GENERICS

Objectives

To describe the benefits of generics (§19.2).
To use generic classes and interfaces (§19.2).
To define generic classes and interfaces (§19.3).

To explain why generic types can improve reliability and readability
(819.3).

To define and use generic methods and bounded generic types (§19.4).

B To develop a generic sort method to sort an array of Comparable

objects (§19.5).

B To use raw types for backward compatibility (§19.6).

B To explain why wildcard generic types are necessary (§19.7).

B To describe generic-type erasure and list certain restrictions and

limitations on generic types caused by type erasure (§19.8).

To design and implement generic matrix classes (§19.9).

M19_LIAN9966_12_SE_C19.indd 751 @

STUDENTS-HUB.com

CHAPTER

9/1419 7:54 AM

Mamoun
Highlight

https://students-hub.com

752 Chapter 19 Generics

Key
what is generics? ~ Point

why generics?

Key
Point

formal generic type
actual concrete type
generic instantiation

19.1 Introduction

Generics enable you to detect errors at compile time rather than at runtime.

You have used a generic class ArrayList in Chapter 11, and generic interface Comparable
in Chapter 13. Generics let you parameterize types. With this capability, you can define a class
or a method with generic types that the compiler can replace with concrete types. For example,
Java defines a generic ArrayList class for storing the elements of a generic type. From this
generic class, you can create an ArrayList object for holding strings, and an ArrayList
object for holding numbers. Here, strings and numbers are concrete types that replace the
generic type.

The key benefit of generics is to enable errors to be detected at compile time rather than
at runtime. A generic class or method permits you to specify allowable types of objects that
the class or method can work with. If you attempt to use an incompatible object, the compiler
will detect that error.

This chapter explains how to define and use generic classes, interfaces, and methods and
demonstrates how generics can be used to improve software reliability and readability. It can
be intertwined with Chapter 13, Abstract Classes and Interfaces.

19.2 Motivations and Benefits

The motivation for using Java generics is to detect errors at compile time.

Java has allowed you to define generic classes, interfaces, and methods since JDK 1.5. Several
interfaces and classes in the Java API were modified using generics. For example, prior to
JDK 1.5, the java.lang.ComparabTe interface was defined as shown in Figure 19.1a, but
since JDK 1.5, it has been modified as shown in Figure 19.1b.

package java.lang; package java.lang;
public interface Comparable { public interface Comparable<T> {
public int compareTo(Object o) public int compareTo(T o)
} }
(a) Prior to JDK 1.5 (b)IDK 1.5

FiIGure 19.1 The java.lang.ComparabTe interface was modified in JDK 1.5 with a generic
type.

Here, <T> represents a formal generic type, which can be replaced later with an actual con-
crete type. Replacing a generic type is called a generic instantiation. By convention, a single
capital letter such as E or T is used to denote a formal generic type.

To see the benefits of using generics, let us examine the code in Figure 19.2. The statement
in Figure 19.2a declares that c is a reference variable whose type is Comparable and invokes
the compareTo method to compare a Date object with a string. The code compiles fine, but
it has a runtime error because a string cannot be compared with a date.

Comparable ¢ = new Date(); — Comparable<Date> ¢ = new Date();
System.out.printin(c.compareTo("“red")); System.out.printin(c.compareTo("red")):
(a) Prior to JDK 1.5 (b) JDK 1.5

FIGURre 19.2 The new generic type detects possible errors at compile time.

M19_LIAN9966_12_SE_C19.indd 752

STUDENTS-HUB.com

The statement in Figure 19.2b declares that c is a reference variable whose type is
Comparable<Date> and invokes the compareTo method to compare a Date object with a
string. This code has a compile error because the argument passed to the compareTo method

9/1419 7:54 AM

Mamoun
Highlight

Mamoun
Highlight

iFix
Highlight

iFix
Highlight

https://students-hub.com

9.2 Motivations and Benefits 753

must be of the Date type. Since the errors can be detected at compile time rather than at run-

time, the generic type makes the program more reliable. reliable
ArrayList was introduced in Section 11.11, The ArrayList Class. This class has been
a generic class since JDK 1.5. Figure 19.3 shows the class diagram for ArrayList before and
since JDK 1.5, respectively.
+ArrayList () +ArrayList ()
+add (o: Object): wvoid +add(o: E): void
+add (index: int, o: Object): void +add (index: int, o: E): void
+clear(): void +clear () : void
+contains (o: Object): boolean +contains (o: Object): boolean

+get (index: int): E
+indexOf (o: Object): int
+isEmpty () : boolean
+lastIndexOf (o: Object) :

+get (index:int) : Object
+indexOf (o: Object): int
+isEmpty () : boolean
+lastIndexOf (o: Object): int
+remove (o: Object): boolean
+size(): int +size(): int
int) : boolean +remove (index:

Object): Object

+remove (index:

+set(index: int, o: +set (index:

+remove (o: Object): boolean

int) : boolean
int, o: E): E

int

(a) ArrayList before JDK 1.5

FIGURE 19.3 ArrayList is a generic class since JDK 1.5.

For example, the following statement creates a list for strings:
ArrayList<String> list = new ArraylList<>();

You can now add only strings into the list. For instance,
Tist.add("Red");

If you attempt to add a nonstring, a compile error will occur. For example, the following state-
ment is now illegal because 1ist can contain only strings.

Tist.add(Integer.valueOf(1));

Generic types must be reference types. You cannot replace a generic type with a primitive type
such as int, double, or char. For example, the following statement is wrong:

ArrayList<int> intList = new ArraylList<>();
To create an ArrayList object for int values, you have to use
ArrayList<Integer> intList = new ArrayList<>();
You can add an int value to intList. For example,
intList.add(5);

Java automatically wraps 5 into an Integer object. This is called autoboxing, as introduced
in Section 10.8, Automatic Conversion between Primitive Types and Wrapper Class Types.

M19_LIAN9966_12_SE_C19.indd 753 @

STUDENTS-HUB.com

(b) ArrayList since JDK 1.5

only strings allowed

generic reference type

autoboxing

9/1419 7:54 AM

Mamoun
Highlight

Mamoun
Highlight

https://students-hub.com

754 Chapter 19 Generics

no casting needed

Casting is not needed to retrieve a value from a list with a specified element type because
the compiler already knows the element type. For example, the following statements create a

list that contains strings, add strings to the list, and retrieve strings from the list.

Tist.add("Red");
Tist.add("White");

A wWON -

Prior to JDK 1.5, without using generics, you would have had to cast the return value to

String as

String s = (String)(1ist.get(0));

If the elements are of wrapper types, such as Integer, Double, and Character, you can
directly assign an element to a primitive-type variable. This is called autounboxing, as intro-

ArrayList<String> 1list = new ArraylList<>();

String s = 1ist.get(0); // No casting is needed

/| Casting needed prior to JDK 1.5

/'l No casting is needed

ArraylList<Date> dates =
new ArraylList<>();

dates.add(new Date());

dates.add(new String());

(b) Since JDK 1.5

ArraylList<Date> dates =
new ArraylList<>();

dates.add(new Date());

Date date = dates.get(0);

STUDENTS-HUB.com

(b) Since JDK 1.5

autounboxing
duced in Section 10.8. For example, see the following code:
1 ArrayList<Double> 1ist = new ArrayList<>();
2 Tlist.add(5.5); // 5.5 is automatically converted to a Double object
3 Tist.add(3.0); // 3.0 is automatically converted to a Double object
4 Double doubleObject = Tist.get(0);
5 double d = T1ist.get(1); // Automatically converted to double
In lines 2 and 3, 5.5 and 3.0 are automatically converted into Doub1e objects and added
to Tist. In line 4, the first element in Tist is assigned to a Doub1e variable. No casting is
necessary because 1ist is declared for Doub1e objects. In line 5, the second elementin Tist
is assigned to a doub1e variable. The objectin Tist.get (1) is automatically converted into
@ a primitive-type value.
ﬁeck 19.2.1 Are there any compile errors in (a) and (b)?
Point
ArraylList dates = new ArraylList();
dates.add(new Date());
dates.add(new String());
(a) Prior to JDK 1.5
19.2.2 What is wrong in (a)? Is the code in (b) correct?
ArrayList dates = new ArraylList();
dates.add(new Date());
Date date = dates.get(0);
(a) Prior to JDK 1.5
19.2.3 What are the benefits of using generic types?
19.3 Defining Generic Classes and Interfaces
A generic type can be defined for a class or interface. A concrete type must be
specified when using the class to create an object or using the class or interface to
Key declare a reference variable.
Point
M19_LIAN9966_12_SE_G19.indd 754 @

9/1419 7:54 AM

iFix
Highlight

iFix
Highlight

https://students-hub.com

Let us revise the stack class in Section 11.13, Case Study: A Custom Stack Class, to generalize
the element type with a generic type. The new stack class, named GenericStack, is shown

19.3 Defining Generic Classes and Interfaces 755

in Figure 19.4 and is implemented in Listing 19.1.

—-list: java.util.ArrayList<E>
+GenericStack ()

+getSize(): int

+peek () : E

tpop(): E

+push (o: E): void
+isEmpty () : boolean

An array list to store elements.

Creates an empty stack.

Returns the number of elements in this stack.
Returns the top element in this stack.

Returns and removes the top element in this stack.
Adds a new element to the top of this stack.

Returns true if the stack is empty.

FIGURE 19.4 The GenericStack class encapsulates the stack storage and provides the

operations for manipulating the stack.

LisTING 19.1

GenericStack.java

1 public class GenericStack<E> {

2 private java.util.ArrayList<E> 1list = new java.util.ArrayList<>();
3

4 public int getSize() {

5 return list.size();

6 }

7

8 public E peek() {

9 return list.get(getSize() - 1);
10 }

11

12 public void push(E o) {

13 list.add(o);

14 }

15

16 public E pop() {

17 E o = list.get(getSize() - 1);
18 list.remove(getSize() - 1);

19 return o;
20 }
21
22 public boolean isEmpty() {
23 return list.isEmpty();
24 }
25

26 @Override
27 public String toString() {

28 return "stack: " + list.toString();

29}
30 }

The following example creates a stack to hold strings and adds three strings to the stack:

GenericStack<String> stackl =
stack1.push("London");
stack1.push("Paris");
stack1.push("Berlin");

M19_LIAN9966_12_SE_C19.indd 755

STUDENTS-HUB.com

new GenericStack<>();

generic type E declared
generic array list

getSize

peek

push

pop

isEmpty

9/1419 7:54 AM

https://students-hub.com

756 Chapter 19 Generics

benefits of using generic types

generic class constructor

multiple generic parameters

inheritance with generics

ﬁeck
Point

Key
Point

generic method

M19_LIAN9966_12_SE_C19.indd 756

STUDENTS-HUB.com

This example creates a stack to hold integers and adds three integers to the stack:

GenericStack<Integer> stack2 = new GenericStack<>();

stack2.push(1);

/| autoboxing 1 to an Integer object

stack2.push(2);
stack2.push(3);

Instead of using a generic type, you could simply make the type element Object, which can
accommodate any object type. However, using a specific concrete type can improve software
reliability and readability because certain errors can be detected at compile time rather than at
runtime. For example, because stack1 is declared GenericStack<String>, only strings can
be added to the stack. It would be a compile error if you attempted to add an integer to stack1.

19.3.1
19.3.2

Caution

To create a stack of strings, you use new GenericStack<String>() or new
GenericStack<>(). This could mislead you into thinking that the constructor of
GenericStack should be defined as

public GenericStack<E>()

This is wrong. It should be defined as

public GenericStack()

Note

Occasionally, a generic class may have more than one parameter. In this case, place

the parameters together inside the brackets, separated by commas—for example,
<E1, E2, E3>.

Note

You can define a class or an interface as a subtype of a generic class or interface. For
example, the java.lang.String class is defined to implement the Comparable
interface in the Java API as follows:

public class String implements Comparable<String>

What is the generic definition for java. Tang.Comparable in the Java API?

Since you create an instance of ArrayList of strings using new ArraylList

<String>(), should the constructor in the ArrayList class be defined as

public ArrayList<E>()

19.3.3
19.3.4

Can a generic class have multiple generic parameters?

How do you declare a generic type in a class?

19.4 Generic Methods

A generic type can be defined for a static method.

You can define generic interfaces (e.g., the ComparabTe interface in Figure 19.1b) and classes

(e.g., the GenericStack class in Listing 19.1). You can also use generic types to define

generic methods. For example, Listing 19.2 defines a generic method print (lines 10-14) to
print an array of objects. Line 6 passes an array of integer objects to invoke the generic print
method. Line 7 invokes print with an array of strings.

9/1419 7:54 AM

iFix
Highlight

iFix
Highlight

iFix
Highlight

iFix
Highlight

iFix
Highlight

iFix
Highlight

iFix
Highlight

iFix
Highlight

https://students-hub.com

19.4 Generic Methods 757

LISTING 19.2 GenericMethodDemo.java

1 public class GenericMethodDemo {

2 public static void main(String[] args) {

3 Integer[] integers = {1, 2, 3, 4, 5};

4 String[] strings = {"London", "Paris", "New York", "Austin"};
5

6 GenericMethodDemo.<Integer>print(integers);
7 GenericMethodDemo.<String>print(strings);

8 }

9

10 public static <E> void print(E[] 1ist) {

11 for (int i = 0; i < list.length; i++)

12 System.out.print(Tist[i] + " ");

13 System.out.printin();

14 }

15 }

To declare a generic method, you place the generic type <E> immediately after the keyword
static in the method header. For example,

public static <E> void print(E[] Tist)

To invoke a generic method, prefix the method name with the actual type in angle brackets.
For example,

GenericMethodDemo.<Integer>print(integers);
GenericMethodDemo.<String>print(strings);

or simply invoke it as follows:

print(integers);
print(strings);

In the latter case, the actual type is not explicitly specified. The compiler automatically dis-
covers the actual type.

A generic type can be specified as a subtype of another type. Such a generic type is called
bounded. For example, Listing 19.3 revises the equalArea method in Listing 13.4,
TestGeometricObject.java, to test whether two geometric objects have the same area. The
bounded generic type <E extends GeometricObject> (line 10) specifies that E is a generic
subtype of GeometricObject. You must invoke equalArea by passing two instances of
GeometricObject.

LiIsTING 19.3 BoundedTypeDemo. java

1 public class BoundedTypeDemo {
2 public static void main(String[] args) {
3 Rectangle rectangle = new Rectangle(2, 2);
4 Circle circle = new Circle(2);
5
6 System.out.println("Same area? " +
7 equalArea(rectangle, circle));
8 }
9
10 public static <E extends GeometricObject> boolean equalArea(
11 E object1, E object2) {
12 return object1.getArea() == object2.getArea();
13 }
14 1}
M19_LIAN9966_12_SE_C19.indd 757 @

STUDENTS-HUB.com

generic method

declare a generic method

invoke generic method

bounded generic type

Rectangle in Listing 13.3
Circle in Listing 13.2

bounded generic type

9/1419 7:54 AM

iFix
Highlight

iFix
Highlight

iFix
Highlight

iFix
Highlight

https://students-hub.com

758 Chapter 19 Generics

generic class parameter vs.
generic method parameter

ﬁeck
Point

Key
Point

sort Integer objects
sort Double objects
sort Character objects
sort String objects

M19_LIAN9966_12_SE_C19.indd 758

STUDENTS-HUB.com

Note
An unbounded generic type <E> is the same as <E extends Object>.

Note

To define a generic type for a class, place it after the class name, such as Generic-
Stack<E>. To define a generic type for a method, place the generic type before the
method return type, such as <E> void max(E o1, E 02).

19.4.1 How do you declare a generic method? How do you invoke a generic method?
19.4.2 What is a bounded generic type?

19.5 Case Study: Sorting an Array of Objects

You can develop a generic method for sorting an array of Comparable objects.

This section presents a generic method for sorting an array of Comparable objects.
The objects are instances of the Comparable interface and they are compared using the
compareTo method. To test the method, the program sorts an array of integers, an array of
double numbers, an array of characters, and an array of strings. The program is shown in
Listing 19.4.

LISTING 19.4 GenericSort.java

1 public class GenericSort {

2 public static void main(String[] args) {

3 /| Create an Integer array

4 Integer[] intArray = {Integer.valueOf(2), Integer.valueOf(4),
5 Integer.valueOf(3)};

6

7 /| Create a Double array

8 Double[] doubleArray = {Double.valueOf(3.4), Double.valueOf(1.3),
9 Double.valueOf (-22.1)};

10

11 /| Create a Character array

12 Character[] charArray = {Character.valueOf('a"),
13 Character.valueOf('J"), Character.valueOf('r")};
14

15 /'l Create a String array

16 String[] stringArray = {"Tom", "Susan", "Kim"};
17

18 /| Sort the arrays

19 sort (intArray) ;

20 sort (doubleArray) ;

21 sort (charArray) ;

22 sort(stringArray);

23

24 /| Display the sorted arrays

25 System.out.print("Sorted Integer objects: ");

26 printList(intArray);

27 System.out.print("Sorted Double objects: ");

28 printList(doubleArray);

29 System.out.print("Sorted Character objects: ");
30 printList(charArray);

31 System.out.print("Sorted String objects: ");

32 printList(stringArray);

33 }

34

9/1419 7:54 AM

iFix
Highlight

iFix
Highlight

iFix
Highlight

https://students-hub.com

19.5 Case Study: Sorting an Array of Objects 759

35 /** Sort an array of comparable objects */
36 public static <E extends Comparable<E>> void sort(E[] 1ist) { generic sort method
37 E currentMin;
38 int currentMinIndex;
39
40 for (int i = 0; i < list.length - 1; i++) {
41 // Find the minimum in the Tlist[i+1..1ist.length-2]
42 currentMin = list[i];
43 currentMinIndex = 1i;
44
45 for (int j =1 + 1; j < list.length; j++) {
46 if (currentMin.compareTo(list[j]) > 0) { compareTo
47 currentMin = Tist[j];
48 currentMinIndex = j;
49 }
50 }
51
52 /1 Swap Tist[i] with Tlist[currentMinIndex] if necessary;
53 if (currentMinIndex != i) {
54 Tist[currentMinIndex] = 1ist[i];
55 Tist[i] = currentMin;
56 }
57 }
58 }
59
60 /** Print an array of objects */
61 public static void printList(Object[] Tist) {
62 for (int i = 0; i < list.length; i++)
63 System.out.print(list[i] + " ");
@ 64 System.out.printin();

65 }
66 }

Sorted Integer objects: 2 3 4

Sorted Double objects: -22.1 1.3 3.4 E

Sorted Character objects: J a r
Sorted String objects: Kim Susan Tom

The algorithm for the sort method is the same as in Listing 7.8, SelectionSort.java. The sort
method in that program sorts an array of doub1e values. The sort method in this example can
sort an array of any object type, provided that the objects are also instances of the Comparable
interface. The generic type is defined as <E extends Comparable<E>> (line 36). This has
two meanings. First, it specifies that E is a subtype of Comparable. Second, it specifies that
the elements to be compared are of the E type as well.

The sort method uses the compareTo method to determine the order of the objects in the
array (line 46). Integer, Double, Character, and String implement ComparabTe, so the
objects of these classes can be compared using the compareTo method. The program creates
arrays of Integer objects, Double objects, Character objects, and String objects (lines
4-16) and invokes the sort method to sort these arrays (lines 19-22).

19.5.1 Givenint[] Tist = {1, 2, -1}, canyou invoke sort (1ist) using the sort
method in Listing 19.4? ﬁ““

Point
19.5.2 Given int[] 1ist = {Integer.valueOf(1), Integer.valueOf(2),
Integer.valueOf (-1)}, can you invoke sort(1ist) using the sort method
in Listing 19.4?

M19_LIAN9966_12_SE_C19.indd 759 @ 9/1419 7:54 AM

STUDENTS-HUB.com

https://students-hub.com

760 Chapter 19 Generics

Key
Point

raw type
backward compatibility

raw type

—-X1int:unchecked

bounded type

M19_LIAN9966_12_SE_C19.indd 760

STUDENTS-HUB.com

19.6 Raw Types and Backward Compatibility

A generic class or interface used without specifying a concrete type, called a raw type,
enables backward compatibility with earlier versions of Java.

You can use a generic class without specifying a concrete type such as the following:
GenericStack stack = new GenericStack(); // raw type

This is roughly equivalent to
GenericStack<Object> stack = new GenericStack<Object>();

A generic class such as GenericStack and ArrayList used without a type parameter is
called a raw type. Using raw types allows for backward compatibility with earlier versions of
Java. For example, a generic type has been used in java.Tang.Comparable since JDK 1.5,
but a lot of code still uses the raw type Comparable, as given in Listing 19.5:

LIsTING 19.5 Max.java

—

1 public class Max {

2 /** Return the maximum of two objects */

3 public static Comparable max(Comparable o1, Comparable 02) {
4 if (o1.compareTo(o2) > 0)

5 return o1;

6 else

7 return o02;

8

9

-

Comparable o1 and Comparable o2 are raw type declarations. Be careful: raw types are
unsafe. For example, you might invoke the max method using

Max.max ("Welcome", 23); // 23 is autoboxed into an Integer object

This would cause a runtime error because you cannot compare a string with an integer
object. The Java compiler displays a warning on line 3 when compiled with the option
-X1int:unchecked, as shown in Figure 19.5.

&8 Command Prompt —= [u] X
c:\book>javac -Xlint:unchecked Max.java
Max.java:4: warning: [unchecked] unchecked call to compareTo(T) as a member of the raw type Comparable
if (o1.compareTo(o2) > @)
where T is a type-variable:
T extends Object declared in interface Comparable
1 warning

c:\book>

Fiure 19.5 The unchecked warnings are displayed using the compiler option
-X1int:unchecked. Source: Copyright © 1995-2016 Oracle and/or its affiliates.
All rights reserved. Used with permission.

A better way to write the max method is to use a generic type, as given in Listing 19.6.

LISTING 19.6 MaxUsingGenericType.java

1 public class MaxUsingGenericType {

2 /** Return the maximum of two objects */

3 public static <E extends Comparable<E>> E max(E o1, E 02) {
4 if (o1.compareTo(o2) > 0)

5 return o1;

9/1419 7:54 AM

https://students-hub.com

19.7 Wildcard Generic Types 761

6 else

7 return o2;
8 }

9 }

If you invoke the max method using

/1 23 is autoboxed into an Integer object
MaxUsingGenericType.max("Welcome", 23);

a compile error will be displayed because the two arguments of the max method in
MaxUsingGenericType must have the same type (e.g., two strings or two integer objects).
Furthermore, the type E must be a subtype of Comparable<E>.

As another example, in the following code you can declare a raw type stack in line 1,
assign new GenericStack<String> to itin line 2, and push a string and an integer object
to the stack in lines 3 and 4:

GenericStack stack;

stack = new GenericStack<String>();
stack.push("Welcome to Java");
stack.push(Integer.valueOf(2));

AON =

However, line 4 is unsafe because the stack is intended to store strings, but an Integer object
is added into the stack. Line 3 should be okay, but the compiler will show warnings for both
line 3 and line 4, because it cannot follow the semantic meaning of the program. All the com-
piler knows is that stack is a raw type, and performing certain operations is unsafe. Therefore,
warnings are displayed to alert potential problems.

Tip
Since raw types are unsafe, this book will not use them from here on.

19.6.1 What is a raw type? Why is a raw type unsafe? Why is the raw type allowed in Java?

19.6.2 What is the syntax to declare an ArrayList reference variable using the raw type
and assign a raw type ArrayList object to it?

19.7 Wildcard Generic Types

You can use unbounded wildcards, bounded wildcards, or lower bound wildcards to
specify a range for a generic type.

What are wildcard generic types, and why are they needed? Listing 19.7 gives an example to
demonstrate the needs. The example defines a generic max method for finding the maximum in
a stack of numbers (lines 12-22). The main method creates a stack of integer objects, adds three
integers to the stack, and invokes the max method to find the maximum number in the stack.

LisTING 19.7 WildCardNeedDemo. java

1 public class WildCardNeedDemo {
2 public static void main(String[] args) {
3 GenericStack<Integer> intStack = new GenericStack<>();
4 intStack.push(1); // 1 is autoboxed into an Integer object
5 intStack.push(2);
6 intStack.push(-2);
7
8 System.out.print("The max number is " + max(intStack));
9 }
10
M19_LIAN9966_12_SE_C19.indd 761 @

STUDENTS-HUB.com

ﬁeck
Point

Key
Point

GenericStack<Integer>
type

9/1419 7:54 AM

iFix
Highlight

iFix
Highlight

https://students-hub.com

762 Chapter 19 Generics

11 /** Find the maximum in a stack of numbers */
GenericStack<Number> type 12 public static double max(GenericStack<Number> stack) {

13 double max = stack.pop().doubleValue(); // Initialize max

14

15 while (!stack.isEmpty()) {

16 double value = stack.pop().doubleValue();

17 if (value > max)

18 max = value;

19 }

20

21 return max;

22 }

23 }

The program in Listing 19.7 has a compile error in line 8 because intStack is not an instance
of GenericStack<Number>. Thus, you cannot invoke max (intStack).

The factis Integer is a subtype of Number, but GenericStack<Integer> is nota sub-
type of GenericStack<Number>. To circumvent this problem, use wildcard generic types.
A wildcard generic type has three forms: ?, ? extends T, and ? super T, where T is a
generic type.

unbounded wildcard The first form, ?, called an unbounded wildcard, is the same as ? extends Object. The
bounded wildcard second form, ? extends T, called a bounded wildcard, represents T or a subtype of T. The
lower bound wildcard third form, ? super T, called a lower bound wildcard, denotes T or a supertype of T.

You can fix the error by replacing line 12 in Listing 19.7 as follows:

public static double max(GenericStack<? extends Number> stack) {

<? extends Number> is a wildcard type that represents Number or a subtype of Number,
@ so it is legal to invoke max(new GenericStack<Integer>()) or max(new
GenericStack<Double>()).

Listing 19.8 shows an example of using the ? wildcard in the print method that prints
objects in a stack and empties the stack. <?> is a wildcard that represents any object type. It is
equivalent to <? extends Object>. What happens if you replace GenericStack<?> with
GenericStack<Object>? It would be wrong to invoke print (intStack) because int-
Stack is not an instance of GenericStack<0bject>. Note that GenericStack<Integer>
is not a subtype of GenericStack<Object> even though Integer is a subtype of Object.

LiIsTING 19.8 AnyWildCardDemo. java

1 public class AnyWildCardDemo {
2 public static void main(String[] args) {

GenericStack<Integer> 3 GenericStack<Integer> intStack = new GenericStack<>();

type 4 intStack.push(1); // 1 is autoboxed into an Integer object

5 intStack.push(2);
6 intStack.push(-2);
7
8 print(intStack);
9 }
10
11 /** Prints objects and empties the stack */

wildcard type 12 public static void print(GenericStack<?> stack) {
13 while (!stack.isEmpty()) {
14 System.out.print(stack.pop() + " ");
15 }
16 }
17 '}

M19_LIAN9966_12_SE_C19.indd 762 @ 914119 7:54 AM

STUDENTS-HUB.com

iFix
Highlight

iFix
Highlight

iFix
Highlight

iFix
Highlight

https://students-hub.com

19.7 Wildcard Generic Types 763

When is the wildcard <? super T> needed? Consider the example in Listing 19.9. The = why <? Super T>
example creates a stack of strings in stack1 (line 3) and a stack of objects in stack2 (line 4)

and invokes add (stack1, stack2) (line 8) to add the strings in stack1 into stack2.

GenericStack<? super T>isused todeclare stack2 inline 13.If <? super T>is replaced

by <T>, a compile error will occur on add (stack1, stack2) inline 8 because stack1’s type

is GenericStack<String>and stack2’s type is GenericStack<Object>. <? super T>

represents type T or a supertype of T. Object is a supertype of String.

LISTING 19.9 SuperWildCardDemo.java

1 public class SuperWildCardDemo {
2 public static void main(String[] args) {
3 GenericStack<String> stack1 = new GenericStack<>(); GenericStack<String>
4 GenericStack<Object> stack2 = new GenericStack<>(); type
5 stack2.push("Java");
6 stack2.push(2);
7 stack1.push("Sun");
8 add(stack1, stack2);
9 AnyWildCardDemo.print (stack2);
10 }
11
12 public static <T> void add(GenericStack<T> stack1, <? Super T>type
13 GenericStack<? super T> stack2) {
14 while (!stack1.isEmpty())
15 stack2.push(stack1.pop());
16 }
17 1}
@ This program will also work if the method header in lines 12 and 13 is modified as follows:

public static <T> void add(GenericStack<? extends T> stackil,
GenericStack<T> stack2)

The inheritance relationship involving generic types and wildcard types is summarized in
Figure 19.6. In this figure, A and B represent classes or interfaces, and E is a generic-type

parameter.
Object Object
? I ? super EI E’'s superclassl A<?>
D\ /<]
E A<? extends B>| A<? super B> |
SN SN
E’s subclass | ? extends E I A<B’s subclass> | A | A<B’s superclass>|

FIGURE 19.6 The relationship between generic types and wildcard types.

19.7.1 1IsGenericStack the same as GenericStack<Object>? ﬁeck
19.7.2 What is an unbounded wildcard, a bounded wildcard, and a lower bound wildcard? Point
19.7.3 What happens if lines 12 and 13 in Listing 19.9 are changed to
public static <T> void add(GenericStack<T> stack1,
GenericStack<T> stack2)
M19_LIAN9966_12_SE_G19.indd 763 @ 9114119 7:54 AM

STUDENTS-HUB.com

https://students-hub.com

764 Chapter 19 Generics

19.7.4 What happens if lines 12 and 13 in Listing 19.9 are changed to

public static <T> void add(GenericStack<? extends T> stack1l,
GenericStack<T> stack2)

19.8 Erasure and Restrictions on Generics

The information on generics is used by the compiler but is not available at runtime.

This is called type erasure.

Key
Point Generics are implemented using an approach called type erasure: The compiler uses the
generic-type information to compile the code, but erases it afterward. Thus, the generic infor-
mation is not available at runtime. This approach enables the generic code to be backward

compatible with the legacy code that uses raw types.

The generics are present at compile time. Once the compiler confirms that a generic type is
used safely, it converts the generic type to a raw type. For example, the compiler checks
whether the following code in (a) uses generics correctly, then translates it into the equivalent

code in (b) for runtime use. The code in (b) uses the raw type.

type erasure

erase generics

ArrayList Tist = new ArrayList();
Tist.add("Oklahoma") ;
String state = (String) (1ist.get(0));

ArraylList<String> Tist = new ArraylList<>();
Tist.add("Oklahoma");
String state = 1ist.get(0);

(a) (b)

When generic classes, interfaces, and methods are compiled, the compiler replaces the generic
type with the Object type. For example, the compiler would convert the following method in
(a) into (b).

replace generic type

replace bounded type

important fact

M19_LIAN9966_12_SE_C19.indd 764

STUDENTS-HUB.com

public static <E> void print(E[] Tist) {
for (int i = 0; i < list.length; i++)
System.out.print(1ist[i] + " ");
System.out.printin();
}

public static void print(Object[] Tist)
for (int i = 0; i < list.length; i++)
System.out.print(1ist[i] + " ");
System.out.printin();
}

{

(a)

(b)

compiler would convert the following method in (a) into (b).

If a generic type is bounded, the compiler replaces it with the bounded type. For example, the

public static <E extends GeometricObject>
boolean equalArea(
E object1,
E object2) {
return object1.getArea() ==
object2.getArea();

public static
boolean equalArea(
GeometricObject objectt,
GeometricObject object2) ({
return object1.getArea() ==
object2.getArea();

(a)

(b)

It is important to note a generic class is shared by all its instances regardless of its actual con-
crete type. Suppose Tist1 and 1ist2 are created as follows:

ArrayList<String> 1ist1 = new ArraylList<>();
ArraylList<Integer> 1ist2 = new ArraylList<>();

9/1419 7:54 AM

https://students-hub.com

19.8 Erasure and Restrictions on Generics 765

Although ArrayList<String> and ArrayList<Integer> are two types at compile time,
only one ArrayList class is loaded into the JVM at runtime. Tist1 and 1ist2 are both
instances of ArrayList, so the following statements display true:

System.out.printin(1ist1 instanceof ArraylList);
System.out.printin(1ist2 instanceof ArraylList);

However, the expression 1ist1 instanceof ArraylList<String>is wrong. Since Array -
List<String> is not stored as a separate class in the JVM, using it at runtime makes no sense.

Because generic types are erased at runtime, there are certain restrictions on how generic
types can be used. Here are some of the restrictions:

Restriction 1: Cannot Use new E()

You cannot create an instance using a generic-type parameter. For example, the following
statement is wrong:

E object = new E();
The reason is new E () is executed at runtime, but the generic type E is not available at runtime.

Restriction 2: Cannot Use new E[]

You cannot create an array using a generic type parameter. For example, the following
statement is wrong:

E[] elements = new E[capacity];

You can circumvent this limitation by creating an array of the Object type then casting it
to E[], as follows:

E[] elements = (E[])new Object[capacity];

However, casting to (E[]) causes an unchecked compile warning. The warning occurs
because the compiler is not certain that casting will succeed at runtime. For example, if E
is String and new Object[] is an array of Integer objects, (String[]) (new
Object[]) will cause a ClassCastException. This type of compile warning is a lim-
itation of Java generics and is unavoidable.

Generic array creation using a generic class is not allowed, either. For example, the
following code is wrong:

ArrayList<String>[] 1list = new ArraylList<String>[10];
You can use the following code to circumvent this restriction:

ArrayList<String>[] list = (ArrayList<String>[])new
ArrayList[10];

However, you will still get a compile warning.

Restriction 3: A Generic Type Parameter of a Class Is Not Allowed in a Static Context

Since all instances of a generic class have the same runtime class, the static variables and
methods of a generic class are shared by all its instances. Therefore, it is illegal to refer to a
generic-type parameter for a class in a static method, field, or initializer. For example, the
following code is illegal:

public class Test<E> {
public static void m(E o1) { // Illegal

}

M19_LIAN9966_12_SE_C19.indd 765 @

STUDENTS-HUB.com

no new E()

no new E[capacity]

unavoidable compile warning

9/1419 7:54 AM

https://students-hub.com

766 Chapter 19 Generics

ﬁeck
@ Point

Key
Point

M19_LIAN9966_12_SE_C19.indd 766

STUDENTS-HUB.com

public static E o1; // Illegal

static {
E 02; // Illegal

}
}

Restriction 4: Exception Classes Cannot Be Generic

A generic class may not extend java.Tang. Throwab1le, so the following class declaration
would be illegal:

public class MyException<T> extends Exception {

}
Why? If it were allowed, you would have a catch clause for MyException<T> as follows:

try {

catch (MyException<T> ex) {

}...

The JVM has to check the exception thrown from the try clause to see if it matches the
type specified in a catch clause. This is impossible, because the type information is not
present at runtime.

19.8.1 What is erasure? Why are Java generics implemented using erasure?

19.8.2 If your program uses ArrayList<String> and ArraylList<Date>, does the
JVM load both of them?

19.8.3 Can you create an instance using new E () for a generic type E? Why?
19.8.4 Can a method that uses a generic class parameter be static? Why?

19.8.5 Can you define a custom generic exception class? Why?

19.9 Case Study: Generic Matrix Class

This section presents a case study on designing classes for matrix operations using
generic types.

The addition and multiplication operations for all matrices are similar except that their element
types differ. Therefore, you can design a superclass that describes the common operations
shared by matrices of all types regardless of their element types, and you can define subclasses
tailored to specific types of matrices. This case study gives implementations for two types: int
and Rational. For the int type, the wrapper class Integer should be used to wrap an int
value into an object, so the object is passed in the methods for operations.

The class diagram is shown in Figure 19.7. The methods addMatrix andmultiplyMatrix
add and multiply two matrices of a generic type E[] []. The static method printResult displays
the matrices, the operator, and their result. The methods add, mu1tiply, and zero are abstract
because their implementations depend on the specific type of the array elements. For example, the
zero () method returns 0 for the Integer type and 0/1 for the Rational type. These methods
will be implemented in the subclasses in which the matrix element type is specified.

IntegerMatrix and RationalMatrix are concrete subclasses of GenericMatrix.
These two classes implement the add, multiply, and zero methods defined in the
GenericMatrix class.

Listing 19.10 implements the GenericMatrix class. <E extends Number> in line 1
specifies the generic type is a subtype of Number. Three abstract methods—add, multiply,

9/1419 7:54 AM

https://students-hub.com

19.9 Case Study: Generic Matrix Class 767

#add (elementl: E, element2: E): E
#multiply (elementl: E, element2: E): E
#zero(): E

+addMatrix (matrixl: E[][], matrix2: E[][]): E[][]
tmultiplyMatrix (matrixl: E[][], matrix2: E[][]): E[][]
+printResult (ml: Number[][], m2: Number[][],
m3: Number[][], op: char): void —RationalMatrixl

FIGURE 19.7 The GenericMatrix class is an abstract superclass for IntegerMatrix and
RationalMatrix.

and zero—are defined in lines 3, 6, and 9. These methods are abstract because we cannot imple-
ment them without knowing the exact type of the elements. The addMaxtrix (lines 12-30) and
multiplyMatrix (lines 33—57) methods implement the methods for adding and multiplying
two matrices. All these methods must be nonstatic because they use generic-type E for the class.
The printResult method (lines 60-84) is static because it is not tied to specific instances.

The matrix element type is a generic subtype of Number. This enables you to use an object
of any subclass of Number as long as you can implement the abstract add, multiply, and
zero methods in subclasses.

The addMatrix and multiplyMatrix methods (lines 12-57) are concrete methods. They
are ready to use as long as the add, multiply, and zero methods are implemented in the
subclasses.

The addMatrix and multiplyMatrix methods check the bounds of the matrices before
performing operations. If the two matrices have incompatible bounds, the program throws an
exception (lines 16 and 36).

LISTING 19.10 GenericMatrix.java

public abstract class GenericMatrix<E extends Number> {
/** Abstract method for adding two elements of the matrices */
protected abstract E add(E o1, E 02);

1
2
3
4
5 /** Abstract method for multiplying two elements of the matrices */
6 protected abstract E multiply(E o1, E 02);

7

8

/** Abstract method for defining zero for the matrix element */

9 protected abstract E zero();
10
11 /** Add two matrices */
12 public E[][] addMatrix(E[][] matrix1, E[][] matrix2) {
13 /| Check bounds of the two matrices
14 if ((matrix1.length != matrix2.length) ||
15 (matrix1[0].Tength !'= matrix2[0].length)) {
16 throw new RuntimeException(
17 "The matrices do not have the same size");
18 }
19
20 E[][] result =
21 (E[1[])new Number[matrix1.length][matrix1[0].length];
22
23 /| Perform addition
24 for (int i = 0; i < result.length; i++)
25 for (int j = 0; j < result[i].length; j++) {
26 result[i][j] = add(matrix1[i][]j], matrix2[i][]j]);
27 }
28
M19_LIAN9966_12_SE_C19.indd 767 @

STUDENTS-HUB.com

bounded generic type

abstract method

abstract method

abstract method

add two matrices

9/1419 7:54 AM

https://students-hub.com

768 Chapter 19 Generics

29 return result;
30 }
31
32 /** Multiply two matrices */
multiply two matrices 33 public E[][] multiplyMatrix(E[][] matrix1, E[][] matrix2) {

34 /' Check bounds
35 if (matrix1[0].Tength != matrix2.length) {
36 throw new RuntimeException(
37 "The matrices do not have compatible size");
38 }
39
40 /| Create result matrix
41 E[]1[] result =
42 (E[1[])new Number[matrix1.length][matrix2[0].length];
43
44 /| Perform multiplication of two matrices
45 for (int i = 0; i < result.length; i++) {
46 for (int j = 0; j < result[0].length; j++) {
47 result[i][j] = zero();
48
49 for (int k = 0; k < matrix1[0].Tlength; k++) {
50 result[i][j] = add(result[i][]j],
51 multiply (matrix1[i][k], matrix2[k][j]));
52 }
53 }
54 }
55
56 return result;
57 }

@& 58
59 /** Print matrices, the operator, and their operation result */

display result 60 public static void printResult(

61 Number[][] m1, Number[][] m2, Number[][] m3, char op) {
62 for (int i = 0; i < m1.length; i++) {
63 for (int j = 0; j < m1[0].7ength; j++)
64 System.out.print(" " + m1[i][]j]);
65
66 if (i == m1.length / 2)
67 System.out.print(" " +op + " ");
68 else
69 System.out.print (" ")
70
71 for (int j = 0; j < m2.length; j++)
72 System.out.print(" " + m2[i][]j]);
73
74 if (i == m1.length / 2)
75 System.out.print(" = ");
76 else
77 System.out.print (" ")
78
79 for (int j = 0; j < m3.length; j++)
80 System.out.print(m3[i][j] + " ");
81
82 System.out.printin();
83 }
84 }
85 }

Listing 19.11 implements the IntegerMatrix class. The class extends GenericMatrix<Inte-
ger>in line 1. After the generic instantiation, the add method in GenericMatrix<Integer>

M19_LIAN9966_12_SE_C19.indd 768 @ 9/1419 7:54 AM

STUDENTS-HUB.com

https://students-hub.com

19.9 Case Study: Generic Matrix Class 769

isnow Integer add(Integer o1, Integer 02).The add, multiply, and zero meth-
ods are implemented for Integer objects. These methods are still protected because they are

invoked only by the addMatrix and multiplyMatrix methods.

Design Pattern Note
The code in the GenericMatrix class applies the template method pattern, which
implements a method using abstract methods whose concrete implementation will be
provided in the subclasses. In the GenericMatrix, the addMatrix and mul -
tiplyMatrix methods are implemented using the abstract add, multiply,
and zero methods whose concrete implementation will be provided in the subclasses
IntegerMatrixand RationalMatrix.

LisTING 19.11 IntegerMatrix.java

1 public class IntegerMatrix extends GenericMatrix<Integer> { extends generic type

2 @Override /** Add two integers */

3 protected Integer add(Integer o1, Integer o02) { implement add

4 return ol + 02;

5 }

6

7 @Override /** Multiply two integers */

8 protected Integer multiply(Integer o1, Integer 02) { implement muTtiply

9 return o1 * 02;

10 }

11

12 @Override /** Specify zero for an integer */

13 protected Integer zero() { implement zero
@ 14 return 0;

15 }

16}

Listing 19.12 implements the RationalMatrix class. The Rational class was introduced
in Listing 13.13, Rational java. Rational is a subtype of Number. The RationalMatrix
class extends GenericMatrix<Rational> in line 1. After the generic instantiation, the add
method in GenericMatrix<Rational> is now Rational add(Rational r1, Ratio-
nal r2). The add, multiply, and zero methods are implemented for Rational objects.
These methods are still protected because they are invoked only by the addMatrix and
multiplyMatrix methods.

LIsTING 19.12 RationalMatrix.java

1 public class RationalMatrix extends GenericMatrix<Rational> { extends generic type
2 @Override /** Add two rational numbers */
3 protected Rational add(Rational r1, Rational r2) { .
4 return r1.add(r2): implement add
5 }
6
7 @Override /** Multiply two rational numbers */
8 protected Rational multiply(Rational r1, Rational r2) {
9 return r1.multiply(r2); implement multiply
10 }
11
12 @Override /** Specify zero for a Rational number */
13 protected Rational zero() { .
14 return new Rational (0, 1); implement zero
15 }
16 }
M19_LIAN9966_12_SE_C19.indd 769 @ 914119 7:54 AM

STUDENTS-HUB.com

https://students-hub.com

770 Chapter 19 Generics

create matrices
create IntegerMatrix

add two matrices

multiply two matrices

[

create matrices

create RationalMatrix

add two matrices

M19_LIAN9966_12_SE_C19.indd 770

STUDENTS-HUB.com

Listing 19.13 gives a program that creates two Integer matrices (lines 4 and 5) and an
IntegerMatrix object (line 8), and adds and multiplies two matrices in lines 12 and 16.

LISTING 19.13 TestIntegerMatrix.java

1 public class TestIntegerMatrix {
2 public static void main(String[] args) {
3 /| Create Integer arrays m1, m2
4 Integer[][] m1 = new Integer[][]{{1, 2, 3}, {4, 5, 6}, {1, 1, 1}};
5 Integer[][] m2 = new Integer[][]{{1, 1, 1}, {2, 2, 2}, {0, 0, 0}};
6
7 /1 Create an instance of IntegerMatrix
8 IntegerMatrix integerMatrix = new IntegerMatrix();
9
10 System.out.printin("\nm1 + m2 is ");
11 GenericMatrix.printResult(
12 m1, m2, integerMatrix.addMatrix(m1, m2), '+');
13
14 System.out.printin("\nm1 * m2 is ");
15 GenericMatrix.printResult(
16 m1, m2, integerMatrix.multiplyMatrix(m1, m2), "*");
17 }
18 }
ml + m2 is
123 111 234
456 + 222 = 6738
111 000 111
ml * m2 is
123 111 5 5
456 * 222 = 14 14 14
111 000 B

Listing 19.14 gives a program that creates two Rational matrices (lines 4-10) and a
RationaTlMatrix object (line 13) and adds and multiplies two matrices in lines 17 and 19.

LISTING 19.14 TestRationalMatrix.java

1 public class TestRationalMatrix {

2 public static void main(String[] args) {

3 /| Create two Rational arrays m1 and m2

4 Rational[][] m1 = new Rational[3][3];

5 Rational[][] m2 = new Rational[3][3];

6 for (int i = 0; i < m1.length; i++)

7 for (int j = 0; j < m1[0].7ength; j++) {

8 m1[i][j] = new Rational(i + 1, j + 5);

9 m2[i][j] = new Rational(i + 1, j + 6);

10 }

11

12 /| Create an instance of RationalMatrix

13 RationalMatrix rationalMatrix = new RationalMatrix();
14

15 System.out.printin("\nm1 + m2 is ");

16 GenericMatrix.printResult(

17 m1, m2, rationalMatrix.addMatrix(m1, m2), '+');
18

19 System.out.printin("\nm1 * m2 is ");

9/1419 7:54 AM

https://students-hub.com

20
21
22
23

GenericMatrix.printResult(
m1, m2, rationalMatrix.multiplyMatrix(m1, m2), '*');

ml + m2 is

1/5 1/6 1/7 1/6 1/7 1/8 11/30 13/42 15/56
2/51/3 2/7 + 1/3 2/7 1/4 = 11/15 13/21 15/28

3/5 1/2 3/7 1/2 3/7 3/8 11/10 13/14 45/56
ml * m2 is

1/5 1/6 1/7 1/6 1/7 1/8 101/630 101/735 101/840
2/51/3 2/7 * 1/3 2/7 1/4 = 101/315 202/735 101/420
3/5 1/2 3/7 1/2 3/7 3/8 101/210 101/245 101/280

19.9.1 Why are the add, multiple, and zero methods defined abstract in the

GenericMatrix class?

19.9.2 How are the add, multiple, and zero methods implemented in the

IntegerMatrix class?

19.9.3 How are the add, multiple, and zero methods implemented in the

RationalMatrix class?

19.9.4 What would be wrong if the printResult method is defined as follows?

public static void printResult(
E[1[] m1, E[I[] m2, E[][] m3, char op)

Key TERMS
actual concrete type 752 lower bound wildcard
bounded generic type 757 (<? super E>) 762
bounded wildcard raw type 760

(<? extends E>) 762 unbounded wildcard (<?>) 762
formal generic type 752 type erasure 764

generic instantiation 752

CHAPTER SUMMARY

Generics give you the capability to parameterize types. You can define a class or a
method with generic types, which are substituted with concrete types.

The key benefit of generics is to enable errors to be detected at compile time rather than
at runtime.

A generic class or method permits you to specify allowable types of objects that the class
or method can work with. If you attempt to use a class or method with an incompatible
object, the compiler will detect the error.

A generic type defined in a class, interface, or a static method is called a formal generic
type, which can be replaced later with an actual concrete type. Replacing a generic type
is called a generic instantiation.

M19_LIAN9966_12_SE_C19.indd 771 @

STUDENTS-HUB.com

Chapter Summary 771

multiply two matrices

2

ﬁeck
Point

9/1419 7:54 AM

https://students-hub.com

772 Chapter 19 Generics

5. A generic class such as ArrayList used without a type parameter is called a raw type.
Use of raw types allows for backward compatibility with the earlier versions of Java.

6. A wildcard generic type has three forms: ?, ? extends T,and ? super T, where
T is a generic type. The first form, ?, called an unbounded wildcard, is the same as ?
extends Object. The second form, ? extends T, called a bounded wildcard, rep-
resents T or a subtype of T. The third form, ? super T, called a lower bound wildcard,
denotes T or a supertype of T.

7. Generics are implemented using an approach called type erasure. The compiler uses
the generic-type information to compile the code but erases it afterward, so the generic
information is not available at runtime. This approach enables the generic code to be
backward compatible with the legacy code that uses raw types.

8. You cannot create an instance using a generic-type parameter such as new E ().

9. You cannot create an array using a generic-type parameter such as new E[10].

10. You cannot use a generic-type parameter of a class in a static context.

I'I. Generic-type parameters cannot be used in exception classes.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

MyProgrammingLab. PROGRAMMING EXERCISES

19.1 (Revising Listingl19.1) Revise the GenericStack class in Listing 19.1 to imple-
ment it using an array rather than an ArrayList. You should check the array size
before adding a new element to the stack. If the array is full, create a new array that
doubles the current array size and copy the elements from the current array to the
new array.

19.2 (Implement GenericStack using inheritance) In Listing 19.1, GenericStack is
implemented using composition. Define a new stack class that extends ArrayList.

Draw the UML diagram for the classes then implement GenericStack. Write a test
program that prompts the user to enter five strings and displays them in reverse order.

19.3 (Distinct elements in ArrayList) Write the following method that returns a new
ArrayList. The new list contains the nonduplicate elements from the original list.

public static <E> ArrayList<E> removeDuplicates(ArrayList<E> 1ist)
19.4 (Generic linear search) Implement the following generic method for linear search:

public static <E extends Comparable<E>>
int linearSearch(E[] 1ist, E key)

M19_LIAN9966_12_SE_C19.indd 772 @ 9/1419 7:54 AM

STUDENTS-HUB.com

https://students-hub.com

19.5

19.6

19.7

19.8

19.9

19.10

19.11

Programming Exercises

(Maximum element in an array) Implement the following method that returns the
maximum element in an array:

public static <E extends Comparable<E>> E max(E[] Tist)

Write a test program that prompts the user to enter 10 integers, invokes this method
to find the max, and displays the maximum number.

(Maximum element in a two-dimensional array) Write a generic method that returns
the maximum element in a two-dimensional array.

public static <E extends Comparable<E>> E max(E[][] Tist)

(Generic binary search) Implement the following method using binary search:

public static <E extends Comparable<E>>
int binarySearch(E[] T1ist, E key)

(Shuffle ArrayList) Write the following method that shuffles an ArrayList:
public static <E> void shuffle(ArrayList<E> Tist)
(Sort ArrayList) Write the following method that sorts an ArrayList:

public static <E extends Comparable<E>>
void sort(ArrayList<E> 1ist)

Write a test program that prompts the user to enter 10 integers, invokes this method
to sort the numbers, and displays the numbers in increasing order.

(Largest element in an ArraylList) Write the following method that returns the
largest element in an ArrayList:

public static <E extends Comparable<E>> E max(ArrayList<E> 1ist)

(ComplexMatrix) Use the Complex class introduced in Programming Exercise
13.17 to develop the ComplexMatrix class for performing matrix operations
involving complex numbers. The ComplexMatrix class should extend the
GenericMatrix class and implement the add, multiple, and zero methods.
You need to modify GenericMatrix and replace every occurrence of Number
by Object because Complex is not a subtype of Number. Write a test program
that creates two matrices and displays the result of addition and multiplication
of the matrices by invoking the printResult method.

M19_LIAN9966_12_SE_C19.indd 773 @

STUDENTS-HUB.com

773

9/1419 7:54 AM

https://students-hub.com

