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11–7 N E T W O R K F U N C T I O N D E S I G N

Finding andusing a network functionof a given circuit is an s-domain analysisproblem.
An s-domain synthesis problem involves finding a circuit that realizes a given network
function. For linear circuits, an analysis problem always has a unique solution. In
contrast, a synthesis problem may have many solutions because different circuits can
have the same network function. A transfer function design problem involves synthe-
sizing several circuits that realize a given function and evaluating the alternative
designs, using criteria suchas inputor output impedance, cost, andpower consumption.

The design process discussed here begins with a given transfer function TV sð Þ. We
partition this transfer function into a product of simpler functions.

TV sð Þ ¼ TV1 sð ÞTV2 sð Þ � � � TVk sð Þ
We then realize each of these simpler functions using basic circuit modules such as
voltage dividers, inverting amplifiers, and noninverting amplifiers. The overall
transfer function is then achieved by connecting the individual stages in cascade,
as indicated in Figure 11–32.

Of course, this approach assumes that the chain rule applies. In other words, we
must avoid loading when designing the stages in the cascade realization. This is
accomplished by coordinating the input and output impedances of adjacent
stages or using OP AMP voltage followers to isolate the individual stages.

Before turning to examples, we discuss the design of simple one-pole modules
that serve as the building block stages in a cascade design.

F I R S T - O R D E R V O L T A G E - D I V I D E R C I R C U I T D E S I G N

We begin our study of transfer function design by developing a voltage-divider
realization of a first-order transfer function of the form K=ðsþ aÞ. The impedances
Z1ðsÞ and Z2ðsÞ are related to the given transfer function using the voltage-divider
relationship.

TV sð Þ ¼ K

sþ a
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�26)

To obtain a circuit realization, wemust assign part of the givenTVðsÞ toZ2ðsÞ and the
remainder to Z1ðsÞ. There are many possible realizations of Z1ðsÞ and Z2ðsÞ because
there is no unique way to make this assignment. For example, simply equating the
numerators and denominators in Eq. (11–26) yields

Z2 sð Þ ¼ K and Z1 sð Þ ¼ sþ a� Z2 sð Þ ¼ sþ a� K (11�27)
Inspecting this result, we see that Z2ðsÞ is realizable as a resistance R2 ¼ KVð Þ and
Z1(s) as an inductance L1 ¼ 1Hð Þ in series with a resistance R1 ¼ a�Kð ÞV½ �. The
resulting circuit diagram is shown in Figure 11–33(a). For K ¼ a the resistance R1 can
be replaced by a short circuit because its resistance is zero. A gain restrictionK 
 a is
necessary because a negative R1 is not physically realizable as a single component.
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FIGURE 11–33 Circuit
realizations of T(s) ¼ K=(s +
a) for K 
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FIGURE 11–32 Cascade
connection transfer functions.
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An alternative synthesis approach involves factoring s out of the denominator of
the given transfer function. In this case, Eq. (11–26) is rewritten in the form

TV sð Þ ¼ K=s

1þ a=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�28)

Equating numerators and denominators yields the branch impedances

Z2 sð Þ ¼ K

s
and Z1 sð Þ ¼ 1þ a

s
� Z2 sð Þ ¼ 1þ a� K

s
(11�29)

In this case we see thatZ2ðsÞ is realizable as a capacitance C2 ¼ 1=K Fð Þ andZ1ðsÞ as
a resistance R1 ¼ 1Vð Þ in series with a capacitance C1 ¼ 1= a�Kð ÞF½ �. The resulting
circuit diagram is shown in Figure 11–33(b). For K ¼ a, the capacitance C1 can be
replaced by a short circuit because its capacitance is infinite. A gain restriction K 

a is required to keep C1 from being negative.

As a second design example, consider a voltage-divider realization of the transfer
function Ks= sþ að Þ. We can find two voltage-divider realizations by writing the
specified transfer function in the following two ways:

T sð Þ ¼ Ks

sþ a
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�30a)

T sð Þ ¼ K

1þ a=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�30b)

Equation (11–30a) uses the transfer function as given, while Eq. (11–30b) factors s
out of the numerator and denominator. Equating the numerators and denominators
in Eqs. (11–30a) and (11–30b) yields two possible impedance assignments:

Using Eq: 11--30að Þ: Z2 ¼ Ks and Z1 ¼ sþ a� Z2 ¼ 1� Kð Þsþ a (11�31a)

Using Eq: 11--30bð Þ: Z2 ¼ K and Z1 ¼ 1þ a

s
� Z2 ¼ 1� Kð Þ þ a

s
(11�31b)

The assignment in Eq. (11–31a) yields Z2(s) as an inductance L2 ¼ KH and Z1ðsÞ as
an inductance L1 ¼ ð1�KÞH½ � in series with a resistance R1 ¼ aVð Þ. The assign-
ment in Eq. (11–31b) yieldsZ2ðsÞ as a resistance R2 ¼ KVð Þ andZ1ðsÞ as a resistance
R1 ¼ 1�Kð ÞV½ � in series with a capacitance C1 ¼ 1=aFð Þ. The two realizations are
shown in Figure 11–34. Both realizations requireK 
 1 for the branch impedances to
be realizable and both simplify when K ¼ 1.

D e s i g n E x e r c i s e 11–23
Design an RC circuit to realize the following transfer function

TðsÞ ¼ 200

sþ 1000

A n s w e r : Use the circuit of Figure 11–33(b) withR¼ 1V,C1¼ 1250mF, andC2¼ 5000mF.
We will learn how to scale these answers to more practical device values later in this section.

V O L T A G E - D I V I D E R A N D O P A M P C A S C A D E

C I R C U I T D E S I G N

The examples in Figures 11–33 and 11–34 illustrate an important feature of voltage-
divider realizations. In general, we can write a transfer function as a quotient of
polynomials TðsÞ ¼ rðsÞ=qðsÞ. Avoltage-divider realization requires the impedances
Z2 sð Þ ¼ r sð Þ and Z1ðsÞ ¼ qðsÞ � rðsÞ to be physically realizable. A voltage-divider

R = 

L1 = 1 − K

R1 = 1 − K

(a) RL design

L2 = K

R2 = K

(b) RC design
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1
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α

FIGURE 11–34 Circuit
realizations of T(s) ¼ Ks=(s +
a) for K 
 1.
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circuit usually places limitations on the gainK. This gain limitation can be overcome
by using an OP AMP circuit in cascade with the divider circuit.

For example, a voltage-divider realization of the transfer function in Eq. (11–26)
requires K 
 a. When K>a, then TðsÞ is not realizable as a simple voltage divider,
since Z2ðsÞ ¼ sþ a�K requires a negative resistance. However, the given transfer
function can be written as a two-stage product:

TvðsÞ ¼ K

sþ a
¼ K

a

� �
|{z}
first

stage

a

sþ a

� �
|fflfflfflffl{zfflfflfflffl}
second

stage

When K>a, the first stage has a positive gain greater than unity. This stage can be
realized using a noninverting OPAMP circuit with a gain of R1 þ R2ð Þ=R1. The first-
stage design constraint is

K

a
¼ R1 þ R2

R1

ChoosingR1 ¼ 1V requires thatR2 ¼ ðK=aÞ � 1. AnRC voltage-divider realization
of the second stage is obtained by factoring an s out of the stage transfer function.
This leads to the second-stage design constraint

a=s

1þ a=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ
Equating numerators and denominators yields Z2ðsÞ ¼ a=s and Z1ðsÞ ¼ 1.
Figure 11–35 shows a cascade connection of a noninverting first stage and the
RC divider second stage. The chain rule applies to this circuit, since the first stage has
an OP AMP output. The cascade circuit in Figure 11–35 realizes the first-order
transfer function K= sþ að Þ for K>a, a gain requirement that cannot be met by the
divider circuit alone.

D e s i g n E x e r c i s e 11–24
Design an active RC circuit to realize the following transfer function

TðsÞ ¼ 2000

sþ 1000

A n s w e r : Use the circuit shown in Figure 11–35. The OPAMP stage has a gain of 2 by
making both resistors equal. Choose the components in the second stage voltage divider so
that R ¼ 1 V and C ¼ 1000 mF. We will leam how to scale these answers to more practical
device values later in this section.

D e s i g n E x e r c i s e 11–25
Design an active RL circuit to realize the following transfer function

TðsÞ ¼ 2000

sþ 1000

A n s w e r : Use the circuit shown in Figure 11–35. The OPAMP stage has a gain of 2 by
making both resistors equal. In the second stage, replace the resistor with an inductor and
replace the capacitor with a resistor. Let the components in the second stage voltage
divider be R ¼ 1 kV and L ¼ 1 H.

+

−
1

2nd stage

1
αK

α −11

1st stage

FIGURE 11–35 Circuit
realization of T(s) = K=(s + a)
for K > a.
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D E S I G N E X A M P L E 1 1 – 2 0

Design a circuit to realize the following transfer function using only resistors,
capacitors, and OP AMPs:

TV sð Þ ¼ 3000s

sþ 1000ð Þ sþ 4000ð Þ

SOLUTION:
The given transfer function can be written as a three-stage product.

TvðsÞ ¼
�

K1

sþ 1000|fflfflfflfflffl{zfflfflfflfflffl}
�

first
stage

½ K2|{z}�
second
stage

�
K3s

sþ 4000|fflfflfflfflffl{zfflfflfflfflffl}
�

third
stage

where the stage gains K1, K2, and K3 have yet to be selected. Factoring s out of the
denominator of the first-stage transfer function leads to an RC divider realization:

K1=s

1þ 1000=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ
Equating numerators and denominators yields

Z2ðsÞ ¼ K1=s and Z1ðsÞ ¼ 1þ ð1000�K1Þ=s
The first stage Z1ðsÞ is simpler when we select K1 ¼ 1000. Factoring s out of the
denominator of the third-stage transfer function leads to an RC divider realization:

K3

1þ 4000=s
¼ Z2ðsÞ

Z1ðsÞ þ Z2ðsÞ
Equating numerators and denominators yields

Z2ðsÞ ¼ K3 and Z1ðsÞ ¼ 1�K3 þ 4000=s

The third stage Z1ðsÞ is simpler when we selectK3 ¼ 1. The stage gains must meet the
constraintK1 �K2 �K3 ¼ 3000 since the overall gain of the given transfer function is
3000. We have selected K1 ¼ 1000 and K3 ¼ 1, which requires K2 ¼ 3. The second
stage must have a positive gain greater than 1 and can be realized using a noninverting
amplifier with K2 ¼ ðR1 þ R2Þ=R1 ¼ 3. Selecting R1 ¼ 1V requires that R2 ¼ 2V.

Figure 11–36 shows the three stages connected in cascade. The chain rule applies
to this cascade connection because the OPAMP in the second stage isolates the RC
voltage-divider circuits in the first and third stages. The order of the first and
third stages can be swapped in this design without consequence. The circuit in
Figure 11–36 realizes the given transfer function but is not a realistic design because
the values of resistance and capacitance are impractical. For this reason we call this
circuit a prototype design. We will shortly discuss how to scale a prototype to obtain
practical element values.

n3rd stage

+

−

2nd stage

1

1

1
40001
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FIGURE 11–36
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D e s i g n E x e r c i s e 11–26
Design a circuit to realize the following transfer function using only resistors, capacitors,
and no more than one OP AMP.

TV sð Þ ¼ 106

sþ 103ð Þ2

A n s w e r : Figure 11–37 shows one possible prototypical solution.

I N V E R T I N G O P A M P C I R C U I T D E S I G N

The inverting OPAMP circuit places fewer restrictions on the form of the desired
transfer function than does the basic voltage divider. To illustrate this, we will
develop two inverting OPAMP designs for a general first-order transfer function of
the form

TV sð Þ ¼ �K sþ g

sþ a

The general transfer function of the inverting OP AMP circuit is �Z2ðsÞ=Z1ðsÞ,
which leads to the general design constraint

�K sþ g

sþ a
¼ � Z2 sð Þ

Z1 sð Þ (11�32)

The first design is obtained by equating the numerators and denominators in
Eq. (11–32) to obtain the OP AMP circuit impedances as Z2ðsÞ ¼ KsþKg and
Z1ðsÞ ¼ sþ a. Both of these impedances are of the form Lsþ R and can be realized
by an inductance in series with a resistance, leading to the design realization in
Figure 11–38(a).

A second inverting OP AMP realization is obtained by equating Z2ðsÞ in
Eq. (11–32) to the reciprocal of the denominator and equatingZ1ðsÞ to the reciprocal
of the numerator. This assignment yields the impedances Z1ðsÞ ¼ 1= KsþKgð Þ and
Z2ðsÞ ¼ 1= sþ að Þ. Both of these impedances are of the form 1=ðCsþGÞ, where Cs is
the admittance of a capacitor andG is the admittance of a resistor. Both impedances
can be realized by a capacitance in parallel with a resistance. These impedance
identifications produce the RC circuit in Figure 11–38(b).

Because it has fewer restrictions, it is often easier to realize transfer functions
using the inverting OP AMP circuit. To use inverting circuits, the given transfer
function must require an inversion or be realized using an even number of inverting
stages. In some cases, the sign in front of the transfer function is immaterial and the
required transfer function is specified as 	TVðsÞ. Caution: The input impedance of
an inverting OP AMP circuit may load the source circuit.

3rd stage

+

−

2nd stage

1 1

1
1000

1
1000
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V2(s)

+

−

V1(s)

+

−

FIGURE 11–37
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D e s i g n E x e r c i s e 11–27
Design an active RC prototype circuit to realize the following transfer function

TðsÞ ¼ �100 sþ 50

sþ 100

A n s w e r : See Figure 11–39.

D E S I G N E X A M P L E 1 1 – 2 1

Design a circuit to realize the transfer function given in Example 11–20 using
inverting OP AMP circuits.

SOLUTION:
The given transfer function can be expressed as the product of two inverting transfer
functions:

TV sð Þ ¼ 3000s

sþ 1000ð Þ sþ 4000ð Þ ¼
�
� K1

sþ 1000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�

first stage

�
� K2s

sþ 4000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�

second stage

where the stage gains K1 and K2 have yet to be selected. The first stage can be
realized in an inverting OP AMP circuit since

� K1

sþ 1000
¼ � K1=1000

1þ s=1000
¼ �Z2 sð Þ

Z1 sð Þ

+

−

1α Kγ K

(a) RL design

+

−

1

K

(b) RC design

α

1

1
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FIGURE 11–38 Inverting OP
AMP circuit realizations of
T(s) ¼ �K(s þ g)=(s þ a).
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FIGURE 11–39
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Equating the Z2(s) to the reciprocal of the denominator and Z1(s) to the reciprocal
of the numerator yields

Z2 ¼ 1

1þ s=1000
and Z1 ¼ 1000=K1

The impedanceZ2(s) is realizable as a capacitance C2 ¼ 1=1000Fð Þ in parallel with
a resistance R2 ¼ 1Vð Þ and Z1(s) as a resistance R1 ¼ð 1000=K1VÞ. We select K1 ¼
1000 so that the two resistances in the first stage are equal. Since the overall gain
requires K1 �K2 ¼ 3000, this means that K2 ¼ 3. The second-stage transfer
function can also be produced using an inverting OP AMP circuit:

� 3s

sþ 4000
¼ � 3

1þ 4000=s
¼ �Z2 sð Þ

Z1 sð Þ

Equating numerators and denominators yields Z2ðsÞ ¼ R2 ¼ 3 and Z1ðsÞ ¼
R1 þ 1=C1s ¼ 1þ 4000=s.

Figure 11–40 shows the cascade connection of the RC OP AMP circuits that
realize each stage. The overall transfer function is noninverting because the
cascade uses an even number of inverting stages. The chain rule applies here since
the first stage has an OPAMP output. The circuit in Figure 11–40 is a prototype
design because the values of resistance and capacitance are impractical.

n

D e s i g n E x e r c i s e 11–28
Design a circuit to realize the following transfer function using only resistors, capacitors,
and no more than one OP AMP.

TV sð Þ ¼ �106
sþ 103ð Þ2

A n s w e r : Figure 11–41 shows one possible prototypical solution.
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FIGURE 11–41
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M A G N I T U D E S C A L I N G

The circuits obtained in Examples 11–20 and 11–21 are called prototype designs
because the element values are outside of practical ranges. The allowable ranges
depend on the fabrication technology used to construct the circuits. For example,
monolithic integrated circuit (IC) technology limits capacitances to a few hundred
picofarads, and inductors are difficult to manufacture on ICs. An OPAMP circuit
should have a feedback resistance greater than 1 kV to keep the output current
demand within the capabilities of general-purpose OP AMP devices. Other tech-
nologies and applications place different constraints on element values. For example,
the power industry, where physical size is of less importance, uses devices with much
larger values than the electronics industry.

There are no hard and fast rules here, but, roughly speaking, an electronic circuit
is probably realizable by some means if its passive element values fall in the ranges
shown in the tables on the inside rear cover, with the caveat that OPAMP circuits
generally use Rs > 1 kV.

These are:

Capacitors4: 1 pF to 10,000 mF

Inductors5: 10 nH to 10 mH

Resistors6: 10 V to 10 MV.

The important idea here is that circuit designs like Figure 11–40 are impractical
because 1-V resistors are too small for OPAMP circuits and 1-mF capacitors are too
large physically.

It is often possible to scale the magnitude of circuit impedances so that the
element values fall into practical ranges. The key is to scale the element values in a
way that does not change the transfer function of the circuit. Multiplying the
numerator and denominator of the transfer function of a voltage-divider circuit
by a scale factor km yields

TV sð Þ ¼ km
km

Z2 sð Þ
Z1 sð Þ þ Z2 sð Þ ¼

kmZ2 sð Þ
kmZ1 sð Þ þ kmZ2 sð Þ (11�33)

Clearly, this modification does not change the transfer function but scales each
impedance by a factor of km and changes the element values in the following way:

Rafter ¼ kmRbefore Lafter ¼ kmLbefore Cafter ¼ Cbefore

km
(11�34)

Equation (11–34) was derived using the transfer function of a voltage-divider circuit.
It is easy to show that we would reach the same conclusion if we had used the transfer
functions of inverting or noninverting OP AMP circuits.

In general, a circuit is magnitude scaled by multiplying all resistances, multiplying
all inductances, and dividing all capacitances by a scale factor km. The scale factor
must be positive, but can be greater than or less than 1. Different scale factors can be
used for each stage of a cascade design, but only one scale factor can be used for each
stage. These scaling operations do not change the voltage transfer function realized
by the circuit.

4Recent innovations in dielectrics have enabled a large new class of electronic double-layer
capacitors (EDLC) or supercapacitors with capacitances up to 5000 F. These devices are still
relatively large for small electronic applications.
5Inductors up to 10 H, also called chokes, are possible but are quite large.
6Resistors are manufactured outside this range but are used only in specialty applications.

588 C H A P T E R 1 1 NETWORK FUNCTIONS

Uploaded By: mohammad awawdehSTUDENTS-HUB.com



C11 11/02/2011 12:36:14 Page 589

Our design strategy is first to create a prototype circuit whose element values may
be unrealistically large or small. Applying magnitude scaling to the prototype
produces a design with practical element values. Sometimes there may be no scale
factor that brings the prototype element values into a practical range. When this
happens, we must seek alternative realizations because the scaling process is telling
us that the prototype is not a viable candidate.

E X A M P L E 1 1 – 2 2

Magnitude scale the circuit in Figure 11–40 so all resistances are at least 10 kV and all
capacitances are less than 1 mF.

SOLUTION:
The resistance constraint requires kmR� 104 V. The smallest resistance in the
prototype circuit is 1 V; therefore, the resistance constraint requires km� 104.
The capacitance constraint requires C=km 
 10�6 F. The largest capacitance in
the prototype is 10�3 F; therefore, the capacitance constraint requires km� 103.
The resistance condition on km dominates the two constraints. Selecting km¼ 104

produces the scaled design in Figure 11–42. This circuit realizes the same
transfer function as the prototype in Figure 11–40 but uses practical element
values.

n

E x e r c i s e 11–29
Select a magnitude scale factor for each stage in Figure 11–36 so that both capacitances are
0.01 mF and all resistances are greater than 10 kV.

A n s w e r : km ¼ 105 for the first stage; km ¼ 104 for the second stage; km ¼ 0:25� 105 for
the third stage.

E x e r c i s e 11–30
Select a magnitude scale factor for the OP AMP circuit in Figure 11–39.

A n s w e r : km ¼ 108, any larger and the feedback resistor becomes too large, any smaller
and the input capacitor becomes too large.

S E C O N D - O R D E R C I R C U I T D E S I G N

An RLC voltage divider can also be used to realize second-order transfer functions.
For example, the transfer function

TV sð Þ ¼ K

s2 þ 2zv0sþ v2
0

+

−

1st stage 2nd stage

10 kΩ
10 kΩ

10 kΩ0.025 µF 30 kΩ

0.1 µF

+

−

FIGURE 11–42
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can be realized by factoring s out of the denominator and equating the result to the
voltage-divider input-output relationship:

TV sð Þ ¼ K=s

sþ 2zv0 þ v2
0=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ
Equating numerators and denominators yields

Z2 sð Þ ¼ K

s
and Z1 sð Þ ¼ sþ 2zv0 þ v2

0 � K

s

The impedanceZ2(s) is realizable as a capacitance C2 ¼ 1=K Fð Þ andZ1(s) as a series
connection of an inductance L1 ¼ 1Hð Þ, resistance R1 ¼ 2zv0 Vð Þ, and capacitance
C1 ¼ 1= v2

0 �K
� �

F

 �

. The resulting voltage-divider circuit is shown in Figure 11–43(a).
The impedances in this circuit are physically realizable when K 
 v2

0. Note that
the resistance controls the damping ratio z because it is the element that dissipates
energy in the circuit. Also note that if K ¼ v2

0, then the capacitor C1 is replaced by a
short circuit.

When K>v2
0, we can partition the transfer function into a two-stage cascade of

the form

TV sð Þ ¼
�

K

v2
0|{z}
�

first

stage

�
v2
0=s

sþ 2zv0 þ v2
0=s|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�

second stage

The first stage requires a positive gain greater than unity and can be realized using a
noninverting OPAMP circuit. The second stage can be realized as a voltage divider
with Z2ðsÞ ¼ v2

0=s and Z1ðsÞ ¼ sþ 2zv0. The resulting cascade circuit is shown in
Figure 11–43(b).

D E S I G N E X A M P L E 1 1 – 2 3

Find a second-order realization of the transfer function given in Example
11–20.

SOLUTION:
The given transfer function can be written as

TV sð Þ ¼ 3000s

sþ 1000ð Þ sþ 4000ð Þ ¼
3000s

s2 þ 5000sþ 4� 106

L1 = 1

R1= 2ζω0

(a) Voltage divider design K ≤ ω0

C1 = 1

C2 = K

ω0
2
 − K

1

2
First stage Second stage

1+

−
2ζω0

ω0
2

1

ω0
2

K1 −1

(b) Cascade design K > ω0 2

FIGURE 11–43 Second-order
circuit realizations.
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Factoring s out of the denominator and equating the result to the transfer function of
a voltage divider gives

3000

sþ 5000þ 4� 106=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ
Equating the numerators and denominators yields

Z2 sð Þ ¼ 3000 and Z1 sð Þ ¼ sþ 2000þ 4� 106=s

Both of these impedances are realizable, so a single-stage voltage-divider design is
possible. The prototype impedance Z1(s) requires a 1-H inductor, which is a bit large.
A more practical value is obtained using a scale factor of km ¼ 0:1. The resulting
scaled voltage divider circuit is shown in Figure 11–44. n

D e s i g n E x e r c i s e 11–31
Design a second-order circuit to realize the following transfer function:

TVðsÞ ¼ 106

sþ 103ð Þ2

A n s w e r : Figure 11–45 shows one possible solution.

D E S I G N E V A L U A T I O N S U M M A R Y

Examples 11–20, 11–21, and 11–23 show three different ways to realize the transfer
function

TV sð Þ ¼ 3000s

sþ 1000ð Þ sþ 4000ð Þ
This illustrates that a design requirement can have many solutions. Selecting the best
design from among the alternatives involves additional criteria such as element
count, power requirements, and output loading effects.

The element counts for each design are shown in Table 11–1. On a pure element-
count basis, the RLC divider in Figure 11–44 in the best design. However, inductors
have some serious drawbacks. They are heavy and lossy in low-frequency applica-
tions and are not easily fabricated in integrated circuit form. Fortunately, inductors
are not essential to transfer function design, as shown by the two RC OP AMP
designs.

Power requirements: The two RC OP AMP designs require external dc power
supplies. The voltage divider cascade in Figure 11–36 requires less power since it uses
only one OPAMP, compared with the two-OP-AMP inverting cascade. Thus, power
requirements would favor the one-OP-AMP circuit over the two-OP-AMP circuit.

2 kΩ 1 H

1 μF v2(t)

+

−

v1(t)

+

−

FIGURE 11–45

200 Ω 100 mH 2.5 μF

300 Ω

FIGURE 11–44

T A B L E 11–1

NUMBER OF

EXAMPLE FIGURE DESCRIPTION R L C OP AMP

11–20 11–36 RC voltage-divider cascade 4 0 2 1

11–21 11–40 RC inverting cascade 4 0 2 2

11–23 11–44 RLC voltage divider 2 1 1 0
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Output loading: The output impedance of the design is important if the circuit
must drive a finite load of, say, 1 kV. The resulting loading effects could defeat the
basic purpose of the circuit by changing its transfer function. Output loading
considerations favor the inverting cascade in Figure 11–40 because it has an OP
AMP output that has zero output impedance.

A design problem involves more than simply finding a prototype that realizes a
given transfer function. In general, the first step in a design problem involves
determining an acceptable transfer function, one that meets performance require-
ments such as the characteristics of the step or frequency response. In other words,
we must first design the transfer function and then design several circuits that realize
the transfer function. To deal with transfer function design we must understand how
performance characteristics are related to transfer functions. The next two chapters
provide some background on this issue.

D E S I G N A N D E V A L U A T I O N E X A M P L E 1 1 – 2 4

Given the step response g tð Þ ¼ 	 1þ 4e�500t

 �

u tð Þ,
(a) Find the transfer function T(s).
(b) Design two RC OPAMP circuits that realize the T(s) found in part (a).
(c) Evaluate the two designs on the basis of element count, input impedance, output

impedance.

SOLUTION:
(a) The transform of the step response is

GðsÞ ¼ 	L 1þ 4e�500t

 �

u tð Þ� 
 ¼ 	 1

s
þ 4

sþ 500

� �
¼ 	 5sþ 500

s sþ 500ð Þ
and the required transfer function is

T sð Þ ¼ H sð Þ ¼ sG sð Þ ¼ 	 5sþ 500

sþ 500

(b) The first design uses an inverting OPAMP configuration. Using the minus sign
on the transfer function T(s) and factoring an s out of the numerator and
denominator yield

T sð Þ ¼ � 5þ 500=s

1þ 500=s
¼ �Z2 sð Þ

Z1 sð Þ
Equating numerators and denominators yields Z2ðsÞ ¼ 5þ 500=s and
Z1ðsÞ ¼ 1þ 500=s. The impedance Z2(s) is realizable as a resistance
R2 ¼ 5Vð Þ in series with a capacitance C2 ¼ 1=500Fð Þ and Z1(s) as a resistance
R1 ¼ 1Vð Þ in series with a capacitance C1 ¼ 1=500Fð Þ. Using a magnitude scale
factor km ¼ 105 produces circuit C1 in Figure 11–46.

The second design uses a noninvertingOPAMP configuration. Using the plus
sign on the transfer function T(s) and factoring an s out of the numerator and
denominator yield

T sð Þ ¼ 5þ 500=s

1þ 500=s
¼ Z1 sð Þ þ Z2 sð Þ

Z1 sð Þ
Equating numerators and denominators yields

Z1 sð Þ ¼ 1þ 500

s
and Z2 sð Þ ¼ 5þ 500

s
� Z1 sð Þ ¼ 4

0.02 µF

C1

500 kΩ
0.02 µF

100 kΩ

+

−

10 kΩ
40 kΩ

0.2 μF

C2

+

−

FIGURE 11–46
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The impedance Z1(s) is realizable as a resistance (R1 ¼ 1V) in series with a
capacitance C1 ¼ 1=500Fð Þ and Z2(s) as a resistance R2 ¼ 4Vð Þ. Using a scale
factor of km ¼ 104 produces circuit C2 in Figure 11–46.

(c) Circuit C1 uses one more capacitor than circuit C2. The OPAMP output on both
circuits means that they each have almost zero output impedance. The input
impedance to circuit C2 is very large, because its input is the noninverting input of
the OPAMP. The input impedance of circuit C1 is Z1ðsÞ ¼ kmð1þ 500=sÞ; hence,
the scale factormust be selected to avoid loading the source circuit. The final design
for circuit C1 in Figure 11–46 uses km ¼ 105, whichmeans that Z1j j> 100kV, which
should be high enough to avoid loading the source circuit. n

E v a l u a t i o n E x e r c i s e 11–32
The following transfer function was realized in different ways in Figures 11–37, 11–41 and
11–45:

TVðsÞ ¼ 	106
sþ 103ð Þ2

Compare the various designs in a table similar to Table 11–1. Which would you
recommend if

(a) There was no power available?
(b) There was a desire not to invert the output and to avoid using inductors?
(c) There was a concern about loading at the output?

A n s w e r s :

(a) The RLC circuit in Figure 11–45 requires no power.
(b) The RC voltage-divider cascade in Figure 11–37 does not invert the output and does

not require an inductor.
(c) None of the circuits prevents the possibility of loading at the output. One could add an

OPAMP follower at the output of any of the three solutions to address loading concerns.

D E S I G N E X A M P L E 1 1 – 2 5

Verify that circuit C2 in Figure 11–46 meets its design requirements.

SOLUTION:
One of the important uses of computer-aided analysis is to verify that a proposed
design meets the performance specifications. The circuit C2 in Figure 11–46 is
designed to produce a specified step response

g tð Þ ¼ 1þ 4e�500t

 �

u tð ÞV
This response jumps from zero to 5 Vat t ¼ 0 and then decays exponentially to 1 Vat
large t. The time constant of the exponential is 1=500 ¼ 2ms, which means that the
final value is effectively reached after about five time constants, or 10 ms.

One can useMATLAB to better visualize the specifications of a circuit design. To
have MATLAB produce the step response, we use the transfer function operator,
tf, as shown in the m-file below. In this example, after we entered the circuit’s
transfer function, we applied the MATLAB function step to plot the desired step
response of the circuit in question.

syms s;

s = tf(‘s’);

H = 5*(s+100)/(s+500);

step (H)
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Figure 11–47 shows the step response of the circuit as plotted by MATLAB. We
have selected two points for reference, namely t ¼ 2ms and t ¼ 4ms.

In Figure 11–48 we have drawn the circuit in OrCAD and stimulated it using the
Time Domain (Transient) analysis function. The Probe response is also shown in the
figure. We have used the Probe cursor to measure the same two points so that a
comparison can be made.

The theoretical values can be also calculated directly from g(t) at the same two points:

gð0:002Þ ¼ 1þ 4e�500� 0:002 ¼ 2:4715

gð0:004Þ ¼ 1þ 4e�500� 0:004 ¼ 1:5413
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FIGURE 11–47

FIGURE 11–48 Copyright # Cadence Design Systems, Inc. Used with permission.
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We summarize our results in the following table:

The data show that theory and simulation agree to three significant figures. n

E X A M P L E 1 1 – 2 6A P P L I C A T I O N

The operation of a digital system is coordinated and controlled by a periodic
waveform called a clock. The clock waveform provides a standard timing reference
to maintain synchronization between signal processing results that are generated
asynchronously. Because of differences in digital circuit delays, there must be
agreed-upon instants of time at which circuit outputs can be treated as valid inputs
to other circuits.

Figure 11–49 shows a section of the clock distribution network in an integrated
circuit. In this network the clock waveform is generated at one point and distributed
to other on-chip locations by interconnections that can be modeled as lumped
resistors and capacitors. Clock distribution problems arise when the RC circuit
delays at different locations are not the same. This delay dispersion is called clock
skew, defined as the time difference between a clock edge at one location and the
corresponding edge at another location.

To qualitatively calculate a clock skew, we will find the step responses in the RC
circuit in Figure 11–50. The input VS(s) is a unit step function which simulates the
leading edge of a clock pulse. The resulting step responses VA(s) and VB(s) represent
the clock waveforms at points A and B in a clock distribution network. To find the
step responses, we use the following s-domain node-voltage equations.

NodeA:
2

R
þCs

� 	
VA sð Þ � 1

R

� 	
VB sð Þ ¼ VS sð Þ

R

NodeB: � 1

R

� 	
VA sð Þ þ 1

R
þCs

� 	
VB sð Þ¼ 0

TECHNIQUE

TIME (S) HAND CALCULATION MATLAB ORCAD

0.002 2.4715 V 2.47 V 2.4715 V

0.004 1.5413 V 1.54 V 1.5413 V

R R

+
− VS(s) 1

Cs
1

Cs

VA(s) VB(s)

FIGURE 11–50 Two-stage
RC circuit model.
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FIGURE 11–49 Clock distribution network.
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