
17/03/2025

1

HTTP Protocol

COMP4382

Ahmad Hamo

10-3-2025

world wide Web

Invented by Tim Berners-Lee at CERN 1989.
http://home.cern/topics/birth-web

Developed by W3, World Wide Web Consortium.
https://www.w3.org/Consortium

Initially consisted of HTTP and HTML.

Source:

https://commons.wikimedia.org/wiki/File

:Tim_Berners-Lee_April_2009.jpg

Uploaded By: anonymousSTUDENTS-HUB.com

http://home.cern/topics/birth-web
https://www.w3.org/Consortium
https://commons.wikimedia.org/wiki/File:Tim_Berners-Lee_April_2009.jpg
https://students-hub.com

17/03/2025

2

World wide web

Where does the name come from?
HTTP: HyperText Transfer Protocol

HTML: HyperText Markup Language

HyperText = a link to another webpage (forms a web!).

A webpage
Clients primarily requests HTML files.

<!DOCTYPE html>

<html>

<head>

<title>Hello</title>

</head>

<body>

<h1>Hi!</h1>

<p>Nice to meet you!</p>

</body>

</html>

Hi!
Nice to meet you!

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

3

A webpage
Clients primarily requests HTML files.
But an HTML file usually depends on other files.

<!DOCTYPE html>

<html>

...

<body>

<h1>An image</h1>

</body>

</html>

An image

☺

A new GET
request!

Hypertext transfer protocol
Specification: https://tools.ietf.org/html/rfc2616

Built on the client-server model.

• A protocol for distributed, collaborative, hypermedia information systems.

• A request/response standard typical of client-server computing.

• Resources accessed by HTTP are identified by URIs(Uniform Resource Identifier)
(more specifically URLs), using the http URI schemes.

• Format: scheme:[//host]path[?query]

1. HTTP Request

2. HTTP Response

Client Server

Uploaded By: anonymousSTUDENTS-HUB.com

https://tools.ietf.org/html/rfc2616
https://students-hub.com

17/03/2025

4

URIs: URLs & URNs
• URIs (Uniform Resource Identifiers) are strings that act as unique identifiers

for resources on the internet. They are useful for identifying a variety of
items, such as websites, photos, movies, and even actual objects.

• There are two main types of URIs:
•URLs (Uniform Resource Locators): specify the location of a resource, as well as how to
access it. For example, the URL https://www.example.com/ specifies the location of the
homepage of the website example.com.

•URNs (Uniform Resource Names): identify a resource by its name or other characteristics,
but they do not specify its location. This means that a URN may not always be used to
access the resource it identifies. For instance, the book "The Hitchhiker's Guide to the
Galaxy" by Douglas Adams has the URN urn:isbn:0-302-38001-8, but it doesn't say where
you may purchase or borrow it.

Source: https://www.linkedin.com/pulse/uris-urls-urns-explained-simply-bejjanki-sathvik-rao-kh2wc/

URIs: URLs & URNs

Source: https://www.linkedin.com/pulse/uris-urls-urns-explained-simply-bejjanki-sathvik-rao-kh2wc/

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

5

How URLs work (1/2)? How URLs work (2/2)?

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

6

Example of Client-Server communication. HTTP Request

GET /path/to/the-page.html HTTP/1.1

Host: www.the-website.com

Accept: text/html

Accept-Language: en-US

optional-body

Method

Server

Uniform
Resource
Identifier

HTTP
version

Response
desired data

format

Response
desired

language

Empty line

Header

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

7

HTTP Response

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 18

<html>

...

</html>

HTTP
version

Status
code

Reason
phrase

Data format

Number
of bytes
in body

Body

Header

Empty line

HTTP methods - GET

GET
• Purpose: Used to retrieve data from a server.
• Should not result in changes on the server.
• Data is sent in the URL parameters (query string).
• Safe and idempotent, meaning repeated requests should not change the

server state.
• Example: GET /users?id=4777 retrieves user data without altering it.

GET /path/users/4777 HTTP/1.1

Host: www.the-website.com

Accept: text/html

Accept-Language: en-US

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

8

HTTP methods – POST - Example
POST /users HTTP/1.1

Host: example.com

Content-Type: application/json

Content-Length: 34

Authorization: Bearer your_token_here

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

Accept: application/json

Connection: keep-alive

{

"name": "John Doe",

"email": "john@example.com"

}

Method

HTTP methods - POST

POST
• Purpose: Used to send data to a server to create or update a resource.
• Data can be passed in the body of the request.
• May result in changes on the server.
• Data is sent in the body of the request rather than the URL.
• Not idempotent—multiple requests can create multiple resources.
• Typically used for form submissions, file uploads, or API interactions that

modify data.
• Example: POST /users with { "name": "John" } in the body creates a new user.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

9

HTML Form: GET, POST

•The data entered in the form is appended to the

URL (e.g., /search?query=contract+law).
•Best for search queries - no data modification

•The data is sent in the request body, not the URL.

•Best for submitting user input that changes

server data.

HTTP Status codes

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 18

<html>

...

</html>

Status
code

http://www.restapitutorial.com/httpstatuscodes.html

1xx Informational

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error

Uploaded By: anonymousSTUDENTS-HUB.com

http://www.restapitutorial.com/httpstatuscodes.html
https://students-hub.com

17/03/2025

10

HTTP Common Request methods

Method Description Example Use

GET

HEAD

Retrieve a webpage

Useful for debugging or querying a resource to find
metadata such as the size.

POST

Retrieve a URI

Retrieve a URI without the response
body

Submit data to a resource and
create a new entity

Creating a resource.

PUT Update all data in a resource entity
Updating all fields in an article on a blog (title and
body).

PATCH Updating only specific fields in a resource

DELETE

Update some data in a resource
entity

Remove a resource Remove an article on a blog.

The PUT Verb

• Used to modify (update)resource(s)

• Should contain a message body that specifies the resource

to be modified

• Should not contain query string parameters

• ie PUT /api/entity?company=15

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

11

The PUT Verb

• What happens if the resource to modify does not exist?

• The spec states a new resource should be created

• Use your own discretion (choice)

• PUT is Idempotent

The DELETE Verb

• Used to delete resource(s)

• NEVER use it to add / update / retrieve resources

• Almost always combined with parameters

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

12

Method

URL

Headers

Body

The DELETE Verb

• Should not include body

HTTP Verb (DELETE)

Location of the resource + parameters

Meta-data of the request (User Agent…)

Contents of the request (optional)

HTTP and Sessions
The HTTP protocol is connectionless

That is, once the server replies to a request, the server closes the connection
with the client, and forgets all about the request
In contrast, Unix logins, and JDBC/ODBC connections stay connected until the
client disconnects

retaining user authentication and other information
Motivation: reduces load on server

operating systems have tight limits on number of open connections on a
machine

Information services need session information
E.g., user authentication should be done only once per session

Solution: use a cookie

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

13

Sessions and Cookies
A cookie is a small piece of text containing identifying
information

Sent by server to browser
Sent on first interaction, to identify session

Sent by browser to the server that created the cookie on further
interactions

part of the HTTP protocol
Server saves information about cookies it issued, and can use it when
serving a request

E.g., authentication information, and user preferences

Cookies can be stored permanently or for a limited time

curl -c cookies.txt https://www.google.com

Request Inspection Tools
These tools allow you to inspect HTTP requests and responses:

1.Postman: A popular tool for testing API endpoints and

inspecting responses.

2.cURL: A command-line tool for making HTTP requests.

3.Browser Developer Tools: Most modern web browsers

include developer tools that allow you to inspect network

requests and responses.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

14

HTTP •Example is relying on curl which is a command line tool used to
transfer data with URL syntax:

Request

HTTP
• Example is relying on curlwhich is a command line tool used to transfer data

with URL syntax:

Response

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

15

cURL options Architecture of Web Applications

•Three-layer architecture

Users

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

16

Web server vs
Application server

• A web server accepts and fulfills requests from
clients for static content (i.e., HTML pages, files,
images, and videos) from a website. Web servers
handle HTTP requests and responses.

• An application server exposes business logic to the
clients, which generates dynamic content. It is a
software framework that transforms data to
provide the specialized functionality offered by a
business, service, or application. Application servers
enhance the interactive parts of a website that can
appear differently depending on the context of the
request.

9

Three-Layer Web Architecture

1. Presentation Layer
• Displays the user interface (e.g., browser or app) and captures user input.
• Relies on the web server to deliver static files (e.g., HTML) or dynamic content prepared by the Application Layer.
• Handles communication with the application layer via HTTP requests

2. Application Layer (Business Logic Layer)
• Processes requests from the client, enforces business rules, and interacts with the data layer.
• It runs the core functionality of the web application, often using frameworks like FastAPI, Spring Boot,...
• The web server (e.g., Uvicorn in a FastAPI setup) lives here, receiving HTTP requests and running the

application code (e.g., FastAPI endpoints).
• It bridges the Presentation Layer (via the web server’s responses) and the Data Layer.

3. Data Layer
• Stores and retrieves data (SQL or NoSQL) ensuring persistence and security.
• Interacts with the web server in the Application Layer to provide or receive data as needed.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

17

Tiers in FastAPI vs. Firebase Web Apps

Layer FastAPI (Three-Tier) Firebase (Two-Tier) Firebase (Three-Tier)

Presentation
Client (e.g., Browser,
Mobile App)

Client (e.g., Web App
w/ SDK)

Client (e.g., Web App w/
SDK)

Application
FastAPI (Uvicorn,
Custom Logic)

None (Direct to Data
via SDK)

Cloud Functions
(Serverless Logic)

Data
Database (e.g., SQLite,
PostgreSQL)

Firestore/Realtime
Database

Firestore/Realtime
Database

Web Services
Allow data on Web to be accessed using remote procedure call
mechanism
Two approaches are widely used

Representation State Transfer (REST): allows use of standard HTTP request to a URL
to execute a request and return data

returned data is encoded either in XML, or in JavaScript Object Notation (JSON)
Big Web Services:

uses XML representation for sending request data, as well as for returning
results
standard protocol layer built on top of HTTP

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

18

Database

• A database is an organized collection of data.

• There are many different strategies for
organizing data to facilitate easy access and
manipulation.

• A database management system (DBMS)
provides mechanisms for storing, organizing,
retrieving and modifying data for many users.

11

Python's database connectivity

• is defined by the Python Database API Specification v2.0 (PEP 249).

• Instead of a single, universal API like JDBC, Python relies on individual database drivers that

adhere to the DB-API specification.

• So, for example, there are specific drivers for PostgreSQL (psycopg2), MySQL (mysql-

connector-python), SQLite (sqlite3, which is included in the python standard library), and

others.

• Python programs communicate with databases and manipulate their data using these driver APIs.

12

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

19

Modern Database Engines with Native REST API Support

• Firebase Realtime Database and Cloud Firestore
• CouchDB: Fully RESTful, with all operations (CRUD, views, replication) accessible

via HTTP methods (e.g., GET /db/doc, PUT /db/doc).
• MongoDB (via MongoDB Atlas): MongoDB Atlas provides a Data API (introduced

in 2022) that exposes a REST interface (e.g., POST /v1/action/findOne to query
documents)

• Supabase (PostgreSQL-based): Built on PostgreSQL, Supabase auto-generates a
REST API for tables and views (e.g., GET /rest/v1/users

• Exist-DB: provides a RESTful API that allows direct interaction with the database
using standard HTTP methods (GET, POST, PUT, DELETE).

• DynamoDB (via AWS SDK or HTTP API)
• SQLite (with Extensions like ws4sqlite): Native SQLite doesn’t have a REST API, but

tools like ws4sqlite (a lightweight HTTP server for SQLite) provide a RESTful
interface (e.g., GET /db/users).

Python Implementation - Get

import requests

response = requests.get('https://api.example.com/data’)

params = {'key1': 'value1', 'key2': 'value2'}

response = requests.get('https://api.example.com/data',

params=params)

This will construct the URL with the query parameters:
https://api.example.com/data?key1=value1&key2=value2

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

20

Python Implementation - POST
import requests

data = {'username': 'john_doe', 'password': 'secret'}

response = requests.post('https://api.example.com/login',data=

data)

You can also send JSON data:

import json

json_data = json.dumps({'name': 'John Doe', 'age': 30})

headers = {'Content-Type': 'application/json'}

response = requests.post('https://api.example.com/users',data=

json_data, headers=headers)

Advanced Topic (optional):
Handling concurrent HTTP requests

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

21

Handling concurrent requests

Attempt 1: Process one request at a
time, queue the others.
Bad: Most time wasted on waiting,
e.g.:

Waiting for DB.
Waiting for reading/writing files.

Very few web applications works
this way today.

Client Server

HTTP Request 1

HTTP Response 1

Client

HTTP Request 2

HTTP Response 2

Waiting for
DB response...

Handling concurrent requests

Attempt 2: Use threads to
process requests simultaneously.

Requires us to write thread-safe
code.(no deadlocks)

The way many web applications
work still today.

Then came Node.js...
And
Python's asyncio library

Client Server

HTTP Request 1

HTTP Response 1

Client

HTTP Request 2

HTTP Response 2

Handled by
Thread 1

Handled by
Thread 2

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

22

Handling concurrent requests

Attempt 3: Use a single thread with an
event loop.

The event queue contains tasks to be
done.

Incoming HTTP request are pushed to it.
Asynchronous operations are pushed to it.

The event loop executes tasks from the
event queue.

Event QueueEvent Loop/Main code

Do this

Do that

Do x

Do y

// "pseudocode"

const queue = []

while(true){

const nextTask =

queue.unshift()

nextTask.execute()

}

Handling concurrent requests

Client Server

HTTP Request 1

HTTP Response 1

Client

Waiting for
DB response...

HTTP Request 2

HTTP Response 2

Event Queue

Handle Request 1

Handle Request 2

Handle Request 3

Handle DB Response

HTTP Request 3

HTTP Response 3

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

23

Handling concurrent requests

Attempt 3: Use a single thread with an event loop.

Why is this better than multiple threads?
Context switches (switching thread) are expensive (takes time).
Threads uses a lot of memory.

Any downside?
Asynchronous programming must be used; is a bit harder.

Event Loop

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17/03/2025

24

Python's asyncio library
• Single-Threaded Event Loop: The asyncio event loop runs in a single thread, managing a queue of tasks

(coroutines) that are executed cooperatively. It switches between tasks when they encounter I/O
operations (e.g., network requests, file reads) that would otherwise block execution.

If a client calls /slow, the event loop switches to /fast

during the 2-second sleep, handling both requests

concurrently without spawning threads.

asyncio in Python

import asyncio
from time import sleep

from fastapi import FastAPI

app = FastAPI()

@app.get('/sleep/sys')
def nsys_sleep():

sleep(1)
return {'error': None}

system sleep() is blocking

@app.get('/sleep/async-sys')
async def sys_sleep():

sleep(1)
return {'error': None}

@app.get('/sleep/async-aio')
async def aio_sleep():

await asyncio.sleep(1)
return {'error': None}

https://docs.python.org/3/library/asyncio.html

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

