weight of 5 a weight of 3

26-30 each has
a weight of 1/5

gets a weight of 2
/ (200/100=2)

49

https://students-hub.com

Conditional Constraints

= [mplication, using -> operator

= 5 f else

class randclassl;

rand int p3;

bit mode;

constraint cl

{
mode == 1 -> p3 < 100;
mode ==

}

endclass

0 => p3 > 10000;

STUDENTS-HUB.com

class randclass?2;
rand int p4;
bit mode;
constraint c2?
{
if (mode == 1)
pd < 100;

else

else is optional

p4 > 10000;
}

endclass

50

https://students-hub.com

lterative Constraints

= You can use a loop to apply separate constraints to each
array element

= Can affect performance for large arrays or complex
constraints.

class randclass2; Constraints
rand logic [3:0] arr([7:0]; arr[0] <= 0;
arr[l] <= 1;
constraint cl { foreach (arr[i]) arr([2] <= 2;
(i <= 4) -> arr([i] <= 1i; } arr([3] <= 3;
Iterative arr[4] <= 4;
constraint c2 { foreach (arr[i]) constraints arr[5] >= 5;
(i > 4) => arr[i] >= 1i; } arr[6] >= 6;
endclass arr[7] >= 7;

STUDENTS-HUB.com 51

https://students-hub.com

Constraint mode ()

= Every constraint block has an enable switch called
constraint mode.

— Enabled by default (1).
— If disabled (0), the constraint block will not be used.

= Mode can be written with task constraint mode.

task constraint mode (bit on off) ;

= Mode can be read with function constraint mode.

function int constraint mode () ;

= Only constraint blocks have constraint mode.

STUDENTS-HUB.com

52

https://students-hub.com

Constraint mode () Example

class randclass;
rand bit [1:0] pl;

randclass myrand = new;

int state, ok;
initial begin

ok = myrand.randomize () ;

end

constraint blue {pl '= 2'b00;}
constraint green {pl != 2'bl1l;}
endclass

myrand.constraint mode (0) ; 'H###,,fﬂ“#

myrand.blue.constraint mode (1) ;
state = myrand.green.constraint mode () ;

#f”’fffﬂﬂf

-

blue constrains pl to not 00

green constrains p1 tonot 11

| for myrand

Disable all constraints

|

Re-enable b1ue constraint

\

Read green mode (0)

—

STUDENTS-HUB.com

green constraint disabled:
pl willbe 01, 10, 11

53

https://students-hub.com

Randomization Procedure and Its Effects

= Randomization proceeds as follows:
— All randc properties randomized simultaneously.
— Then all rand properties randomized simultaneously.
— Then constraints are checked.

— Cycle iterates until a solution is found or the random space is
exhausted.

* You can only order rand variables of integral types.

class randclass; class randclass ordered;
rand bit[2:0] wect; rand bit[2:0] wvect;
rand bit mode; Applying solve.before rand bit mode;
constraint cl constraint c2
{ mode -> vect == 0; } { mode -> wvect == 0;
endclass solve mode before vect; }
endclass

Expectation: mode to be '0' one half the time

Result: mode is '0' one ninth of the time Ordering constraint

STUDENTS-HUB.com 54

https://students-hub.com

