Combinational Logic

ENCS2340 - Digital Systems

Dr. Ahmed I. A. Shawahna Electrical and Computer Engineering Department Birzeit University

STUDENTS-HUB.com

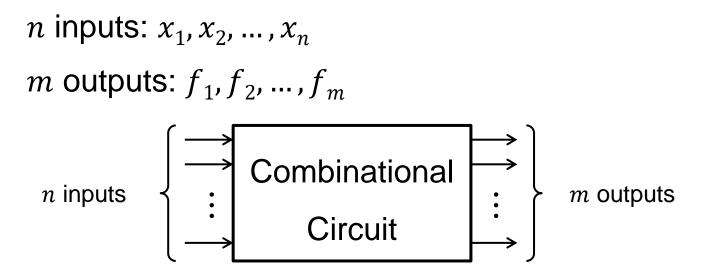
Presentation Outline

Combinational Circuits

- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

Combinational Circuits

✤ A combinational circuit is a block of logic gates having:



- Each output is a function of the input variables
- Each output is determined from present combination of inputs
- Combination circuit performs operation specified by logic gates

The logic diagram has no feedback paths or memory elements

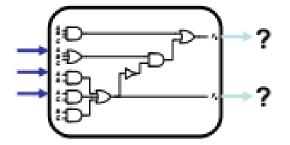
 STUDENTS-HUB.com
 Uploaded By: Malak Dar Obaid

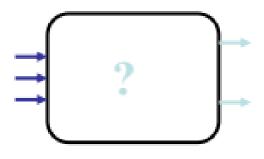
 ENCS2340 - Digital Systems
 Uploaded By: Malak Dar Obaid

Combinational Circuits

- ✤ Analysis:
 - ♦ Given a circuit (a logic diagram), find out its function
 - \diamond Function may be expressed as:
 - Boolean function
 - Truth table
- Design:
 - ♦ Given a desired function, determine its circuit (logic diagram)
 - \diamond Function may be expressed as:
 - Boolean function
 - Truth table

STUDENTS-HUB.com





Uploaded By: Malak Dar Obaid A Shawahna - slide 4

Functional Blocks

- ✤ A functional block is a combinational circuit
- We will study blocks, such as decoders and multiplexers
- Functional blocks are very common and useful in design
- In the past, functional blocks were integrated circuits
 SSI: Small Scale Integration = tens of gates
 MSI: Medium Scale Integration = hundreds of gates
 LSI: Large Scale Integration = thousands of gates
 VLSI: Very Large Scale Integration = millions of gates
- Today, functional blocks are part of a design library
- Tested for correctness and reused in many projects

STUDENTS-HUB.com

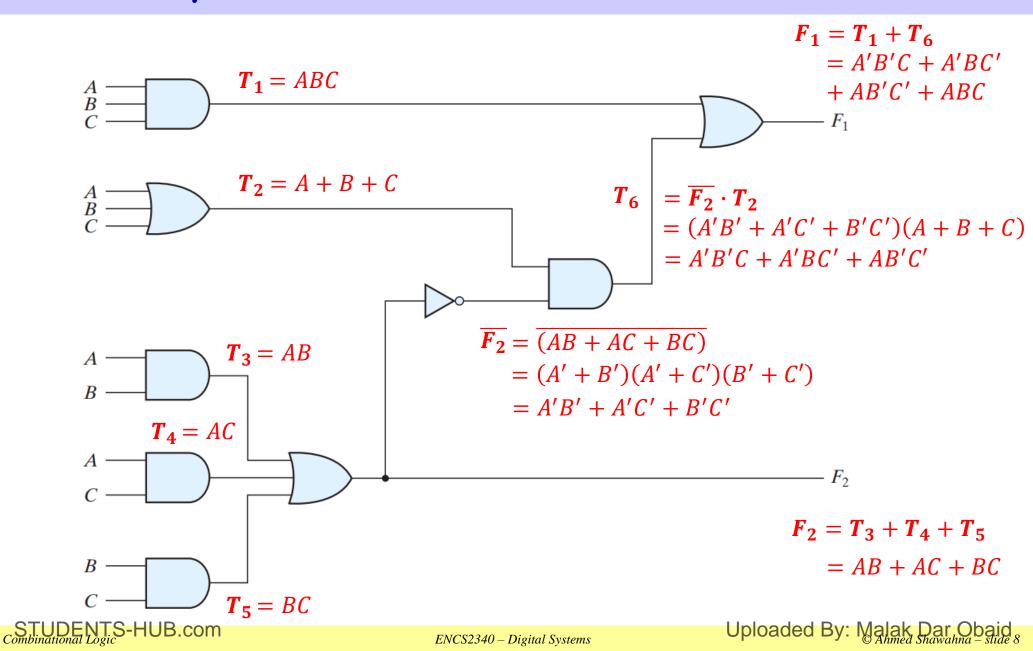
Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

Analysis Procedure - Boolean Function

- 1. Label all gate outputs that are a function of input variables with symbols. Determine the Boolean function for each gate output.
- Label the gates that are a function of input variables and previously labeled gates with other symbols. Find the Boolean functions for these gates.
- 3. Repeat step 2 until output of circuits are obtained.
- 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

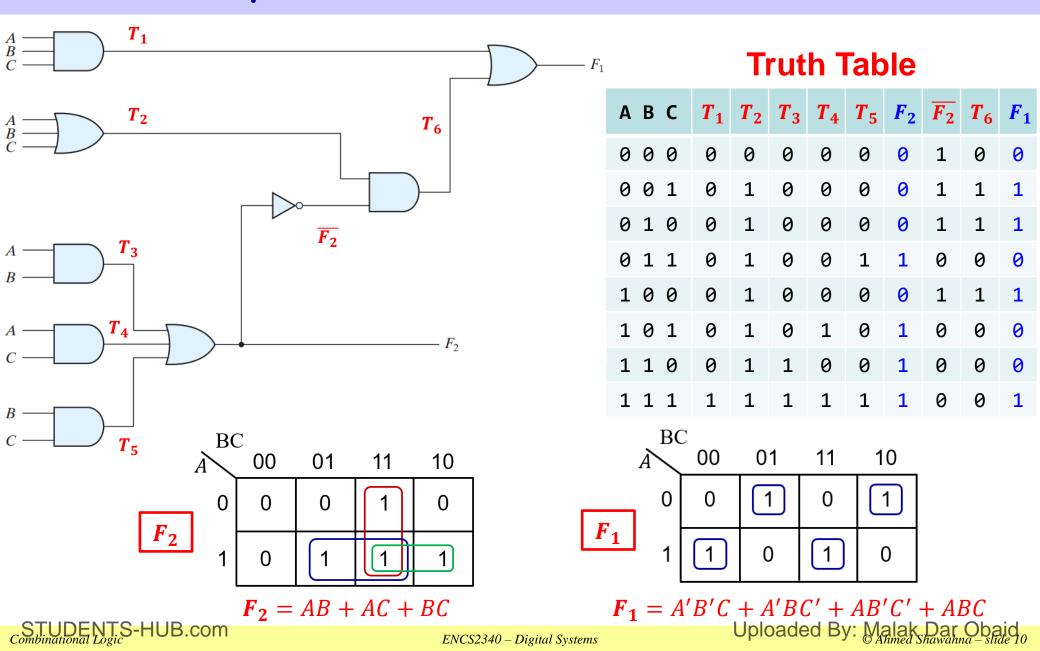
Analysis Procedure - Boolean Function



Analysis Procedure - Truth Table

- 1. Determine the number of input variables in the circuit. For n inputs, form the 2^n possible input combinations and list the binary numbers from 0 to $(2^n 1)$ in a table.
- 2. Label the outputs of selected gates with arbitrary symbols.
- 3. Obtain the truth table for the outputs of those gates which are a function of the input variables only.
- Proceed to obtain the truth table for the outputs of those gates which are a function of previously defined values until the columns for all outputs are determined.

Analysis Procedure - Truth Table



Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
 - ♦ Designing a BCD to Excess-3 Code Converter
 - ♦ Designing a BCD to 7-Segment Decoder
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

STUDENTS-HUB.com

How to Design a Combinational Circuit

1. Specification

♦ Specify the inputs, outputs, and what the circuit should do

2. Formulation

♦ Convert the specification into truth tables or logic expressions for outputs

3. Logic Minimization

♦ Minimize the output functions using K-map or Boolean algebra

4. Technology Mapping

- ♦ Draw a logic diagram using ANDs, ORs, and inverters
- ♦ Map the logic diagram into the selected technology
- ♦ Considerations: cost, delays, fan-in, fan-out

5. Verification

 \diamond Verify the correctness of the design, either manually or using simulation

Verification Methods

- Manual Logic Analysis
 - ♦ Find the logic expressions and truth table of the final circuit
 - ♦ Compare the final circuit truth table against the specified truth table
 - ♦ Compare the circuit output expressions against the specified expressions
 - ♦ Tedious for large designs + Human Errors
- Simulation
 - ♦ Simulate the final circuit, possibly written in HDL (such as Verilog)
 - \diamond Write a test bench that automates the verification process
 - ♦ Generate test cases for ALL possible inputs (exhaustive testing)
 - \diamond Verify the output correctness for ALL input test cases
 - ♦ Exhaustive testing can be very time consuming for many inputs

1. Specification:

- ♦ Input: BCD code for decimal digits 0 to 9
- ♦ Output: Excess-3 code for digits 0 to 9
- ♦ Convert BCD code to Excess-3 code

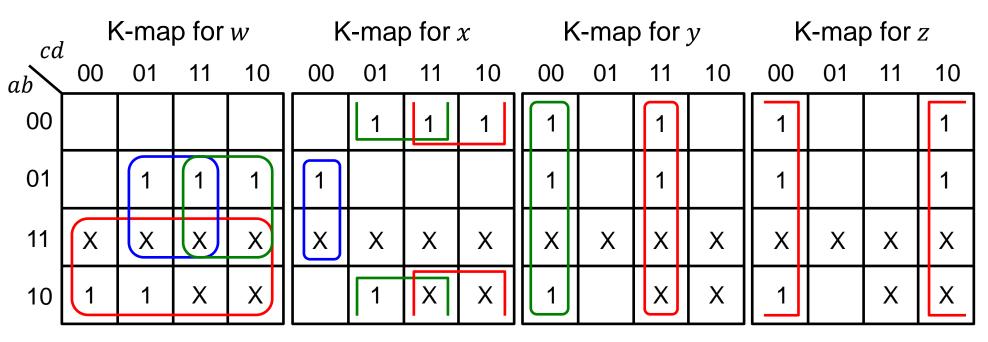
2. Formulation:

Combinational Logic

- \diamond Done easily with a truth table
- \diamond BCD input: *a*, *b*, *c*, *d*
- \diamond Excess-3 output: *w*, *x*, *y*, *z*
- ♦ Output is don't care for 1010 to 1111

BCD			Excess-3			s-3
a b	o c	d	W	Х	у	z
00	9 0	0	0	0	1	1
0 0	90	1	0	1	0	0
00	91	0	0	1	0	1
0 0	91	1	0	1	1	0
0 1	10	0	0	1	1	1
0 1	10	1	1	0	0	0
0 1	1 1	0	1	0	0	1
0 1	1 1	1	1	0	1	0
1 0	9 0	0	1	0	1	1
1 (9 0	1	1	1	0	0
1010	to	1111	X	Х	Х	Х

3. Logic Minimization using K-maps:



Minimal Sum-of-Products expressions:

w = a + bc + bd, x = b'c + b'd + bc'd', y = cd + c'd', z = d'

Additional 3-Level Optimizations: extract common term (c + d)

$$w = a + b(c + d)$$
, $x = b'(c + d) + b(c + d)'$, $y = cd + (c + d)'$

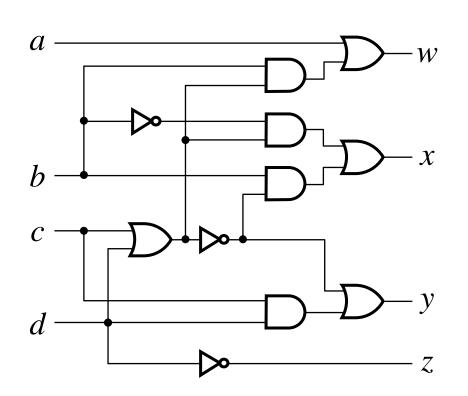
STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid, CAnmed Shawahna - slide 15

4. Technology Mapping:

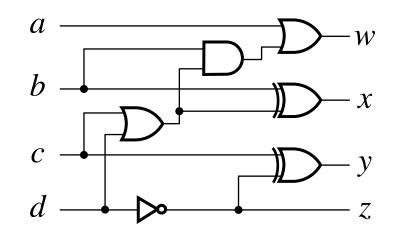
Draw a logic diagram using ANDs, ORs, and inverters

Other gates can be used, such as NAND, NOR, and XOR



Combinational Logic

Using XOR gates $x = b'(c+d) + b(c+d)' = b \oplus (c+d)$ $y = cd + c'd' = (c \oplus d)' = c \oplus d'$



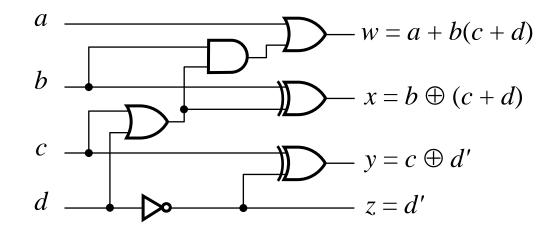
ENCS2340 – Digital Systems

5. Verification:

Combinational Logic

Can be done manually

Extract output functions from circuit diagram Find the truth table of the circuit diagram Match it against the specification truth table Verification process can be automated Using a simulator for complex designs



Truth Table of the Circuit Diagram

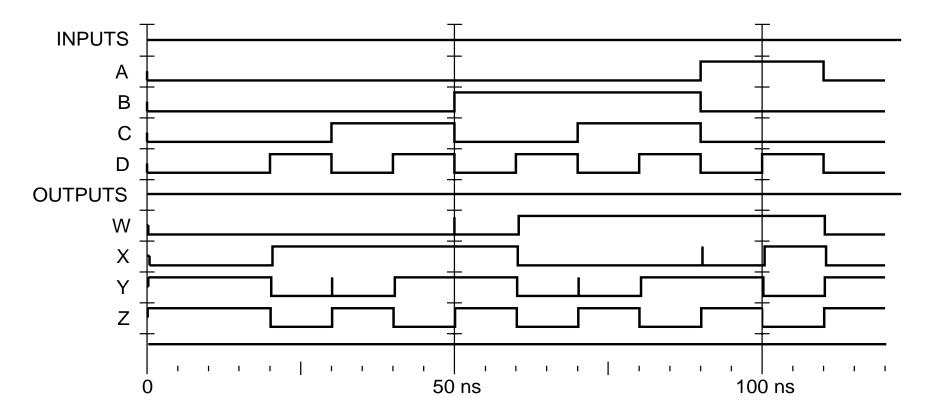
BCD			Ex	Ce	ess	s-3
a b c d	c+d	b(c+d)	W	X	у	z
0000	0	0	0	0	1	1
0001	1	0	0	1	0	0
0010	1	0	0	1	0	1
0011	1	0	0	1	1	0
0100	0	0	0	1	1	1
0101	1	1	1	0	0	0
0110	1	1	1	0	0	1
0111	1	1	1	0	1	0
1000	0	0	1	0	1	1
1001	1	0	1	1	0	0

Uploaded By: Malak Dar Obaid

ENCS2340 – Digital Systems

5. Verification:

Run the simulation of the circuit



Do the simulation output combinations match the original specification truth table?

STUDENTS-HUB.com

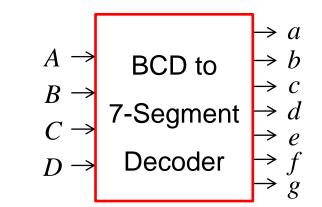
ENCS2340 – Digital Systems

BCD to 7-Segment Decoder

- Seven-Segment Display:
 - ♦ Made of Seven segments: light-emitting diodes (LED)
 - ♦ Found in electronic devices: such as clocks, calculators, etc.

0 123456789

- BCD to 7-Segment Decoder
 - ♦ Accepts as input a BCD decimal digit (0 to 9)
 - $\diamond\,$ Generates output to the seven LED segments to display the BCD digit
 - \diamond Each segment can be turned on or off separately



1. Specification:

- \diamond Input: 4-bit BCD (A, B, C, D)
- \diamond Output: 7-bit (*a*, *b*, *c*, *d*, *e*, *f*, *g*)
- Display should be OFF for
 Non-BCD input codes

2. Formulation:

- \diamond Done with a truth table
- \diamond Output is zero for 1010 to 1111

Combinational Logic

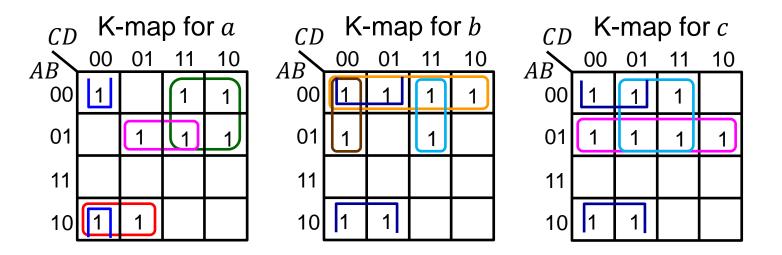
0 823456789

Truth Table

BCD input	7-Segment decoder
ABCD	abcdefg
0000	1 1 1 1 1 1 0
0001	0110000
0010	1 1 0 1 1 0 1
0011	1 1 1 1 0 0 1
0100	0110011
0101	1011011
0110	1011111
0111	1110000
1000	1 1 1 1 1 1 1
1001	1 1 1 1 0 1 1
1010 to 1111	0000000

Uploaded By: Malak Dar Obaid © Ahmed Shawahna - slide 20

3. Logic Minimization Using K-Maps:



a = A'C + A'BD + AB'C' + B'C'D' b = A'B' + B'C' + A'C'D' + A'CDc = A'B + B'C' + A'D

Extracting common terms

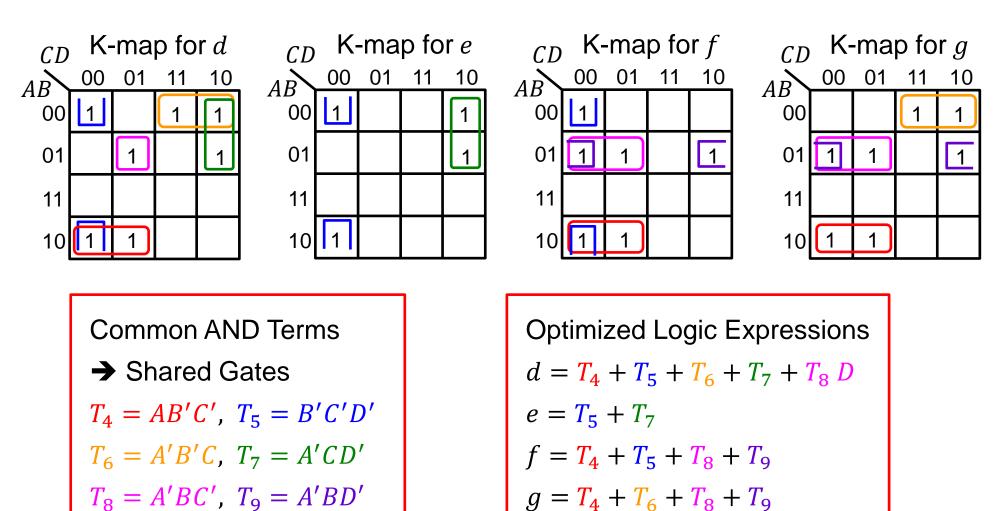
Combinational Logic

Let
$$T_1 = A'B$$
, $T_2 = B'C'$, $T_3 = A'D$

Optimized Logic Expressions $a = A'C + T_1 D + T_2 A + T_2 D'$ $b = A'B' + T_2 + A'C'D' + T_3C$ $c = T_1 + T_2 + T_3$ T_1, T_2, T_3 are shared gates

3. Logic Minimization Using K-Maps

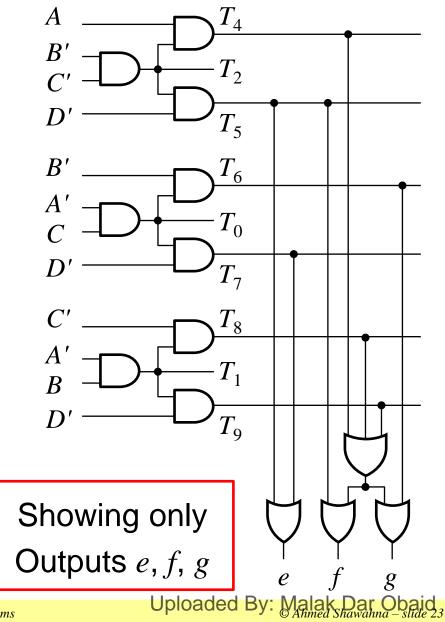
STUDENTS-HUB.com



4. Technology Mapping:

Many Common AND terms: T_0 thru T_9 $T_0 = A'C, T_1 = A'B, T_2 = B'C'$ $T_3 = A'D, T_4 = AB'C', T_5 = B'C'D'$ $T_6 = A'B'C$, $T_7 = A'CD'$ $T_8 = A'BC', T_9 = A'BD'$ **Optimized Logic Expressions** $a = T_0 + T_1 D + T_4 + T_5$ $b = A'B' + T_2 + A'C'D' + T_3C$ $c = T_1 + T_2 + T_3$ $d = T_4 + T_5 + T_6 + T_7 + T_8 D$ $e = T_{5} + T_{7}$ $f = T_4 + T_5 + T_8 + T_9$ $g = T_4 + T_6 + T_8 + T_9$

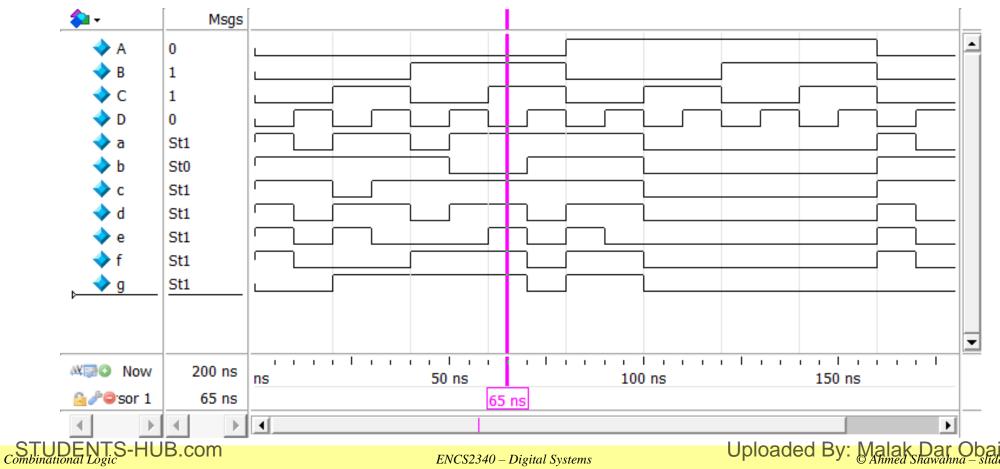
Combinational Logic



ENCS2340 – Digital Systems

5. Verification:

Run the simulation of the circuit. All sixteen input test cases of A, B, C, D are generated between t=0 and t=160ns. Verify that outputs a to g match the truth table.



Next . . .

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
 - ♦ Half Adder and Full Adder
 - Sinary Adder (Ripple Carry Adder and Carry Lookahead Adder)
 - ♦ Incrementor
 - ♦ Binary Subtractor
 - ♦ Adder/Subtractor Design Examples
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers

Hierarchical Design

Why Hierarchical Design?

To simplify the implementation of a complex circuit

What is Hierarchical Design?

Decompose a complex circuit into smaller pieces called blocks

Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough

Any block not decomposed is called a primitive block

The hierarchy is a tree of blocks at different levels

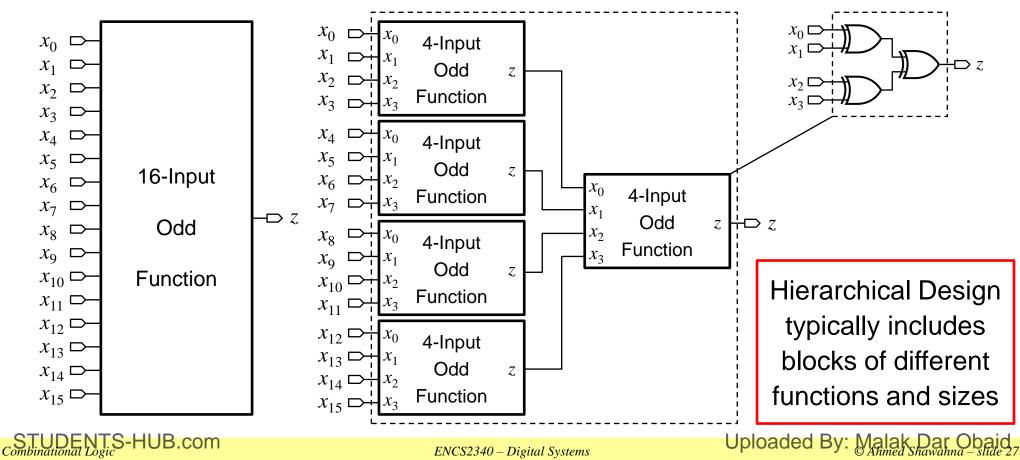
- The blocks are verified and well-document
- They are placed in a library for future use

Example of Hierarchical Design

Top Level: 16-input odd function: 16 inputs, one output

♦ Implemented using Five 4-input odd functions

Second Level: 4-input odd function that uses three XOR gates



ENCS2340 – Digital Systems

Testing Hierarchical Design

- Exhaustive testing can be very time consuming (or impossible)
 - \Rightarrow For a 16-bit input, there are $2^{16} = 65,536$ test cases (combinations)
 - \diamond For a 32-bit input, there are $2^{32} = 4,294,967,296$ test cases
 - \Rightarrow For a 64-bit input, there are $2^{64} = 18,446,744,073,709,551,616$ test cases!
- Testing a hierarchical design requires a different strategy
- Test each block in the hierarchy separately
 - \diamond For smaller blocks, exhaustive testing can be done
 - ♦ It is easier to detect errors in smaller blocks before testing complete circuit
- Test the top-level design by applying selected test inputs
- Make sure that the test inputs exercise all parts of the circuit

Top-Down versus Bottom-Up Design

- A top-down design proceeds from a high-level specification to a more and more detailed design by decomposition and successive refinement
- A bottom-up design starts with detailed primitive blocks and combines them into larger and more complex functional blocks
- Design usually proceeds top-down to a known set of building blocks, ranging from complete processors to primitive logic gates

Half Adder

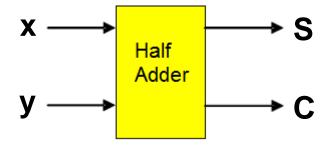
X

- ✤ Half-adder adds <u>2 bits</u>: x and y
- Two output bits:
 - 1. Carry bit: C
 + y

 2. Sum bit: S
 C S
- Sum bit is 1 if the number of 1's in the input is odd (odd function)
 - $S = x'y + xy' = x \oplus y$
- Carry bit is 1 only when both inputs are 1

$$C = x y$$

Combinational Logic

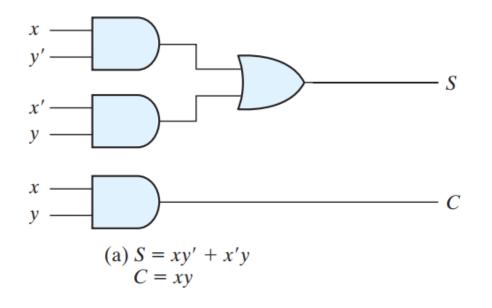


Truth Table

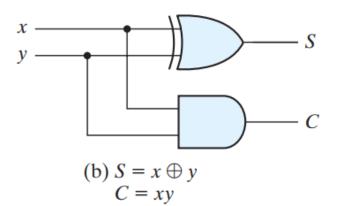
X	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

The logic diagram of the half adder implemented in sum-ofproducts is shown in (a). It can be also implemented with an exclusive-OR and an AND gate as shown in (b):

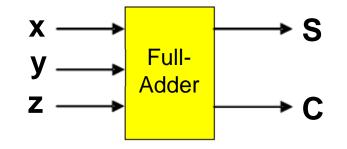


Combinational Logic



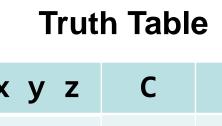
Full Adder

- ✤ Full adder adds <u>3 bits</u>: x, y, and z
- Two output bits:
 - 1. Carry bit: C
 - 2. Sum bit: **s**



- Sum bit is 1 if the number of 1's in the input is odd (odd function) S = xy'z' + x'yz' + x'y'z + xyz
- Carry bit is 1 if the number of 1's in the input is 2 or 3
 - C = xy + xz + yz

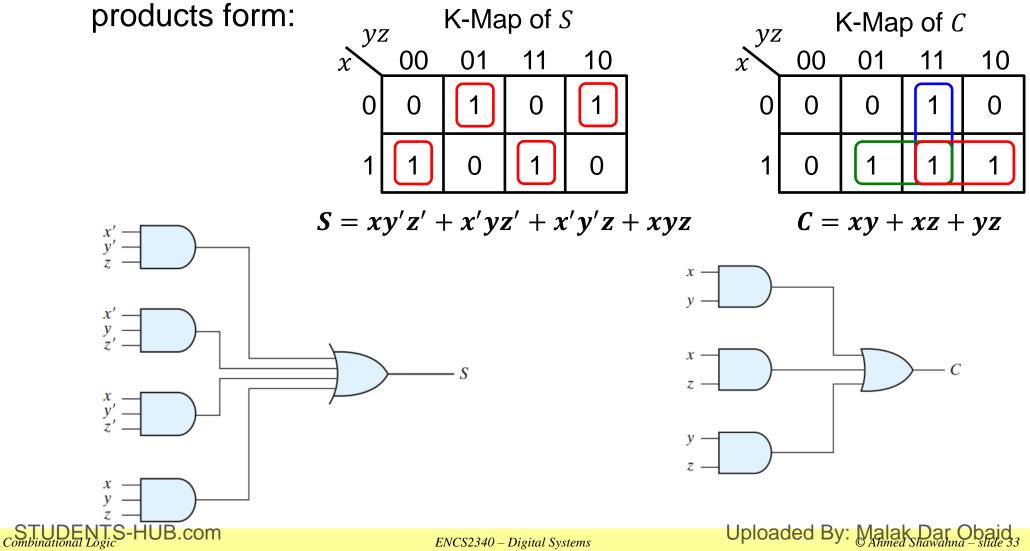
Combinational Logic



хуг	C	S
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Full Adder

The logic diagram for the full adder implemented in sum-of-



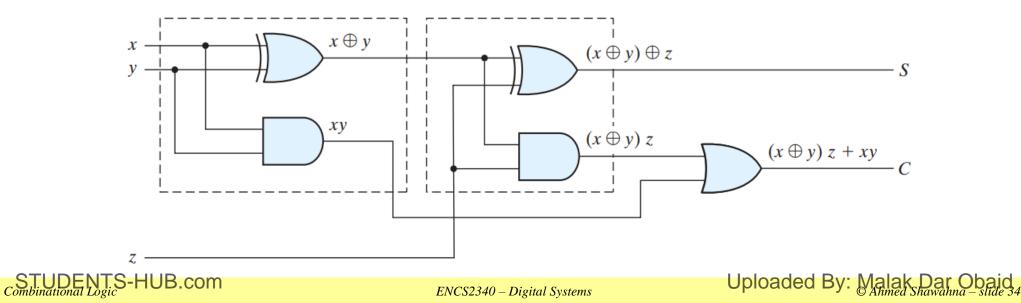
Full Adder

Full adder can also be implemented with two half adders and one OR gate:

$$S = xy'z' + x'yz' + x'y'z + xyz \qquad C = xy + xz + yz$$

= $z'(xy' + x'y) + z(x'y' + xy) \qquad = xy + (x \oplus y)z$
= $z'(x \oplus y) + z(x \oplus y)'$

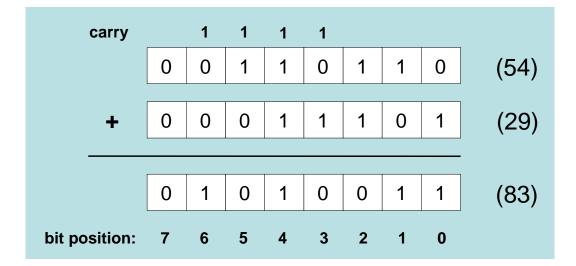
$$= x \oplus y \oplus z = (x \oplus y) \oplus z$$



Binary Adder (Ripple Carry Adder)

Start with the least significant bit (rightmost bit)

- ✤ Add each pair of bits
- Include the carry in the addition

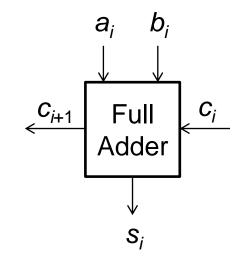


Iterative Design: Ripple Carry Adder

- Using identical copies of a smaller circuit to build a large circuit
- ✤ Addition of *n*-bit numbers requires:
 - \diamond A chain of *n* full adders, or
 - \diamond A chain of one-half adder and (n 1) full adders
- Example: Building a 4-bit adder using 4 copies of a full adder
 - \diamond The **cell** (iterative block) is a **full adder**
 - Adds 3 bits: *a_i*, *b_i*, *c_i*

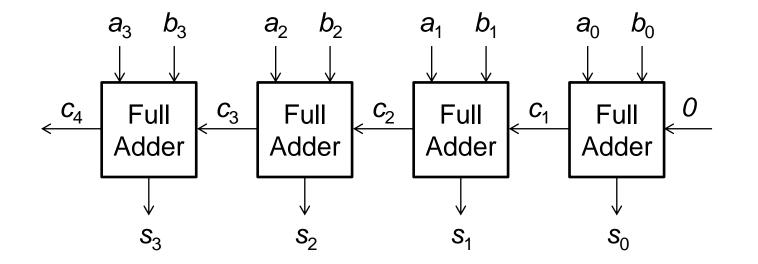
Combinational Logic

Computes: Sum s_i and Carry-out c_{i+1}

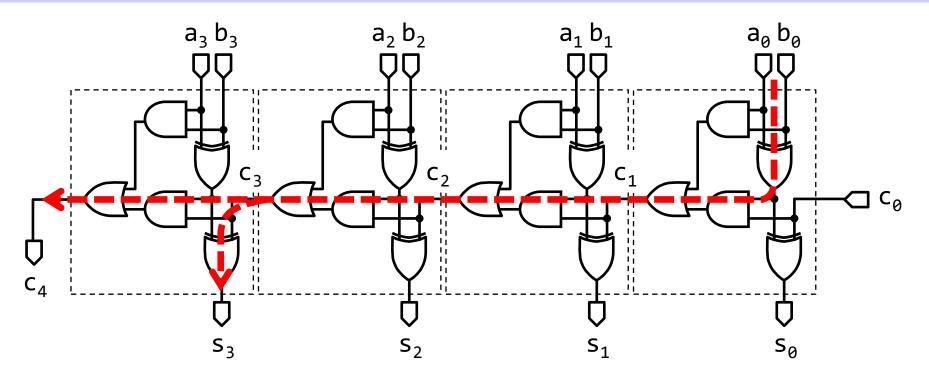


Iterative Design: Ripple Carry Adder

- The Figure below shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder
 - \diamond Carry-out of cell *i* becomes carry-in to cell (*i*+1)
 - \diamond The input carry to the least significant position is fixed at 0



Carry Propagation

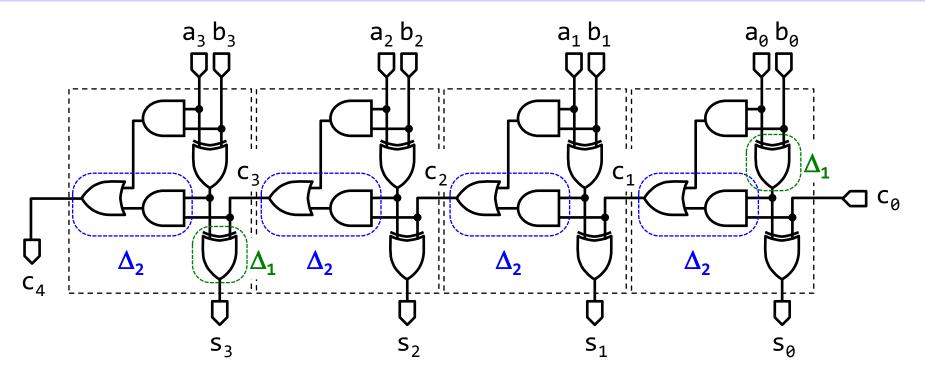


Major drawback of ripple-carry adder is the carry propagation

- The carries are connected in a chain through the full adders
- The carry ripples (propagates) through all the full adders
- This is why it is called a ripple-carry adder

STUDENTS-HUB.com

Longest Delay Analysis



- Suppose the **XOR** delay is Δ_1 (Delay of XOR > Delay of AND) and **AND-OR** delay is Δ_2
- ✤ For an *N*-bit ripple-carry adder, if all inputs are present at once:
- 1. Most-significant sum-bit delay = $2\Delta_1 + (N-1)\Delta_2$
- 2. Final Carry-out delay = $\Delta_1 + N \Delta_2$

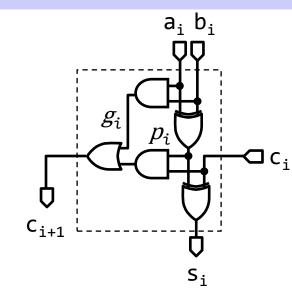
STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid, O Ahmed Shawahna - slide 39

Carry Lookahead Adder

- Is it possible to eliminate carry propagation?
- ↔ Observation: $c_{i+1} = a_i b_i + (a_i \oplus b_i) c_i$
- ✤ If both inputs a_i and b_i are 1s then c_{i+1} will be 1 regardless of input c_i
- ✤ Therefore, define $g_i = a_i b_i$

UDENTS-HUB.com



 $\diamond g_i$ is called **carry generate**: generates c_{i+1} regardless of c_i

- ✤ In addition, define $p_i = (a_i \oplus b_i)$ a_i or b_i is 1, not both
 ♦ p_i is called carry propagate: propagates value of c_i to c_{i+1}
- Equation of output sum carry becomes:

 $s_i = p_i \oplus c_i$ and $c_{i+1} = g_i + p_i c_i$

♦ If both inputs a_i and b_i are 0s then $g_i = p_i = 0$ and $c_{i+1} = 0$

Carry Bits

Carry bits are generated by a Lookahead Carry Unit as follows: $c_0 = input carry$

 $c_1 = g_0 + p_0 c_0$

 $c_2 = g_1 + p_1 c_1 = g_1 + p_1 (g_0 + p_0 c_0) = g_1 + p_1 g_0 + p_1 p_0 c_0$

 $c_3 = g_2 + p_2 c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$

 $c_4 = g_3 + p_3 c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$

Define Group Generate: $GG = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$

Define Group Propagate: $GP = p_3 p_2 p_1 p_0$

 $c_4 = GG + GP c_0$

Carry does not ripple anymore

Reduced delay when generating c_1 to c_4 in parallel

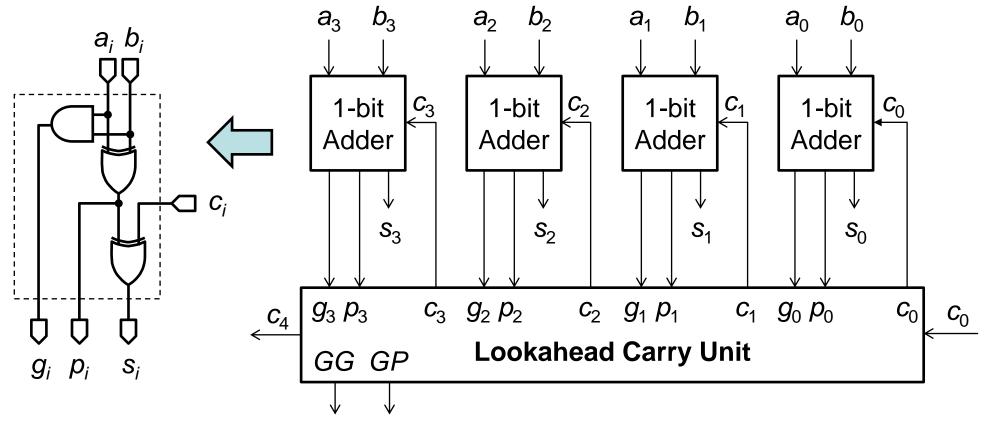
STUDENTS-HUB.com

ENCS2340 – Digital Systems

4-Bit Carry Lookahead Adder

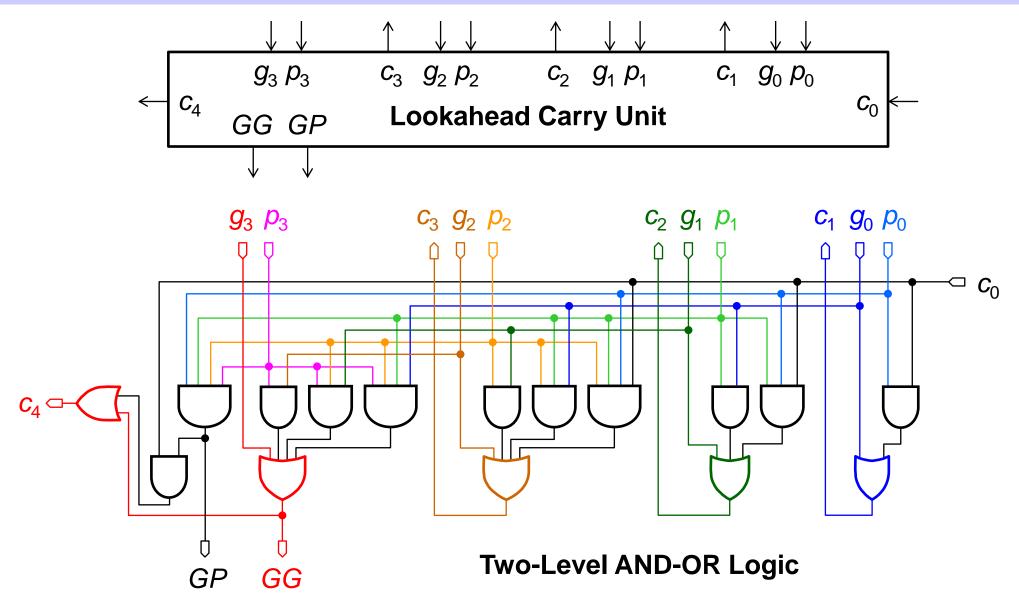
All generate and propagate signals (g_i, p_i) are generated in parallel All carry bits $(c_1 \text{ to } c_4)$ are generated in parallel

The sum bits are generated faster than ripple-carry adder



STUDENTS-HUB.com

Lookahead Carry Unit



STUDENTS-HUB.com

ENCS2340 – Digital Systems

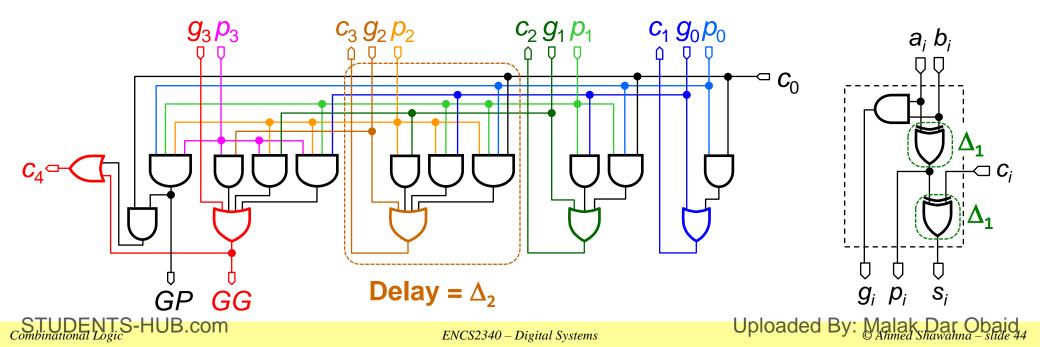
Uploaded By: Malak Dar Obaid, © Ahmed Shawahna - slide 43

Longest Delay of the 4-bit CLA

- ✤ All generate and propagate signals are produced in parallel
- ↔ Delay of all g_i and $p_i = \Delta_1$ (Delay of XOR > Delay of AND)
- ♦ Carry bits c_1 , c_2 , and c_3 are generated in parallel (Delay = Δ_2)

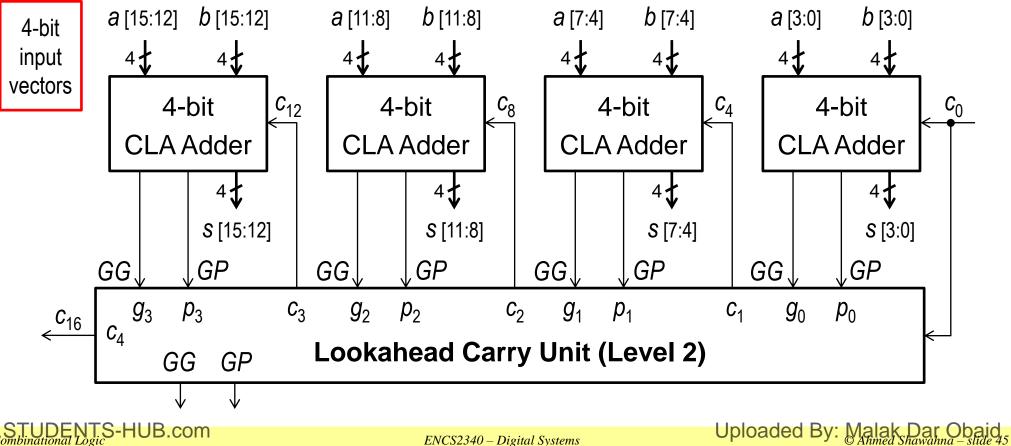
 \diamond Carry-out bit c_4 is not needed to compute the sum bits

♣ Longest Delay of the 4-bit CLA = $\Delta_1 + \Delta_2 + \Delta_1 = 2 \Delta_1 + \Delta_2$



Hierarchical 16-Bit Carry Lookahead Adder

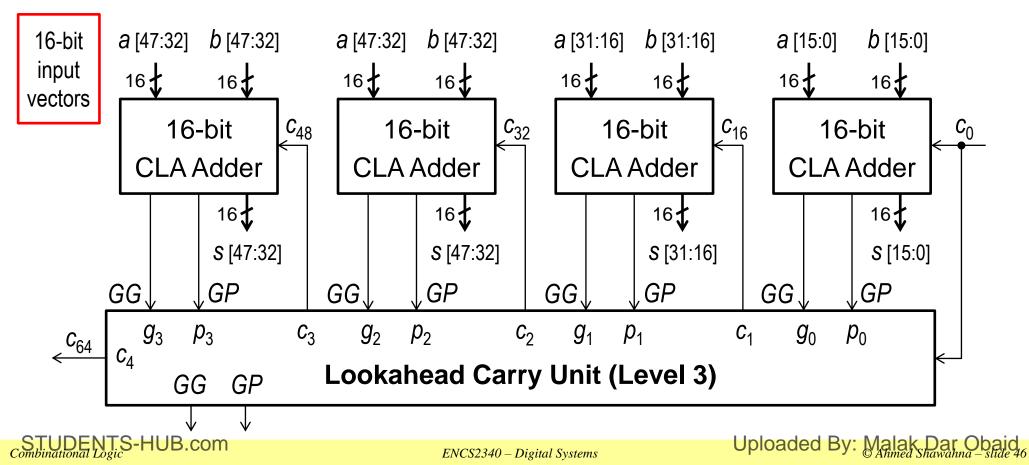
- Designed with Four 4-bit Carry Lookahead Adders (CLA)
- A Second-Level Lookahead Carry Unit is required
- Uses Group Generate (GG) and Group Propagate (GP) signals



Combinational Logic

Hierarchical 64-Bit Carry Lookahead Adder

- Designed with Four 16-bit Carry Lookahead Adders (CLA)
- A Third-Level Lookahead Carry Unit is required
- Uses Group Generate (GG) and Group Propagate (GP) signals

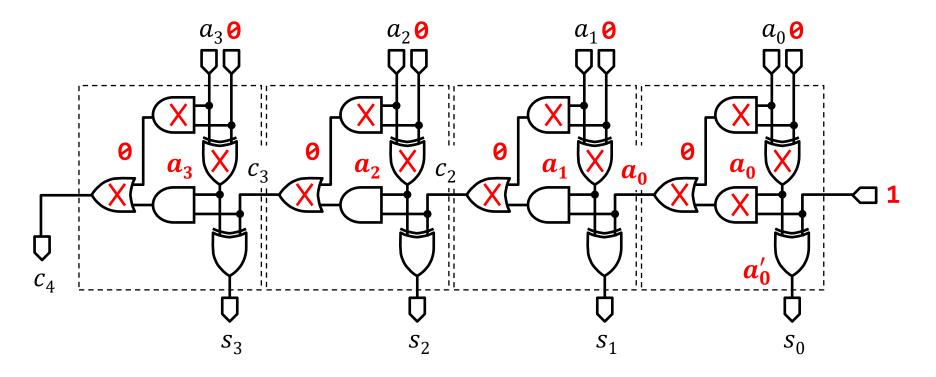


Incrementor Circuit

An incrementer is a special case of an adder

Sum = A + 1 (B = 0, $C_0 = 1$)

✤ An *n*-bit Adder can be simplified into an *n*-bit Incrementer



STUDENTS-HUB.com

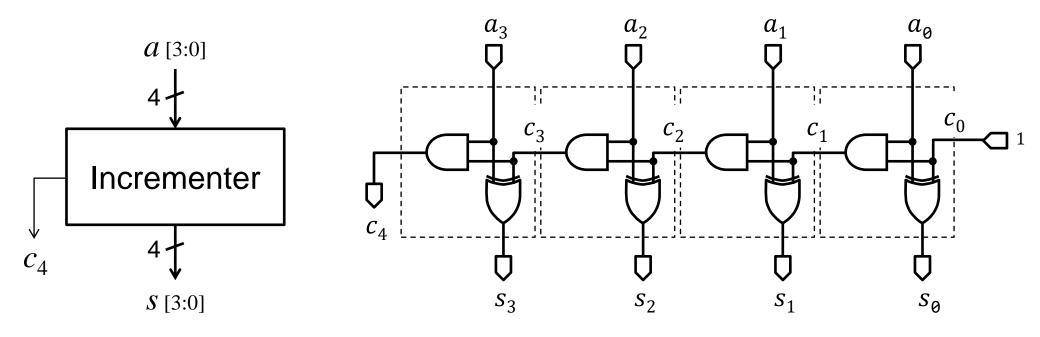
ENCS2340 – Digital Systems

Design by Contraction

- Contraction is a technique for simplifying the logic
- Applying 0s and 1s to some inputs
- Equations are simplified after applying fixed 0 and 1 inputs
- Converting a function block to a more simplified function
- Examples of Design by Contraction
 - ♦ Incrementing a number by a fixed constant
 - $\diamond\,$ Comparing a number to a fixed constant

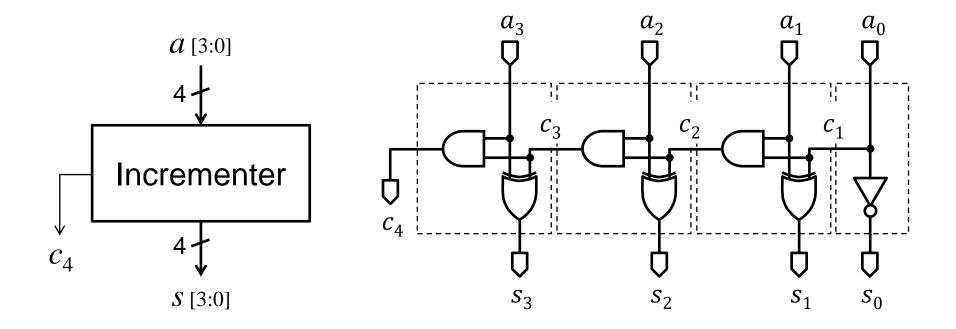
Simplifying the Incrementer Circuit

- Many gates were eliminated
- No longer needed when an input is a constant
- ✤ Last cell can be replicated to implemented an *n*-bit incrementer



Simplifying the Incrementer Circuit

First half adder can be simplified and replaced with an inverter



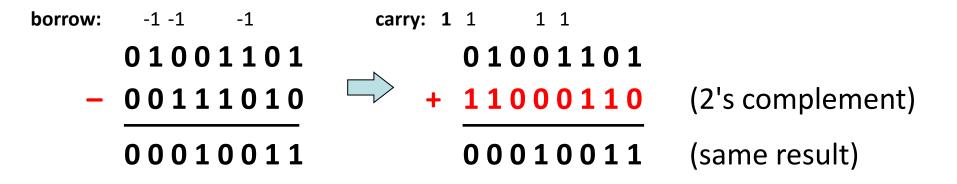
Binary Subtractor

✤ When computing A – B, convert B to its 2's complement

A – B = A + (2's complement of B)

Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement



Final carry is ignored, because

A + (2's complement of B) = A + $(2^n - B) = (A - B) + 2^n$

Final carry = 2^n , for *n*-bit numbers

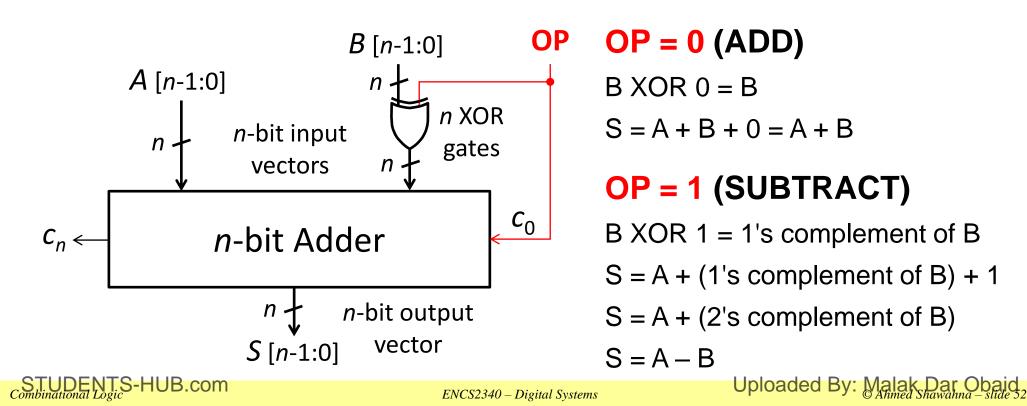
STUDENTS-HUB.com

Adder/Subtractor for 2's Complement

- Same adder is used to compute: (A + B) or (A B)
- ✤ Subtraction (A B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

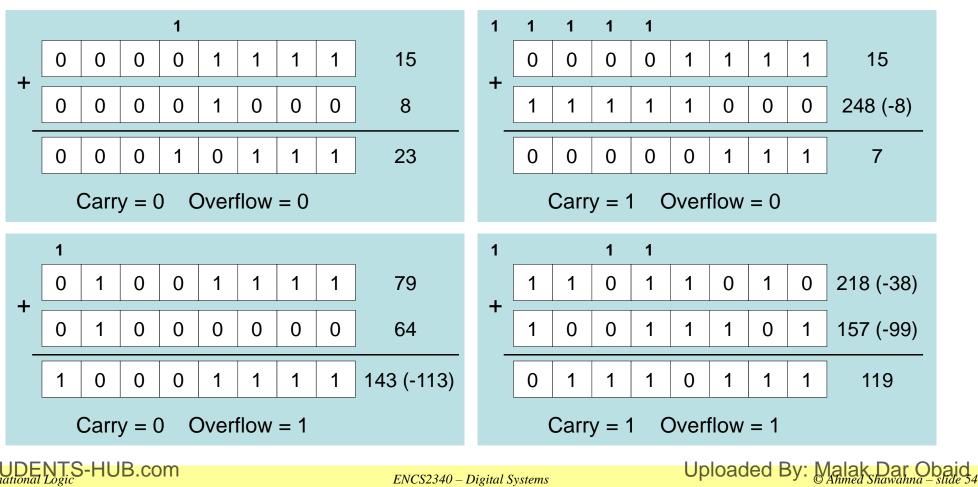


Carry versus Overflow

- ✤ Carry is important when …
 - Adding unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Sum > maximum unsigned *n*-bit value
- ✤ Overflow is important when …
 - Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range
- ✤ Overflow occurs when …
 - $\diamond\,$ Adding two positive numbers and the sum is negative
 - \diamond Adding two negative numbers and the sum is positive
- ↔ Simplest way to detect Overflow: $V = C_{n-1} \oplus C_n$

Carry and Overflow Examples

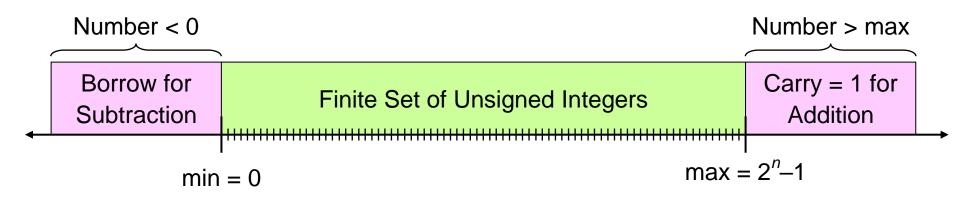
- We can have carry without overflow and vice-versa
- Four cases are possible (Examples on 8-bit numbers)



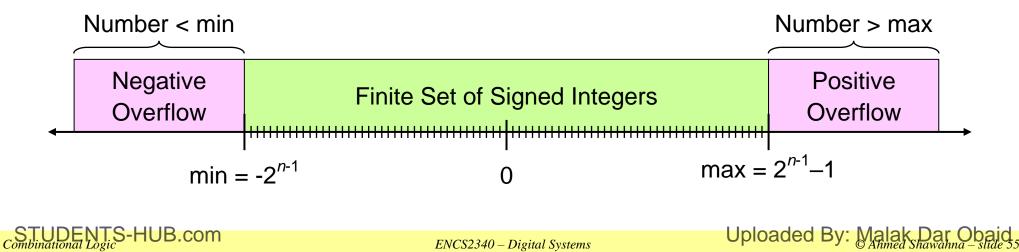
STUDENTS-HUB.com

Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation



Signed Integers: 2's complement representation



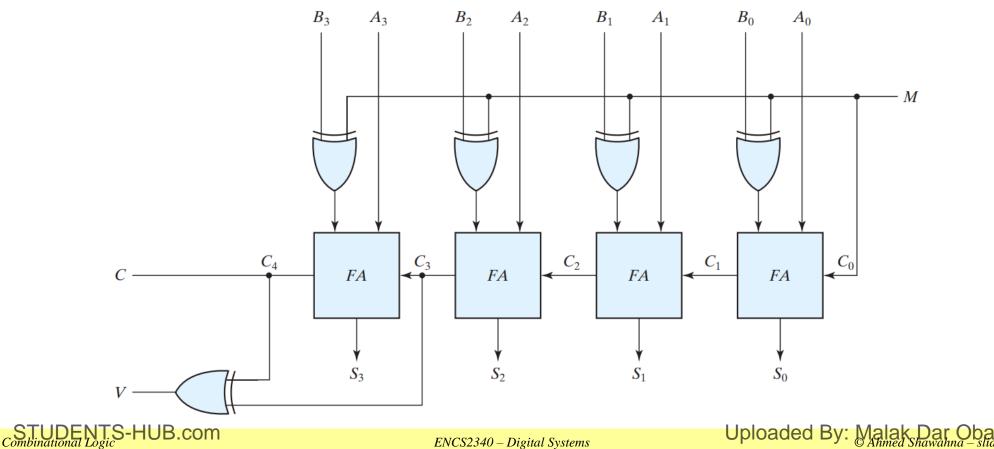
Binary Adder/Subtractor

Example: A 4-bit adder/subtractor with carry/overflow detection

 \diamond Two operations: M = 0 (S = A + B), M = 1 (S = A - B)

 \diamond The C bit detects a carry after addition or a borrow after subtraction

 \diamond The V bit detects an overflow



Zero versus Sign Extension

- Unsigned Integers are Zero-Extended
- Signed Integers are Sign-Extended
- ♦ Given that X is a 4-bit **unsigned** integer \rightarrow Range = 0 to 15
- ♦ Given that Y is a 4-bit **signed** integer \rightarrow Range = -8 to +7
- ✤ If unsigned X = 4'b1101 (binary), then X = 13 (decimal)
- ✤ If signed Y = 4'b1101 (binary), then Y = -3 (decimal)
- ✤ If X is zero-extended from 4 to 6 bits then X = 6'b001101 = 13
- If Y is sign-extended from 4 to 6 bits then Y = 6'b111101 = -3

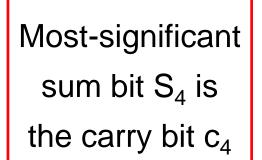
Unsigned Addition S = X + Y

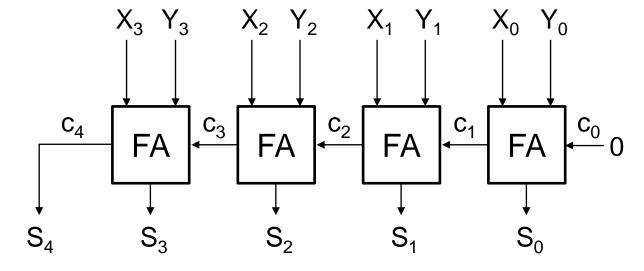
- Design a circuit that computes: S = X + Y (unsigned X and Y)
- ✤ X[3:0] and Y[3:0] are 4-bit unsigned integers → Range = 0 to 15

Solution:

Combinational Logic

♦ Maximum S = 15 + 15 = 30 → unsigned S must be **5 bits**

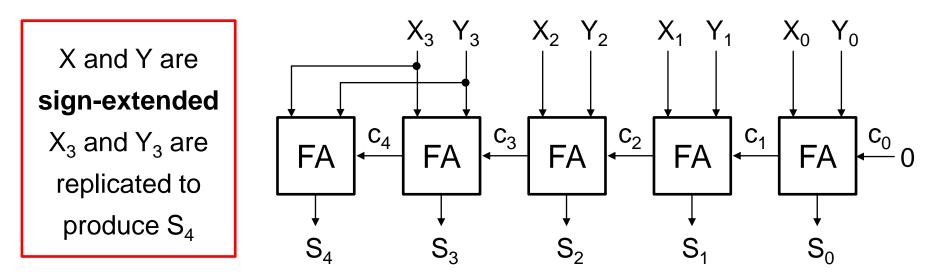




Uploaded By: Malak Dar Obaid

Signed Addition S = X + Y

- Design a circuit that computes: S = X + Y (signed X and Y)
- ❖ X[3:0] and Y[3:0] are 4-bit signed integers → Range = -8 to +7
 Solution:
- ✤ Minimum S = (-8) + (-8) = -16, Maximum S = (+7) + (+7) = + 14
- ♦ Therefore, signed range of S = -16 to +14 \rightarrow S must be **5 bits**



Uploaded By: Malak Dar Obaid Chimed Shawahna - slide 39

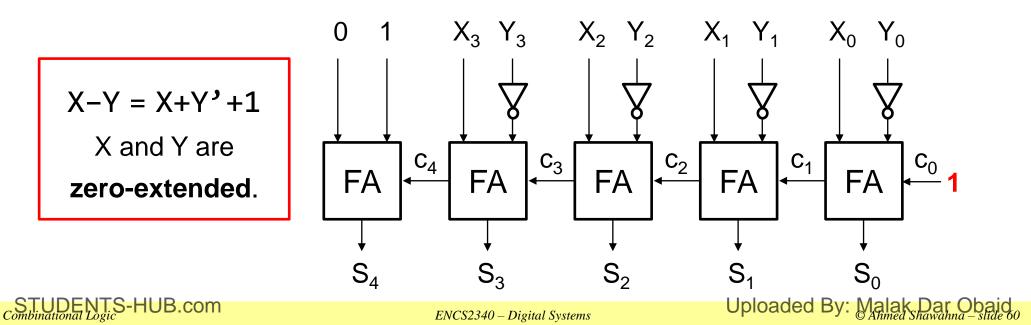
Combinational Logic

Unsigned Subtraction S = X - Y

- ✤ Design a circuit that computes S = X Y (unsigned X and Y)
- ♦ X[3:0] and Y[3:0] are 4-bit **unsigned** integers \rightarrow Range = 0 to 15

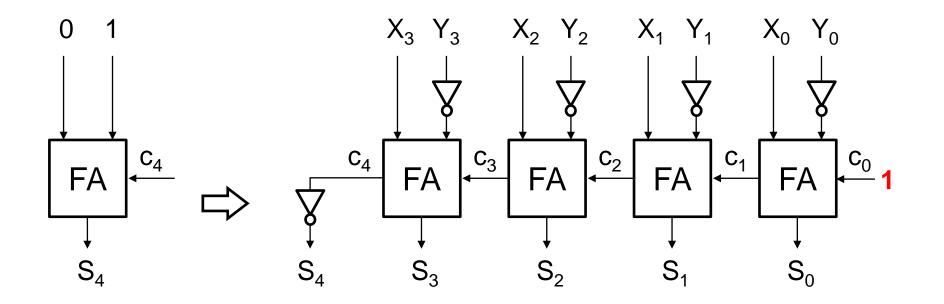
Solution: S = X - Y = X + 2's complement of Y = X + Y' + 1

- ✤ Minimum S = 0 15 = -15, Maximum S = 15 0 = +15
- ✤ S is signed, even though X are Y are unsigned → S is 5 bits



Unsigned Subtraction S = X - Y

- ↔ Most-significant bit: $S_4 = 0 + 0' + c_4 = 1 + c_4 = c_4'$
- Full Adder for S_4 can be replaced by an **inverter**

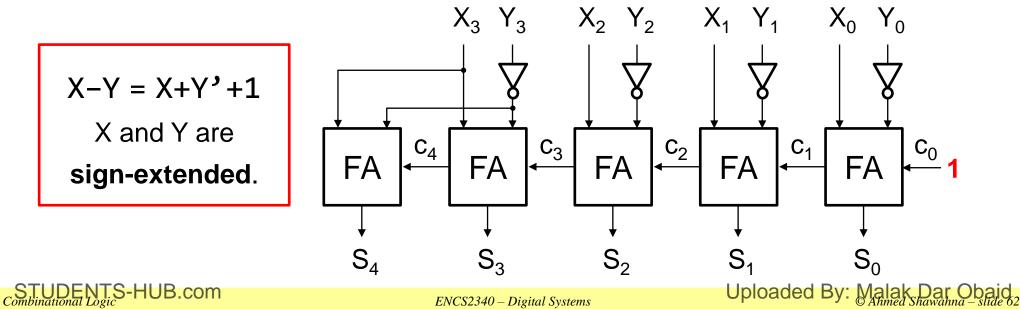


Signed Subtraction S = X - Y

- Design a circuit that computes S = X Y (signed X and Y)
- X[3:0] and Y[3:0] are 4-bit **signed** integers \rightarrow Range = -8 to +7

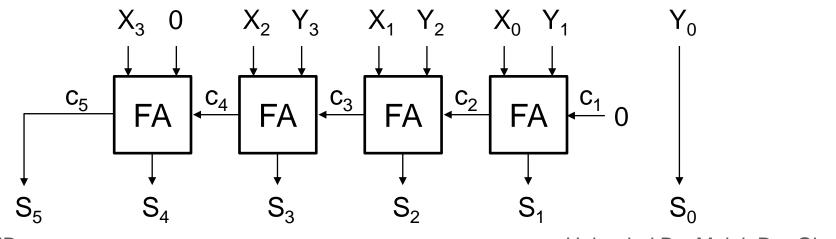
Solution: S = X - Y = X + Y' + 1

- ✤ Minimum S = -8 (+7) = -15, Maximum S = +7 (-8) = +15
- Signed range for S is -15 to +15 \rightarrow S is 5 bits



S = 2*X + Y (Unsigned X and Y)

- Design a circuit that computes S = 2*X + Y (unsigned X and Y)
- ❖ X[3:0] and Y[3:0] are 4-bit unsigned integers → range = 0 to 15
 Solution:
- ♦ Maximum value of $S = 2*15 + 15 = 45 \rightarrow S$ is 6 bits = S[5:0]



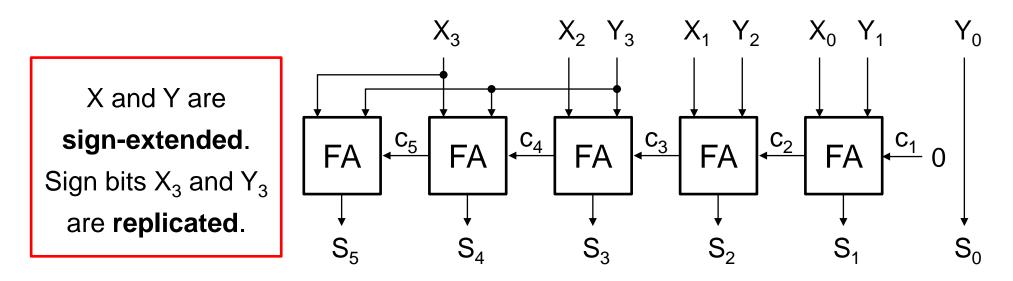
STUDENTS-HUB.com

S = 2*X + Y (Signed X and Y)

- ✤ Design a circuit that computes S = 2*X + Y using Full Adders
- ♦ X[3:0] and Y[3:0] are 4-bit **signed** integers → range = -8 to +7

Solution:

- ♣ Range of X and Y is -8 to +7 Minimum S = $2^{*}(-8) + (-8) = -24$
- ♦ Maximum $S = 2^{*}(+7) + 7 = +21 \rightarrow S$ is **6 bits** = S[5:0]

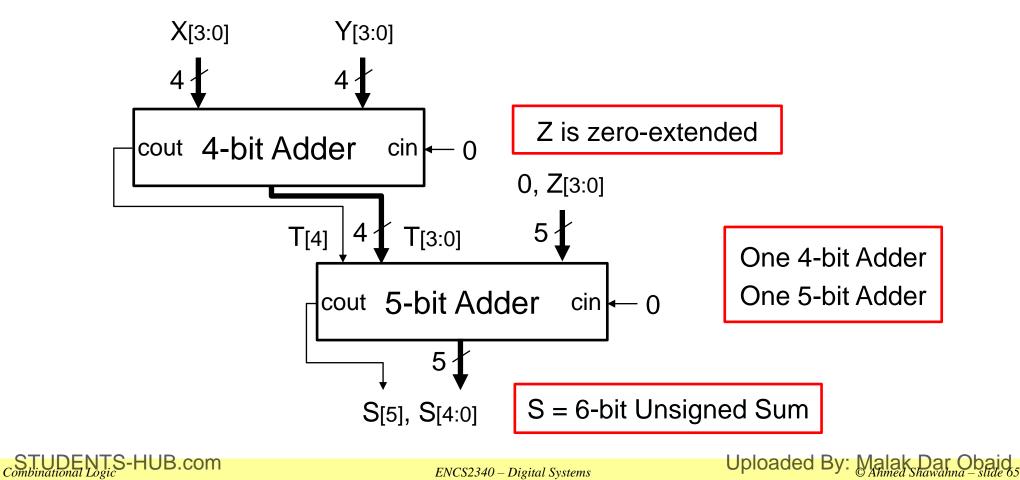


STUDENTS-HUB.com

Design a Circuit for Unsigned S = X + Y + Z

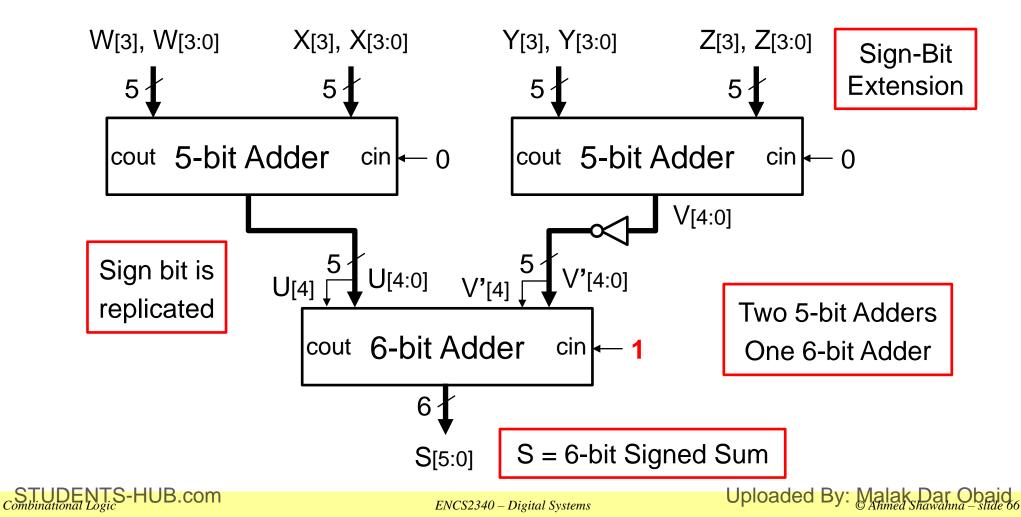
 \bigstar X, Y, and Z are 4-bit **unsigned** integers \rightarrow Range = 0 to 15

Solution: Maximum S = $15 + 15 + 15 = 45 \rightarrow S$ must be 6 bits



Design a Circuit for Signed S = W + X - Y - Z

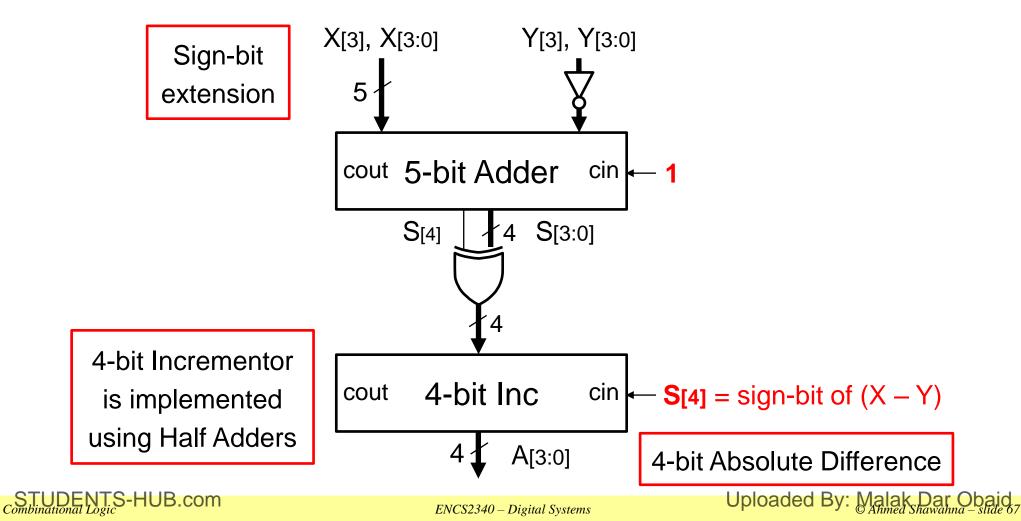
❖ W, X, Y, and Z are 4-bit signed integers → Range = -8 to +7
Solution: S = W + X - Y - Z = (W+X) - (Y+Z) → 6 bits are used



Absolute Difference |X - Y| of Signed X, Y

• Design a circuit that computes A = |X - Y| (absolute difference)

Solution: Maximum $A = |X - Y| = |-8 - +7| = 15 \rightarrow 4$ bits are used



Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
 BCD Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

STUDENTS-HUB.com

BCD Addition

- Consider adding two decimal digits in BCD
- Operands and Result: 0 to 9
- Output sum cannot exceed 9 + 9 + 1 = 19

 \diamond The 1 in the sum is the input carry from previous digit

We use a 4-bit binary adder to add the BCD digits

 \diamond The adder will produce a result that ranges from 0 through 19 ♦ If the result is more than 9, it must be corrected to use 2 digits \Rightarrow To correct the digit, add 6 to the digit sum (a 4-bit binary adder)

		1000			8	
	+	0101			+ 5	
		1101			13	(>9)
	Ŧ	0110			+ 6	(add 6)
	1	0011	Final a		19	(carry + 3)
TUDENTS-HUB.com)		ENCS2	2340 – Digital Systen	ns	Uploaded By: Malak Dar O

BCD Adder

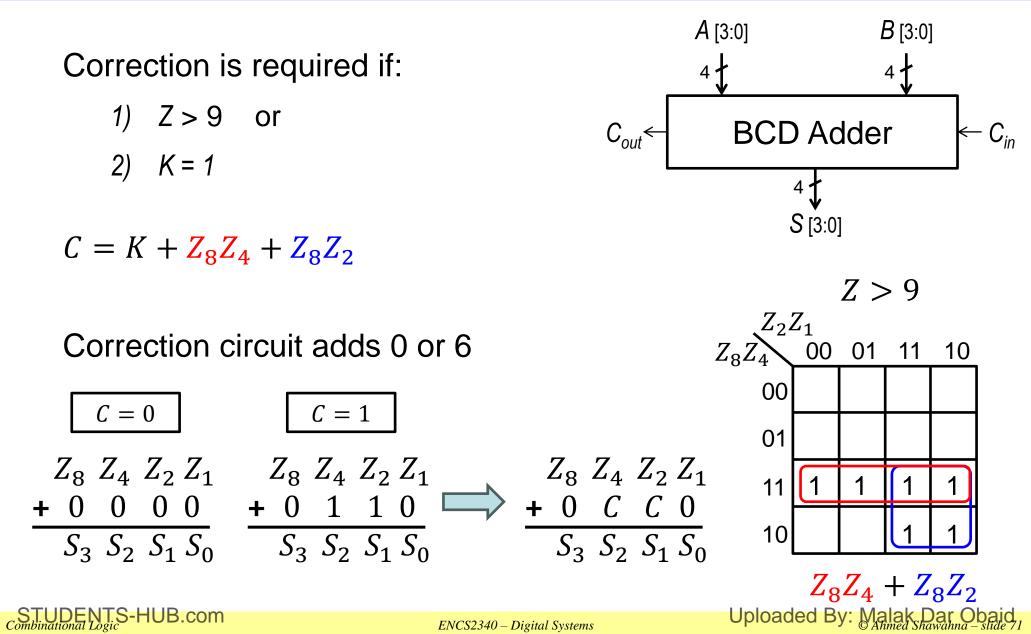
		Bin	ary S	um				B	Decimal			
	K	Z 8	Z 4	Z ₂	Z 1	_	С	S 8	S 4	S ₂	S 1	
	0	0	0	0	0		0	0	0	0	0	0
	0	0	0	0	1		0	0	0	0	1	1
Valid Codes	0	0	0	1	0		0	0	0	1	0	2
p	0	0	0	1	1	+0	0	0	0	1	1	3
$\tilde{\mathbf{O}}$	0	0	1	0	0		0	0	1	0	0	4
	0	0	1	0	1		0	0	1	0	1	5
	0	0	1	1	0		0	0	1	1	0	6
\sim	0	0	1	1	1		0	0	1	1	1	7
	0	1	0	0	0		0	1	0	0	0	8
	0	1	0	0	1		0	1	0	0	1	9
	0	1	0	1	0		1	0	0	0	0	10
s D	0	1	0	1	1		1	0	0	0	1	11
Cti Ce	0	1	1	0	0		1	0	0	1	0	12
õ õ	0	1	1	0	1	+6	1	0	0	1	1	13
U E	0	1	1	1	0		1	0	1	0	0	14
D C	0	1	1	1	1		1	0	1	0	1	15
	1	0	0	0	0		1	0	1	1	0	16
Invalid Codes (need Correction)	1	0	0	0	1		1	0	1	1	1	17
ы Б	1	0	0	1	0		1	1	0	0	0	18
L)	1	0	0	1	1		1	1	0	0	1	19

STUDENTS-HUB.com

Invalid Codes

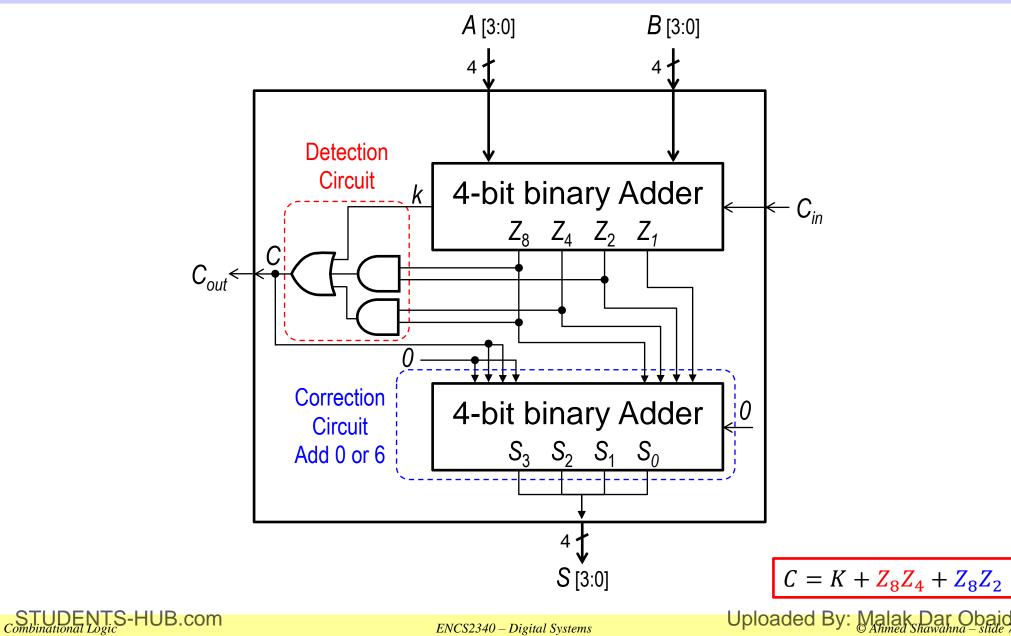
Uploaded By: Malak Dar Obaid [©] Ahmed Shawahna - slide 70

BCD Adder



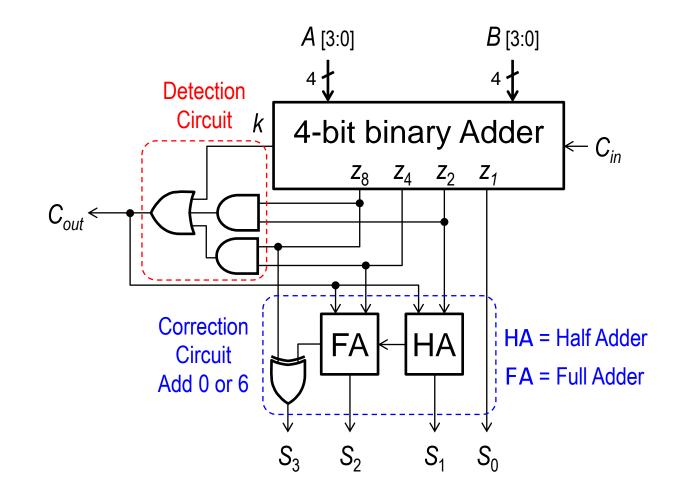
STUDENTS-HUB.com

BCD Adder



Uploaded By: Malak Dar Obaid

BCD Adder



STUDENTS-HUB.com

ENCS2340 – Digital Systems

Uploaded By: Malak Dar Obaid, C Ahmed Shawahna - slide 73

Multiple Digit BCD Addition

Add: 2905 + 1897 in BCD

Showing carries and digit corrections

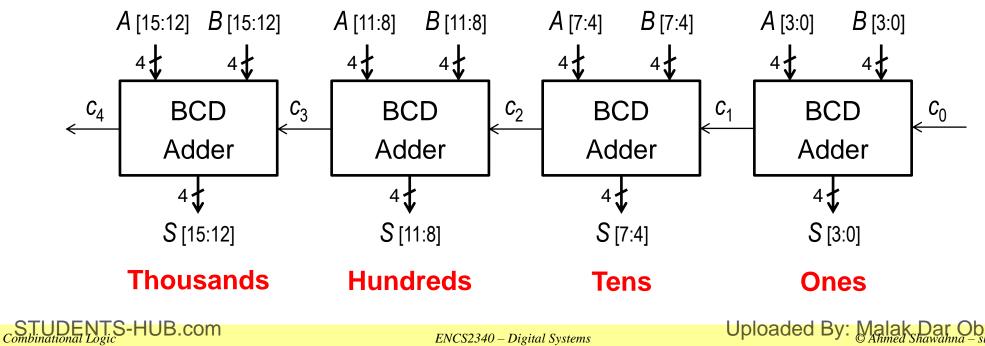
	carry	+1	+1	+1	
	÷	0010	1001	0000	0101
	•	0001	1000	1001	0111
		0100	10010	1010	1100
digit correct	ion		0110	0110	0110
		0100	1000	0000	0010

Final answer: 2905 + 1897 = 4802

Ripple-Carry BCD Adder

Inputs are BCD digits: 0 to 9

- Sum are BCD digits: **ones**, **tens**, **hundreds**, **thousands**, etc.
- Can be extended to any number of BCD digits
- BCD adders are larger in size than binary adders



ENCS2340 – Digital Systems

Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

Binary Multiplication

Binary Multiplication is simple:

0×0=0,	0×1=0,	1×0=0,	1×1=1
Multiplica Multiplier	nd ×	$1100_2 = 1$ $1101_2 = 1$	
		100	Binary multiplication 0 × multiplicand = 0 1 × multiplicand = multiplicand
Product	100:	11100 ₂ = 1	.56

* *n*-bit multiplicand × *m*-bit multiplier = (n + m)-bit product

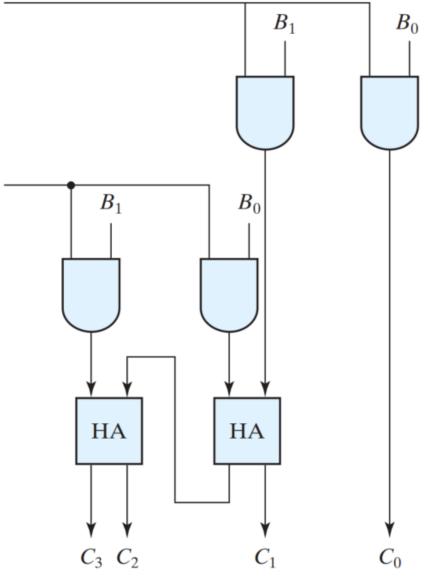
2-bit × 2-bit Binary Multiplier

 A_0

- Suppose we want to multiply two numbers $B = B_1 B_0$ and $A = A_1 A_0$
- Step 1: AND (multiply) each bit of A with each bit of B \diamond Requires 2x2 AND gates and produces 2x2 product bits
- Step 2: Add the partial product \diamond Requires (2 - 1) 2-bit binary adders

$$\begin{array}{cccc} B_{1} & B_{0} \\ \\ A_{1} & A_{0} \\ \hline A_{0}B_{1} & A_{0}B_{0} \\ \\ \hline C_{3} & C_{2} & C_{1} & C_{0} \\ \end{array}$$

 C_3



4-bit × 3-bit Binary Multiplier

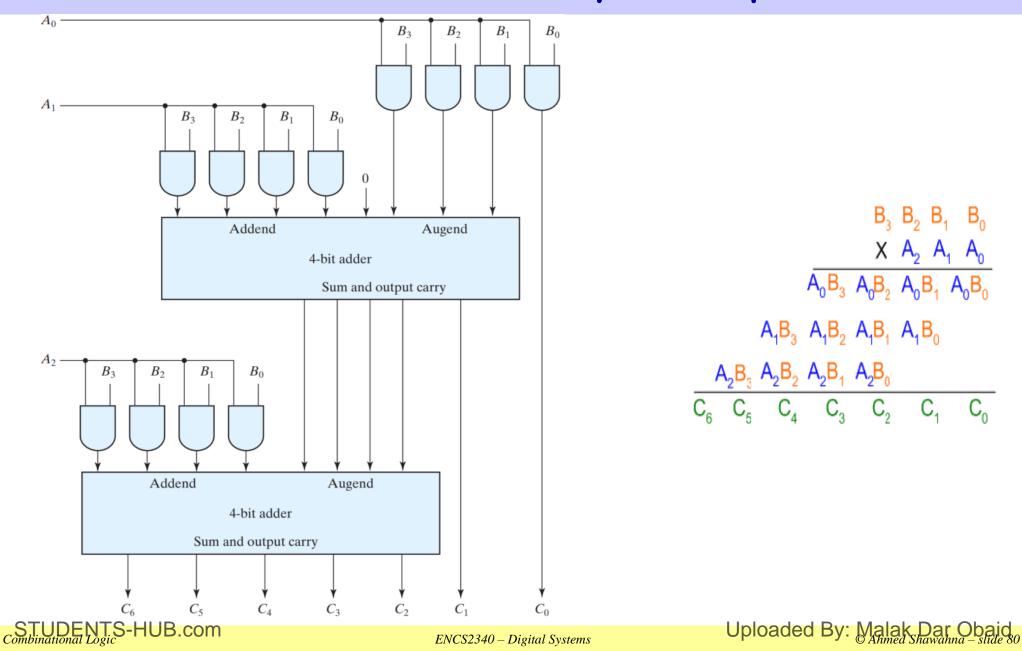
- ♣ Suppose we want to multiply two numbers $B = B_3 B_2 B_1 B_0$ and $A = A_2 A_1 A_0$
- Step 2: Add the partial product
 Requires (3 1) 4-bit binary adders

$$\begin{array}{c} B_{3} \ B_{2} \ B_{1} \ B_{0} \\ X \ A_{2} \ A_{1} \ A_{0} \\ \hline A_{0} B_{3} \ A_{0} B_{2} \ A_{0} B_{1} \ A_{0} B_{0} \\ \hline A_{1} B_{3} \ A_{1} B_{2} \ A_{1} B_{1} \ A_{1} B_{0} \\ \hline A_{2} B_{3} \ A_{2} B_{2} \ A_{2} B_{1} \ A_{2} B_{0} \\ \hline C_{6} \ C_{5} \ C_{4} \ C_{3} \ C_{2} \ C_{1} \ C_{0} \end{array}$$

Combinational Logic

ENCS2340 – Digital Systems

4-bit × 3-bit Binary Multiplier



Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

Magnitude Comparator

A combinational circuit that compares two unsigned integers

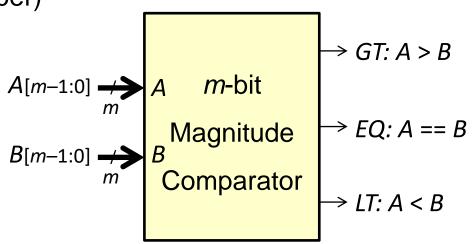
Two Inputs:

♦ Unsigned integer A (*m*-bit number)

♦ Unsigned integer B (*m*-bit number)

Three outputs:

- \Rightarrow A > B (GT output)
- \Rightarrow A == B (EQ output)
- ♦ A < B (LT output)</p>



- Exactly one of the three outputs must be equal to 1
- While the remaining two outputs must be equal to 0

STUDENTS-HUB.com

ENCS2340 – Digital Systems

Example: 4-bit Magnitude Comparator

Inputs:

STUDENTS-HUB.com

- $\diamond A = A_3 A_2 A_1 A_0$
- $\diamond B = B_3 B_2 B_1 B_0$
- \diamond 8 bits in total \rightarrow 256 possible combinations
- Not simple to design using conventional K-map techniques
- The magnitude comparator can be designed at a higher level
- \clubsuit Let us implement first the EQ output (A is equal to B)

$$\diamond EQ = 1 \leftrightarrow A_3 == B_3$$
, $A_2 == B_2$, $A_1 == B_1$, and $A_0 == B_0$

♦ Define: $E_i = (A_i = B_i) = (A_i \oplus B_i)' = A_i B_i + A'_i B'_i$

 \diamond Therefore, $EQ = (A == B) = E_3 E_2 E_1 E_0$

The Greater Than Output

Given the 4-bit input numbers: *A* and *B*

1. If $A_3 > B_3$ then GT = 1, irrespective of the lower bits of A and B

Define:
$$G_3 = A_3 B'_3$$
 ($A_3 == 1$ and $B_3 == 0$)

2. If $A_3 == B_3$ ($E_3 == 1$), we compare A_2 with B_2

Define:
$$G_2 = A_2 B'_2$$
 ($A_2 == 1$ and $B_2 == 0$)

3. If $A_3 == B_3$ and $A_2 == B_2$, we compare A_1 with B_1

Define: $G_1 = A_1 B'_1$ ($A_1 == 1$ and $B_1 == 0$)

4. If $A_3 == B_3$ and $A_2 == B_2$ and $A_1 == B_1$, we compare A_0 with B_0

Define: $G_0 = A_0 B'_0$ ($A_0 == 1$ and $B_0 == 0$)

Therefore, $GT = G_3 + E_3G_2 + E_3E_2G_1 + E_3E_2E_1G_0$

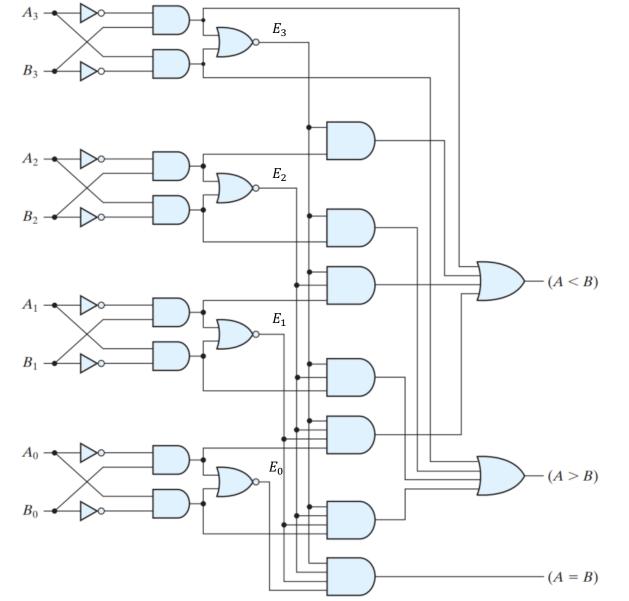
STUDENTS-HUB.com

The Less Than Output

We can derive the expression for the LT output, similar to GTGiven the 4-bit input numbers: A and B

1. If $A_3 < B_3$ then LT = 1, irrespective of the lower bits of A and B Define: $L_3 = A'_3 B_3$ ($A_3 == 0$ and $B_3 == 1$) 2. If $A_3 = B_3$ ($E_3 == 1$), we compare A_2 with B_2 Define: $L_2 = A'_2 B_2$ ($A_2 == 0$ and $B_2 == 1$) 3. Define: $L_1 = A'_1 B_1$ ($A_1 == 0$ and $B_1 == 1$) 4. Define: $L_0 = A'_0 B_0$ ($A_0 == 0$ and $B_0 == 1$) Therefore, $LT = L_3 + E_3L_2 + E_3E_2L_1 + E_3E_2E_1L_0$ Knowing GT and EQ, we can also derive LT = (GT + EQ)'Uploaded By: Malak Dar Obaid Combinational Logic

Example: 4-bit Magnitude Comparator



STUDENTS-HUB.com

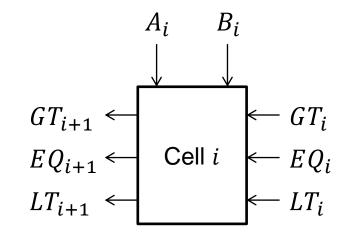
ENCS2340 – Digital Systems

Iterative Magnitude Comparator Design

- The Magnitude comparator can also be designed iteratively
- ✤ Each Cell *i* receives as inputs: Bit *i* of inputs *A* and *B*: *A_i* and *B_i GT_i*, *EQ_i*, and *LT_i* from cell (*i* − 1)
- Each Cell *i* produces three outputs:
 *GT*_{i+1}, *EQ*_{i+1}, and *LT*_{i+1}
 Outputs of cell *i* are inputs to cell (*i* + 1)
- ✤ Output Expressions of Cell i

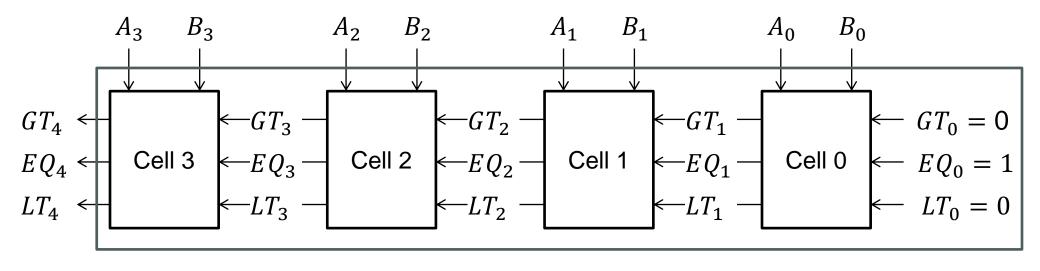
 $EQ_{i+1} = E_i \cdot EQ_i \qquad E_i = A'_i B'_i + A_i B_i (A_i \text{ equals } B_i)$ $GT_{i+1} = A_i B'_i + E_i \cdot GT_i \qquad A_i B'_i (A_i > B_i)$ $LT_{i+1} = A'_i B_i + E_i \cdot LT_i \qquad A'_i B_i (A_i < B_i)$ This has to be a set of the effective ATT of t

Third output can be produced for first two: $LT_{i+1} = (EQ_{i+1} + GT_{i+1})'$ Combinational LogicENCS2340 - Digital SystemsLogicENCS2340 - Digital SystemsUploaded By: Malak Dar Obaid
Obaid - shawahna - shae 87



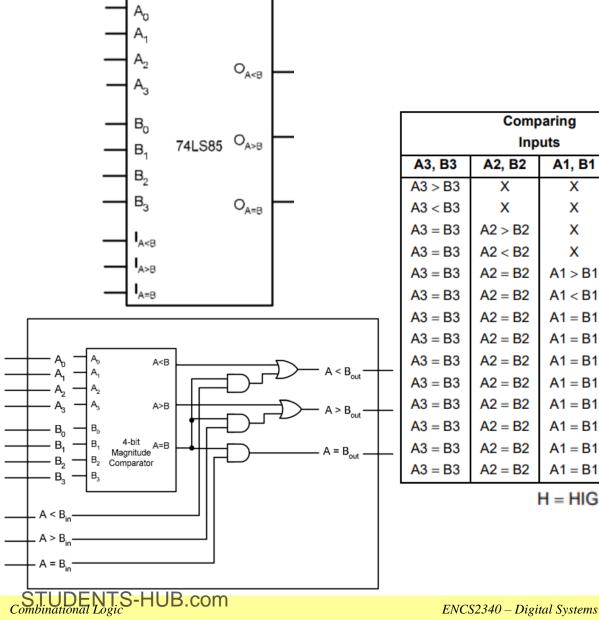
Iterative Magnitude Comparator Design

- 4-bit magnitude comparator is implemented using 4 identical cells
 Design can be extended to any number of cells
- Comparison starts at least-significant bit
- ✤ Final comparator output: $GT = GT_4$, $EQ = EQ_4$, $LT = LT_4$



Uploaded By: Malak Dar Obaid, CAhmed Shawahna - stide 88

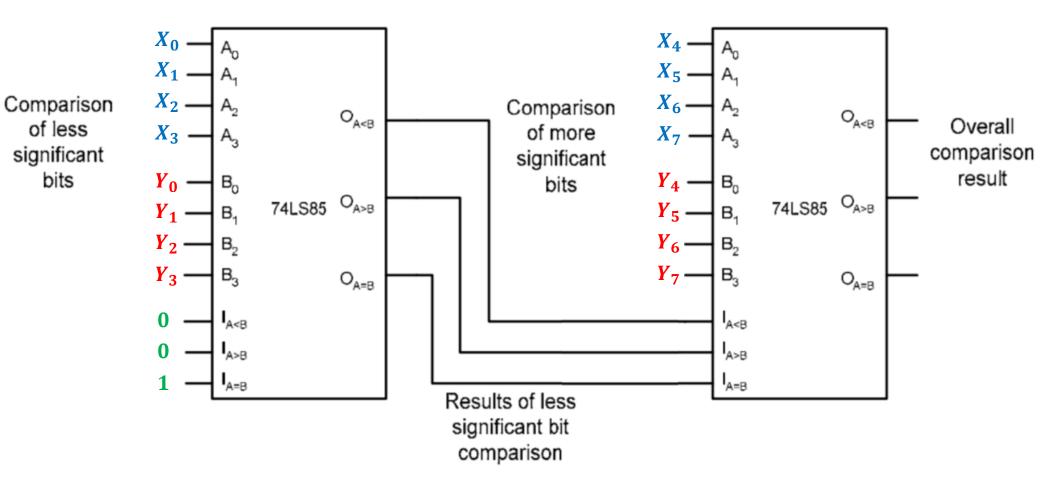
DM74LS85: A 4-Bit Magnitude Comparator



Comparing			0	Cascading	3	Outputs			
	Inp	uts		Inputs					
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B
A3 > B3	Х	Х	Х	Х	Х	Х	Н	L	L
A3 < B3	Х	Х	Х	Х	Х	Х	L	н	L
A3 = B3	A2 > B2	Х	Х	Х	Х	X	н	L	L
A3 = B3	A2 < B2	Х	Х	х	х	X	L	н	L
A3 = B3	A2 = B2	A1 > B1	Х	Х	Х	Х	н	L	L
A3 = B3	A2 = B2	A1 < B1	Х	Х	Х	X	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	х	Х	X	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	L	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	н	L	L	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	х	х	н	L	L	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	н	L	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	н	н	L
				1.014			0		

H = HIGH Level, L = LOW Level, X = Don't Care

Cascading Two Comparators

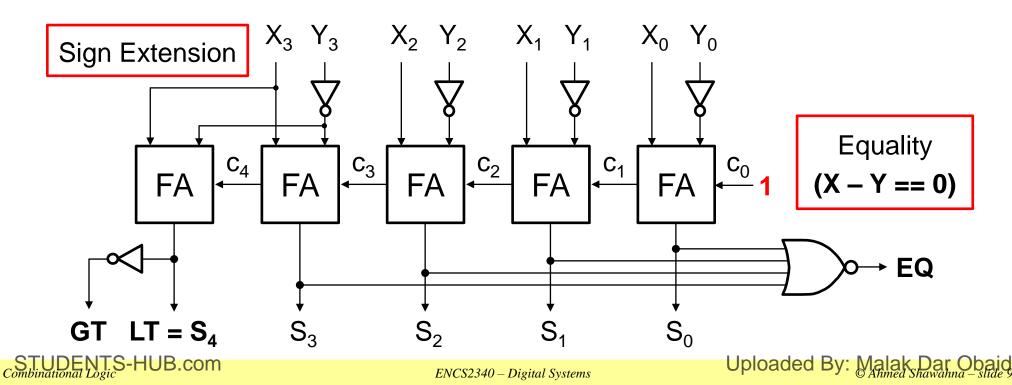


Signed Less Than: LT = X < Y

Design a circuit that computes signed LT (Signed X and Y)
Solution:

If (X < Y) then (X - Y) < 0, If (X == Y) then (X - Y == 0)

Do signed subtraction, LT = S₄ = sign-bit of the result

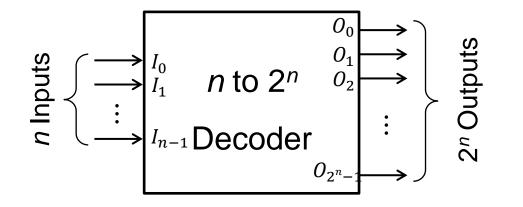


Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

Binary Decoders

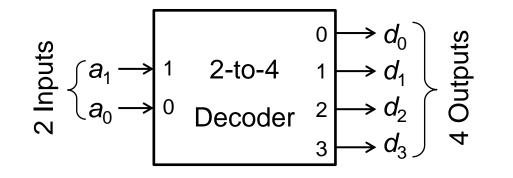
- ✤ Given a *n*-bit binary code, there are 2ⁿ possible code values
- The decoder has an output for each possible code value
- The *n*-to- 2^n decoder has *n* inputs and 2^n outputs
- Depending on the input code, only one output is set to logic 1
- The conversion of input to output is called decoding



UDENIS-HUB.com

A decoder can have less than 2ⁿ outputs if some input codes are unused

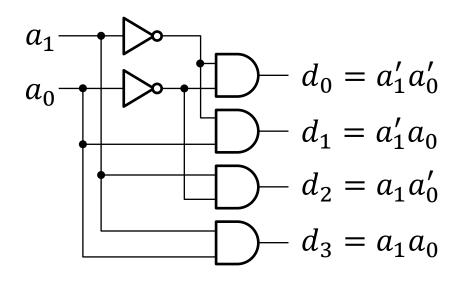
Examples of Binary Decoders



Truth Tables										
Inputs Outputs										
$a_1 a_0$	d_0	d_1	d_2	d ₃						
0 0	1	0	0	0						
0 1	0	1	0	0						
1 0	0	0	1	0						
1 1	0	0	0	1						

Combinational Logic

2-to-4 Decoder Implementation

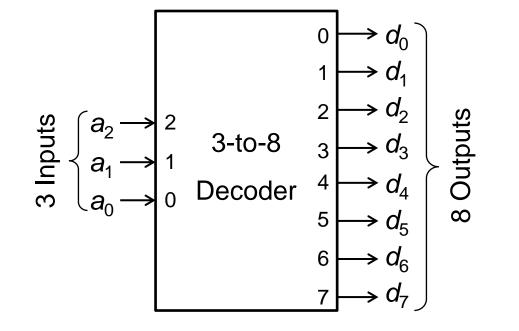


Each decoder output is a minterm

Uploaded By: Malak Dar Obaid

ENCS2340 – Digital Systems

Examples of Binary Decoders



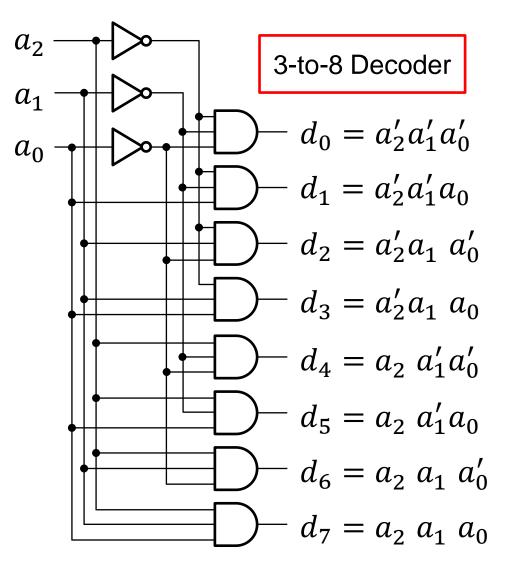
Inputs \bigcirc <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
0 0 0 0100000000 0 101000000000 1 0001000000000 1 1000100000001 0 000000100001 0 10000001001 1 000000010	Inputs		Outputs								
0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0	$a_2 a_1 a_0$	d_0	d_1	d_2	d ₃	d_4	d_5	d_6	d_7		
0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0	0 0 0	1	0	0	0	0	0	0	0		
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0	001	0	1	0	0	0	0	0	0		
1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0	010	0	0	1	0	0	0	0	0		
1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0	011	0	0	0	1	0	0	0	0		
1 0 0 0 0 0 0 1 0	1 0 0	0	0	0	0	1	0	0	0		
	101	0	0	0	0	0	1	0	0		
1 1 1 0 0 0 0 0 0 1	1 1 0	0	0	0	0	0	0	1	0		
	1 1 1	0	0	0	0	0	0	0	1		

Truth Tables

STUDENTS-HUB.com

ENCS2340 – Digital Systems

3-to-8 Decoder Implementation



Each decoder output is a **minterm**

Combinational Logic

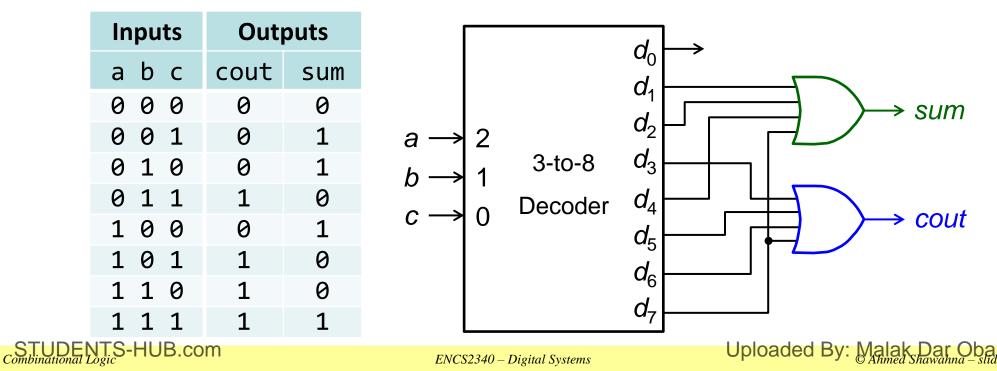
```
Uploaded By: Malak Dar Obaid

© Ahmed Shawahna - slide 97
```

ENCS2340 – Digital Systems

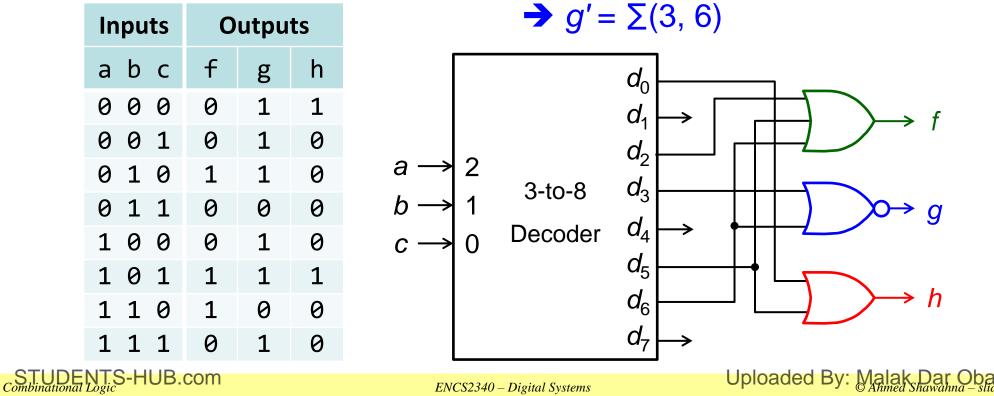
Using Decoders to Implement Functions

- ✤ A decoder generates all the minterms
- ✤ A Boolean function can be expressed as a sum of minterms
- Any function can be implemented using a decoder + OR gate Note: the function must not be minimized
- **♦ Example:** Full Adder sum = $\Sigma(1, 2, 4, 7)$, cout = $\Sigma(3, 5, 6, 7)$



Using Decoders to Implement Functions

- Good if many output functions of the same input variables
- ✤ If number of minterms is large → Wider OR gate is needed
- Use NOR gate if number of maxterms is less than minterms
- ★ Example: $f(a,b,c) = \Sigma(2, 5, 6), g(a,b,c) = \prod(3, 6), h(a,b,c) = \Sigma(0, 5)$



ENCS2340 – Digital Systems

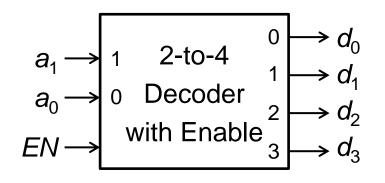
2-to-4 Decoder with Enable Input

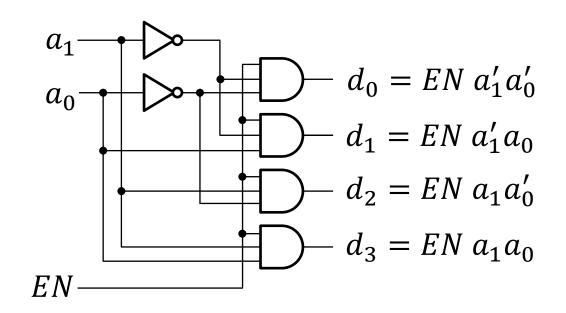
Truth Table

In		Out	puts		
EN	a ₁ a ₀	d ₀	d_1	d_2	d ₃
0	ХХ	0	0	0	0
1	0 0	1	0	0	0
1	0 1	0	1	0	0
1	1 0	0	0	1	0
1	1 1	0	0	0	1

If *EN* input is zero then all outputs are zeros, regardless of a_1 and a_0

Combinational Logic

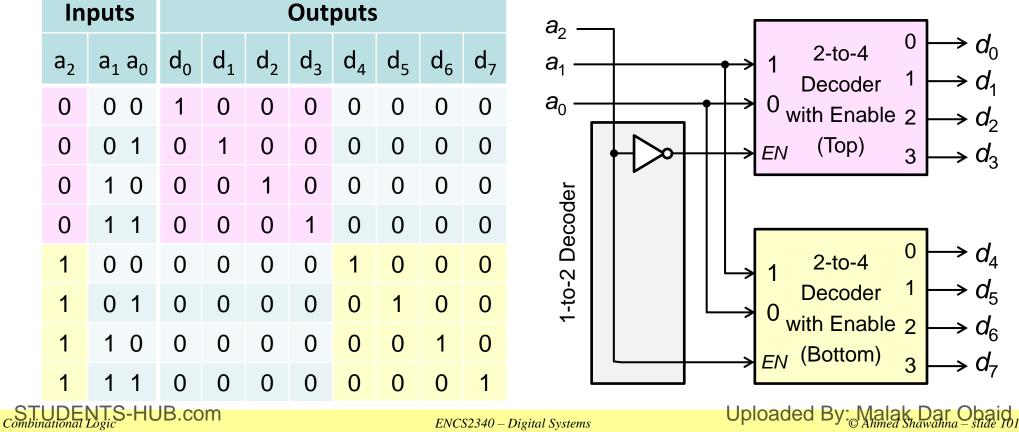




Building Larger Decoders

- Larger decoders can be build using smaller ones
- ✤ A 3-to-8 decoder can be built using:

Two 2-to-4 decoders with Enable and an inverter (1-to-2 decoder)

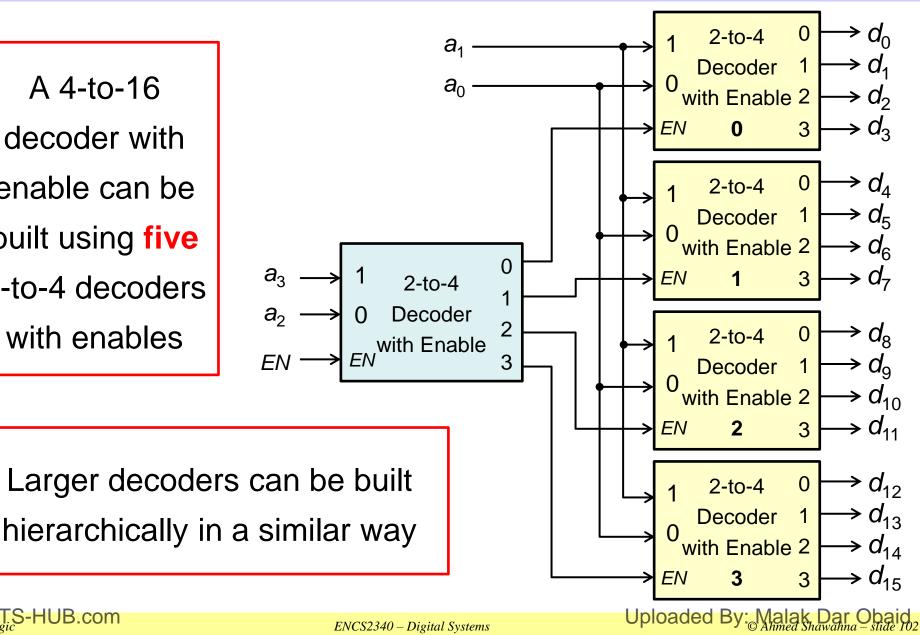


ENCS2340 – Digital Systems

Building Larger Decoders

A 4-to-16 decoder with enable can be built using five 2-to-4 decoders with enables

Combinational Logic



ENCS2340 – Digital Systems

BCD to 7-Segment Decoder

Seven-Segment Display:

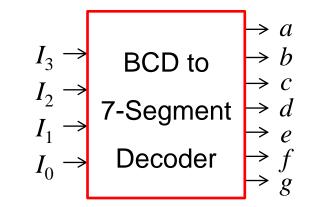
а

Combinational Logic

- ♦ Made of Seven segments: light-emitting diodes (LED)
- ♦ Found in electronic devices: such as clocks, calculators, etc.

0 723456789

- ✤ BCD to 7-Segment Decoder
 - ♦ Called also a decoder, but not a binary decoder
 - ♦ Accepts as input a BCD decimal digit (0 to 9)
 - $\diamond\,$ Generates output to the seven LED segments to display the BCD digit
 - \diamond Each segment can be turned on or off separately



BCD to 7-Segment Decoder

Specification:

- ♦ Input: 4-bit BCD (I_3 , I_2 , I_1 , I_0)
- \diamond Output: 7-bit (*a*, *b*, *c*, *d*, *e*, *f*, *g*)
- Display should be OFF for Non-BCD input codes.

Implementation can use:

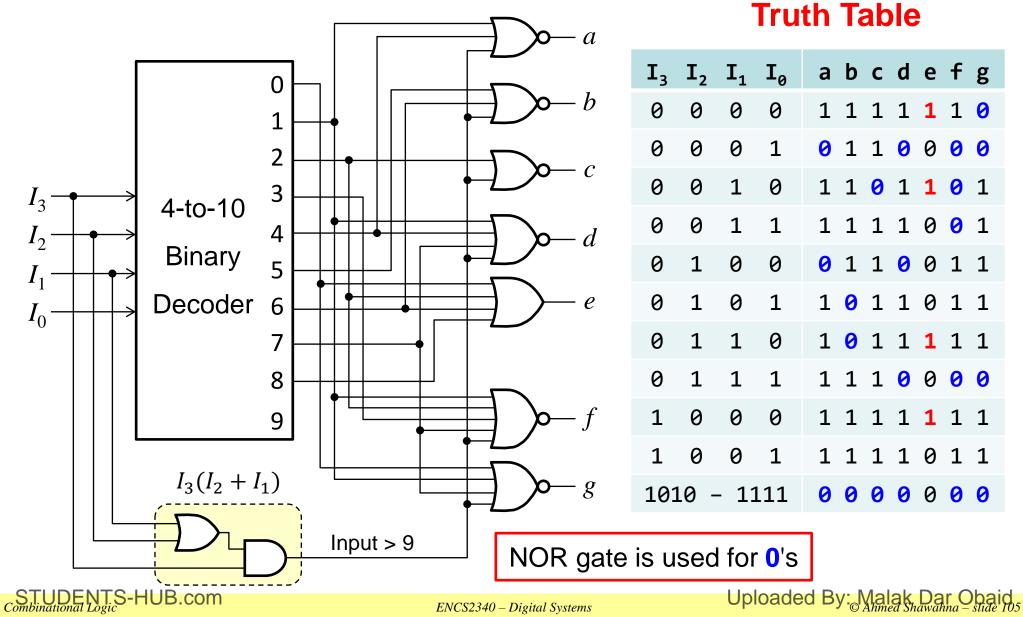
- ♦ A binary decoder
- ♦ Additional gates

STUDENTS-HUB.com

Truth Table

B	CD	7-	Se	g	me	en	t C	Du	tput		
I_3	I_2	I_1	I ₀		а	b	С	d	е	f	g
0	0	0	0		1	1	1	1	1	1	0
0	0	0	1		0	1	1	0	0	0	0
0	0	1	0		1	1	0	1	1	0	1
0	0	1	1		1	1	1	1	0	0	1
0	1	0	0		0	1	1	0	0	1	1
0	1	0	1		1	0	1	1	0	1	1
0	1	1	0		1	0	1	1	1	1	1
0	1	1	1		1	1	1	0	0	0	0
1	0	0	0		1	1	1	1	1	1	1
1	0	0	1		1	1	1	1	0	1	1
101	0 t	o 1	111		0	0	0	0	0	0	0

Implementing a BCD to 7-Segment Decoder



ENCS2340 – Digital Systems

NAND Decoders with Inverted Outputs

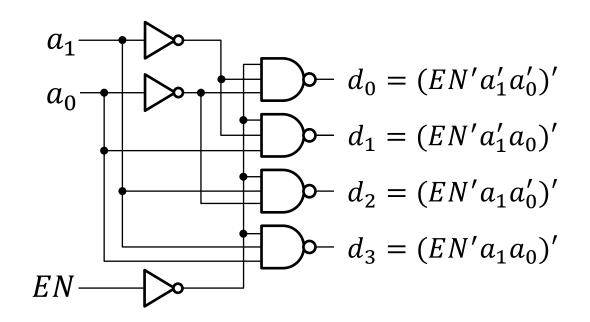
Truth Table

In	Outputs					
EN	a ₁ a ₀	d ₀	d_1	d_2	d_3	
1	ХХ	1	1	1	1	
0	0 0	0	1	1	1	
0	0 1	1	0	1	1	
0	1 0	1	1	0	1	
0	1 1	1	1	1	0	

Some decoders are constructed with NAND gates. Their outputs are inverted. The Enable input is also active low (Enable if zero)

STUDENTS-HUB.com

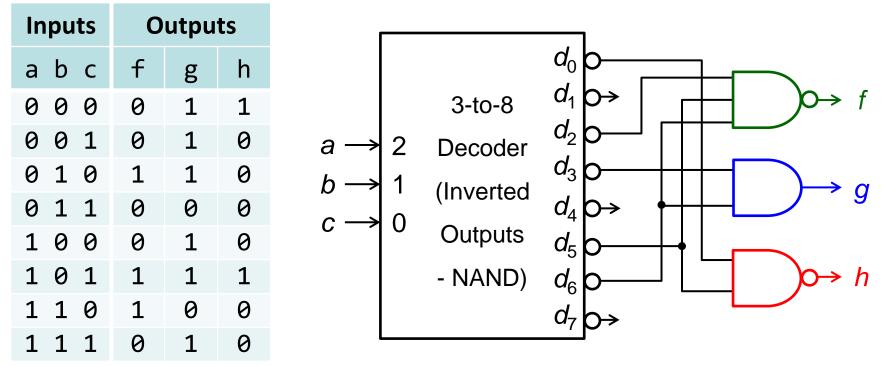
$$\begin{array}{c} a_{1} \rightarrow \\ a_{0} \rightarrow \end{array} \begin{array}{c} 1 & 2 \text{-to-4} & 0 \\ 1 & 2 \text{-to-4} & 1 \\ 0 & \text{Decoder} & 2 \\ \text{with Enable} & 2 \\ 3 & 0 \rightarrow d_{2} \\ 0 \rightarrow d_{3} \end{array}$$



Using NAND Decoders

- NAND decoders can be used to implement functions
- Use NAND gates to <u>output the minterms</u> (if fewer ones)
- Use AND gates to <u>output the maxterms</u> (if fewer zeros)
- **♦ Example:** $f = \sum (2, 5, 6), g = \prod (3, 6), h = \sum (0, 5)$

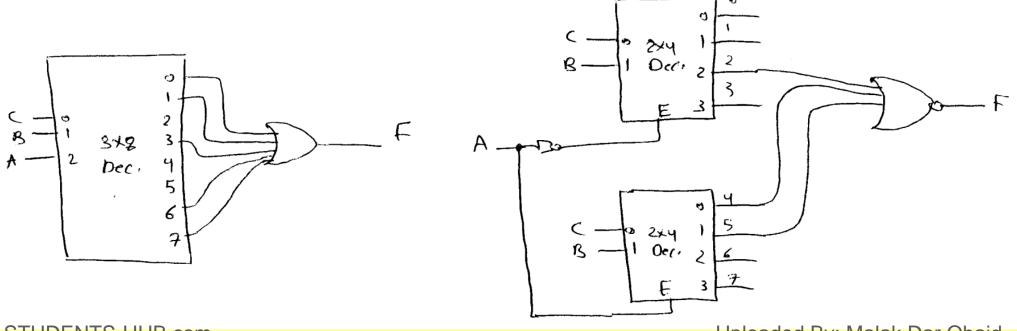
Combinational Logic



Example

- ↔ Implement the Boolean function: F(A, B, C) = AB + A'C + A'B'
 - a) Using a single 3x8 decoder and an OR gate.
 - b) Using a single NOR gate and the minimum number of 2x4 decoders with enable.

$$F = \Sigma m(0, 1, 3, 6, 7)$$

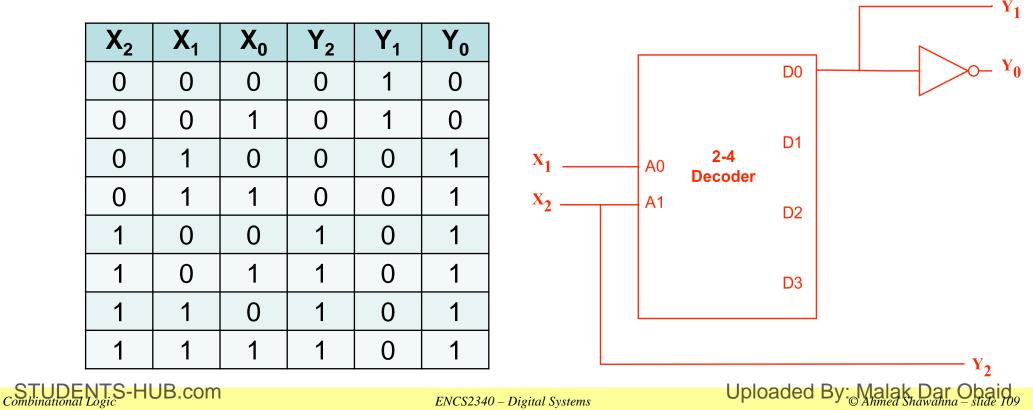


STUDENTS-HUB.com

ENCS2340 – Digital Systems

Example

• Consider the following truth table, in which X_2 , X_1 , and X_0 are the inputs and Y_2 , Y_1 , and Y_0 are the outputs. Using a minimum-size decoder and a minimum number of additional gates, show how to implement Y_2 , Y_1 , and Y_0 . Your additional logic gates must use the smallest possible number of inputs.

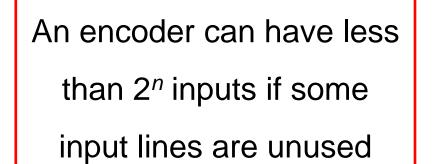


Next...

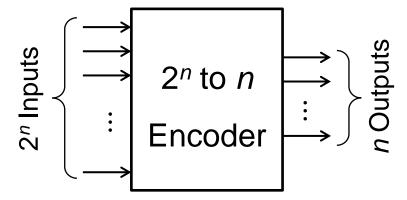
- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

Encoders

- An encoder performs the opposite operation of a decoder
- It converts a 2^n input to an *n*-bit output code
- The output indicates which input is active (logic 1)
- Typically, one input should be 1 and all others must be 0's
- The conversion of input to output is called encoding

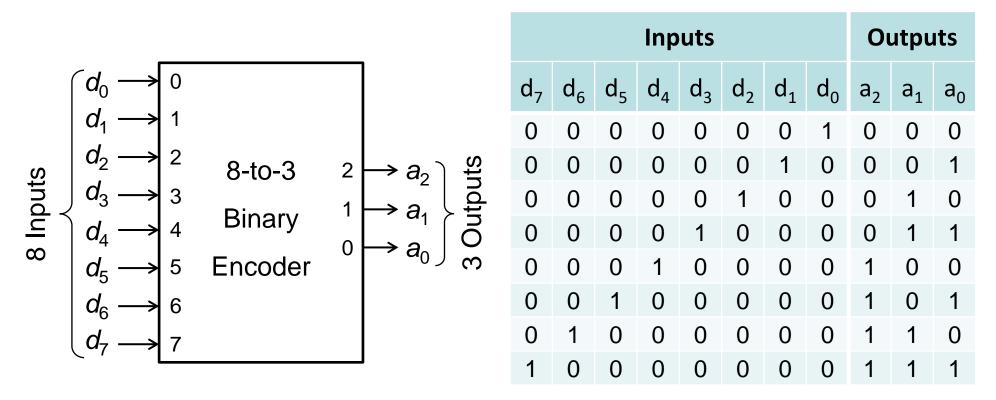


Combinational Logic



Example of an 8-to-3 Binary Encoder

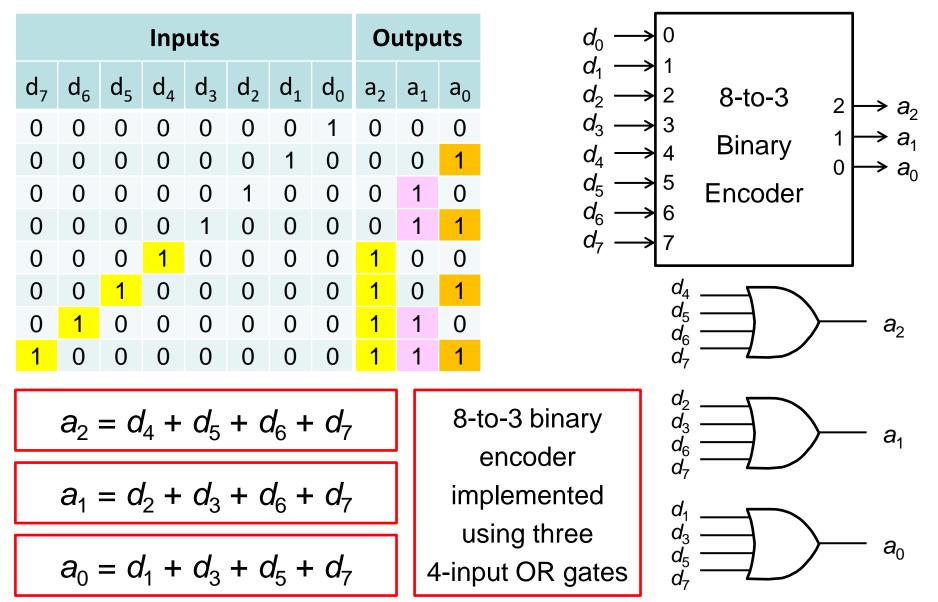
- ✤ 8 inputs, 3 outputs, only one input is 1, all others are 0's
- Encoder generates the output binary code for the active input
- Output is not specified if more than one input is 1



Combinational Logic

Uploaded By: Malak Dar Obaid © Ahmed Shawahna - stide 112

8-to-3 Binary Encoder Implementation



STUDENTS-HUB.com

ENCS2340 – Digital Systems

Binary Encoder Limitations

- Exactly one input must be 1 at a time (all others must be 0's)
- If more than one input is 1 then the output will be incorrect
- ✤ For example, if $d_3 = d_6 = 1$ Then $a_2 a_1 a_0 = 111$ (incorrect)
- Two problems to resolve:

$$a_{2} = d_{4} + d_{5} + d_{6} + d_{7}$$
$$a_{1} = d_{2} + d_{3} + d_{6} + d_{7}$$
$$a_{0} = d_{1} + d_{3} + d_{5} + d_{7}$$

- 1. If **two** inputs are **1** at the same time, what should be the output?
- 2. If all inputs are 0's, what should be the output?
- Output $a_2 a_1 a_0 = 000$ if $d_0 = 1$ or all inputs are 0's

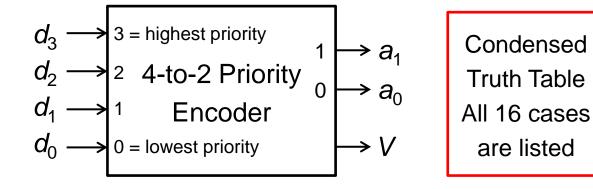
How to resolve this ambiguity?

STUDENTS-HUB.com

Priority Encoder

- Eliminates the two problems of the binary encoder
- Inputs are ranked from highest priority to lowest priority
- If more than one input is active (logic 1) then priority is used Output encodes the active input with higher priority
- \clubsuit If all inputs are zeros then the ${\bf V}$ (Valid) output is zero

Indicates that all inputs are zeros



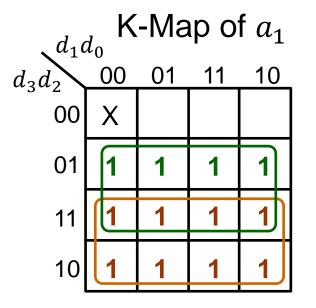
Combinational Logic

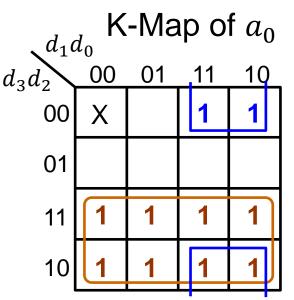
	Inp	uts	0	utpu	ts	
d ₃	d_2	d_1	d ₀	a_1	a ₀	V
0	0	0	0	Х	Х	0
0	0	0	1	0	0	1
0	0	1	Х	0	1	1
0	1	Х	Х	1	0	1
1	Х	Х	Х	1	1	1

Uploaded By: Malak Dar Obaid

Implementing a 4-to-2 Priority Encoder

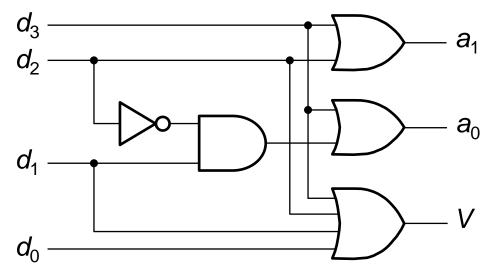
	Inp	uts	0	utpu	ts	
d ₃	d_2	d_1	d ₀	a_1	a ₀	V
0	0	0	0	Х	Х	0
0	0	0	1	0	0	1
0	0	1	Х	0	1	1
0	1	Х	Х	1	0	1
1	Х	Х	Х	1	1	1





Output Expressions: $a_1 = d_3 + d_2$ $a_0 = d_3 + d_1 d'_2$ $V = d_3 + d_2 + d_1 + d_0$

STUDENTS-HUB.com

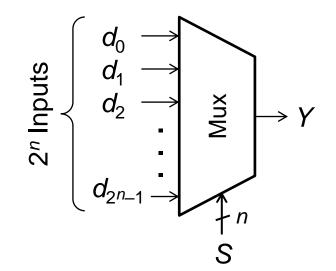


Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Design Examples

Multiplexers

- Selecting data is an essential function in digital systems
- Functional blocks that perform selecting are called multiplexers
- ✤ A Multiplexer (or Mux) is a combinational circuit that has:
 - \diamond Multiple data inputs (typically 2^{*n*}) to select from
 - ♦ An *n*-bit select input S used for control
 - \diamond One output Y



The n-bit select input directs one of the data inputs to the output

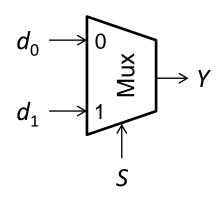
Examples of Multiplexers

- * 2-to-1 Multiplexer if (S == 0) $Y = d_0$; else $Y = d_1$; Logic expression:
 - $Y = d_0 S' + d_1 S$
- ✤ 4-to-1 Multiplexer
 if ($S_1S_0 == 00$) $Y = d_0$;
 else if ($S_1S_0 == 01$) $Y = d_1$;
 else if ($S_1S_0 == 10$) $Y = d_2$;
 else $Y = d_3$;

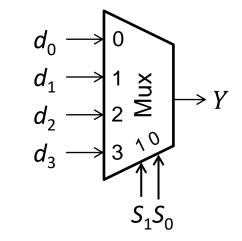
Logic expression:

$$Y = d_0 S'_1 S'_0 + d_1 S'_1 S_0 + d_2 S_1 S'_0 + d_3 S_1 S_2$$

STUDENTS-HUB.com
ENCS2340 - Digital Systems



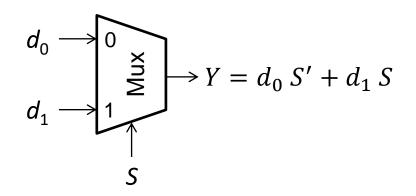
l	nput	Output	
S	d ₀	d_1	Y
0	0	Х	$0 = d_0$
0	1	Х	$1 = d_0$
1	Х	0	0 = d ₁
1	Х	1	1 = d ₁

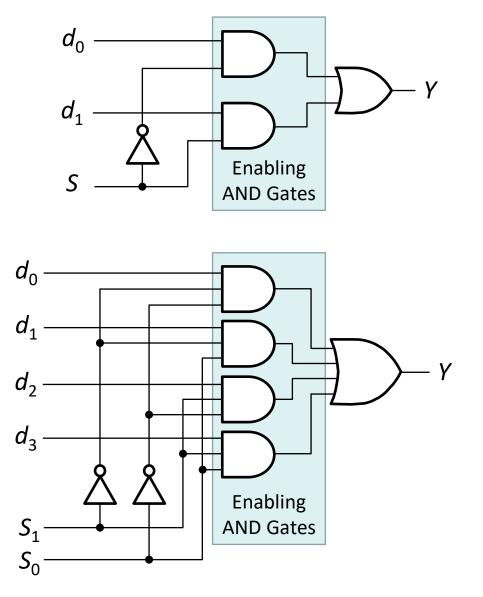


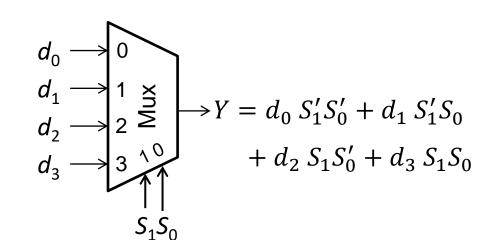
		Output				
S_1	S ₀	d_0	d_1	d_2	d_3	Y
0	0	0	Х	Х	Х	$0 = d_0$
0	0	1	Х	Х	Х	$1 = d_0$
0	1	Х	0	Х	Х	0 = d ₁
0	1	Х	1	Х	Х	1 = d ₁
1	0	Х	Х	0	Х	$0 = d_2$
1	0	Х	Х	1	Х	$1 = d_2$
1	1	Х	Х	Х	0	0 = d ₃
1	1	Х	Х	Х	1	1 = d ₃

Uploaded By: Malak Dar Obaid, © Ahmed Shawahna - stide 119

Implementing Multiplexers







STUDENTS-HUB.com

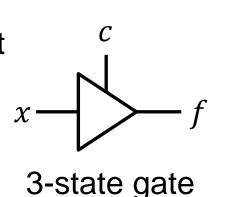
3-State Gate

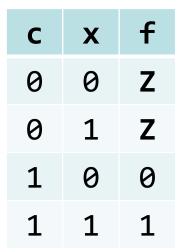
Logic gates studied so far have two outputs: 0 and 1

- Three-State gate has three possible outputs: 0, 1, Z
 - ♦ Z is the Hi-Impedance output
 - Z means that the output is **disconnected** from the input
 - ♦ Gate behaves as an open switch between input and output
- Input c connects input to output
 - \diamond *c* is the control (enable) input
 - \diamond If **c** is **0** then **f** = **Z**

Combinational Logic

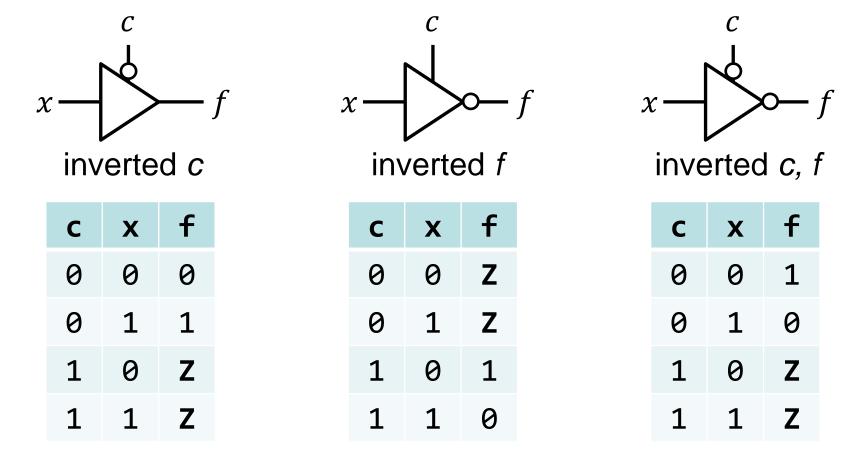
 \diamond If **c** is **1** then **f** = input **x**





Variations of the 3-State Gate

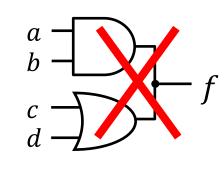
- Control input *c* and output *f* can be inverted
- ✤ A bubble is inserted at the input *c* or output *f*



Combinational Logic

Wired Output

Logic gates with 0 and 1 outputs cannot have their outputs wired together

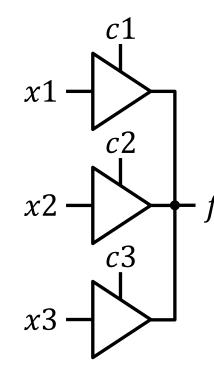


This will result in a **short circuit** that will burn the gates

3-state gates **can wire** their outputs together

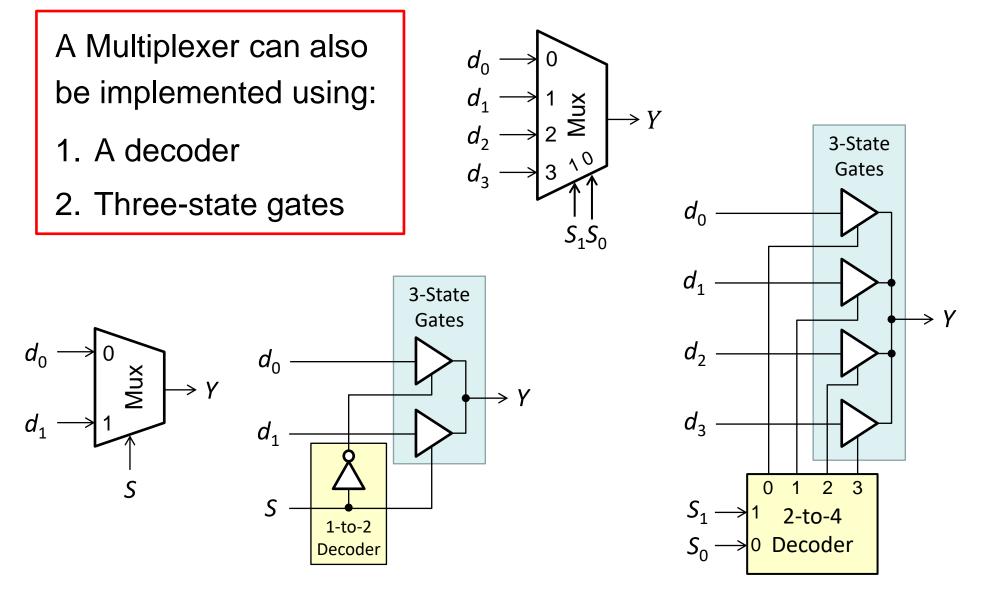
At most one 3-state gate can be enabled at a time

Otherwise, conflicting outputs will burn the circuit



c1	c2	c 3	f
0	0	0	Z
1	0	0	x1
0	1	0	x2
0	0	1	x3
0	1	1	Burn
1	0	1	Burn
1	1	0	Burn
1	1	1	Burn

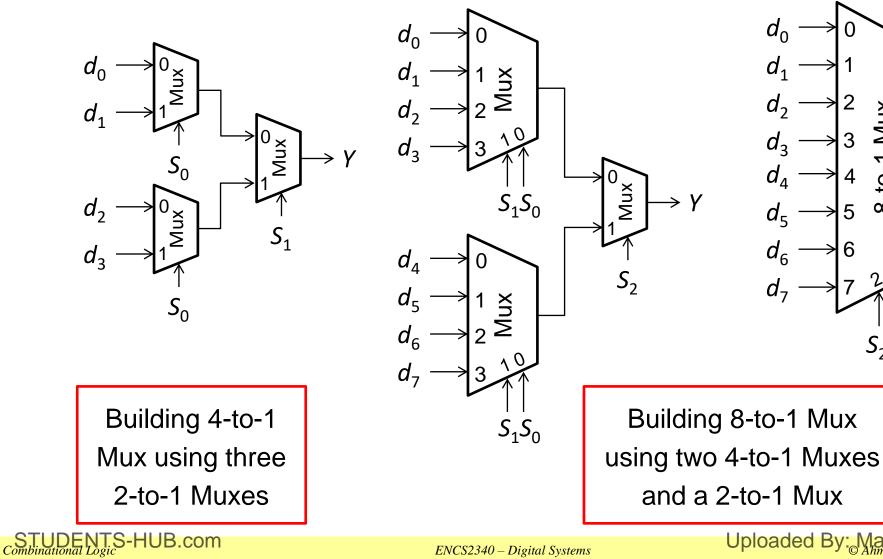
Implementing Multiplexers with 3-State Gates



Combinational Logic

Building Larger Multiplexers

Larger multiplexers can be built hierarchically using smaller ones



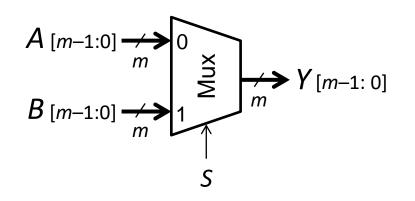
8-to-1 Mux

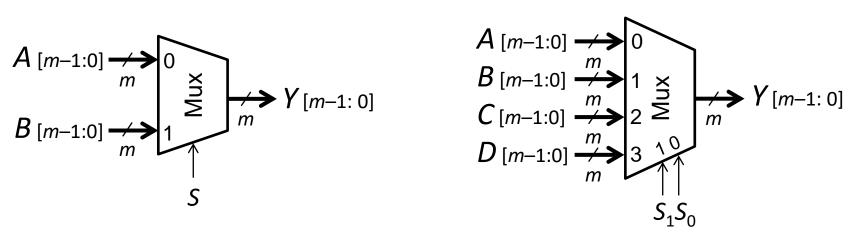
 $S_2 S_1 S_0$

⇒γ

Multiplexers with Vector Input and Output

The inputs and output of a multiplexer can be *m*-bit vectors



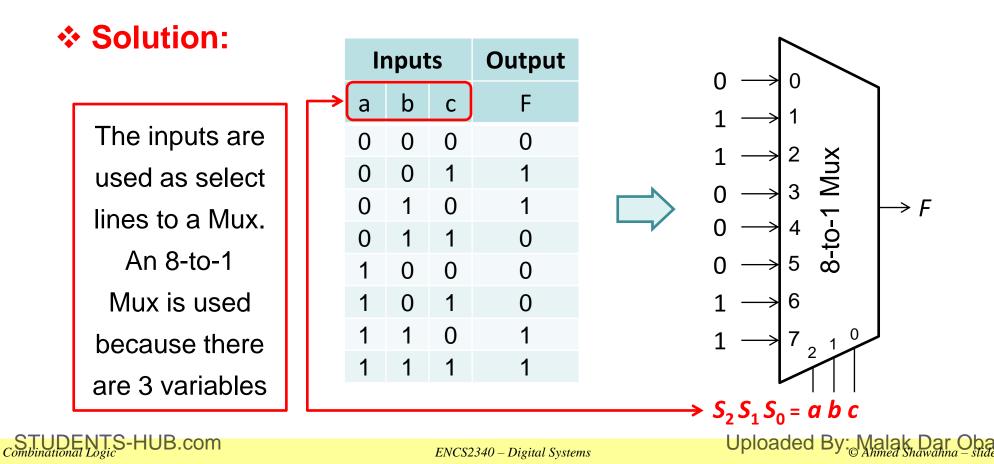


2-to-1 Multiplexer with *m* bits Inputs and output are *m*-bit vectors Using *m* copies of a 2-to-1 Mux

4-to-1 Multiplexer with *m* bits Inputs and output are *m*-bit vectors Using *m* copies of a 4-to-1 Mux

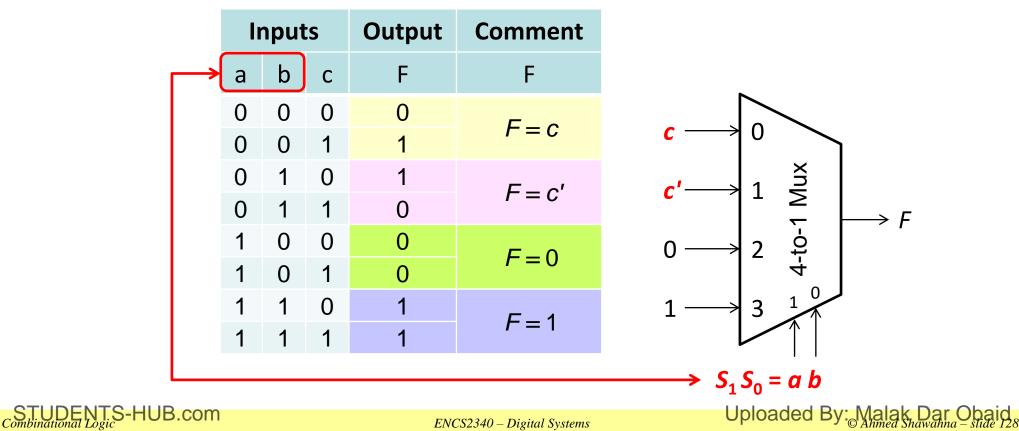
Implementing a Function with a Multiplexer

- ✤ A Multiplexer can be used to implement any logic function
- The function must be expressed using its minterms
- ★ Example: Implement $F(a, b, c) = \Sigma(1, 2, 6, 7)$ using a Mux



Better Solution with a Smaller Multiplexer

- ♦ Re-implement $F(a, b, c) = \Sigma(1, 2, 6, 7)$ using a 4-to-1 Mux
- We will use the two select lines for variables a and b
- ✤ Variable c and its complement are used as inputs to the Mux

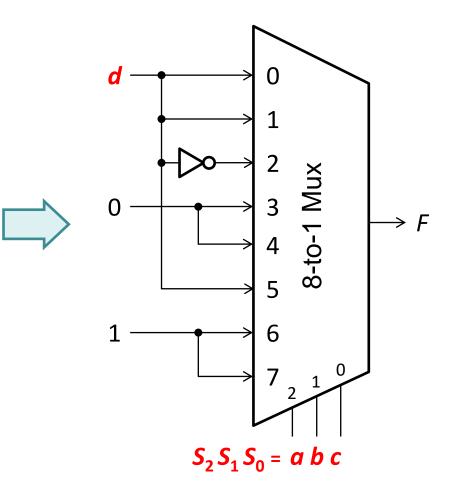


Implementing Functions: Example 2

Implement $F(a, b, c, d) = \sum (1,3,4,11,12,13,14,15)$ using 8-to-1 Mux

Inputs				Output	Comment
а	b	С	d	F	F
0	0	0	0	0	F = d
0	0	0	1	1	r = 0
0	0	1	0	0	F = d
0	0	1	1	1	r = 0
0	1	0	0	1	F = d'
0	1	0	1	0	r = 0
0	1	1	0	0	E O
0	1	1	1	0	F = 0
1	0	0	0	0	E O
1	0	0	1	0	F = 0
1	0	1	0	0	
1	0	1	1	1	F = d
1	1	0	0	1	F=1
1	1	0	1	1	r = 1
1	1	1	0	1	F=1
1	1	1	1	1	r = 1

STUDENTS-HUB.com



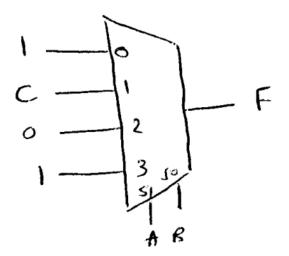
Uploaded By: Malak Dar Obaid © Ahmed Shawahna - stide 129

Implementing Functions: Example 3

- ↔ Implement the Boolean function: F(A, B, C) = AB + A'C + A'B'
 - a) Using a single 4x1 multiplexer.

Inputs		S	Output	Comment
А	В	С	F	F
0	0	0	1	
0	0	1	1	F = 1
0	1	0	0	$\mathbf{F}_{-}\mathbf{C}$
0	1	1	1	F = C
1	0	0	0	F = 0
1	0	1	0	F = 0
1	1	0	1	F=1
1	1	1	1	r = 1

Combinational Logic

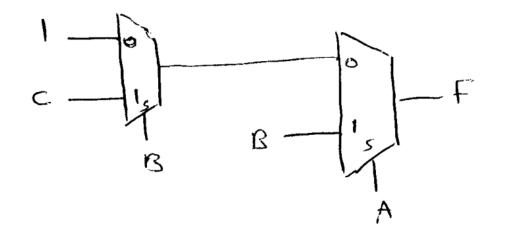


Implementing Functions: Example 3

- ♦ Implement the Boolean function: F(A, B, C) = AB + A'C + A'B'
 - b) Using a minimum number of 2x1 multiplexers.

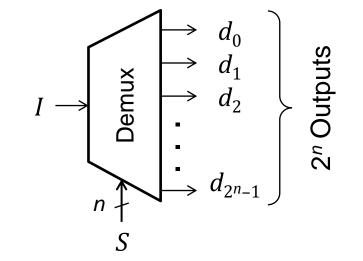
Inputs		:S	Output	Comment
А	В	С	F	F
0	0	0	1	F = 1
0	0	1	1	r = r
0	1	0	0	F=C
0	1	1	1	F = C
1	0	0	0	
1	0	1	0	
1	1	0	1	F = B
1	1	1	1	

Combinational Logic



Demultiplexer

- Performs the inverse operation of a Multiplexer
- ✤ A Demultiplexer (or Demux) is a combinational circuit that has:
 - 1. One data input I
 - 2. An *n*-bit select input *S*
 - 3. A maximum of 2^n data outputs



The Demux directs the data input to one of the outputs

According to the select input *S*

STUDENTS-HUB.com

ENCS2340 – Digital Systems

Examples of Demultiplexers

✤ 1-to-2 Demultiplexer

if $(S == 0) \{ d_0 = I; d_1 = 0; \}$ else $\{ d_1 = I; d_0 = 0; \}$ Output expressions: $d_0 = I S'; d_1 = I S$

1-to-4 Demultiplexer

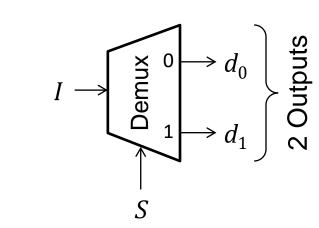
if $(S_1S_0 == 00) \{ d_0 = I; d_1 = d_2 = d_3 = 0; \}$ else if $(S_1S_0 == 01) \{ d_1 = I; d_0 = d_2 = d_3 = 0; \}$ else if $(S_1S_0 == 10) \{ d_2 = I; d_0 = d_1 = d_3 = 0; \}$ else $\{ d_3 = I; d_0 = d_1 = d_2 = 0; \}$

Output expressions:

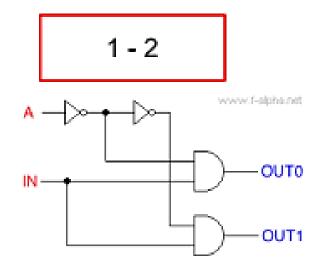
$$d_0 = I S_1'S_0'; d_1 = I S_1'S_0; d_2 = I S_1S_0'; d_3 = IS_1S_0$$

STUDENTS-HUB.com

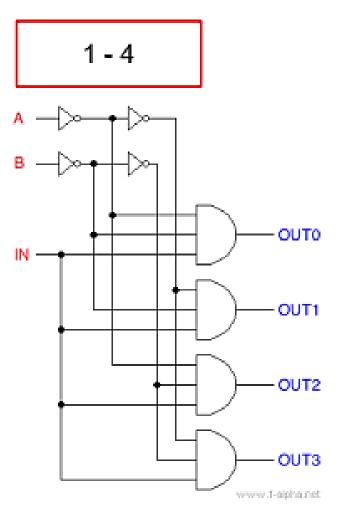
$I \longrightarrow I \xrightarrow{1} 0 \xrightarrow{1} 0$

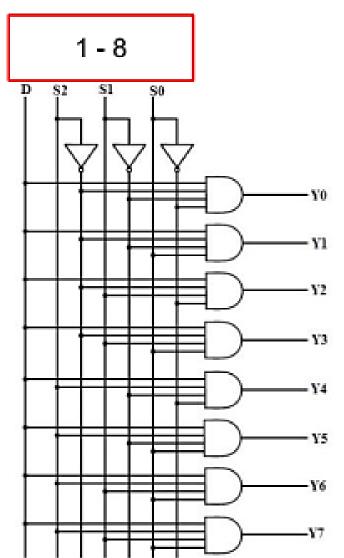


Examples of Demultiplexers



STUDENTS-HUB.com

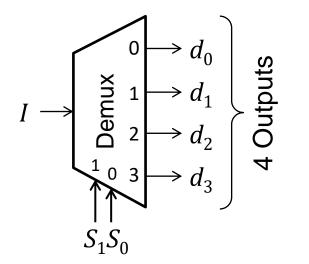




Uploaded By: Malak Dar Obaid, © Ahmed Shawahna - stide 137

Demultiplexer = Decoder with Enable

 A 1-to-4 demux is equivalent to a 2-to-4 decoder with enable Demux select input S₁ is equivalent to Decoder input a₁
 Demux select input S₀ is equivalent to Decoder input a₀
 Demux Input *I* is equivalent to Decoder Enable *EN*



$$S_{1} = a_{1} \longrightarrow \begin{bmatrix} 0 & & 0 \\ 1 & 2 \text{-to-4} & 1 \\ 0 & \text{Decoder} & 2 \\ I = EN \longrightarrow \begin{bmatrix} 2 & & 0 \\ 0 & \text{Decoder} & 2 \\ 3 & & 3 \end{bmatrix} \xrightarrow{d_{1}} d_{2}$$

Think of a decoder as directing the Enable signal to one output

In general, a demux with n select inputs and 2ⁿ outputs is equivalent to a n-to-2ⁿ decoder with enable input

STUDENTS-HUB.com

ENCS2340 – Digital Systems

Next...

- Combinational Circuits
- Analysis Procedure
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers

Design Examples

2-by-2 Crossbar Switch

✤ A 2×2 crossbar switch is a combinational circuit that has:

Two *m*-bit Inputs: A and B

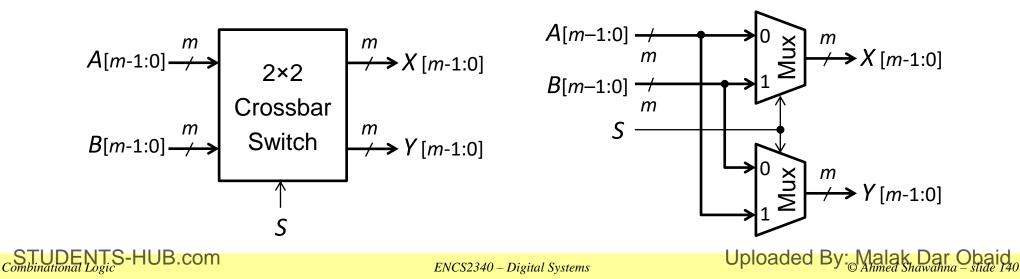
Two *m*-bit outputs: *X* and *Y*

1-bit select input S

if (S == 0) { X = A; Y = B; }
else { X = B; Y = A; }

Implement the 2×2 crossbar switch using multiplexers

Solution: Two 2-input multiplexers are used

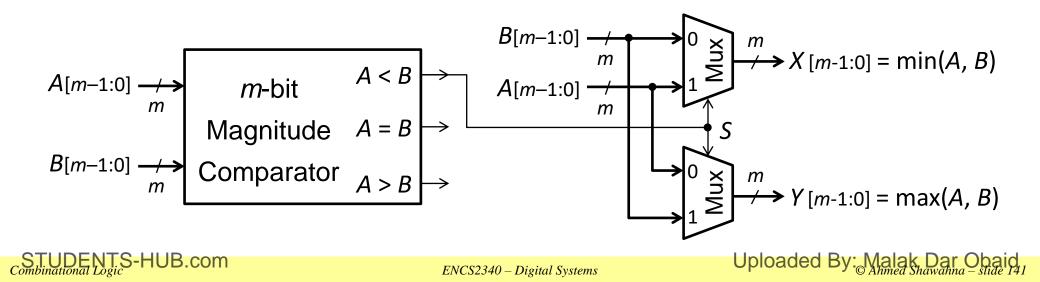


Sorting Two Unsigned Integers

Design a circuit that sorts two *m*-bit unsigned integers *A* and *B* Inputs: Two *m*-bit unsigned integers *A* and *B* Outputs: *X* = min(*A*, *B*) and *Y* = max(*A*, *B*)

Solution:

We will use a magnitude comparator to compare *A* with *B*, and 2×2 crossbar switch implemented using two 2-input multiplexers



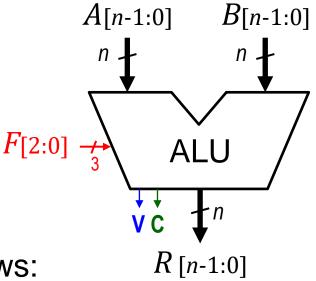
Arithmetic and Logic Unit (ALU)

- Can perform many functions
- Most common ALU functions

Arithmetic functions: ADD, SUB (Subtract)

Logic functions: AND, OR, XOR, etc.

- ✤ We will design an ALU with 8 functions
- ✤ The function *F* is coded with 3 bits as follows:



Function	ALU Result	Function	ALU Result
F = 000 (ADD)	R = A + B	F = 100 (AND)	R = A & B
F = 001 (ADD + 1)	R = A + B + 1	F = 101 (OR)	R = A B
F = 010 (SUB - 1)	R=A-B-1	F = 110 (NOR)	R = ~(A B)
F = 011 (SUB)	R=A-B	F = 111 (XOR)	R = (A ^ B)

STUDENTS-HUB.com

ENCS2340 – Digital Systems

Designing a Simple ALU

