
5 Protein Function

© 2017 W. H. Freeman and Company

CHAPTER 5: Protein Function

Learning goals:

- Methods of binding ligands and proteins
- Quantitative and graphical modeling of protein-ligand interactions
- Interaction of globins with oxygen and non-oxygen ligands
- Physiological regulation of oxygen binding

Functions of Globular Proteins

- Storage of ions and molecules
 - myoglobin, ferritin
- Transport of ions and molecules
 - hemoglobin, glucose transporter
- Defense against pathogens
 - antibodies, cytokines
- Muscle contraction
 - actin, myosin
- Biological catalysis
 - chymotrypsin, lysozyme

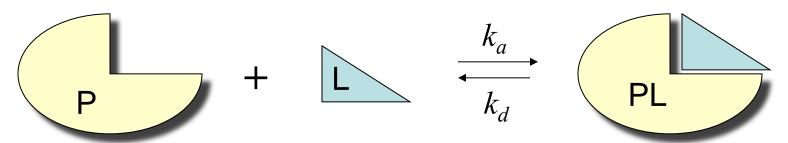
Interaction with Other Molecules

Reversible, transient process of chemical equilibrium:

$$A + B \gtrsim AB$$

- A molecule that binds to a protein is called a ligand
 - Typically a small molecule
- A region in the protein where the ligand binds is called the binding site
- Ligand binds via same noncovalent forces that dictate protein structure (see Chapter 4)
 - Allows the interactions to be transient
 - (this is key to life → organism can respond quickly and

reversibly to changes)


Interaction with Other Molecules

- - In multisubunit proteins, a conformational change of one subunit often affects the others (cooperativity)

- Enzymes are special kinds of proteins. They bind and transform other molecules. Enzyme ligands are called substrates
- The binding site is called catalytic site (active site)

Binding: Quantitative Description

Consider a process in which a ligand (L) binds reversibly to a site in a protein (P)

- The interaction can be described by:
 - the association rate constant k_a or the dissociation rate constant k_d
- After some time, the process will reach the equilibrium where the association and dissociation rates are equal

$$k_a[P] \cdot [L] = k_d[PL]$$

The equilibrium composition is characterized by the equilibrium association constant K_a or the equilibrium dissociation constant, K_d STUDENTS-HUB.com

$$K_a = \frac{[PL]}{[P] \cdot [L]} = \frac{k_a}{k_d} = 1/K_d$$
Uploaded By: Rawan Rous

Binding:

Analysis in Terms of the Bound Fraction

 In practice, we can often determine the fraction of occupied binding sites (θ)

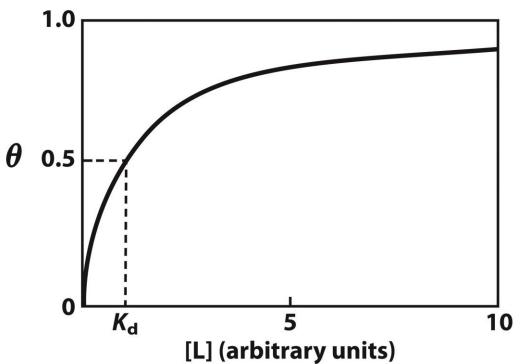
 $\theta = \frac{[PL]}{[PL] + [P]}$

Substituting [PL] with K_a[L][P], we'll eliminate [PL]

 $\theta = \frac{K_a[L][P]}{K_a[L][P] + [P]}$

 Eliminating [P] and rearranging gives the result in terms of equilibrium association constant $\theta = \frac{[L]}{[L] + \frac{1}{K_a}}$

In terms of the more commonly used equilibrium dissociation constant


$$\theta = \frac{[L]}{[L] + K_d}$$

Protein-Ligand Interactions

- Plotting θ as a function of [L] can give the value of K_a
- At $\theta = 0.5 \implies [L] = 1/K_a$
- Normally we use the **dissociation constant** $(K_d = 1/K_a) \rightarrow \theta = [L] / [L] + K_d)$
- When [L] > K_d by 9 x \rightarrow 90% of sites are occupied
- Note: $\uparrow K_d \downarrow$ affinity of L for P
- K_d is the molar concentration of ligand at which half of the binding sites are occupied
- The more tightly L is bound to P, the lower [L]
 needed for ½ binding sites to be filled → lower

Binding: Graphical Analysis

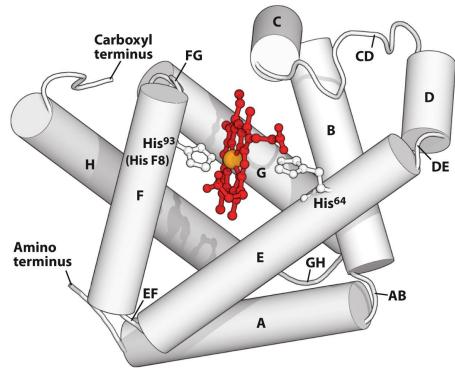
- The fraction of bound sites depends on the free ligand concentration and K_d
- Experimentally
 - Ligand concentration is known
 - $-K_d$ can be determined graphically

$$\theta = \frac{[L]}{[L] + K_d}$$

$$[L] \approx [L]_{total}$$

In cells, normally
[L] >> binding sites
for L → binding of
L to P does not
change [L]

Examples of Binding Strength


Example: Oxygen Binding to Myoglobin

nger Principles of Biochemistry, Sixth Edition

3 W. H. Freeman and Company

When ligand is a gas, binding is expressed in terms of partial pressures

$$\theta = \frac{[L]}{K_d + [L]} \longrightarrow \theta = \frac{pO_2}{p_{50} + pO_2} \theta$$

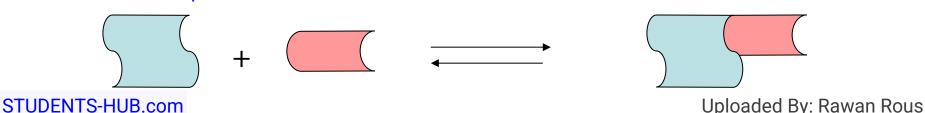
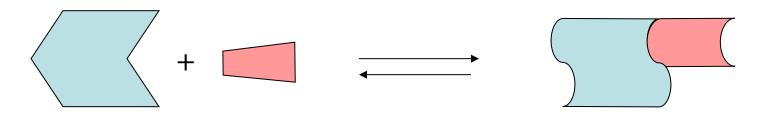



Figure 5-3
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company


Specificity: Lock-and-Key Model

- Proteins typically have high specificity: only certain ligands bind
- High specificity can be explained by the complementary of the binding site and the ligand.
- Complementary in
 - size,
 - shape,
 - charge,
 - or hydrophobic/hydrophilic character
- "Lock and Key" model by Emil Fisher (1894) assumes that complementary surfaces are preformed.

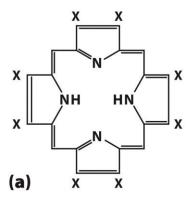
Specificity: Induced Fit

- Conformational changes may occur upon ligand binding (Daniel Koshland in 1958)
 - This adaptation is called the induced fit
 - Induced fit allows for tighter binding of the ligand
 - Induced fit allows for high affinity for different ligands
- Both the ligand and the protein can change their conformations

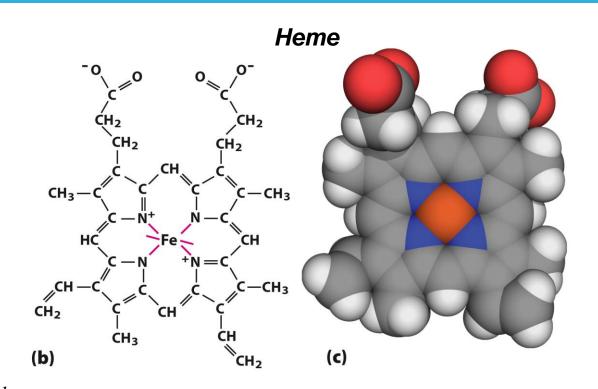
Case Study I: Globins Are Oxygen-Binding Proteins

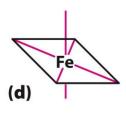
Biological problems:

- Protein side chains lack affinity for O₂.
- Some transition metals bind O₂ well but would generate free radicals if free in solution.
- Organometallic compounds such as heme are more suitable, but
 Fe²⁺ in free heme could be oxidized to Fe³⁺ (very reactive!).


Biological solution:

Capture the oxygen molecule with heme that is protein bound.


Myoglobin (storage) and hemoglobin (transport) can bind oxygen via a protein-bound heme.


Structures of Porphyrin and Heme

Porphyrin family

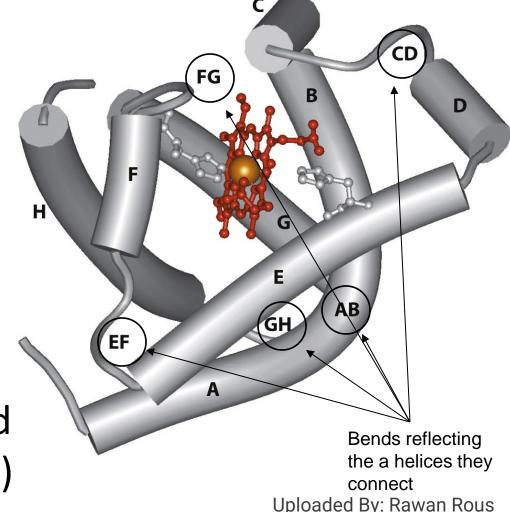
four pyrrole rings linked by methene bridges

The iron atom of heme has six coordination bonds: four in the plane of, and bonded to, the flat porphyrin ring system, and two perpendicular to it

Example: Oxygen Binding to Myoglobin

- Free heme molecules not bound in proteins

 2 open coordination bonds
- Reaction of 1 O₂ molecule with two hemes will lead to irreversible conversion of Fe²⁺ to Fe³⁺ which does not bind O₂
- This reaction is prevented in heme-containing proteins because one of the coordination bonds is attached to a His side chain and the other is free to bond O₂
- When O₂ binds, electronic properties of heme changes (color changes from dark purple to bright red)
- CO and NO bind more tightly to heme than O₂ → toxic to aerobic organisms


Structure of Myoglobin

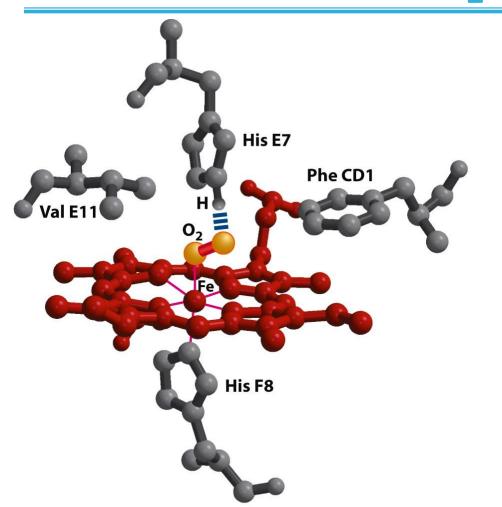
 Mb is a single polypeptide of 153 aa and 1 heme molecule

 It is part of a family of proteins called globins

• 8 α helices

 His residue coordinated heme is His⁹³ (or His F8)

Binding of Carbon Monoxide


- CO has similar size and shape to O₂; it can fit to the same binding site
- CO binds over 20,000 times better than O₂ because the carbon in CO has a filled lone electron pair that can be donated to vacant d-orbitals on the Fe²⁺
- Protein pocket decreases affinity for CO, but it still binds about
 250 times better than oxygen
- CO is highly toxic as it competes with oxygen. It blocks the function of myoglobin, hemoglobin, and mitochondrial cytochromes that are involved in oxidative phosphorylation

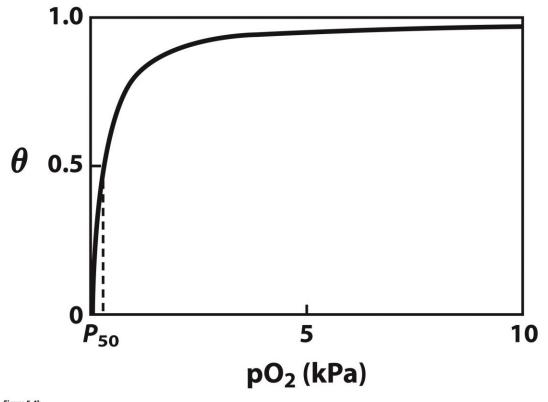
CO vs. O₂ Binding to Free Heme

Figure 5-5ab
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Heme binding to protein affects CO vs. O₂ binding

When binding to the heme in myoglobin, CO is forced to adopt a slight angle because the perpendicular arrangement is sterically blocked by His E7, the distal His. This effect weakens the binding of CO to myoglobin.

Figure 5-5c *Lehninger Principles of Biochemistry*, Sixth Edition © 2013 W. H. Freeman and Company



Spectroscopic Detection of Oxygen Binding to Myoglobin

- The heme group is a strong chromophore that absorbs both in ultraviolet and visible range
- Ferrous form (Fe²⁺) without oxygen has an intense Soret band at
 429 nm
- Oxygen binding alters the electronic properties of the heme, and shifts the position of the Soret band to 414 nm
- Binding of oxygen can be monitored by UV-Vis spectrophotometry
- Deoxyhemoglobin (in venous blood) appears purplish in color and oxyhemoglobin (in arterial blood) is red

Could myoglobin transport O₂?

- pO₂ in lungs is about 13 kPa: it sure binds oxygen well
- pO₂ in tissues is about 4 kPa: it will not release it!

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

• Would lowering the affinity (P_{50}) of myoglobin to oxygen help?

For effective transport affinity must vary with pO₂

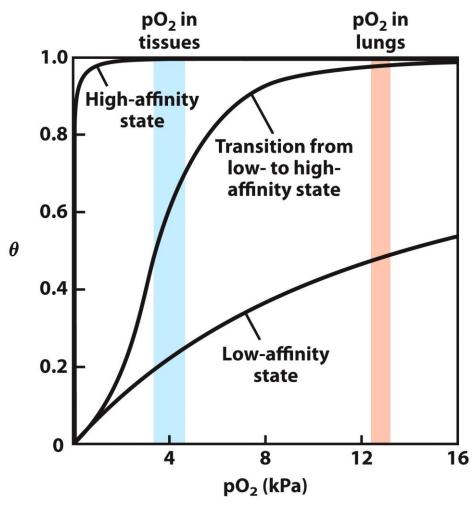


Figure 5-12
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

How can affinity to oxygen change?

- Must be a protein with multiple binding sites
- Binding sites must be able to interact with each other
- This phenomenon is called cooperativity
 - positive cooperativity
 - first binding event increases affinity at remaining sites
 - recognized by sigmoidal binding curves
 - negative cooperativity
 - first binding event reduces affinity at remaining sites

Cooperativity

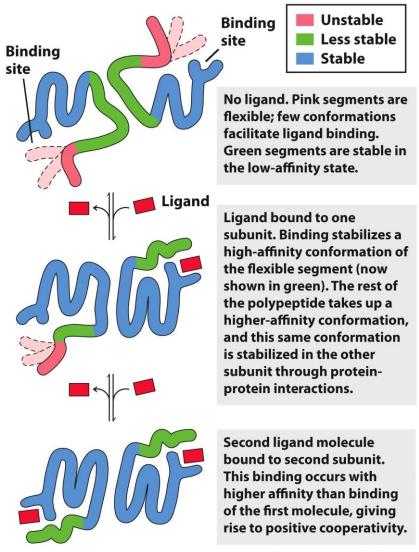


Figure 5-13
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Cooperativity: Quantitative Description

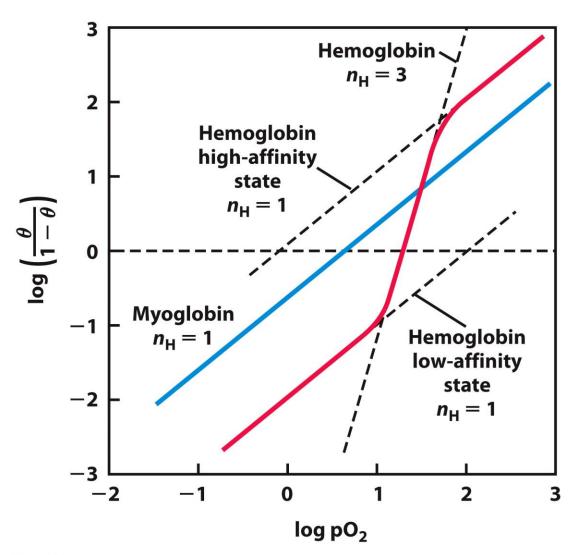
Cooperative proteins have multiple ligand-binding sites

• so K_a becomes:

$$K_a = \frac{[PL_n]}{[P][L]^n}$$

• And θ becomes:

$$\theta = \frac{[L]^n}{[L]^n + K_d}$$


Taking the log of both sides gives the Hill Equation:

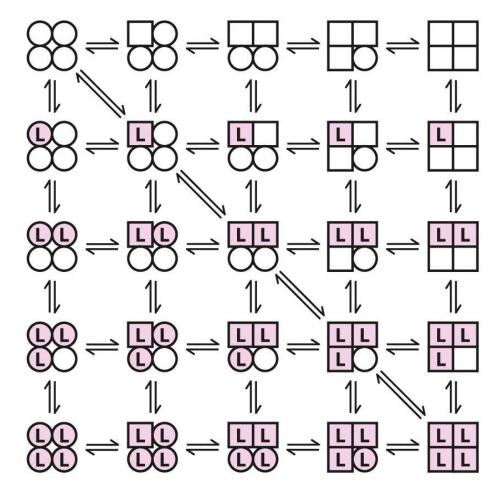
$$\log\left(\frac{\theta}{1-\theta}\right) = n\log\left[L\right] - \log K_d$$

- n = the Hill Coefficient (the degree of cooperativity)
- $-n = 1 \rightarrow no$ cooperativity; $n>1 \rightarrow +ve$ coop.; $n<1 \rightarrow -ve$ coop.
- Hill plot: plotting log $(\theta / 1 \theta)$ vs. log [L]. Gives the Hill coefficient (n_H) which measures the degree of cooperativity

Uploaded By: Rawan Rous

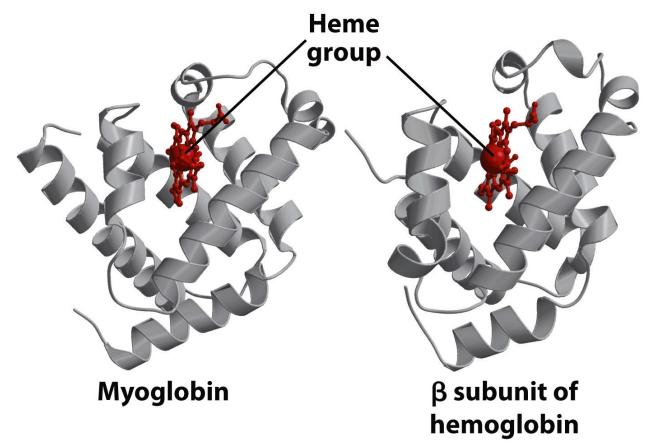
The Hill Plot of Cooperativity

Cooperativity is a special case of allosteric regulation


Allosteric protein

- Binding of a ligand (a modulator) to one site affects the binding properties of a different site, on the same protein
- Can be positive or negative
- Homotropic
 - Normal ligand of the protein is the allosteric regulator
- Heterotropic
 - Different ligand affects binding of the normal ligand

Two Models of Cooperativity: Concerted (MWC) vs. Sequential

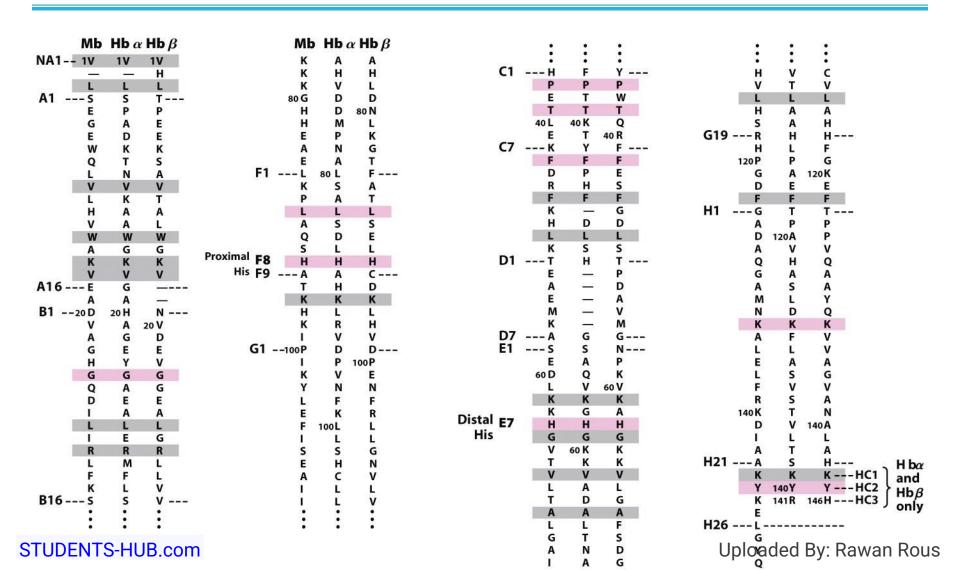

Either all circles (lowAII () AII | affinity or inactive) or all squares (high affinity 4 or active).

Each individual subunit can be in either the or form. A very large number of conformations is thus possible

Hemoglobin binds oxygen cooperatively

- Hemoglobin (Hb) is a tetramer of two subunits $(2\alpha 2\beta)$
- Each subunit is similar to myoglobin

Hemoglobin binds oxygen cooperatively


- Red blood cells (erythrocytes) are special incomplete cells filled with Hb (and no nucleus or organelles). They are biconcave discs. Their lifespan is 120 days
- In arterial blood (from the lungs), Hb is 96% saturated with O_2 . In venous blood (to the heart and lungs), Hb is ~64%
- Mb is insensitive to small changes in $[O_2]$ (O_2 -storage protein)
- Hb is sensitive to small changes → O₂-transport protein (multiple subunits)

STUDENTS-HUB.com

Hb Subunits are Similar to Mb

- Hb (*M*_r 64,500) is spherical
- Tetramer
- 4 heme prosthetic groups
- 2 α chains (141 aa each) and 2 β chains (146 aa each)
- 3D structure of both α and β is similar
- aa sequences of Mb and α and β Hb are identical in 27 positions
- The helix-naming system for Mb is also used for Hb polypeptides
- Hbα does not have D helix

Sequence Similarity between Hemoglobin and Myoglobin

Hb is a dimer of two $\alpha\beta$ protomers

 4° structure of Hb shows strong interactions between unlike subunits

• The $\alpha_1\beta_1$ interface (and also $\alpha_2\beta_2$) involve > 30 aa

• The $\alpha_1\beta_2$ interface (and also $\alpha_2\beta_1$) involve 19 aa

• These interfaces make strong interactions \rightarrow mild treatment of Hb with urea breaks the tetramer into $\alpha\beta$ dimers

Subunit Interactions in Hemoglobin

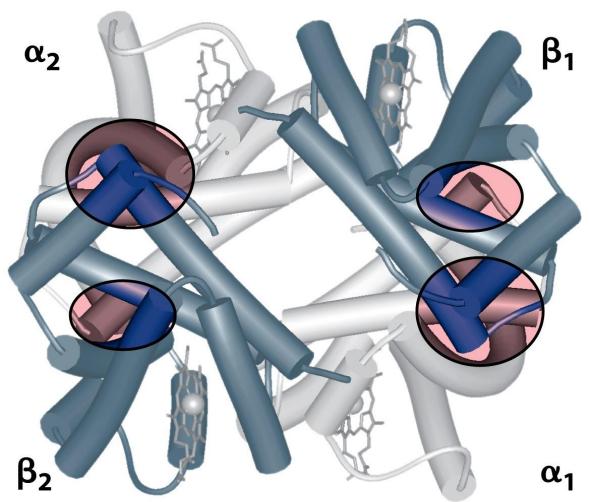


Figure 5-8
Lehninger Principles of Biochemistry, Sixth Edition
STUDENTS-HUB. CO 197 013 W. H. Freeman and Company

R and T States of Hemoglobin

- Two major conformations of Hb:
 - R state and T state
- O₂ binds to Hb in either one, but it has higher affinity to R state
- T = Tense state
 - More interactions, more stable
 - Lower affinity for O₂
- R = Relaxed state
 - Fewer Interactions, more flexible
 - Higher affinity for O₂

Hb Changes Structure after O₂ Binding

- O₂ binding stabilizes R state
- T state is more stable when not bound to O₂ (deoxyhemoglobin)

 O₂ binding to a Hb subunit at the T state converts the subunit to R state

- Therefore, O₂ binding triggers a T → R conformational change
- Conformational change from the T state to the R state

 studion breaking ion pairs between the α1 σ 2 dinterface us

R and T States of Hemoglobin

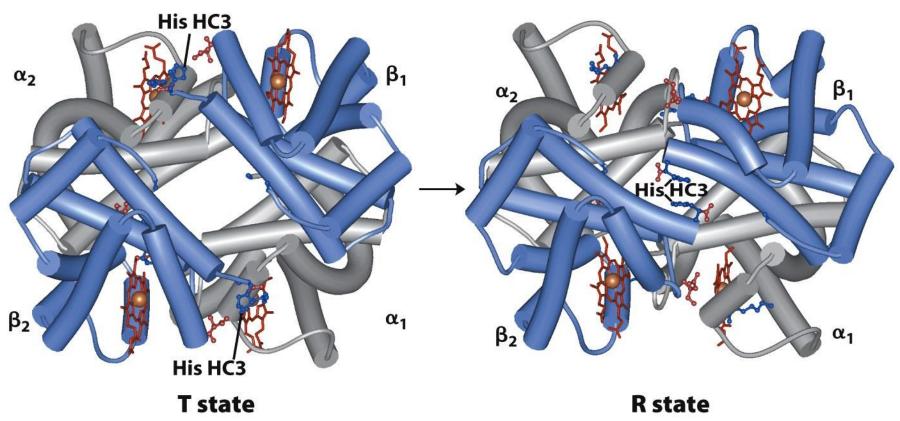


Figure 5-10
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

The transition from the T state to the R state shifts the subunit pairs, affecting certain ion pairs. Most noticeably, the His HC3 residues at the carboxyl termini of the β subunits, which are involved in ion pairs in the T state, rotate in the R state toward the center of the molecule, where they are no longer in ion pairs. Denote the paramic result of the T \rightarrow R transition is a narrowing of the pocket between the Paramic result of the T.

pH Effect on O₂ Binding to Hemoglobin

- Actively metabolizing tissues generate H⁺, lowering the pH of the blood near the tissues relative to the lungs
- Hb Affinity for oxygen depends on the pH
 - H⁺ binds to Hb and stabilizes the T state
 - Protonates His146 which then forms a salt bridge with Asp94
 - Leads to the release of O₂ (in the tissues)
- The pH difference between lungs and metabolic tissues increases efficiency of the O₂ transport
- This is known as the Bohr effect

pH Effect on O₂ Binding to Hemoglobin

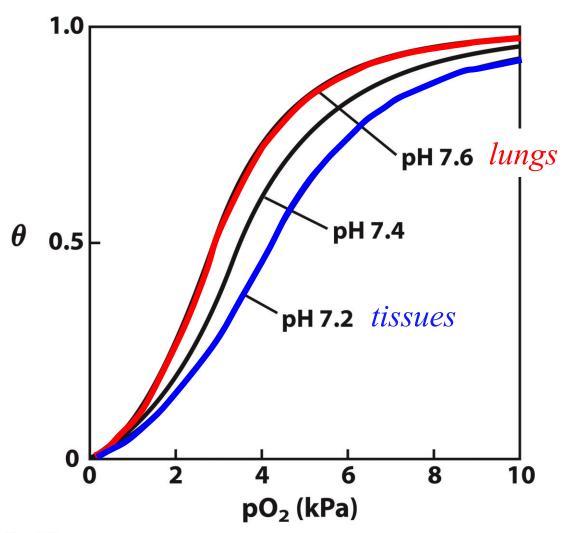
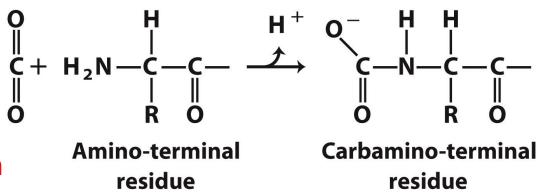
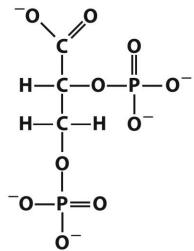



Figure 5-16
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Hemoglobin and CO₂ Export

- CO₂ is produced by metabolism in tissues and must be exported
- 15–20% of CO₂ is exported in the form of a carbamate on the amino terminal residues of each of the polypeptide subunits.
- Notice:
 - the formation of a carbamate yields a proton which can contribute to the Bohr Effect

Unnumbered 5 p171a
Lehninger Principles of Biochemistry, Seventh Edition


© 2017 W. H. Freeman and Company

- the carbamate forms additional salt bridges stabilizing the T state
- The rest of the CO₂ is exported as dissolved bicarbonate
- Formed by carbonic anhydrase, and also producing a proton
 STUDENTS-HUB.com
 Uploaded By: Rawan Rous

2,3-Bisphosphoglycerate regulates O₂ binding

- Negative heterotropic regulator of Hb function
- Present at mM concentrations in erythrocytes
 - Produced from an intermediate in glycolysis
 - Plays an important role in physiological adaptations for low oxygen concentration (like at high altitudes or in cases of hypoxia)

- Small negatively charged molecule, binds to the positively charged central cavity of Hb
- Stabilizes the T states
 STUDENTS-HUB.com

2,3-BisphosphoglycerateUploaded By: Rawan Rous

2,3-BPG binds to the central cavity of Hb

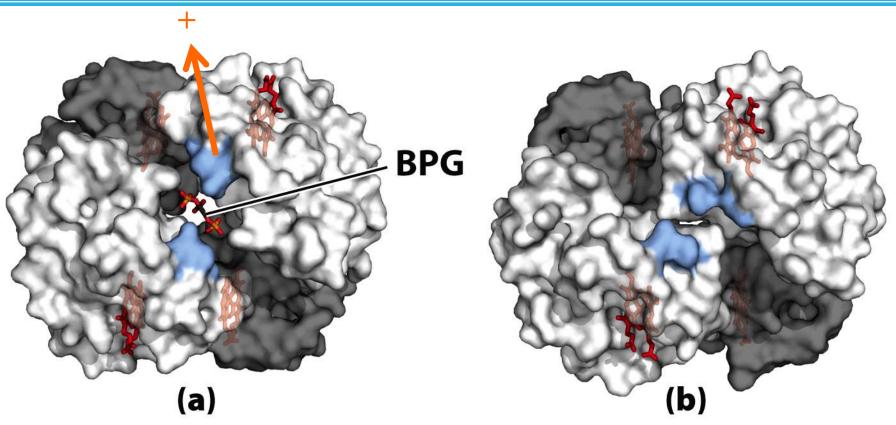


Figure 5-18
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

BPG binding stabilizes the T state of deoxyhemoglobin

The binding pocket for BPG disappears on oxygenation

2,3-BPG allows for O₂ release in the tissues and adaptation to changes in altitude

- ★ At sea level, Hb is nearly saturated with O₂ in the lungs
- ★ Hb is just over 60% saturated in the tissues
- ★ The amount of O₂ released in the tissues is about 38% of the maximum that can be carried in the blood
- ★ At high altitudes, O₂ delivery declines to 30% of maximum
- ★ An increase in [BPG] decreases the affinity of Hb for O₂, so ~ 37% of what can be carried is again delivered to the tissues

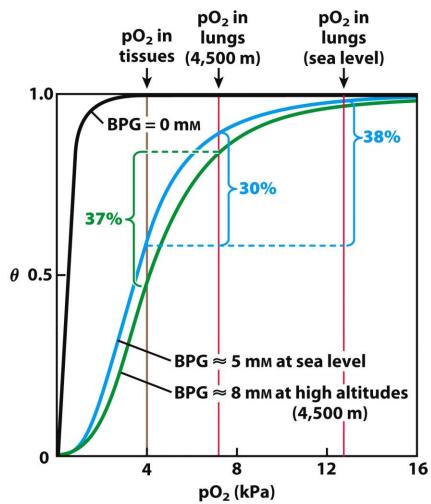
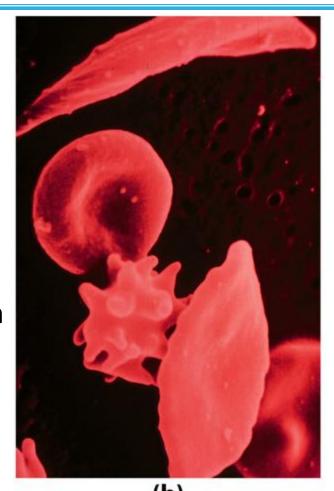
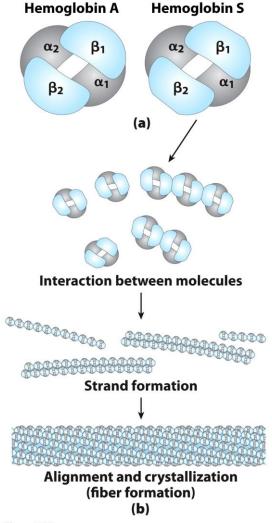



Figure 5-17
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Sickle-cell anemia is due to a mutation in hemoglobin

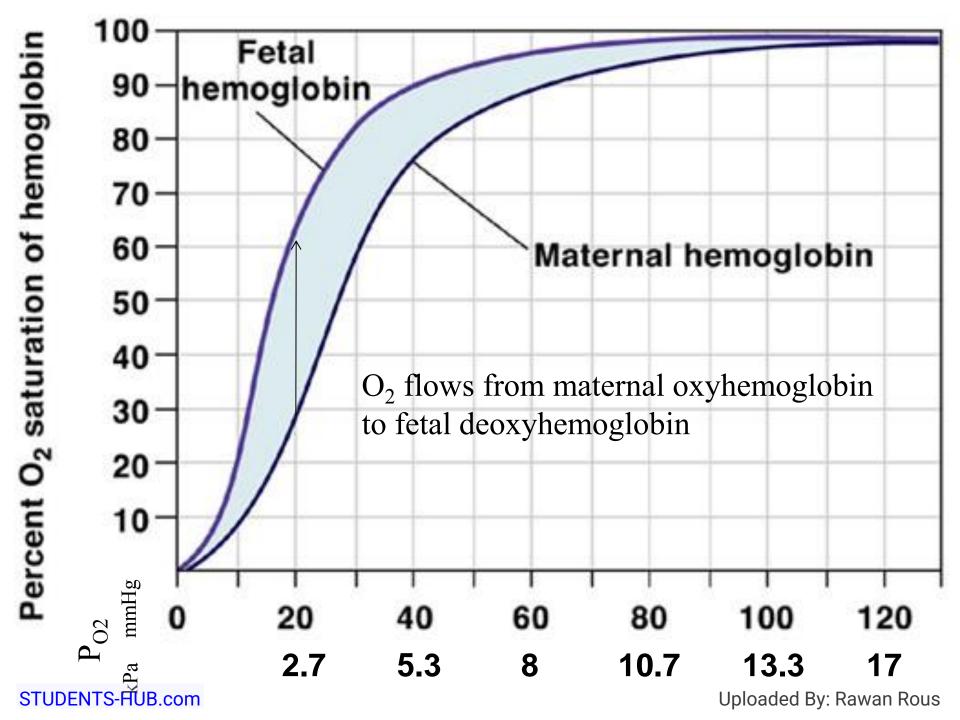

- Sickle-cell disease occurs in individuals homozygous for the sickle cell allele of the gene encoding the β subunit of Hb
- When Hb from a sick patient is deoxygenated (Hb S) it aggregates and precipitates (normal Hb, Hb A does not precipitate upon deoxygenation)
- The difference is a single aa substitution $Glu6 \rightarrow Val$ in the β chain of Hb
- The new Val (hydrophobic) side chain can bind to a different Hb molecule to form a strand

Untreated homozygous individuals generally die in childhood

STUPPLETE PROPERTY OF THE PROP

Formation of Hb Strands in Sickle-Cell Anemia

deoxyhemoglobin S
has a hydrophobic
patch on its surface,
which causes the
molecules to
aggregate into
strands that align into
insoluble fibers


Figure 5-20

Lehninger Principles of Biochemistry, Sixth Edition

© 2013 W. H. Freeman and Company

Fetal Hemoglobin (HbF)

- The main oxygen transport protein in the fetus during the last seven months of development in the uterus and in the newborn until ~ 6 months old
- 2 α , 2 γ subunits (fewer positive charges than the adult hemoglobin β subunit; 2,3-BPG binds less)
- Binds O₂ at a greater affinity that HbA (adult)
 → fetus can extract O₂ from his/her mother bloodstream easily
- The affinity of HbF for oxygen > that of HbA $(P_{50} \text{ HbF} \sim 2.5 \text{ kPa}; P_{50} \text{ HbA} \sim 3.7 \text{ kPa})$
- The oxygen saturation curve is shifted to the left for HbF
- HbF does not interact with 2,3-BPG (which decreases the
 affinity of HbA for oxygen) → HbF binds O₂ tighter than HbA
 students-HbB.com

