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11-7 Network Function DEsien

Finding and using a network function of a given circuit is an s-domain analysis problem.
An s-domain synthesis problem involves finding a circuit that realizes a given network
function. For linear circuits, an analysis problem always has a unique solution. In
contrast, a synthesis problem may have many solutions because different circuits can
have the same network function. A transfer function design problem involves synthe-
sizing several circuits that realize a given function and evaluating the alternative
designs, using criteria such as input or output impedance, cost, and power consumption.

The design process discussed here begins with a given transfer function 7v (s). We
partition this transfer function into a product of simpler functions.

Tv(S) = Tv1 (S)TV2(S) s TVk(S)

We then realize each of these simpler functions using basic circuit modules such as
voltage dividers, inverting amplifiers, and noninverting amplifiers. The overall
transfer function is then achieved by connecting the individual stages in cascade,
as indicated in Figure 11-32.

+ > — + FIGURE 11-32 Cascade
Vin(s) Tv(s) | Vour(s) connection transfer functions.
+ >— +
Vin(s) Tyy(s) Ty(s) oo Tyk(s)| Vour(s)
— >_ —

Of course, this approach assumes that the chain rule applies. In other words, we
must avoid loading when designing the stages in the cascade realization. This is
accomplished by coordinating the input and output impedances of adjacent
stages or using OP AMP voltage followers to isolate the individual stages.

Before turning to examples, we discuss the design of simple one-pole modules
that serve as the building block stages in a cascade design.

Ri= o—K
o—T00—MWA—o——o
FIRST-ORDER VOLTAGE-DIVIDER CIRCUIT DESIGN =1
We begin our study of transfer function design by developing a voltage-divider
realization of a first-order transfer function of the form K /(s + o). The impedances Ry=K §
Z(s) and Z,(s) are related to the given transfer function using the voltage-divider
relationship. o o
K 7 (a) RL design
Tv(s) = ___ 2l (11-26)
s+a  Zi(s)+ Z(s) |
C =
To obtain a circuit realization, we must assign part of the given Ty (s) to Z,(s) and the a—k
remainder to Z;(s). There are many possible realizations of Z;(s) and Z,(s) because o—AN——F—9—
there is no unique way to make this assignment. For example, simply equating the R=1
numerators and denominators in Eq. (11-26) yields C,= 1 1
T
Z(s)=K and Zi(s)=s+a—2Z(s)=s+a—K (11-27)
Inspecting this result, we see that Z,(s) is realizable as a resistance (R, = K()) and © . °
Z(s) as an inductance (L; = 1 H) in series with a resistance [R; = (a — K)Q]. The (b) RC design

resulting circuit diagram is shown in Figure 11-33(a). For K = « the resistance Ry can  g|GURE 11-33  Circuit
be replaced by a short circuit because its resistance is zero. A gain restriction K < ais  realizations of T(s) = K/(s +
necessary because a negative R; is not physically realizable as a single component.  «) for K < a.
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(a) RL design

c=1

o
o—/\/\/\,—”—»—o
Ri=1-K
Ry=KZ

(b) RC design

FIGURE 11-34 Circuit
realizations of T(s) = Ks/(s +
a) for K < 1.
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An alternative synthesis approach involves factoring s out of the denominator of
the given transfer function. In this case, Eq. (11-26) is rewritten in the form

K/s Z(s)

To(s) — - (11-28)
v(s) L4+afs  Zi(s)+ Za(s)
Equating numerators and denominators yields the branch impedances
K - K
Zo(s) = and Zi(s) =1 —|—%—Z2(s) =142 (11-29)

In this case we see that Z,(s) is realizable as a capacitance (C, = 1/KF) and Z (s) as
aresistance (R; = 1)) in series with a capacitance [C; = 1/(a — K) F]. The resulting
circuit diagram is shown in Figure 11-33(b). For K = a, the capacitance C; can be
replaced by a short circuit because its capacitance is infinite. A gain restriction K <
a is required to keep C; from being negative.

As a second design example, consider a voltage-divider realization of the transfer
function Ks/(s + a). We can find two voltage-divider realizations by writing the
specified transfer function in the following two ways:

o Ks - ZQ(S)
Tls) = s+a Zi(s)+ Za(s) (11-300)
T(s) = —& Z2(s) (11-30h)

T1tals Zi(s) + Za(s)

Equation (11-30a) uses the transfer function as given, while Eq. (11-30b) factors s
out of the numerator and denominator. Equating the numerators and denominators
in Egs. (11-30a) and (11-30b) yields two possible impedance assignments:

UsingEq. (11-30a): Z, =Ks and Z =s+a—-2,=(1—-K)s+a« (11-31a)

UsingEq. (11-30b): Z, =K and Z; = 1 +% —Z=(1-K) +% (11-31h)
The assignment in Eq. (11-31a) yields Z,(s) as an inductance L, = K H and Z; (s) as
an inductance [L; = (1 — K) H] in series with a resistance (R; = o {)). The assign-
ment in Eq. (11-31b) yields Z,(s) as a resistance (R, = KQ) and Z (s) as a resistance
[R1 = (1 — K)Q)] in series with a capacitance (C; = 1/aF). The two realizations are
shown in Figure 11-34. Both realizations require K < 1 for the branch impedances to
be realizable and both simplify when K = 1.

D Design Exercise 11-23

Design an RC circuit to realize the following transfer function

200
~ s+ 1000

T(s)

Answer: Use the circuit of Figure 11-33(b) with R =1 Q, C; = 1250 p.F, and C, = 5000 p.F.
We will learn how to scale these answers to more practical device values later in this section.

VoLTAGE-DIVIDER AND OP AMP cascADE
CIRCUIT DESIGN

The examples in Figures 11-33 and 11-34 illustrate an important feature of voltage-
divider realizations. In general, we can write a transfer function as a quotient of
polynomials 7'(s) = r(s)/q(s). A voltage-divider realization requires the impedances
Z5(s) = r(s) and Z;(s) = q(s) — r(s) to be physically realizable. A voltage-divider
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circuit usually places limitations on the gain K. This gain limitation can be overcome
by using an OP AMP circuit in cascade with the divider circuit.

For example, a voltage-divider realization of the transfer function in Eq. (11-26)
requires K < o. When K > a, then T'(s) is not realizable as a simple voltage divider,
since Z,(s) = s + a — K requires a negative resistance. However, the given transfer
function can be written as a two-stage product:

o= [ [

first second
stage stage

When K > a, the first stage has a positive gain greater than unity. This stage can be
realized using a noninverting OP AMP circuit with a gain of (R; 4+ R;)/R;. The first-
stage design constraint is

Choosing R; = 1 Q requires that R, = (K/a) — 1. An RC voltage-divider realization
of the second stage is obtained by factoring an s out of the stage transfer function.
This leads to the second-stage design constraint

afs _ Z(s)
T+afs  Zi(s)+ Z(s)

Equating numerators and denominators yields Z(s) =a/s and Zi(s) =1.
Figure 11-35 shows a cascade connection of a noninverting first stage and the
RC divider second stage. The chain rule applies to this circuit, since the first stage has
an OP AMP output. The cascade circuit in Figure 11-35 realizes the first-order
transfer function K /(s + o) for K > a, a gain requirement that cannot be met by the
divider circuit alone.

D Design Exercise 11-24 FIGURE 11-35 Circuit
Design an active RC circuit to realize the following transfer function realization of T(s) = K/(s + o)
for K > a.
2000
T(s)=——
)= 1000

Answer: Use the circuit shown in Figure 11-35. The OP AMP stage has a gain of 2 by
making both resistors equal. Choose the components in the second stage voltage divider so
that R=1Q and C = 1000 wF. We will leam how to scale these answers to more practical
device values later in this section.

D Design Exercise 11-25

Design an active RL circuit to realize the following transfer function

2000
~ 541000

T(s)

Answer: Use the circuit shown in Figure 11-35. The OP AMP stage has a gain of 2 by
making both resistors equal. In the second stage, replace the resistor with an inductor and
replace the capacitor with a resistor. Let the components in the second stage voltage
divider be R=1kQ and L =1 H.
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VM DESIGN EXAMPLE 11—-20

Design a circuit to realize the following transfer function using only resistors,
capacitors, and OP AMPs:

To(s) = 3000s
VAT (5 4+ 1000) (s + 4000)
SOLUTION:
The given transfer function can be written as a three-stage product.
T (S) B K1 K3S
Y s 41000 uf/z_j s + 4000
N———— ——
first  second third
stage stage stage

where the stage gains Kj, K, and K3 have yet to be selected. Factoring s out of the
denominator of the first-stage transfer function leads to an RC divider realization:

Ki/s Z5(s)

1+ 1000/S B Z1 (S) + ZZ(S)
Equating numerators and denominators yields
Zy(s) =Ki/s and Zi(s) =1+ (1000 — Ky)/s

The first stage Zi(s) is simpler when we select K; = 1000. Factoring s out of the
denominator of the third-stage transfer function leads to an RC divider realization:

K; Z5(s)

1+4000/s  Zi(s) + Za(s)
Equating numerators and denominators yields
Zy)(s)=K; and Zi(s)=1— K;5+4000/s

The third stage Z (s) is simpler when we select K3 = 1. The stage gains must meet the
constraint K; x K, x Kz = 3000 since the overall gain of the given transfer function is
3000. We have selected K; = 1000 and K3 = 1, which requires K, = 3. The second
stage must have a positive gain greater than 1 and can be realized using a noninverting
amplifier with K, = (R; + Ry)/R; = 3. Selecting R; = 1€} requires that R, = 2().

Figure 11-36 shows the three stages connected in cascade. The chain rule applies
to this cascade connection because the OP AMP in the second stage isolates the RC
voltage-divider circuits in the first and third stages. The order of the first and
third stages can be swapped in this design without consequence. The circuit in
Figure 11-36 realizes the given transfer function but is not a realistic design because
the values of resistance and capacitance are impractical. For this reason we call this
circuit a prototype design. We will shortly discuss how to scale a prototype to obtain
practical element values.

FIGURE 11-36
1
4000
1
& O
——2nd stage —— ——3rd stage —— |
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D Design Exercise 11-26

Design a circuit to realize the following transfer function using only resistors, capacitors,
and no more than one OP AMP.

10°

Ty(s) = G110

Answer: Figure 11-37 shows one possible prototypical solution.

FIGURE 11-37

INVERTING OP AMP CIRCUIT DESIGN

The inverting OP AMP circuit places fewer restrictions on the form of the desired
transfer function than does the basic voltage divider. To illustrate this, we will
develop two inverting OP AMP designs for a general first-order transfer function of
the form

sty

Tv(s) = -K s+ a

The general transfer function of the inverting OP AMP circuit is —Z,(s)/Z;(s),
which leads to the general design constraint

s+y  Za(s)

_K - _
s+ a Zi(s)

(11-32)

The first design is obtained by equating the numerators and denominators in
Eq. (11-32) to obtain the OP AMP circuit impedances as Z(s) = Ks + Ky and
Zi(s) = s + a. Both of these impedances are of the form Ls + R and can be realized
by an inductance in series with a resistance, leading to the design realization in
Figure 11-38(a).

A second inverting OP AMP realization is obtained by equating Z(s) in
Eq. (11-32) to the reciprocal of the denominator and equating Z; (s) to the reciprocal
of the numerator. This assignment yields the impedances Z;(s) = 1/(Ks + Kvy) and
Z>(s) = 1/(s + o). Both of these impedances are of the form 1/(Cs + G), where Cs is
the admittance of a capacitor and G is the admittance of a resistor. Both impedances
can be realized by a capacitance in parallel with a resistance. These impedance
identifications produce the RC circuit in Figure 11-38(b).

Because it has fewer restrictions, it is often easier to realize transfer functions
using the inverting OP AMP circuit. To use inverting circuits, the given transfer
function must require an inversion or be realized using an even number of inverting
stages. In some cases, the sign in front of the transfer function is immaterial and the
required transfer function is specified as +Tv (s). Caution: The input impedance of
an inverting OP AMP circuit may load the source circuit.
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FIGURE 11-38 Inverting OP o 1 Ky K

AMP circuit realizations of o—AAN, 00— AMA—Q 0 —o
T(s) = —K(s +v)/(s + o).

(a) RL design

(e L ]
1 1
Ky o
— AN
]
l_ I
11
K 1
(b) RC design
[} L ]

D Design Exercise 11-27

Design an active RC prototype circuit to realize the following transfer function

s+50
T(s) = =100 =5
Answer: See Figure 11-39.
FIGURE 11-39 1 1
5000 100
AW M

Vi(s) —| | Va(s)
100 F 1F

VB DESIGN EXAMPLE 11—21

Design a circuit to realize the transfer function given in Example 11-20 using
inverting OP AMP circuits.

SOLUTION:
The given transfer function can be expressed as the product of two inverting transfer
functions:
3000s K1 Kzs
TV (S) = = | — —
(s + 1000) (s + 4000) s + 1000 s + 4000

firststage  secondstage
where the stage gains K; and K, have yet to be selected. The first stage can be
realized in an inverting OP AMP circuit since
K1 K1/1000 Zz(s)

TS+1000  14s/1000  Zi(s)
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Equating the Z,(s) to the reciprocal of the denominator and Z,(s) to the reciprocal
of the numerator yields

1

' and Z, =1000/K
1+s/1000 ¢ “1 /K

Z) =

The impedance Z,(s) is realizable as a capacitance (C; = 1/1000 F) in parallel with
aresistance (R, = 1Q) and Z;(s) as a resistance (R; = 1000/K}). We select K; =
1000 so that the two resistances in the first stage are equal. Since the overall gain
requires K; x K, = 3000, this means that K, =3. The second-stage transfer
function can also be produced using an inverting OP AMP circuit:

3s 3 Z5(s)

T5+4000 1+4000/s  Zi(s)

Equating numerators and denominators yields Z(s) =R, =3 and Z(s) =
Ry + 1/C1S =1 —‘1-4000/.5‘

Figure 11-40 shows the cascade connection of the RC OP AMP circuits that
realize each stage. The overall transfer function is noninverting because the
cascade uses an even number of inverting stages. The chain rule applies here since
the first stage has an OP AMP output. The circuit in Figure 11-40 is a prototype
design because the values of resistance and capacitance are impractical.

FIGURE 11-40
3
—O
4
O
—~——————2nd st _—
nd stage -

D Design Exercise 11-28

Design a circuit to realize the following transfer function using only resistors, capacitors,
and no more than one OP AMP.

Answer: Figure 11-41 shows one possible prototypical solution.

FIGURE 11-41
1
MA— °
—+
1/1000 Vs (s)

|

2nd stage ———
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MAGNITUDE SCALING

The circuits obtained in Examples 11-20 and 11-21 are called prototype designs
because the element values are outside of practical ranges. The allowable ranges
depend on the fabrication technology used to construct the circuits. For example,
monolithic integrated circuit (IC) technology limits capacitances to a few hundred
picofarads, and inductors are difficult to manufacture on ICs. An OP AMP circuit
should have a feedback resistance greater than 1 k() to keep the output current
demand within the capabilities of general-purpose OP AMP devices. Other tech-
nologies and applications place different constraints on element values. For example,
the power industry, where physical size is of less importance, uses devices with much
larger values than the electronics industry.

There are no hard and fast rules here, but, roughly speaking, an electronic circuit
is probably realizable by some means if its passive element values fall in the ranges
shown in the tables on the inside rear cover, with the caveat that OP AMP circuits
generally use Rs > 1 k().

These are:

Capacitors*: 1 pF to 10,000 wF
Inductors’: 10 nH to 10 mH
Resistors®: 10 Q to 10 MQ.

The important idea here is that circuit designs like Figure 11-40 are impractical
because 1-() resistors are too small for OP AMP circuits and 1-mF capacitors are too
large physically.

It is often possible to scale the magnitude of circuit impedances so that the
element values fall into practical ranges. The key is to scale the element values in a
way that does not change the transfer function of the circuit. Multiplying the
numerator and denominator of the transfer function of a voltage-divider circuit
by a scale factor k,, yields

o k_m ZZ (S) _ kaZ (S)
o km Z] (S) + Zz(S) B kmzl (S) + kaZ(S)

Clearly, this modification does not change the transfer function but scales each
impedance by a factor of k,,, and changes the element values in the following way:

Ty(s) (11-33)

Ratter = kmRuvetore  Lafter = KmLbvefore  Cafter = % (11-34)
m
Equation (11-34) was derived using the transfer function of a voltage-divider circuit.
Itis easy to show that we would reach the same conclusion if we had used the transfer
functions of inverting or noninverting OP AMP circuits.

In general, a circuit is magnitude scaled by multiplying all resistances, multiplying
all inductances, and dividing all capacitances by a scale factor k,,,. The scale factor
must be positive, but can be greater than or less than 1. Different scale factors can be
used for each stage of a cascade design, but only one scale factor can be used for each
stage. These scaling operations do not change the voltage transfer function realized
by the circuit.

“Recent innovations in dielectrics have enabled a large new class of electronic double-layer
capacitors (EDLC) or supercapacitors with capacitances up to 5000 F. These devices are still
relatively large for small electronic applications.

SInductors up to 10 H, also called chokes, are possible but are quite large.

Resistors are manufactured outside this range but are used only in specialty applications.
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Our design strategy is first to create a prototype circuit whose element values may
be unrealistically large or small. Applying magnitude scaling to the prototype
produces a design with practical element values. Sometimes there may be no scale
factor that brings the prototype element values into a practical range. When this
happens, we must seek alternative realizations because the scaling process is telling
us that the prototype is not a viable candidate.

EXAMPLE 11-22

Magnitude scale the circuit in Figure 11-40 so all resistances are at least 10 k() and all
capacitances are less than 1 pF

SOLUTION:

The resistance constraint requires k,, R >10*(. The smallest resistance in the
prototype circuit is 1 Q; therefore, the resistance constraint requires k,, > 10*
The capacitance constraint requires C/k,, < 107°F. The largest capacitance in
the prototype is 1073 F; therefore, the capacitance constraint requires k,, > 10°.
The resistance condition on k,, dominates the two constraints. Selecting k,,, = 10*
produces the scaled design in Figure 11-42. This circuit realizes the same
transfer function as the prototype in Figure 11-40 but uses practical element
values.

FIGURE 11-42
025 uF 10k 30kQ

> O

L O

—~———2nd stage ————

Exercise 11-29

Select a magnitude scale factor for each stage in Figure 11-36 so that both capacitances are
0.01 wF and all resistances are greater than 10 k().

Answer: k, = 10° for the first stage; k,, = 10* for the second stage; k,, = 0.25 x 10> for
the third stage.

Exercise 11-30

Select a magnitude scale factor for the OP AMP circuit in Figure 11-39.

Answer: k,, = 105 any larger and the feedback resistor becomes too large, any smaller
and the input capacitor becomes too large.

SECOND-ORDER CIRCUIT DESIGN
An RLC voltage divider can also be used to realize second-order transfer functions.
For example, the transfer function
K
T =>
v(s) 52 + 2Lwos + o3
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FIGURE 11-43 Second-order
circuit realizations.
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can be realized by factoring s out of the denominator and equating the result to the
voltage-divider input-output relationship:

B K/s  D(s)

s+ 20wo +0d/s  Zi(s) + Za(s)

TV (S)

Equating numerators and denominators yields

2
wy — K

N

K
Zr(s) = N and Z,(s) = s + 2{wo +

The impedance Z,(s) is realizable as a capacitance (C, = 1/K F) and Z;(s) as a series
connection of an inductance (L; = 1H), resistance (R; = 2{w( {}), and capacitance
[C1 =1/(w} — K) F]. The resulting voltage-divider circuit is shown in Figure 11-43(a).
The impedances in this circuit are physically realizable when K < 3. Note that
the resistance controls the damping ratio { because it is the element that dissipates
energy in the circuit. Also note that if K = w3, then the capacitor C; is replaced by a
short circuit.

O O
. . 2
(a) Voltage divider design K < o ——— Second stage ——

(b) Cascade design K > o

When K > w3, we can partition the transfer function into a two-stage cascade of

the form
| 5] [

o | [ s+ 20w + wi/s

—
first second stage
stage

The first stage requires a positive gain greater than unity and can be realized using a
noninverting OP AMP circuit. The second stage can be realized as a voltage divider
with Z5(s) = w3/s and Z;(s) = s + 2{wo. The resulting cascade circuit is shown in
Figure 11-43(b).

VM DESIGN EXAMPLE 11—-23

Find a second-order realization of the transfer function given in Example
11-20.

SOLUTION:
The given transfer function can be written as

3000s B 3000s
(s + 1000)(s +4000) 52 + 50005 + 4 x 106
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Factoring s out of the denominator and equating the result to the transfer function of
a voltage divider gives

3000 B Z5(s)
s +5000 44 x 106/s — Z1(s) + Za(s) 2009 100 mH 2.5 uF
p—O
Equating the numerators and denominators yields
Z>(s) = 3000 and Zi(s) =s+2000 + 4 x 10%/s 3000 2
Both of these impedances are realizable, so a single-stage voltage-divider design is
possible. The prototype impedance Z;(s) requires a 1-H inductor, which is a bit large. .
A more practical value is obtained using a scale factor of k,, = 0.1. The resulting
scaled voltage divider circuit is shown in Figure 11-44. m FIGURE 11-44
D Design Exercise 11-31 k0 1H
Design a second-order circuit to realize the following transfer function: ij\/\/\/ L1 :
To(s) 106
§) =——"—5
VT 110y vi(2) LUE == vy(0)
Answer: Figure 11-45 shows one possible solution. _ _
(o] O
FIGURE 11-45

DESIGN EVALUATION SUMMARY
Examples 11-20, 11-21, and 11-23 show three different ways to realize the transfer
function

3000s

Tv(s) = (s + 1000) (s + 4000)

This illustrates that a design requirement can have many solutions. Selecting the best
design from among the alternatives involves additional criteria such as element
count, power requirements, and output loading effects.

The element counts for each design are shown in Table 11-1. On a pure element-
count basis, the RLC divider in Figure 11-44 in the best design. However, inductors
have some serious drawbacks. They are heavy and lossy in low-frequency applica-
tions and are not easily fabricated in integrated circuit form. Fortunately, inductors
are not essential to transfer function design, as shown by the two RC OP AMP
designs.

Power requirements: The two RC OP AMP designs require external dc power
supplies. The voltage divider cascade in Figure 11-36 requires less power since it uses
only one OP AMP, compared with the two-OP-AMP inverting cascade. Thus, power
requirements would favor the one-OP-AMP circuit over the two-OP-AMP circuit.

Tastire 11-

Numser of
Exampie Fisure DescripTion R L ( 0P AMP
11-20 11-36 RC voltage-divider cascade 4 2 1
11-21 11-40 RC inverting cascade 4 0 2 2
11-23 11-44 RLC voltage divider 2 1 1 0
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Output loading: The output impedance of the design is important if the circuit
must drive a finite load of, say, 1 kQ). The resulting loading effects could defeat the
basic purpose of the circuit by changing its transfer function. Output loading
considerations favor the inverting cascade in Figure 11-40 because it has an OP
AMP output that has zero output impedance.

A design problem involves more than simply finding a prototype that realizes a
given transfer function. In general, the first step in a design problem involves
determining an acceptable transfer function, one that meets performance require-
ments such as the characteristics of the step or frequency response. In other words,
we must first design the transfer function and then design several circuits that realize
the transfer function. To deal with transfer function design we must understand how
performance characteristics are related to transfer functions. The next two chapters
provide some background on this issue.

VM3 DESIGN AND EVALUATION EXAMPLE 11—24

Given the step response g(r) = =+ [1 + 4e7>]u(z),

(a) Find the transfer function 7(s).

(b) Design two RC OP AMP circuits that realize the 7(s) found in part (a).

(c) Evaluate the two designs on the basis of element count, input impedance, output
impedance.

SOLUTION:
(a) The transform of the step response is

1 4 5s + 500
o o —500¢ — - =

and the required transfer function is

5s + 500
(5) = H(s) = 5G(s) = £ ==
0.02 pF 0.02 pF . . . ) . . . . .
100 kQ 500 kO (b) The first design uses an inverting OP AMP configuration. Using the minus sign
o—/\/\/\,—||—r—’\/\/\,—| on the transfer function 7(s) and factoring an s out of the numerator and
denominator yield
T(s) = — 5+4500/s _ _ Zs(s)
14 500/s Zi(s)
| ! Equating numerators and denominators yields Z(s) =5+ 500/s and

Zi(s) =1+500/s. The impedance Z,(s) is realizable as a resistance
C1 (Ry = 5Q) in series with a capacitance (C, = 1/500 F) and Z;(s) as a resistance
(R = 19Q) in series with a capacitance (C; = 1/500 F). Using a magnitude scale
factor k,,, = 10° produces circuit C1 in Figure 11-46.
The second design uses a noninverting OP AMP configuration. Using the plus
sign on the transfer function 7(s) and factoring an s out of the numerator and
denominator yield

40 kO
10 k2 ~5+500/s  Zi(s) + Za(s)

02 uF &) =150~ Z:6)

Equating numerators and denominators yields
C2 500 500

Zl(S):1+T and Zz(S):5+T—Zl(S):4

FIGURE 11-46
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The impedance Z(s) is realizable as a resistance (R; = 1)) in series with a
capacitance (C; = 1/500F) and Z,(s) as a resistance (R, = 4(}). Using a scale
factor of k,, = 10* produces circuit C2 in Figure 11-46.

(¢) Circuit C1 uses one more capacitor than circuit C2. The OP AMP output on both
circuits means that they each have almost zero output impedance. The input
impedance to circuit C2 is very large, because its input is the noninverting input of
the OP AMP. The input impedance of circuit Cl is Z; (s) = k(1 + 500/s); hence,
the scale factor must be selected to avoid loading the source circuit. The final design
for circuit C1 in Figure 11-46 uses k,,, = 10°, which means that | Z; | > 100 kQ, which
should be high enough to avoid loading the source circuit. [ |

E Evaluation Exercise 11-32

The following transfer function was realized in different ways in Figures 11-37, 11-41 and
11-45:

+10°
Ty(s) = ——5
(s +10%)
Compare the various designs in a table similar to Table 11-1. Which would you
recommend if

(a) There was no power available?
(b) There was a desire not to invert the output and to avoid using inductors?
(c) There was a concern about loading at the output?

Answers:

(a) The RLC circuit in Figure 11-45 requires no power.

(b) The RC voltage-divider cascade in Figure 11-37 does not invert the output and does
not require an inductor.

(c) None of the circuits prevents the possibility of loading at the output. One could add an
OP AMP follower at the output of any of the three solutions to address loading concerns.

VM DESIGN EXAMPLE 11—25

Verity that circuit C2 in Figure 11-46 meets its design requirements.

SOLUTION:

One of the important uses of computer-aided analysis is to verify that a proposed
design meets the performance specifications. The circuit C2 in Figure 11-46 is
designed to produce a specified step response

g(t) = [L+4e™u()V

This response jumps from zero to 5 Vat ¢ = 0 and then decays exponentially to 1 V at
large ¢. The time constant of the exponential is 1/500 = 2 ms, which means that the
final value is effectively reached after about five time constants, or 10 ms.

One can use MATLAB to better visualize the specifications of a circuit design. To
have MATLAB produce the step response, we use the transfer function operator,
tf, as shown in the m-file below. In this example, after we entered the circuit’s
transfer function, we applied the MATLAB function step to plot the desired step
response of the circuit in question.

syms s;
s=tf(‘s’);
H=5*(s+100)/(s+500);
step (H)
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FIGURE 11-47 5 Step Response
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Figure 11-47 shows the step response of the circuit as plotted by MATLAB. We
have selected two points for reference, namely t = 2ms and ¢ = 4 ms.
In Figure 11-48 we have drawn the circuit in OrCAD and stimulated it using the
Time Domain (Transient) analysis function. The Probe response is also shown in the
figure. We have used the Probe cursor to measure the same two points so that a
comparison can be made.
The theoretical values can be also calculated directly from g(¢) at the same two points:
2(0.002) = 1 + 4¢300x0002 — 3 4715
2(0.004) = 1 + 4¢7500x0004 — 1 5413
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We summarize our results in the following table:

Tecnique
Tiue (s) Hawo Carcutsmion | MATLAB 0rCAD
0.002 24715V 247V 24715V
0.004 1.5413 V 1.54 V 1.5413 V
The data show that theory and simulation agree to three significant figures. m

APPLICATION EXAMPLE 11-26

The operation of a digital system is coordinated and controlled by a periodic
waveform called a clock. The clock waveform provides a standard timing reference
to maintain synchronization between signal processing results that are generated
asynchronously. Because of differences in digital circuit delays, there must be
agreed-upon instants of time at which circuit outputs can be treated as valid inputs
to other circuits.

Figure 11-49 shows a section of the clock distribution network in an integrated
circuit. In this network the clock waveform is generated at one point and distributed
to other on-chip locations by interconnections that can be modeled as lumped
resistors and capacitors. Clock distribution problems arise when the RC circuit
delays at different locations are not the same. This delay dispersion is called clock
skew, defined as the time difference between a clock edge at one location and the
corresponding edge at another location.

FIGURE 11-49 Clock distribution network.

To qualitatively calculate a clock skew, we will find the step responses in the RC

circuit in Figure 11-50. The input Vg(s) is a unit step function which simulates the Va(s) R VB(s)
leading edge of a clock pulse. The resulting step responses V(s) and V(s) represent

the clock waveforms at points A and B in a clock distribution network. To find the l l
step responses, we use the following s-domain node-voltage equations. Vs(s)

Node A: (% " Cs) Va(s) - (%) Vi) = V%S) I I

NodeB: — (%) Va(s) + (%+Cs> Va(s)= 0 -

FIGURE 11-50 Two-stage
RC circuit model.
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