
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 05
Repetition and
Loop Statements

Loading…

Chapter Objectives:

1. Learn about repetition as an important control structure in programming.

2. Loop control variables and the three steps needed to control loop repetition.

3. To learn how to use the C for , while , and do-while.

4. Learn common loop patterns such as counting loops, sentinel-controlled loops, and

flag-controlled loops.

5. How to debug programs using a debugger and diagnostic output statement.

➢ In your programs so far, the statements in the program body execute only once. However, in
most commercial software that you use, you can repeat a process many times.

➢ Repetition, you’ll recall, is the third type of program control structure (sequence , selection ,
repetition).

➢ The repetition of steps in a program is called a loop .

➢ We describe three C loop control statements: while , for , and do – while.

REPETITIO
N

Loading…

➢ Ask yourself some of the following questions to determine whether loops will be required in
the general algorithm: (1)

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating the
steps?

5.1 REPETITION IN PROGRAMS

➢ See Table 5.1 p.237 for Comparison of Loop Kinds

• Counter-controlled loop (or counting loop) because its repetition is managed by a loop
control variable whose value represents a count.

• Follows this general format:

Set loop control variable to an initial value of 0 .
while loop control variable < final value
 Do Something. . .
 Increase loop control variable by 1 .

5.2 COUNTING LOOPS AND THE WHILE
STATEMENT

THE WHILE STATEMENT

The expression following the reserved word while is called the loop repetition condition . (1)

if (count_emp < 7) { /* what is the difference */ (1)
. . .
}

➢ In Fig. 5.2 the variable count_emp is called the loop control variable (1)
➢ The loop control variable count_emp must be (1) initialized, (2) tested, and (3) updated

for the loop to execute properly.

• Initialization. count_emp is set to an initial value of 0 (initialized to 0) before the while
statement is reached.

• Testing. count_emp is tested before the start of each loop repetition (called an iteration or a

pass).

• Updating. count_emp is updated (its value increased by 1) during each iteration.

● If the loop control variable is not updated, the loop will execute “forever.” Such a loop is
called an infinite loop

SYNTAX OF THE WHILE
STATEMENT

Loading…

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
count_star = 0;
while (count_star < n) {
 printf("*");
 count_star = count_star + 1;
}

Note: If loop repetition condition evaluates to false the first time it is tested, statement is
not executed.

• Example 5.1 p.242: See FIGURE 5.4 p.242 for the program.

➢ total_pay is an accumulator variable, and it accumulates the total payroll value.

➢ Initializing total_pay to 0 is critical.(1)

➢ total_pay = total_pay + pay; /* Add next pay. */
adds the current value of pay to the sum being accumulated in total_pay .

● This loop is more general than the one in Figure 5.2.(2)

5.3 COMPUTING A SUM OR A PRODUCT IN A LOOP

• Example 5.2 p.245:

➢ This loop is an example of the general conditional loop, whose pseudocode is
shown below.

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met
3. Continue processing.

● Note that the loop body does not display the last value assigned to product

MULTIPLYING A LIST OF NUMBERS

COMPOUND ASSIGNMENT
OPERATORS

• C provides special assignment operators that enable a more concise notation for statements of
this type. For the operations + , - , * , / , and % , C defines the compound assignment operators
+= , -= , *= , /= , and %= .

1. s = s / 5;

2. q = q * n + 4;

3. z = z - x * y;

4. t = t + (u % v);

1. s /= 5;

2. q *= n + 4;

3. z -= x * y;

4. t += (u % v);

Exercise 4 p.247

● For statement as another form for implementing loops.

● The loops we have seen so far are typical of most repetition structures in that they
have three loop control components in addition to the loop body:

■ initialization of the loop control variable,
■ test of the loop repetition condition, and
■ change (update) of the loop control variable.

● for statement in C supplies a designated place for each of these three components

5.4 THE FOR STATEMENT

● The effect of this for statement is exactly equivalent to the execution of the comparable
while loop section of the program in Fig. 5.4.

● For Statement Heading: (1)

for (count_emp = 0; /* initialization Expression*/
count_emp < number_emp; /* loop repetition condition */
count_emp += 1) { /* update */

● The for statement can be used to count up or down by any interval.

➢ Example:

/* Display n asterisks. */
Printf(“Enter value for n”);
Scanf(“%d”, &n));
for (count_star = 0;
 count_star < n;
 count_star += 1)
 printf("*");

Caution: Although C permits the use of fractional values for counting loop control
variables of type double , we strongly discourage this practice. (1)

INCREMENT AND DECREMENT
OPERATORS

➢ The increment operator ++ takes a single variable as its operand.
➢ The side effect of applying the ++ operator is that the value of its operand is

incremented by one.

➢ When the ++ is placed immediately in front of its operand (prefix increment), the value
of the expression is the variable’s value after incrementing:

for (counter = 0; counter < limit; ++counter) (1)

➢ When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented.

for (counter = 0; counter < limit; counter++)

Figure 5.6

INCREMENT AND DECREMENT
OPERATORS

➢ C also provides a decrement operator that can be used in either the prefix or postfix
position.

➢ For example, if the initial value of n = 4

➢ printf("%d", --n); printf("%d", n);
Þ 3 3

➢ printf("%d", n--); printf("%d", n);

Þ 4 3

INCREMENT AND DECREMENT
OPERATORS

➢ Avoid using the increment and decrement operators in complex expressions in which the
variables to which they are applied appear more than once. (1)

➢ For Example:
x = 5;
i = 2;
y = i * x - ++i;

Y = 2 * 5 - 3 = 13 OR Y = 3 * 5 - 3 = 18 ???

INCREMENTS AND DECREMENTS OTHER
THAN 1

• We have seen for statement counting loops that count up by one and down by one.

• Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit conversion table.

• EXAMPLE 5.4 p.251, figure 5.8

• Table 5.4 p.253 uses the small circled numbers to trace the execution of this counting for loop.

➢ In many programming situations, you will not be able to determine the exact number of
loop repetitions before loop execution begins.

➢ For Example: You want to continue prompting the user for a data value as long as the
response is unreasonable:

Print an initial prompting message.

Get a positive number => Initialization Step

while the number is zero or negative => Loop repetition condition(1)

 Print a warning and another prompting message.

 Get a positive number => update step (2)

➢ Note: Such a conditional loop still has three parts that control repetition(3)

➢ This pattern is known as a general conditional loop.

5.5 CONDITIONAL LOOPS

● we can write this validating input loop in C by using a while statement:

printf("Enter a positive number> ");

scanf("%d", &num); /* initialization */

while (num <= 0) { /* repetition condition */

 printf("Negative number entered; try again> ");

 scanf("%d", &num); /* update */

}

● Sentinel-Controlled Loops:
● Often we don’t know how many data items the loop should process when it begins

execution. Therefore, we must find some way to signal the program to stop reading and
processing new data (1).

● One way to do this is to instruct the user to enter a unique data value, called a sentinel

value , after the last data item.

● The loop repetition condition tests each data item and causes loop exit when the sentinel

value is read.

● Choose the sentinel value carefully; it must be a value that could not normally occur as

data.

5.6 GENERAL CONDITIONAL LOOP DESIGN

Loading…

● A loop that processes data until the sentinel value is entered has the form
1. Get a line of data. => initialization

2. while the sentinel value has not been encountered => loop repetition condition

3. Process the data line.

4. Get another line of data. => update

● For program readability, we usually name the sentinel by defining a constant macro

● EXAMPLE 5.6 p.263

SENTINEL-CONTROLLED
LOOPS

USING A FOR STATEMENT TO IMPLEMENT A SENTINEL LOOP

• The for statement form of the while loop in Fig. 5.10 follows:

ENDFILE-CONTROLLED
LOOPS

• A data file is always terminated by an endfile character that can be detected by the
scanf function.

• Therefore, you can write a batch program that processes a list of data of any length

without requiring a special sentinel value at the end of the data.

• To write such a program, you must set up your input loop so it notices when scanf

encounters the endfile character

• Besides storing new values in the variables passed to it as arguments, scanf also

returns a result value just like the functions we studied.(1)

ENDFILE-CONTROLLED
LOOPS

• input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

• The function scanf() returns one of the following results:

1. Successful execution of the scanf in the values for the variables in its input list. (1)

2. if scanf runs into difficulty with invalid or insufficient data, the function returns as
its value the number of data items scanned before encountering the error or running
out of data (2)

3. Detecting the endfile character before getting input data for any of its arguments.

In this case, scanf returns as its result the value of the standard constant EOF (a
negative integer).

ENDFILE-CONTROLLED
LOOPS

• It is possible to design a repetition statement very similar to the sentinel controlled loop
that uses the status value returned by the scanning function to control repetition rather
than using the values scanned.

• Pseudocode example for an endfile-controlled loop:

Get the first data value and save input status

while input status does not indicate that end of file has been reached

Process data value

Get next data value and save input status

● Figure 5.11 page 267

INFINITE LOOPS ON FAULTY DATA

• The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Fig. 5.10

• For example, let’s assume the user responds to the prompt

Enter next score (-99 to quit)> (1)

• In Fig. 5.11, Changing the loop repetition condition to

input_status == 1

• would cause the loop to exit on either the end of file (input_status negative) or faulty data
(input_status zero).(2)

INFINITE LOOPS ON FAULTY DATA

• We would also need to add an if statement after the loop to decide whether to simply
print the results or to warn of bad input.

• The false task in the following if statement gets and displays the bad character when

input_status is not EOF :

if (input_status == EOF) {

printf("Sum of exam scores is %d\n", sum);

} else {

scanf("%c", &bad_char);

printf("*** Error in input: %c ***\n", bad_char);

}

Loops may be nested just like other control structures.

5.7 NESTED LOOPS

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

● Loops may be nested just like other control structures.

● Nested loops consist of an outer loop with one or more inner loops.

● Each time the outer loop is repeated, the inner loops are reentered, their loop control

expressions are reevaluated, and all required iterations are performed.

● Example 5.8, p.270 (1)

● There are some situations, generally involving interactive input, when we know
that a loop must execute at least one time.

● We write the pseudocode for an input validation loop as follows:

1. Get a data value.
2. If data value isn’t in the acceptable range, go back to step 1.

● C provides the do-while statement to implement such loops

 (1)

THE DO-WHILE
STATEMENT

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

FLAG-CONTROLLED LOOPS FOR INPUT
VALIDATION

• In many cases, the condition may be simplified by using a flag.

• A flag is a type int variable used to represent whether or not a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

• See Example 5.10 p.274

➢ The do-while is often the structure to choose when checking for valid input.

➢ The do-while used in Fig. 5.14 also prevents an infinite input loop in the event the user types an
invalid character.

BREAK
STATEMENTS

• Use break statements to exit out of a loop.
• End break statements with a semi-colon: (break;)

//stop when i = 3

for (int i = 0; i < 5; i++) {

 if (i == 3)

 break;

}

//get first odd number then stop

for (int i = start; i <= end; i++) {

 if (i % 2 != 0) { // Check if the number is odd

 printf("First odd number: %d\n", i);

 break;

 }

 }

CONTINUE
STATEMENTS

• Use continue statements to skip the current iteration of a loop and proceed with the next iteration
without terminating the loop.

• End continue statements with a semi-colon: (continue;)

// Skip the iteration when i equals 3

for (int i = 0; i < 5; i++) {

 if (i == 3) {

 continue;

 }

 printf("i = %d\n", i);

}

//print only odd numbers

for (int i = start; i <= end; i++) {

 if (i % 2 == 0){ // Skip even numbers

 continue;

 }

 printf("Odd number: %d\n", i);

 }

➢ The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results.

➢ Then you can focus on the statements in that section of the program to

determine which are at fault.

➢ We describe two ways to do this:
1. Using Debugger Programs
2. Debugging without a Debugger

5.10 HOW TO DEBUG AND TEST
PROGRAMS

● A debugger program can help you debug a C program.
● It lets you execute your program one statement at a time (single-step execution).
● Through single-step execution:

1. You can trace your program’s execution and observe the effect of each C
statement on variables you select.

2. You can validate that loop control variables and other important variables
(e.g., accumulators) are incremented as expected during each iteration of a loop.

3. You can also check that input variables contain the correct data after each
scan operation.

USING DEBUGGER
PROGRAMS

● Breakpoints:
➢ If your program is very long, separate your program into segments by setting

breakpoints at selected statements (1).
1. set a breakpoint at the end of each major algorithm step.
2. Then instruct the debugger to execute all statements from the last breakpoint

up to the next breakpoint.

USING DEBUGGER
PROGRAMS

set more
breakpoints

move to the next
breakpoint

single-step
execution

variables hold
correct
values?

Breakpoint

● Insert extra diagnostic calls to printf that display intermediate results at critical
points in your program.(1)

● For example, you should display the values of variables affected by each major
algorithm step before and after the step executes (2)

● Once you have determined the likely source of an error, you should insert

additional diagnostic calls to printf to trace the values of critical variables in the
“buggy” segment.

DEBUGGING WITHOUT A DEBUGGER [MANUAL
DEBUGGING]

• Manual Debugging:
• Turn diagnostics on by inserting: #define DEBUG 1 (1)
• Turn diagnostics off by inserting: #define DEBUG 0

DEBUGGING WITHOUT A
DEBUGGER

while (score != SENTINEL) {

sum += score;

if (DEBUG)

 printf("***** score is %d, sum is %d\n", score, sum);

printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score); /* Get next score. */

}

➢ Include a \n at the end of every printf format string. (1)

➢ Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

DEBUGGING WITHOUT A
DEBUGGER

➢ If a sentinel-controlled loop performs an extra repetition, it may erroneously
process the sentinel value along with the regular data.

➢ If a loop performs a counting operation, make sure that the initial and final

values of the loop control variable are correct and that the loop repetition
condition is right.

for (count = 0; count <= n; ++count)
 sum += count; (1)

=> for (count = 0; count < n; ++count)

OFF-BY-ONE LOOP
ERRORS

➢ Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable (1)

➢ When i = -n => sum = n2 .
➢ When i = n - 2 , the value of (n - 2)2 is added to the previous value of sum

OFF-BY-ONE LOOP
ERRORS

sum = 0; (2)

k = 1;

for (i = -n; i < n - k; ++i)

 sum += i * i;

➢ After all errors have been corrected and the program appears to execute as

expected, the program should be tested thoroughly to make sure that it
works.

➢ For a simple program, make enough test runs to verify that the program
works properly for representative samples of all possible data combinations.

TESTIN
G

➢ Always use an if statement to implement a decision step and a while or for
statement to implement a loop. (1) (2)

➢ End the initialization expression and the loop repetition condition with
semicolons.

➢ Do not put a semicolon before or after the closing parenthesis of the for

statement header.(3)

5.12 COMMON PROGRAMMING
ERRORS

for (initialization expression;
loop repetition condition ;
update expression)

➢ Another common mistake in using while and for statements is to forget that the
structure assumes that the loop body is a single statement. (1)

5.12 COMMON PROGRAMMING
ERRORS

while (x > xbig) (2)

 x -= 2;

 ++xbig;

/* intended end of while loop */

while (x > xbig)

 x -= 2; /* only this statement is repeated */

++xbig;

Executes As =>

➢ Error messages indicating a missing closing brace may appear at a different

location than where the brace should be placed. (1)

➢ When compound statements are nested, the compiler will associate the first
closing brace encountered with the innermost structure. (2)

5.12 COMMON PROGRAMMING
ERRORS

printf("Experiment successful? (Y/N)> ");

scanf("%c", &ans);

if (ans == 'Y') {

 printf("Enter one number per line (Enter %d to quit)\n> ", SENT);

 scanf("%d", &data);

 while (data != SENT) {

 sum += data;

 printf("> ");

 scanf("%d", &data);

 /* <— missing } */

} else {

 printf("Try it again tomorrow.\n");

 printf("Now follow correct shutdown procedure.\n");

}

5.12 COMMON PROGRAMMING
ERRORS

scanf("%d%lf", &code, &amount);

while (balance != 0.0) {

 . . .

 scanf("%d%lf", &code, &amount);

}

scanf("%d%lf", &code, &amount);

 while (balance > 0.0) {

 . . .

scanf("%d%lf", &code, &amount);

}

=>

➢ Be sure to verify that a loop’s repetition condition will eventually become false (
0) (1)

➢ If you use a sentinel-controlled loop, remember provide a prompt that tells the
program’s user what value to enter as the sentinel (2)

➢ One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation.

5.12 COMMON PROGRAMMING
ERRORS

do { (3)

 . . .

 printf("One more time? (1 to continue/any other number to quit)> ");

 scanf("%d", &again);

} while (again = 1); /* should be: again == 1 */

➢ Use a do-while only when there is no possibility of zero loop iterations (1)

 =>

5.12 COMMON PROGRAMMING
ERRORS

if (condition 1) (2)

 do {

 . . .

} while (condition 1);

/*Replace the segment with a while or for stamenet */ (3)

while (condition 1){

 . . .

}

➢ Remember the parentheses that are assumed to be around any expression that is
the second operand of a compound assignment operator.

5.12 COMMON PROGRAMMING
ERRORS

a *= b + c;

is equivalent to

a = a * (b + c);

there is no shorter way to write

a = a * b + c;

➢ Do not use increment, decrement, or compound assignment operators as
subexpressions in complex expressions.

➢ Do not use a variable twice in an expression in which it is
incremented/decremented. (1)

➢ Be sure that the operand of an increment or decrement operator is a
variable (2)

5.12 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

