Pro RESTful
APlIs

Design, Build and Integrate with
REST, JSON, XML and JAX-RS

Sanjay Patni

ApPress’

https://students-hub.com

Pro RESTful APIs

Sanjay Patni

Apress-

https://students-hub.com

Pro RESTful APIs: Design, Build and Integrate with REST, JSON, XML and JAX-RS

Sanjay Patni
Santa Clara, California
USA

ISBN-13 (pbk): 978-1-4842-2664-3 ISBN-13 (electronic): 978-1-4842-2665-0
DOI10.1007/978-1-4842-2665-0

Library of Congress Control Number: 2017936942
Copyright © 2017 by Sanjay Patni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of illus-

trations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Larissa Shmailo
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484226643. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

STUDENTS-HUB.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484226643
http://www.apress.com/source-code
https://students-hub.com

I dedicate this book to my family and friends for their support.
A special feeling of gratitude to Alakh Verma,
Director Platform Products, Oracle and Andy Hou, Director Technology,
UCSC Extension for constant encouragement.

STUDENTS-HUB.com

https://students-hub.com

Contents at a Glance

About the Authorcccciieeminissesnmmssn s ————— Xiii
About the Technical REVIEWETucussseesssssssnsnssssssnssssssssnsnsssssnnsnsssss XV
INtroductioncccuseermmssenmsssnnmmssnsmssssnsssssnnssssnsssssnsessnnnesssnnensnnnnssnnnns xvii
Chapter 1: Fundamentals of RESTful APIS.......ccccccinmrrnnsssssssnnnnnnnnnas 1
Chapter 2: API Design and Modelingcccceusseesssssssnsnssssssnnssssssnns 11
Chapter 3: Introduction - XML, JSON........cccummmmmmmmnnmmmmsssssssnnsnnnnn 33
Chapter 4: Introduction to JAX-RSccccinmnmmmmmmnssesnmnnsssssnnnnsnes 49
Chapter 5: API Portfolio and FrameworK..........ccccusnennsnssssnnnsassnns 63
Chapter 6: API Platform and Data Handler 77
Chapter 7: API Management and API Clientcccccmmnnssseannnnsnes 97
Chapter 8: API Security and Caching.........ccccuseeenmnssssensssssssnnnnnns 107
INA@X..uuiiisssnssnnnnnnnnns 123
\%

STUDENTS-HUB.com

https://students-hub.com

Contents

About the Author ... —————— Xiii
About the Technical ReVieWeruvsmmimmmnunmmmmmsmsnesssnm. XV
Introduction........ccccccsmimnnsmmmnmn s ——————— xvii
Chapter 1: Fundamentals of RESTful APIS.......cccccccnrrrnnssssssnnnnnnnnnas 1
SOAP VS. RESTooicticrrnnriesisssse s sse e s e s s s sssssssssnssssnssnnnens 2
Web Architectural Style.......cccvvvvrvrvrrrrerrer e 4
ClIBNE=SEIVEN ...ocvriirisrisrssiss s 4
Uniform Resource INterface...........coocicisiincscisssssssssssnans 5
Layered SYSIBMccccvrereriereerere e res e sae e sa e e e sae e sae e saesassesassesasesasnssasnanaens 5
CACNING...viiririr s —————— 5
SHALBIESS ... ———————————— 5
Code-0n-DEmMAaNTcourrivnrinnrissi s ——————— 5
HATEQAS ..ot ss s ss s 6
LT o 1]] SRS 7
WhaL iS REST? ... 7

L S I T 7

REST FUNdamentals............covvinimninnnsinisissssssssssssssssssssssssssssssssssnssans 8

L LT o140 T U oSSR 9
vii

STUDENTS-HUB.com

https://students-hub.com

CONTENTS

Chapter 2: APl Design and Modelingc..cccuusemsmsssssssssnsssssssssssnnas 11
API DesSign Strategies. ... 11
API Creation Process and Methodology..........cccvverrerrerrersersessersessensenaens 13
PIOCESS ...euveuereeserresremseseesessessessessesssses s ssesss s s sesse e s ss et s ssessesss s s seensensensssesnes 13
APl Methodology.........cccvurermniniiieirs s 14
Domain Analysis or APl DeSCHPLION........ccccecvverrrererreree et re e sesaenes 14
ArChiteCtUre DESIQNcoveeeeeereererererseresereesesseres e resseraesesaesesseressesassesssesassssenssserans 15
50 €01 0] 4] 1 3o 15
IMPIEMENTALION.......coeeeceeee e e 16
141 | 16
o 8100 L= 1 T 16
Comparison of APl MOGEIING.......cccoeeeriererrererrerersereserereseressessesessesessesessessssessssesaens 17
BeSt PractiCescumnmnnnnnn s 18
Keep your base URL simple and intuitivec.ccoovveencenesnncnnsesssesss s sessenensenns 19
Error Handling.........coevevveenrnnircenis ettt st se e 20
L2 T [0] 111 T S 21
Partial RESPONSE.......cevvverreririr ittt 22
Pagination........c.covnnmnninnnn s —————————— 22
Multiple FOrmats........coonnnnnn—n, 23
Lo I T o 23
API Solution ArchiteCtUre..........ccceerimrernirerre s 23
MODile SOIULIONS ..o ——— 24
(0 0T 0] T o] T 24
WED SOIULIONS.....cciiiiii s 24
INtegration SOIULIONS ... s 24
Multi-channel SOIULIONS.........ccconni i ———— 25
SMArt TV SOIULIONScvvieieiriris e 25
INtErNet-0f-TRINGS ... 25
viii

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

CONTENTS

Stakeholders in APl SOIULIONS..........cccvvennnnn s 25
LY o (01T T 25
API CONSUMETS ..ocuviririsissssssisssssssisissss s sss s sssssens 25
10 T £ 25

Wrapping UP.....ccoceeierereresses s s s e e s s s s ssssnssnnnas 31

Chapter 3: Introduction - XML, JSON........cccunsmmmmmmmmmmsssssssnnssssnnnnns 33

What iS XIML? ..ot sn s s s s sne e nnens 33
DI 0Ty g1 34
Why is XML IMPOrtant?..........cccoeevrnmencnnnnsssesesssssessssssssesssssssesesssssssssssssssssesens 35
HOW Can YouU USE XIML? ..o s srs s se s e s snssesssnenns 35
Pros and Cons 0f XIML........cccvmmmennsnssssnessssssssssesssssssessssssssssesssssssessssssssssesssssaes 36

What iS JSON?......oocrrirrrir st 36
JSON SYNTAX ...cvireeerrrrrresererrnseese e e s nnns 36
Why iS JSON IMPOortant?.......co. e 38
HOW Can you USE JSON?........cooueceeeecrer e 39
Pros and Cons of JSON..........ccorrenenincnenenseese s 39

XML - JSON COMPAIISONeereereerieereerssersesssessesssessessssssesssssssssssssssssesses 40

Chapter 4: Introduction to JAX-RSccciiiimmmmnnnsnnnmnssssssnmssnnn 49

JAX-RS INtroduction ... 49
Input and Output ConteNt TYPEcceveeereeererrere e ra e 51
JAX-RS INJECLION......coeeereeereecere e res e reeserae e saesessesas e sas e sae e saesasaesassesassesaenesasanaens 51

REST Implementation...........cccoceecienninesnse s ses e 54

Chapter 5: APl Portfolio and Framework.......cccccssmsnsssssssssnsssssnnnas 63

AP Portfolio ArChiteCtUrEcccoierermnsirnsirn e 63
REQUIFEMENTES ... sr e sa et sa e sa e sa e a e sn e e nne 63
CONSISLENCY ...voveeeerreiercrinsee st b s e e e nn s 63
RBUSE.....ciiiiiiiiiii s 63
CUSTOMIZALION.......cierireeri s 64

ix

https://students-hub.com

CONTENTS

DiSCOVEIADIlILYccereeererece et 64
0] T O 64
How do we enforce these requirements—governance?cocueuee. 64
CONSISTENCYcuvrvrreueeresesseerrssssssessssssssensssss e e e sss s ssssssssssssssssssssssssssssensnsssnsesssssenes 64
RBUSE.....ceiiiti it 65
CUSTOMIZALION........oeeeeeerererererere e se e se e se e e se e e e e e e e e sesenenens 65
DiSCOVEIADILILYcovevreeeerrsreeseress s 65
Change Management..........c.covceecernenesennnsesesess e ssssssesssenns 65
APl FrameWOrK........couerermmmsemssmsssssissssssss s ssssssessssesens 66
Process APIS - SEIVICES LAYEKccceceveerererererereressersssessesessesessensssessssessssessensssenes 66
System APIs - Data ACCESS ODJECT.......ccvvererrererrerererierereresrereeserseseseresesassesssesaens 67
Experience APIS - APl FACAUEccccvververririircirin st 67
Services Layer Implementation..........ccovvcvrvererresinsesenserenseseesesesesesessessssesssenaens 67
Chapter 6: API Platform and Data Handler 77
API Platform ArchiteCture ... 77
Why do we need APl Platform?..........ccecverrrererveressereseseseseressersssessssessesessensssenes 77
So what is an API PIatform?cvvmnsssnsssssssessssss s 78
So which capabilities does the API platform have?.........ccccceevrverervernrernseresnenens 78
How is API Platform organized? What is architecture of API Platform?.................. 80
How does API architecture fit in surrounding technical architecture of an
] (=T 04T 81
Data Handler ... 82
Data ACCESS ODJECT.......ccoviecerereeeee e e 82
Command Query Responsibilities Segmentation - CQRSccccovveevvninieniniennens 83
Wrapping UP ... e s 96
Chapter 7: API Management and API Clientcccinninnnnnnsssnnns 97
Fagade........cviriirirnir s —————— 97
Fagade Pattern ... 97
Lo I (o7 T 98

STUDENTS-HUB.com

https://students-hub.com

CONTENTS

APl Management..........cccoceermrnenienneesses e sses e ssse s sne s ssne s ssnessessnesnes 100
APILIfE CYCIE ... seseseneeenes 100
API RtiremMEeNt.......covvvviiirirississ s 101
AP MONEBLIZALION.......cvieciirriisss s 102

Chapter 8: API Security and Caching.........ccussmmsmmsemsssnsssssasssanins 107

APl Security = QAULh 2. e 107
ROIES ... —————— 107
TOKENS ... 108
LT TS (=T TR o 1T | 109
Authorization grant tyPescceveeeeeverererereriererreressereeseree e ses e ressessesessesesaesanaens 110
IMPICIt GrANt FIOW........ccueeeeeeeererercree vt res e ras e ree e sae e se s e sas e sas e saesesaenenaes 111
Resource Owner Password Credentials Grant...........oovvninnnsnnncnssnnninsnnns 113
Client Credentials Grant..........counnnn 115

07 1o 11 o RS RSSRS 116
Server CaChing ... e a e e 117
o I O U 14 o OO 117
WED CaChiNg.....ccovuiierirrrscrirr st 119

Wrapping UpP.....cocrcririrensere st se s ss s e e s s s s snsnns 121

INA@X..iiieisisries s snsns s s ———————— 123
xi

STUDENTS-HUB.com

https://students-hub.com

About the Author

Sanjay Patni is a results-focused technologist with
extensive experience in aligning innovative technology
solutions with business needs to optimize manual
steps in the business processes and improving
operational efficiency.

For the last five years at Oracle he has worked
with the Fusion Apps Product development team,
where he has identified opportunities for automation
of programs related to FusionApps code lines
management. This involved delivery of GA Releases
for patching, as well as codelines for ongoing demo,
development, and testing. He conceptualized and
developed Self Service UX for codeline requests and auditing, reducing manual steps by
80%. He also rolled out 12 sprints of code line creation, automating about 100+ manual
steps involving integration with other subsystems using technologies like Automation
workflow and RESTful APIs.

Prior to joining Oracle, he spent 15+ years in the software industry, defining and
delivering on key initiatives across different industry sectors. His responsibilities
included innovation, requirement, analysis, technical architecture, design, and agile
software development of Web-based enterprise products and solutions. He pioneered
innovative usage of Java in building business applications and received an award from
Sun Microsystems. Feedback improved for Java APIs for Enterprise in building business
application software using Java.

He has worked as a visiting technical instructor or mentor and conducted classes or
training on RESTful APIs design and integration.

He has a strong educational background in computer science with masters from IIT,
Roorkee, India.

xiii

STUDENTS-HUB.com

https://students-hub.com

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experiences in security, Web/mobile development,
Cloud and IT architecture. His true IT passions are
security and Android.

He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python,
C/C++, and MySQL for more than 20 years.

He holds a master of science degree in computing
science from the University of Salerno, Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor
and senior lead IT security/Cloud/SCADA architect for
many years.

His technical skills include security, Android,
Cloud, Java, MySQL, Drupal, Cobol, Perl, Web and mobile development, MongoDB, D3,
Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He currently works as Chief Information Security Office (CISO) for Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing companies
and he is the coauthor of Pro Android Games (Apress, 2015).

XV

STUDENTS-HUB.com

https://students-hub.com

Introduction

Databases, web sites, and business applications need to exchange data. This is
accomplished by defining standard data formats such as Extensible Markup Language
(XML) or JavaScript Object Notation (JSON), as well as transfer protocols or Web services
such as the Simple Object Access Protocol (SOAP) or the more popular Representational
State Transfer (REST). Developers often have to design their own Application
Programming Interfaces (APIs) to make applications work while integrating specific
business logic around operating systems, or servers. This book introduces these concepts
with a focus on the RESTful APIs.

This book introduces the data exchange mechanism and common data formats.

For Web exchange, you will learn the HTTP protocol, including how to use XML. This
book compares SOAP and REST, and then covers the concepts of stateless transfer. It
introduces software API design and best design practices. The second half of the book
focuses on RESTful API design and implementations that follow the JAX-RS standard,
and Java API for RESTful Web Services. You will learn how to build and consume JAX-RS
services using JSON and XML, and integrate RESTful API with different data sources like
relational databases and NoSQL databases through hands-on exercises. You will apply
these best practices to complete a design review of publicly available APIs with a small-
scale software system in order to design and implement RESTful API.

This book is intended for software developers who use data in projects. It is also useful for
data professionals who need to understand the methods of data exchange and how to interact
with business applications. Java programming experience is required for the exercises.

Topics include:

e Data exchange and Web services

e SOAP vs. REST, state vs. stateless

e XMLvs.JSON

e Introduction to API design: REST and JAX-RS
e APIdesign practices

e Designing RESTful API

e Building RESTful API

e Interacting with RDBMS (MySQL)

e Consuming RESTful API (i.e., JSON, XML)
e APISecurity-OAuth

e APICaching

xvii

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 1

Fundamentals of RESTful
APIs

APIs are not new. They've served as interfaces that enable applications to communicate
with each other for decades. But the role of APIs has changed dramatically in the last few
years. Innovative companies have discovered that APIs can be used as an interface to the
business, allowing them to monetize digital assets, extend their value proposition with
partner-delivered capabilities, and connect to customers across channels and devices.
When you create an API, you are allowing others within or outside of your organization
to make use of your service or product to create new applications, attract customers, or
expand their business. Internal APIs enhance the productivity of development teams by
maximizing reusability and enforcing consistency in new applications. Public APIs can
add value to your business by allowing third party developers to enhance your services
or bring their customers to you. As developers find new applications for your services
and data, a network effect occurs, delivering significant bottom-line business impact.
For example, Expedia opened up their travel booking services to partners through an
API to launch the Expedia Affiliate Network, building a new revenue stream that now
contributes $2B in annual revenue. Salesforce released APIs to enable partners to extend
the capabilities of their platform and now generates half of their annual revenue through
those APIs, which could be SOAP-based (JAX-WS) and, more recently, RESTful (JAX-RS).

SOAP web service depends upon a number of technologies (such as UDDI, WSDL,
SOAP, HTTP) and protocols to transport and transform data between a service provider
and the consumer, and can be created with JAX-WS.

Later, Roy Fielding (in the year 2000) presented his doctoral dissertation,
“Architectural Styles and the Design of Network-based Software Architecture.” He coined
the term “REST,” an architectural style for distributed hypermedia systems. Put simply,
REST (short for REpresentational State Transfer) is an architectural style defined to help
create and organize distributed systems. The key word from that definition should be
“style,” because an important aspect of REST (and which is one of the main reasons books
like this one exist) is that it is an architectural style—not a guideline, not a standard, or
anything that would imply that there are a set of hard rules to follow in order to end up
having a RESTful architecture.

This chapter has details about REST fundamentals, SOAP vs. REST, and Web
Architectural Style.

© Sanjay Patni 2017 1
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_1

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 1 © FUNDAMENTALS OF RESTFUL APIS

The main idea behind REST is that a distributed system, organized RESTfully, will
improve in the following areas:

¢ Performance: The communication style proposed by REST is
meant to be efficient and simple, allowing a performance boost
on systems that adopt it.

e Scalability of component interaction: Any distributed system
should be able to handle this aspect well enough, and the simple
interaction proposed by REST greatly allows for this.

e Simplicity of interface: A simple interface allows for simpler
interactions between systems, which in turn can grant benefits
like the ones previously mentioned.

e Modifiability of components: The distributed nature of the
system, and the separation of concerns proposed by REST
(more on this in a bit), allows for components to be modified
independently of each other at a minimum cost and risk.

e Portability: REST is technology- and language-agnostic, meaning
that it can be implemented and consumed by any type of
technology (there are some constraints that I'll go over in a bit,
but no specific technology is enforced).

e Reliability: The stateless constraint proposed by REST (more on
this later) allows for the easier recovery of a system after failure.

e Visibility: Again, the stateless constraint proposed has the added
full state of said request (this will become clear once I talk about
the constraints in a bit). From this list, some direct benefits can
be extrapolated. A component-centric design allows you to make
systems that are very fault-tolerant. Having the failure of one
component not affect the entire stability of the system is a great
benefit for any system. Interconnecting components is quite easy,
minimizing the risks when adding new features or scaling up or
down. A system designed with REST in mind will be accessible to
a wider audience, thanks to its portability (as described earlier).
With a generic interface, the system can be used by a wider range
of developers. In order to achieve these properties and benefits,
a set of constraints were added to REST to help define a uniform
connector interface. REST is not suggested to use when you need
to enforce a strict contract between client and server and when
performing transactions that involve multiple calls.

SOAP vs. REST

Table 1-1 has a comparsion between SOAP and REST with an example of use cases each
can support.

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 1

Table 1-1. SOAP vs. REST comparision

FUNDAMENTALS OF RESTFUL APIS

Topic

SOAP

REST

Origin

Basic Concept

Pros

Cons

When to use

When not to use

SOAP (Simple Object Access
Protocol) was created in

1998 by Dave Winer et al. in
collaboration with Microsoft.
Developed by a large software
company, this protocol
addresses the goal of addressing
the needs of the enterprise
market.

Makes data available as services
(verb + noun), for example
“getUser” or “Paylnvoice”

Follows a formal enterprise
approach

Works on top of any
communication protocol, even
asynchronously

Information about objects is
communicated to clients.
Security and authorization are
part of the protocol.

Can be fully described using
WSDL

Spends a lot of bandwidth
communicating metadata
Hard to implement and is
unpopular among Web and
mobile developers

When clients need to have
access to objects available on
servers

When you want to enforce a
formal contract between client
and server

When you want the majority of
developers to easily use your API
When your bandwidth is very
limited

REST (Representational State
Transfer) was created in 2000
by Roy Fielding at UC, Irvine.
Developed in an academic
environment, this protocol
embraces the philosophy of the
open Web.

Makes data available as resources
(nouns), for example “user” or
“invoice”

Follows the philosophy of the
Open Web

Relatively easy to implement and
maintain

Clearly separates client and
server implementations
Communication isn’t controlled
by a single entity

Information can be stored by the
client to prevent multiple calls.
Can return data in multiple
formats (JSON, XML etc.)

Only works on top of the HTTP
protocol

Hard to enforce authorization and
security on top of it

When clients and servers operate
on a Web environment

When information about objects
doesn’t need to be communicated
to the client

When you need to enforce a
strict contract between client
and server

When performing transactions
that involve multiple calls

STUDENTS-HUB.com

(continued)

https://students-hub.com

CHAPTER 1 © FUNDAMENTALS OF RESTFUL APIS

Table 1-1. (continued)

Topic SOAP REST

Use cases Financial services Social media services
Payment gateways Social networks
Telecommunication services Web chat services

Mobile services

Examples https://www.salesforce.com/ https://dev.twitter.com/
developer/docs/api/ - https://developer.linkedin.
Salesforce SOAP API com/apis
https://developer.paypal.com/
docs/classic/api/
PayPalSOAPAPIArchitecture/
-Paypal SOAP API

Conclusion Use SOAP if you are dealing with Use REST if you're focused on

transactional operations and you wide-scale API adoption or if your
already have an audience thatis API is targeted at mobile apps.
satisfied with this technology.

Web Architectural Style

According to Fielding, there are two ways to define a system.

e Oneis to start from a blank slate—an empty whiteboard—with no
initial knowledge of the system being built or the use of familiar
components until the needs are satisfied.

e Asecond approach is to start with the full set of needs for the
system, and constraints are added to individual components
until the forces that influence the system are able to interact in
harmony with each other.

REST follows the second approach. In order to define a REST architecture, a
null-state is initially defined—a system that has no constraints whatsoever and where
component differentiation is nothing but a myth—and constraints are added one by
one. The following subsections cover web architectural style constraints. Each of these
constrations defines how the framework for REST APIs should be architected and
designed. Security is another aspect which needs to be considered independently as part
of this framework when rolling out RESTful APIs to the end users.

Client-Server

The separation of concerns is the core theme of the Web’s client-server constraints.
The Web is a client-server-based system, in which clients and servers have distinct
parts to play.
They may be implemented and deployed independently, using any language or
technology, so long as they conform to the Web'’s uniform interface.

STUDENTS-HUB.com

https://www.salesforce.com/developer/docs/api/
https://www.salesforce.com/developer/docs/api/
https://developer.paypal.com/docs/classic/api/PayPalSOAPAPIArchitecture/
https://developer.paypal.com/docs/classic/api/PayPalSOAPAPIArchitecture/
https://developer.paypal.com/docs/classic/api/PayPalSOAPAPIArchitecture/
https://dev.twitter.com/
https://developer.linkedin.com/apis
https://developer.linkedin.com/apis
https://students-hub.com

CHAPTER 1 © FUNDAMENTALS OF RESTFUL APIS

Uniform Resource Interface

The interactions between the Web’s components—meaning its clients, servers, and
network-based intermediaries—depend on the uniformity of their interfaces.

Web components interoperate consistently within the uniform interface’s four
constraints, which Fielding identified as:

¢ Identification of resources
e Manipulation of resources through representations
e Self-descriptive messages

e Hypermedia as the engine of application state (HATEOAS)

Layered System

Generally speaking, a network-based intermediary will intercept client-server
communication for a specific purpose.

Network-based intermediaries are commonly used for enforcement of security,
response caching, and load balancing

The layered system constraints enable network-based intermediaries such as proxies
and gateways to be transparently deployed between a client and server using the Web’s
uniform interface.

Caching

Caching is one of web architecture’s most important constraints. The cache constraints
instruct a web server to declare the cache ability of each response’s data.

Caching response data can help to reduce client-perceived latency, increase the
overall availability and reliability of an application, and control a web server’s load. In a
word, caching reduces the overall cost of the Web.

Stateless

The stateless constraint dictates that a web server is not required to memorize the
state of its client applications. As a result, each client must include all of the contextual
information that it considers relevant in each interaction with the web server.

Web servers ask clients to manage the complexity of communicating their
application state so that the web server can service a much larger number of clients. This
trade-off is a key contributor to the scalability of the Web’s architectural style.

Code-on-Demand

The Web makes heavy use of code-on-demand, a constraint which enables web servers to
temporarily transfer executable programs, such as scripts or plug-ins, to clients.

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 1 © FUNDAMENTALS OF RESTFUL APIS

Code-on-demand tends to establish a technology coupling between web servers
and their clients, since the client must be able to understand and execute the code that
it downloads on-demand from the server. For this reason, code-on-demand is the only
constraint of the Web’s architectural style that is considered optional.

HATEOAS

The final principle of REST is the idea of using Hypermedia As The Engine Of Application
State (HATEOAS). When developing a client-server solution using HATEOAS, the logic on
the server side might change independently of the clients.

Hypermedia is a document-centric approach with the added support for embedding
links to other services and information within the document format.

One of the uses of hypermedia and hyperlinks is composing complex sets of
information from disparate sources. The information could be within a company private
cloud or within a public cloud from disparate sources.

Example:

<podcast id="111">
<customer>http://customers.myintranet.com/customers/1</customers>
<link>http://podcast.com/myfirstpodcast</1ink>
<description> This is my first podcast </description>

</podcast>

Each of these web architecture styles adds beneficial properties to the web system.

By adopting these constraints, teams can build simple, visible, usable, accessible,
evolvable, flexible, maintainable, reliable, scalable and performant systems as shown in
Table 1-2 below:

Table 1-2. Constraint and system property

By following the constraint Gain the following system property

Client-server interactions Simple, Evolvable, Scalable

Stateless communications Simple, Visible, Maintainable, Evolvable, and Reliable

Cacheable data Visible, Scalable, and Performant

Uniform Interfaces Simple, Usable, Visible, Accessible, Evolvable, and
Reliable

Layered system Flexible, Scalable, Reliable, and Per formant

Code on demand Evolvable

6

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 1 © FUNDAMENTALS OF RESTFUL APIS

Security

We have not covered security in this chapter as part of REST fundamentals, but security
is very important for rolling out RESTful APIs. This book has a complete chapter on
securing RESTful APIs which has details on best practices for securing RESTful APIs and
OAuth, which is a standard for REST APIs security.

What is REST?

We have briefly introduced REST with REST API fundamentals in the previous section.
This section has further introductory details about REST concepts.

“REST” was coined by Roy Fielding in his Ph.D. dissertation to describe a design
pattern for implementing networked systems. REST is Representational State Transfer, an
architectural style for designing distributed systems. It’s not a standard, but rather a set of
constraints. It's not tied to HTTP, but is associated most commonly with it.

REST Basics

Unlike SOAP and XML-RPC, REST does not really require a new message format. The
HTTP API is CRUD (Create, Retrieve, Update, and Delete)

e GET = “give me some info” (Retrieve)

e POST = “here’s some update info” (Update)
e PUT = “here’s some new info” (Create)

e DELETE = “delete some info” (Delete)

e Andmore....

e PATCH =The HTTP method PATCH can be used to update partial
resources. For instance, when you only need to update one field of
the resource, PUTting a complete resource representation might
be cumbersome and utilizes more bandwidth.

e HEAD = The HEAD method is identical to the GET method,
except that the server must not return a message body in the
response. This method is often used for testing hypertext links for
validity, accessibility, and recent modification.

e OPTIONS = This method allows the client to determine the
options and/or requirements associated with a resource, or the
capabilities of a server, without implying a resource action or
initiating a resource retrieval.

¢ Notion of “Idempotency” - the idea that when sending a GET,
DELETE, or PUT to the system, the effect should be the same
whether the command is sent one or more times, but POST
creates an entity in the collection and therefore is not idempotent.

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 1 © FUNDAMENTALS OF RESTFUL APIS

REST Fundamentals

Just to remind you, about 8,356 APIs were written in REST by ProgrammableWeb.com in
2016. REST is resource-based architecture. A resource is accessed via a common interface
based on the HTTP standard methods. REST asks developers to use HTTP methods
explicitly and in a way that’s consistent with the protocol definition. Each resource is
identified by a URL. Every resource should support the HTTP common operations,

and REST allows that resource to have different representations, e.g., text, xml, json,

etc. The rest client can ask for specific representation via the HTTP protocol (Content
Negotiation). Table 1-3 below describes data elements used in REST.

Table 1-3. Structures of REST

Data Element Description

Resource Conceptual target of a hypertext reference, e.g.,
customer/order

Resource Identifier A uniform resource locator (URL) or uniform resource

name (URN) identifying a specific resource, e.g.,
http://myrest.com/customer/3435

Resource Metadata Information describing the resource, e.g., tag, author,
source link, alternate location, alias names

Representation The resource content—JSON Message, HTML Document,
JPEG Image

Representation Metadata Information describing how to process the representation,
e.g., media type, last-modified time

Control Data Information describing how to optimize response
processing, e.g., if-modified-since, cache-control-expiry

Let’s look at some examples.

Resources
First, a REST resource to GET a list of podcasts:
http://prorest/podcasts

Next, a REST resource to GET details of podcast id 1:
http://prorest/podcasts/1

STUDENTS-HUB.com

http://myrest.com/customer/3435
https://students-hub.com

CHAPTER 1 © FUNDAMENTALS OF RESTFUL APIS

Representations

Here is an XML respresentation of a response—GET customer for an id.

<Customer>
<id»123</id>
<name>John</name>

</Customer>

Next, a JSON respresentation of a response—GET customer for an id:

{"Customer":{"id":"123","name":"John"}}

Content Negotiation

HTTP natively supports a mechanism based on headers to tell the server about the
content you expect and you're able to handle. Based on these hints, the server is
responsible for returning the corresponding content in the correct format. Figure 1-1
shows an example.

Client Server
Request
Only supports JSON content Only supports
JSON format XML format
406 status

~— code —

Figure 1-1. Content negotiation

If the server doesn’t support the requested format, it will send back a 406 status code
(Not Acceptable) to notify the client that made the request (“The requested resource is
only capable of generating content not acceptable according to the Accept headers sent
in the request”) according to the specification.

Wrapping-Up

REST identifies the key architectural principles of why the Web is prevalent and scalable.
The next step in the education of the Web is to apply these principles to the semantics
Web and the world of web services. REST offers a simple, interoperable, and flexible way
of writing web services that can be very different than the WS-* that so many of you had
training in. In the next chapter we will cover these concepts in more detail.

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2

API Design and Modeling)

This chapter starts with API design strategies and then goes into API creation process
and modeling. Best practices for REST API design are discussed, followed by API solution
architecture. In the excercises, a simple API is designed for podcasts suscription and then
modeling using RAML.

API Design Strategies

As Ul is to UX (User Experience), API is to APX (Application Programming Experience).
In APX it is important o answer following questions:

e What should be exposed?
e Whatis the best way to expose the data?
e How should API be adjusted and improved?

In addition, let’s discuss why we should develop a nice Application Programming
Experience?

A nice API will encourage the developers to use it and share it with others, creating
a virtuous cycle where each additional successful implementation leads to more
engagement and more contributions from developers who add value to your service. I'll
start by saying that API design is hard.

Also, a nice API will help to grow an ecosystem of employees, customers, and
partners who can use and help to continue to evolve your API in ways that are mutually
beneficial.

There are four strategies for API design:

e Bolt-on strategy: This is when you have an existing application
and add an API after the fact. This takes advantage of existing
code and systems (Figure 2-1).

© Sanjay Patni 2017 11
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_2

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

Backend System

“ Main
. Product
Integration

Figure 2-1. Bolt-on strategy

e Greenfield strategy: This is the other extreme. This is a strategy
behind “API-first” or “Mobile first,” and is the easiest scenario
to develop an API. Since you're starting from scratch, you can
make use of technologies and concepts that may not have been
available before (Figure 2-2).

Main Product

Mobile Device
Integrations

Figure 2-2. Greenfield strategy

=
2
«©
=
(Jp]
=)
[e
(<]
<
(&]
(3°]
(aa]

Greanfield or API-first strategy is a simulation-based design implementation.

12

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

Simulation of a back-end system is development of a back-end system without
needing fully implemented back-end systems. With simulation of APIs, consumers can
start development of apps without fully developed APIs.

Agile design strategy: Agility is based on the premise that you can
start without a full set of specs. You can always adapt and change
the specs later, as you go and learn more. Through multiple
iterations, architectural design can converge to the right solution.
Agile approach should only be applied until API is published.

Finally, you have the facade strategy, which is the middle
ground between Greenfield and bolt-on. In this case, you can
take advantage of existing business systems, yet shape them
to what you prefer and need. This gives them the ability to
keep working systems in place while making the underlying
architecture better.

API Creation Process and Methodology

In this section we are going to review API creation process and methodology. In order to
deliver great APIs, the design must be a first-order concern. Like optimizing for UX (User
Experience) has become a primary concern in UI development, also optimizing for APX
(API User Experience) should be a primary concern in API development.

Process

First determine your business value. When thinking about business value, think of the
“elevator pitch” about why you need an APIL. Developer engagement is not a great goal;
you need a tangible goal: increase user engagement, move activity off the main product to
the API, engage and retain partners, and so on.

Choose your metrics, e.g.:

STUDENTS-HUB.com

Number of developer keys in use
Number of applications developed
Number of users interacting via API
Number of partner integrations

How API is enhancing goals of the company as a whole rather
than simply determining how many people have begun to
integrate

13

https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

API Methodology

Consists of 5 phases in the case of agile strategy:
e Domain analysis or API description
e Architecture design
e Prototyping
e Building API for production, then
e Publishing the API

Domain Analysis or API Description

Define your use cases for domain analysis. Who are the participants? Are they external or
internal? Which API solutions do consumers want to build with the API? Which other API
solutions would be possible with the API?

Activities participant takes on consumer view: What would the API that the
consumer wants to use look like? What apps does the consumer want to build? What data
or domain objects does the consumer want to use in his app?

Break activities into steps or write down the usage scenario.

e Adependent resource can not exist without another.

e For example, the association of a podcast and its consumer
can not be determined unless the podcast and its consumer
are created.

¢ Anindependent resource can exist without another.

e For example, a podcast resource can exist without any
dependency.

e Anassociative resource exists independently but still has some
kind of relation, i.e., it may be connected by reference.

e Asmentioned above

The next step is to identify possible transitions between resource states. Transitions
between states provide an indicator of the HTTP method that needs to be supported. For the
example of the podcast which could be added to a playlist, let’s analyize different states:

Table 2-1. Domain analysis example

State Operation Domain Objet Description

CREATE POST PODCASTS Creates podcast
CREATE POST PLAYLISTS Creates empty playlists
READ GET/{podcast_id} PODCAST Reads podcast
UPDATE PUT/{playlist_id} PLAYLIST Adds podcast to playlist
14

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

Also, verify by building a simple demo app. More than curl calls, this demo app
provides a showcase for the API and can be reused in later stages.

Architecture Design

In this phase, API description or analysis phase is further redefined. Architecture design
should make decisions about

e Protocol

e End points

e URIdesign

e Security

e Performance or availability
Detail design description:

e Resources

e Representations

e Content types

e Parameters

e HTTP methods

e HTTP status codes

e Consistent naming

In addition, look into resuability by looking at common APIs in the API Portfolio.
Design decisions should be consistent with the API in the API Portfolio. The API Portfolio
is a collection of APIs in an Enterprise, as discussed in Chapter 5.

As part of the design verfication, the demo app can be further extended here with
design decisions. Issues to be verfied are that:

e the API s still easy to use;
e the APIis simple and supports use cases; and,

e the API follows architectural style.

Prototyping

Prototyping is the preparation for the production implementation. Take complex

use cases and implement end-to-end with high-fidelity. The prototype is incomplete
and uses shortcuts. It can have a simulation of API if the back-end functionality is not
available at the time of building the prototype. Once the prototype is made, then there is
the acceptance test with pilot consumers as verification of the API. Pilot customers are
internal customers from the API provider’s team.

15

STUDENTS-HUB.com

http://dx.doi.org/10.1007/978-1-4842-2665-0_5
https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

Implementation

The implementation needs to conform to the API description and needs to be delivered
as soon as possible. In addition, the API is fully integrated into the back-end system
and API Portfolio. This should have all the desired functionality as well as non-
functional aspects of the AP], like performance, security, and availability. At this stage,
the API description should be stable since it has gone through multiple iterations. For
verification, hand-picked API consumers could be identified at this stage.

Publish

Publishing of the API does not require a lot of work, but this is a big milestone for the
API. From an organizational perspective, the responsibility of the API is transferred
from development to the operational unit. After publishing, there is no agility in the
development process. Any change requires traditional change management process.
As part of the verfication, there is analysis on successful vs. failed API calls and
documentation gaps which are supported by the maintenance team.

API Modeling

Modeling the schema for your API means creating a design document that can be shared
with other teams, customers, or executives. A schema model is a contract between your
organization and the clients who will be using it. A schema model is essentially a contract
describing what the API is, how it works, and exactly what the endpoints are going to

be. Think of it as a map of the API, a user-readable description of each endpoint, which
can be used to discuss the API before any code is written. Figure 2-3 below shows the

API Modeling framework where you have API specifications defined and generate API
documentation. Also, generate server and client source code.

Client
Source
REST
Client
JSON, Generate APl d tati
VAML enerate oucmentation > HTML
@ API API
Server W e .
Source Specification Documentation
e
RESTful
Webservice

Figure 2-3. API Modeling

16

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

Creating this model before starting development helps you to ensure that the API
you create will meet the needs described by the use cases you've identified. The three
schema modeling systems and the markup languages they use are:

¢ RAML: markdown, relatively new. Good online modeling tool:
RESTful API Modeling Language

e Swagger: JSON, large community
e Blueprint: markdown, low adoption

The RAML exercise in this chapter shows the modeling done for the podcast resource.

Each of the schema modeling languages has tools available to automate testing
or code creation based on the schema model you've created, but even without this
functionality the schema model helps you to have a solid understanding of the API before
a single line of code is written.

Figure 2-4 below shows the API Modeling tool.

Write once. Use many. Creative laziness encouraged.

BIVINIOIG

Figure 2-4. API Modeling tool

Comparison of API Modeling

Table 2-2. Comparision of API Modeling tools

Category Property RAML API Blueprint Swagger
What is behind Format YAML Markdown JSON
name? (MOSN)
Available at Github Github Github
Sponsored By Mulesoft Apiary Reverb
Current Version 1.0 1A3 2.0
Initial Commit Sep 2013 Apr 2013 Jul 2011
Commercial Yes Yes Yes
Offering
How does it Resources X X X(“api”)
model REST?
Methods/ X(“methods”) X(“actions”) X(“operations”)
Actions
(continued)

17

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

Category Property RAML API Blueprint Swagger
Query X X X
Parameters
Path / URL X X X
Parameters
Representation X X X
Header X X X
Parameters
Documentation X X X
References http://raml. https:// http://
org apiblueprint. swagger.io
org
Design API-first Design First Existing API
Code Generation X X
Who are APIGEE,
customers? Microsoft, Paypal

In summary:

e Swagger has a very strong modeling language for defining exactly
what'’s expected of the system—very useful for testing and
creating coding stubs for a set of APIs.

e RAMLis designed to support a design-first development flow, and
focuses on consistency.

e Apiary blueprint is more documentation-focused, with user-
readable models and documentation as its first priority.

Each project brings different strengths and weaknesses to the table, and in the
end it’s really about what strengths you need and which weaknesses you cannot afford.
Overall, RAML fared the best in these different categories and, while the developer
community is not as large as the others, I think it’s safe to say it will keep growing.

Overall Winner: RAML

Best Practices

REST is an architectural style and not a strict standard; it allows for a lot of flexibly.
Because of that flexibility and freedom of structure, there is also a big appetite for design
best practices. These best practices are discussed here in this section.

18

STUDENTS-HUB.com

http://raml.org/
http://raml.org/
https://apiblueprint.org/
https://apiblueprint.org/
https://apiblueprint.org/
http://swagger.io/
http://swagger.io/
https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

Keep your base URL simple and intuitive

The base URL is the most important design affordance of your API. A simple and
intuitive base URL design makes using your API easy. Affordance is a design property
that communicates how something should be used without requiring documentation.
A door handle’s design should communicate whether you pull or push. For Web API
design, there should be only two base URLSs per resource. Let’s model an API around a
simple object or resource (a customer) and create a Web API for it. The first URL is for a
collection; the second is for a specific element in the collection:

e /customers - Collection
e /customers/1 - Specific element

Boiling it down to this level will also force the verbs out of your base URLSs. Keep
verbs out of your URLSs as shown in table below:

Table 2-3. Nouns and verbs

Resource POST Create GET Read PUT Update DELETE Delete
/customers New customer List customers Bulk update Delete all
/customers/12 - Show customer 12 If exists update Delete

If not error customer 12

In summary:

e Use two base URLSs per resource. Keep verbs out of your base
URLs. Use HTTP verbs to operate on the collections and elements.

e Thelevel of abstraction depends on your scenario. You also want
to expose a manageable number of resources.

e Aim for concrete naming and to keep the number of
resources between 12 and 24.

e Anintuitive API uses plural rather than singular nouns, and
concrete rather than abstract nouns.

e Resources almost always have relationships to other resources.
What's a simple way to express these relationships in a Web
API? Let’s look again at the API we modeled in nouns are
good, verbs are bad—the API that interacts with our podcasts
resource. Remember, we had two base URLs: /podcasts and /
podcasts/1234. We're using HTTP verbs to operate on the
resources and collections. Our podcasts belong to customers. To
get all the podcasts belonging to a specific customer, or to create a
new podcast for that customer, do a GET or a POST:

e GET /customers/5678/podcasts
e POST /customers/5678/podcasts

19

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

e Sweep complexity under the “?”. Make it simple for developers to
use the base URL by putting optional states and attributes behind
the HTTP question mark. To get all customers in sfo city of ca
state of usa country:

e GET /customers?country=usa&state=ca&city=sfo

Error Handling

Many software developers, including myself, don’t always like to think about exceptions
and error handling, but it is a very important piece of the puzzle for any software
developer, and especially for API designers. Why is good error design especially
important for API designers? From the perspective of the developer consuming your Web
AP], everything at the other side of that interface is a black box. Errors therefore become
a key tool providing context and visibility into how to use an API. First, developers learn
to write code through errors. The “test-first” concepts of the extreme programming model
and the more recent “test-driven development” models represent a body of best practices
that have evolved because this is such an important and natural way for developers to
work. Second, in addition to when they're developing their applications, developers
depend on well-designed errors at the critical times when they are troubleshooting and
resolving issues after the applications they’ve built using your API are in the hands of
their users.

Handling errors: Let’s take a look at how three top APIs approach:

e Facebook

HTTP Status Code: 200

{"type" : "OauthException", "message":"(#803) Some of
the aliases you requested do not exist: foo.bar"}

e Twilio
HTTP Status Code: 401

{"status" : "401", "message":"Authenticate","code":
20003, "more info": "http://www.twilio.com/docs/
errors/20003"}

e Another example of error messaging from SimpleGeo

HTTP Status Code: 401

{"code" : 401, "message": "Authentication Required"}

20

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 © API DESIGN AND MODELING
When you boil it down, there are really only 3 outcomes in the interaction between
an app and an API:
e Everything worked—success.
e The application did something wrong—client error.

e The API did something wrong—server error.

Error Code

Start by using the following 3 codes which should map to the 3 outcomes above. If you
need more, add them. But you shouldn’t need to go beyond:

e 200-0K
e 400 - Bad Request
e 500 - Internal Server Error

If you're not comfortable reducing all your error conditions to these 3, try picking
among these additional 5:

e 201 - Created

e 304 - Not Modified
e 404 - Not Found

e 401 - Unauthorized
e 403 - Forbidden

Check out this good Wikipedia entry for all HTTP Status codes: https://
en.wikipedia.org/wiki/List_of HTTP_status_codes.

Versioning
Never release an API without a version.
e Make the version mandatory.

“yn

e Specify the version with a “v” prefix. Move it all the way to the left
in the URL so that it has the highest scope (e.g., /v1/dogs).

e Use asimple ordinal number. Don’t use the dot notation like v1.2,
because it implies a granularity of versioning that doesn’t work
well with APIs—it’s an interface, not an implementation. Stick
with v1, v2, and so on.

e How many versions should you maintain? Maintain at least one
version back.

21

STUDENTS-HUB.com

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

e For how long should you maintain a version? Give developers at
least one cycle to react before obsoleting a version.

e There is a strong school of thought about putting format (xml
or json) and version in the header. Simple rules we follow: If it
changes the logic you write to handle the response, put it in the
URL so you can see it easily. If it doesn’t change the logic for each
response (like OAuth information), put it in the header.

Partial Response

Partial response allows you to give developers just the information they need. Take, for
example, a request for a tweet on the Twitter API. You'll get much more than a typical
twitter app often needs, including the name of person, the text of the tweet, a timestamp,
how often the message was retweeted, and a lot of metadata. Let’s look at how several
leading APIs handle giving developers just what they need in responses, including
Google, who pioneered the idea of partial response:

e LinkedIn
/people: (id, first-name,last-name, industry)

This request on a person returns the ID, first name,
last name, and the industry

e Facebook
/joe.smith/friends?fields=id,name,picture
e Google
?fields=title,media

Google and Facebook have a similar approach, which works well. They each have an
optional parameter called “fields” after which you put the names of fields you want to be
returned. As you see in this example, you can also put sub-objects in responses to pull in
other information from additional resources.

Pagination

Make it easy for developers to paginate objects in a database. Let’s look at how Facebook,
Twitter, and LinkedIn handle pagination. Facebook uses offset and limit. Twitter uses
page and rpp (records per page). LinkedIn uses start and count semantically. Facebook
and LinkedIn do the same thing, that is, the LinkedIn start and count.

To get records 50 through 75 from each system, you would use:

e Facebook - offset 50 and 1imit 2
e Twitter - page 3 and rpp 25 (records per page)
e LinkedIn - start 50 and count 25

22

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

Multiple Formats

We recommend that you support more than one format—that you push things out in one
format and accept as many formats as necessary. You can usually automate the mapping
from format to format. Here’s what the syntax looks like for a few key APIs.

¢ Google Data: ?alt=json
e Foursquare: /venue. json

e Digg*: Accept: application/json

API Facade

Use the facade pattern when you want to provide a simple interface to a complex
subsystem. Subsystems often get more complex as they evolve.
Implementing an API facade pattern involves three basic steps:

1. Design the ideal API—design the URLSs, request parameters
and responses, headers, query parameters, and so on. The
API design should be self-consistent. This means you give the
developers the information they need.

2. Implement the design with data stubs. This allows application
developers to use your API and give you feedback even before
your API is connected to internal systems

3. Mediate or integrate between the facade and the systems.

API Solution Architecture

Developers and architects often think of APIs as a continuation of the integration-based
architectures that have long been in use within enterprise IT. But this is a narrow view.

To understand the demands and requirements on APIs, let’s discuss typical solutions
that are enabled by APIs.

Figure 2-5 below shows API Solution Architecture.

API solutions typically consists of two components:

e Exposes API
e Exposed APIresides server-side, e.g., in the cloud or on premise.
e Consumes API

e Web or mobile apps and embedded devices on IoT

23

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

S J &

Cloud Solution Mobile Solution Integration Solution
v Cs
Multi Channel Solution Smart TV Solution
ﬁﬁ
>
Web Application Internet of Things

:.z

API

ol &

Company Backends

Figure 2-5. API Solution Architecture

Mobile Solutions

Mobile apps need to connect to the servers on the Internet to be useable at all or at
least to be usable to their full potential —some business logic on the app and heavy
duty processing logic on servers on the cloud. Functionality hosted on these servers
can be reached by APISs calls. Data captured on mobile devices is sent to servers by APIs
calls, which hands to services and then to databases. Data delivered by APIs needs to
be lightweight. This ensures APIs can be consumed by devices with limited processing
power. Typically, the mobile app provider provides the APIs for the mobile app.

Cloud Solutions

SaaS cloud solutions typically consist of a web application and APIs. The web application
is visible for the consumers. Under the hood, cloud solutions usually offer an API as well.
Examples: Dropbox, Salesforce, Workday, Oracle Cloud

Web Solutions

Web applications display dynamic web pages based upon user requests; web pages are
created on the fly with data available from the back end. The web application pulls raw
data from the APIs, processes the data (JSON, XML), and displays in HTML, e.g., podcast
or customer API.

Integration Solutions

APIs provide capabilities which are essential for connecting, extending the integrating
software. By integrating software APIs, businesses can connect with other businesses. The
business of an enterprise can be expanded by linking business to a partner. Integration
not only makes sense externally, but also internally for integrating internal systems.

24

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

Multi-channel Solutions

Today, an e-commerce system offers customers shopping on multiple platforms—mobile,
web, tablet. It is required to provide a seamless experience when a consumer moves from
one platform to another. This can be accomplished by providing a common API, which
supports a multichannel maintaining state of user experience.

Smart TV Solutions

Smart TV offers not only TV channles, but provides interaction capablities. These are all
implemented by API calls to the servers.

Internet-of-Things

The Internet of Things is made up of physical devices with an Internet connection. The
device connects to smart functions (e.g., sensors, scanners, etc.) which are exposed on
the Internet via APIs.

Stakeholders in API Solutions

In API Solutions, stakeholders are API Providers, API Consumers and End Users. We will
discuss the roles of each here in this section.

API Providers

API providers develop, design, deploy, and manage APIs. API providers define the API
portfolio, roadmap, and product mode. It is the responsiblity of an API provider to
decide which functionality is exposed by the API. In the solution-driven approach, only
those APIs are built which are required by the consumer. In the top-down approach,
API providers provide APIs which are good from an internal perspective, e.g., from a
reusability perspective.

API Consumers

Consumers need to know how to call API and build an API client. API providers should
provide a demo app to consume their API for the consumers.

End users
End users do not call the API directly, but use the app developed by API consumers.

25

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

API DESIGN

For the purposes of a Podcast API, these would be the use cases you want to
support:

e (Creating a new podcast
e (Getting a list of podcasts, including matching particular podcast title
e (Creating a new customer
e Customer subscribing to a podcast - Association
In summary, the resources and their methods will be as follows:
Detail design description:
e Resource - podcasts
e (reating a podcast
* Protocol - HTTP
e End Points - protocol:host:port/podcasts
¢ URI Design - protocol:host:port/podcasts
e Searching a podcast
* Protocol - HTTP
e End Points - protocol:host:port/podcasts

¢ URI Design - protocol:host:port/podcasts?
title=ctitle>

e Representations

e JSON
{ "podcasts” :
[{ "id" : 1,
"title" : "itunes podcast”,
"feed" : "http://www.itunes.com/",

A
-

26

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

¢ Content types - application/json
e Query Parameters - title
e HTTP methods - GET, POST
e HTTP status codes - 200, 400, 500
e Resource - customers
e (reating a customer
* Protocol - HTTP
e End Points - protocol:host:port/customers
e URI Design - protocol:host:port/customers
e Customer subscribing to a podcast
* Protocol - HTTP
e End Points - protocol:host:port/customers

e URI Design - protocol:host:port/customers/{id}/
podcasts/{id}

e Representations

e JSON
{
"customers" :
[{ "id" : 1,
"name" : "apple",
"url" : http://www.apple.com/
"podcasts” : { "podcasts" :
[{"id" : 1,
"title" : "itunes podcast",
"feed" : "http://www.itunes.com/"
1
}
b
]
}

27

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

e Content types - application/json
e Parameters - name

e HTTP methods - PUT or POST

e HTTP status codes - 200, 400, 500

APl MODELING

To get started with the RAML API Designer, you will first need to create a (free)
account on the Anypoint system, where Mulesoft maintains their RAML specific
tools:

1. Sign up for Anypoint
https://anypoint.mulesoft.com/apiplatform
2. From the API Administration board, select Add New API

https://anypoint.mulesoft.com/accounts/#/signin

MODELING STEPS USING RAMLTOOL

This tutorial walks you through modeling an API using RAML with a mock response
at the end.

The Anypoint RAML editor features a bottom toolbar for adding sections to the
model. This toolbar is context-sensitive; it will only offer appropriate sections based
on where you are currently in the model.

Step 1: Enter the Root. Everything you enter in at the root (or top) of the spec applies
to the rest of your API. This is going to come in very handy later as you discover
patterns in how you build your API. The baseURT you choose will be used with every
call made, so make sure it’s as clean and concise as can be.

#%RAML 0.8
title: Podcast

version: vi
baseUri: http://api.podcast:8080/

28

STUDENTS-HUB.com

https://anypoint.mulesoft.com/apiplatform/
https://anypoint.mulesoft.com/apiplatform/
https://anypoint.mulesoft.com/accounts/#/signin
http://raml.org/developers/raml-100-tutorial
http://raml.org/developers/raml-100-tutorial
https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md#root-section
https://students-hub.com

STUDENTS-HUB.com

CHAPTER 2 " API DESIGN AND MODELING

Step 2: Enter the resources - Recalling how your API consumers will use your AP,
enter the following three resources under your root as per API design in previous
exercise:

#%RAML 0.8
title: Podcast
version: vi
baseUri: http://api.podcast:8080/
/podcasts:
/customers:
/podcasts:

Step 3: Enter methods for the resources. You can add as many methods as you like
to each resource.

#%RAML 0.8

title: Podcast

version: vi

baseUri: http://api.podcast:8080/

/podcasts:
post:
get:
/customers:
post:
get:
/podcasts
put:

Step 4: Enter URI parameters. The resources that we defined are collections of
smaller, relevant objects. This is a URI parameter, denoted by surrounding curly
brackets in RAML.

#%RAML 0.8

title: Podcast

version: vi

baseUri: http://api.podcast:8080/

/podcasts:
post:
get:
/customers:
post:
get:{id}:
/podcasts:{id}:
put:

29

http://raml.org/developers/raml-100-tutorial
http://raml.org/developers/raml-100-tutorial
http://raml.org/developers/raml-100-tutorial
https://students-hub.com

CHAPTER 2 ' API DESIGN AND MODELING

Step 5: Enter query parameters. Start by adding query parameters under the GET
method for podcasts. These can be specific characteristics, like the podcasts for a title.

#%RAML 0.8

title: Podcast

version: vi

baseUri: http://api.podcast:8080/

/podcasts:
post:
get:
queryParameters:
title
/customers:
post:
get:{id}:
/podcasts:{id}:
put:

Step 6: Enter responses. Responses MUST be a map of one or more HTTP status
codes, and each response may include descriptions and examples.

#%RAML 0.8

title: Podcast

version: vi

baseUri: http://api.podcast:8080/

/podcasts:
post:
get:
queryParameters:
title:
responses:
200:
body:
application/json:
{ "podcasts" :
[{"id" : 1,
"title" : "itunes podcast",
"feed" : "http://www.itunes.com/",
1
{
}
]
}
30

STUDENTS-HUB.com

http://raml.org/developers/raml-100-tutorial
http://raml.org/developers/raml-100-tutorial
https://students-hub.com

CHAPTER 2 " API DESIGN AND MODELING

/customers:
post:
get:{id}:
/podcasts:{id}:
put:

Once you have modeled API, you can generate a document which could be shared
with APl consumers.

Wrapping Up

In this chapter we started with API design strategies and then looked into API creation
process and modeling. Best practices for REST API design are discussed, followed by API
solution architecture. We compared API modeling tools, designed an API for the podcasts
suscription, and then modeled that using RAML.

31

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3

Introduction - XML, JSON -

This chapter introduces basic concepts about XML and JSON. At the end of this chapter
there is an exercise for environment setup.

What is XML?

eXtensible Markup Language - XML is a text-based markup language which is
standard for data interchange on the Web. As with HTML, you identify data using
tags (identifiers enclosed in angle brackets, like this: <...>). Collectively, the tags are
known as “markup.” It puts a label on a piece of data that identifies it (for example:
<message>...</message>). In the same way that you define the field names for a data
structure, you are free to use any XML tags that make sense for a given application.
Naturally, though, for multiple applications to use the same XML data, they have to
agree on the tag names they intend to use. Here is an example of some XML data you
might use for a messaging application:

<message>
<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Cool></subject>
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Tags can also contain attributes (additional information included as part of the tag
itself) within the tag’s angle brackets. If you consider the information in question to be
part of the essential material that is being expressed or communicated in the XML, put
itin an element. For human-readable documents, this generally means the core content
that is being communicated to the reader. For machine-oriented records formats, this
generally means the data that comes directly from the problem domain. If you consider

© Sanjay Patni 2017 33
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_3

STUDENTS-HUB.com

https://www2.informatik.hu-berlin.de/~xing/Lib/Docs/jaxp/docs/tutorial/glossary.html#tag
https://www2.informatik.hu-berlin.de/~xing/Lib/Docs/jaxp/docs/tutorial/glossary.html#attribute
https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

the information to be peripheral or incidental to the main communication, or purely
intended to help applications process the main communication, use attributes. The
following example shows an email message structure that uses attributes for the to, from,
and subject fields:

<message to=you@yourAddress.com from=me@myAddress.com
subject="XML Is Really Cool">
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

One really big difference between XML and HTML is that an XML document is
always constrained to be well-formed. There are several rules that determine when a
document is well-formed, but one of the most important is that every tag has a closing
tag. So, in XML, the </to> tag is not optional. The <to> element is never terminated by
any tag other than </to>.

Note Another important aspect of a well-formed document is that all tags are
completely nested. So you can have <message>. .<to>..</to>..</message>, but never
<message>..<to>..</message>..</to>

An XML Schema is a language for expressing constraints about XML documents.
There are several different schema languages in widespread use, but the main ones
are Document Type Definitions (DTDs). It defines the legal building blocks of an XML
document. It also defines the document structure with a list of legal elements and
attributes.

XML Comments

XML comments look just like HTML comments:

<message to=you@yourAddress.com from=me@myAddress.com
subject="XML Is Really Cool">
<!-- This is comment -->
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

To complete this introduction to XML, note that an XML file always starts with a
prolog. The minimal prolog contains a declaration that identifies the document as an
XML document, like this:

<?xml version="1.0"?>

34

STUDENTS-HUB.com

https://www2.informatik.hu-berlin.de/~xing/Lib/Docs/jaxp/docs/tutorial/overview/4_design.html
https://www2.informatik.hu-berlin.de/~xing/Lib/Docs/jaxp/docs/tutorial/glossary.html#prolog
https://www2.informatik.hu-berlin.de/~xing/Lib/Docs/jaxp/docs/tutorial/glossary.html#declaration
https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON
The declaration may also contain additional information, like this:
<?xml version="1.0" encoding="IS0-8859-1" standalone="yes"?>
e version: Identifies the version of the XML markup language used

in the data. This attribute is not optional.

e encoding: Identifies the character set used to encode the data.
“ISO-8859-1" is “Latin-1’, the Western European and English
language character set. (The default is compressed Unicode:
UTE-8.)

e standalone: Tells whether or not this document references an
external entity or an external data type specification. If there are
no external references, then “yes” is appropriate.

Why is XML Important?

It is important because it allows the flexible development of user-defined document
types, which means that it provides a persistent, robust, non-proprietary, and verifiable
file format which can be used for the storage and transmission of data for both on and off
the Web. In addition, XML:

e provides plain text: plain text makes it readable;
e provides data identification: by use of tags, data can be identified;

e provides styleability: using XSLT (eXtensible StyLe Sheet), data
can be made in a presentable form;

e iseasily processed (XML parsers, as well as well-formed parsers);

e ishierarchical (through nested tags).

How can you use XML?
There are several basic ways to make use of XML:

¢ Document-driven programming, where XML documents are
containers that build interfaces and applications from existing
components

e Archiving: the foundation for document-driven programming,
where the customized version of a component is saved (archived)
so it can be used later

¢ Binding, where the DTD or schema that defines an XML data
structure is used to automatically generate a significant portion of
the application that will eventually process that data

35

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

Pros and Cons of XML

Some of the pros and cons of XML are explained below.

e Pros
e Readable and editable by developers
e Error checking by means of schema and DTDs
e Canrepresent complex hierarchies of data
e Unicode gives flexibility for international operation
e Plenty of tools in all computer languages for both creation

and parsing
e Cons

e Bulky text with low payload/formatting ratio (but can be
compressed)

e Both creation and client-side parsing are CPU intensive

e Common word processing characters are illegal (MS Word
“smart” punctuation, for example)

e Images and other binary data require extra encoding

What is JSON?

JSON or JavaScript Object Notation is a lightweight text-based open standard designed
for human-readable data interchange. Conventions used by JSON are known to
programmers, which include those with knowledge of C, C++, Java, Python, Per], etc.

e The format was specified by Douglas Crockford.

e Itwas designed for human-readable data interchange.

e Ithasbeen extended from the JavaScript scripting language.
e The filename extension is . json.

e JSON Internet media type is application/json.

¢ JSON is easy to read and write.

e JSONislanguage-independent.

JSON Syntax

In this section we will discuss what JSON’s basic data types are and syntax. Figure 3-1
shows basic data types of the JSON.

36

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

value

Figure 3-1. Basic data types

Strings

Strings are enclosed in double quotes, and can contain the usual assortment of escaped
characters.

Numbers

Numbers have the usual C/C++/Java syntax, including exponential (E) notation. All
numbers are decimal—no octal or hexadecimal.

Objects

An object is an unordered set of a name/value pair. The pairs are enclosed within
braces ({ }).
Example:

{ "name": "html", "years": 5 }

Pairs are separated by commas. There is a colon between the name and the value.
The syntax of a JSON object is shown in Figure 3-2.

object
=0 ~®—|
M)

o/

Figure 3-2. JSON object

37

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

Arrays

An array is an ordered collection of values. The values are enclosed within brackets. The
syntax of JSON arrays is shown in Figure 3-3.

array
I—@ 'I value :
)\
>/

Figure 3-3. JSON arrays

Booleans

It can have either true or false values.

Null

The value is that it’s empty.

Why is JSON Important?

There is a reason why JSON is becoming very popular as a data exchange format (more
important than it being less verbose than XML): programmers are sick of writing parsers!
But “wait,” you say. “Surely there are XML parsers available for you to use so that you
don’t have to roll your own.” Yes, there are. But while XML parsers handle the low-level
syntactic parsing of XML tags, attributes, etc., you still need to walk the DOM tree or,
worse, build one yourself with nothing but a SAX parser (Objective-C iPhone SDK I'm
looking at you!). And that code you write will of course depend on whether the XML you
need to make sense of looks like this:

1 <person first-name="John" last-name="Smith"/>

or this:

1 <person>

2 <first-name>John</first-name>
3 <last-name>Smith</last-name>
4 </person>

38

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

or this:

<object type="Person">

<property name="first-name">John</property>
<property name="last-name">Smith</property>
</object>

W N R

or any of the myriad of other ways one can conceive of expressing the same concept (and
there are many). The standard XML parser does not help you in this regard. You still need
to do some work with the parse tree.

Working with JSON is a different, and superior, experience. First, the simpler syntax
helps you avoid the need to decide between many different ways of representing your
data (as we saw above with XML), much less which rope to hang yourself with. Usually
there is only one straightforward way to represent something:

1 { "first-name" : "John",
2 "last-name" : "Smith" }

How can you use JSON?
The following discusses how you can use JSON.

e Itis used while writing JavaScript-based applications that include
browser extensions and websites.

e JSON format is used for serializing and transmitting structured
data over a network connection. It is primarily used to transmit
data between a server and web applications.

e Web services and APIs use JSON format to provide public data.

Pros and Cons of JSON

The following are pros and cons of JSON:
Pros:

e Easytoread/write/parse
e Reasonably succinct (compared with XML, for instance)

e Common “standard” with many libraries available

¢ Notaslight as binary formats

L4 Can’t use comments

39

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3

INTRODUCTION - XML, JSON

e It’s “encapsulated,” meaning that you can’t readily stream/append
data, but have to break it up into individual objects. XML has the

same problem, whereas CSV does not.

e Difficult to describe the data you're presenting (easier with XML)

e Unable to enforce, or validate against, a structure/schema

XML - JSON Comparison

This section compares XML and JSON based upon different properties.

Table 3-1. XML - JSON comparison

Property

XML

JSON

Simplicity

XML is simple, human-
readable

But JSON is much simpler than
XML as well as human-readable

Self- Describing Yes Yes
Processing XML is processed easily. JSON is processed more easily
because its structure is simpler.
Performance Not optimized for Faster than XML because of size
performance due to tags
Openness XML is open. JSON is at least as open as XML,
perhaps more so because it is not in
the center of a corporate/political
standardization struggle.
Object- Oriented XML is document- JSON is data-oriented. JSON can
oriented be mapped more easily to object-
oriented systems.
Interoperability XML is interoperable. JSON has the same interoperability
potential as XML.
Internationalization = Supports unicode Supports unicode
Extendability XML is extensible. JSON is not extensible because it
does not need to be. JSON is not a
document markup language, so it is
not necessary to define new tags or
attributes to represent data in it.
Adoption XML is widely adopted by JSON is just beginning to become
industry. known. Its simplicity and the ease
of converting XML to JSON makes
JSON ultimately more adoptable.
40

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

ENVIRONMENT SETUP AND HELLO FROM REST

EXERCISE

Environment

Table 3-2 lists the software needed for the labs. The lab in this chapter sets you up with
the environment and helps you validate the initial environment for “hello from REST”.

Table 3-2. Software for installation

Software Usage Installation Notes
JDK 8 Required for = Download binary for your machine.
lab projects Execute binary and follow the instructions.
Eclipse - Development
Mars IDE
Jetty Runninglabs Setup JETTY in Eclipse. Follow the instructions below.
or in IDE 1. Go to Eclipse » Install New Software menu.
Tomcat 2. Click on Add and type Jetty for Name and

http://eclipse-jetty.github.io/update/ for Location.

3. Pressing OK will prompt with a screen for “Terms and
Conditions.” Review these and select accept to install
JETTY plug-in in Eclipse:

o el
| Bwsilaile Settware 3
Select 3 site ee eater theleeation of 3 ste. o
Workwah: Type or select a sie Y| e
Find mcse scftware by working with the “Auslatle Soltwme S peeferences.
type it bt
Hame Nersion
@ Thereis e site selecrel T = g = = [~
Neme: desty [tocal
Location: | hitpe//ictr.github.e ety run-updatesteicumerts | Archave. | |
|
= | W) e][comn
Seect Al Dussiast All
Detaily

7 Shewe soby the letest versicrs of vadable sektmare 7 Hude ity it ave slresdy mstslled
] Girca.pp iema by category Wt in glopachy ieeatiect?
Shawr saly software apphcatie ta target environment

7] Centect durng

7 ' Cancel

STUDENTS-HUB.com

(continued)

41

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://eclipse.org/downloads/
https://eclipse.org/downloads/
http://eclipse-jetty.github.io/update/
https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

Table 3-2. (continued)

Software Usage Installation Notes
Community Database - Download binary for your machine.
MySQL RDBMS Execute binary and follow the instructions to install it.
or
MS SQL
Maven Build tool
Or
Ant
Curl Running REST
API from

command-line

Postman Running REST
API from
browser

Hello from REST

This lab objective is:
e validation of the setup of the development environment;

e running “Hello from REST” in Jetty configured in Eclipse.

Prerequisite

You have JDK installed and Eclipse Mars setup with JETTY plug-in.

The image shown below depicts how REST URI is processed step by step from client
to server and then to client.

(2) Browser sends a request message

(1) User issues URL from a brow?er GET URL HTTP/1.1
http://host:port/path/file Host: host:port
_ (3) Server maps the URLto a
- file or program under the
a] (4) Server returns a response message document directory.
' HTTP/1.1 200 OK /
. $ AN =
(5) Browser formats the response <iiaaa..
and displays | ssssssssnssnaans
Client (Browser) HTTP (Over TCP/IP) Server (@ host:port)

Figure 3-4. REST URI processing

42

STUDENTS-HUB.com

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
https://maven.apache.org/download.cgi
http://curl.haxx.se/dlwiz/?type=*&os=Win64&flav=cygwin
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

Instructions

1. Create new project - File » New » Project » Maven »
Maven Project

File Edt Naagate Sesch Project Run Window Help

E%le =0

Q,Pm)enimlomm_

Create a Maven Project

Wizards:
| type fiter test

5 i General
e EB
o > Gradle

L3, Check out Maven Projects from SCM
124 Maven Medule

[I2 Maven Project|

BE Outine £{] Task List =0 b Web

An outline is not svadable. o & Exmples

£ Tasks 31
0 iterms.

2. Press Next. It will show following screen. Skip this screen by
pressing Next.

Select project name and location

[Create » simple project skip archety

[¥] Use default Workspace location

Location:

[Add project(s) to working set
Warkirg set: i

b Advenced

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

3. Select archetype as maven-archtype-webapp as below.

Select an Archetype

Catalog: [All Catalogs
Filter

Group Id Artifact Id Version
org.apache.maven.archetypes maven-archetype-plugin-site 11
org.apache.maven.archetypes maven-archetype-portlet 101
org.apache.maven.archetypes maven-archetype-profiles 10-alpha-4
org.apache.maven.archetypes maven-archetype-quickstart 1.1
org.apache.maven.archetypes maven-archetype-site 11
org.apache.maven.archetypes maven-archetype-site-simple 1.1

{ org.apache.maven.archetypes _maven- YE PP 10

An archetype which contains a sample Maven Webapp project.

Show the last version of Archetype only []Include snapshot archetypes

b Advanced

][Next >] | Finish

4. Fill information as below in the next screen for the Maven
project and press Finish.

44

STUDENTS-HUB.com

https://students-hub.com

[2 Project Explorer 52 &

STUDENTS-HUB.com

CHAPTER 3

INTRODUCTION - XML, JSON

Groupld: labl
Artifactld: labl

Version: 0.0.1-SNAPSHOT

Package: com.rest
Properties available from archetype:

Name Value

[Remo‘.re:

» Advanced

5. Add Maven dependencies in pom.xml for Jersey and servlet.

4 2 1abl
b (B src/main/resources
> @ JRE System Library [J25E-1.5]
> @ Maven Dependencies
4 (= src
b (= main
(= target
[pomuml

l-.q Vmﬂ

45

https://students-hub.com

CHAPTER 3

L5 Project Explorer

INTRODUCTION - XML, JSON

<dependency>
<groupld>com.sun.jersey</groupId>
<artifactId>jersey-server</artifactId>
<version>1.19</version>
<scope>compile</scope>

</dependency>

<dependency>
<groupld>com.sun.jersey</groupId>
<artifactId>jersey-servlet</artifactId>
<version>1.19</version>
<scope>compile</scope>

</dependency>

Add Jersey servlet configuration in web.xm1.

52 = = v = 78

4 Y2 labl

(® src/main/resources

=\ JRE System Library [J25E-1.5]
=\, Maven Dependencies

46

STUDENTS-HUB.com

K
4

k

» SIC
= main

—>» resources

» webapp

4 (= WEB-INF
X web.xml

s |

|%] index.jsp

target

|m] pom.xml

<web-app>

<display-name>Archetype Created Web Application</display-name>
<servlet>

<servlet-name>Jersey REST Service</servlet-name>
<servlet-class>com.sun.jersey.spi.container.servlet.
ServletContainer</servlet-class>

<init-param>
<param-name>com.sun.jersey.config.property.packages</param-name>
<param-value>com.rest</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Jersey REST Service</servlet-name>

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

<url-pattern>/rest/*</url-pattern>
</servlet-mapping>
</web-app>

7. Select main » New » Folder » java

8. Select src/main/java. Then New Package » com.rest. You
should see following:

[(Project Explorer 52 B gol A
4 52 labl
4 (B src/main/java
£ com.rest
> (# src/main/resources
> @ JRE System Library [J2SE-1.5]
» @ Maven Dependencies

4 [src
4 (= main
b & java
(= resources
4 (= webapp
4 (= WEB-INF
|X] web.xml
indexjsp
b (& target
[m] pomxml

9. Create a new class HelloResource in com.rest package:

e -
le Edit Mavigate Search Preject Rum Design Window Help
P AN e e A e

 Java Class
Create s rew lova class,

& Project Exploser 11 a%le =0 Sriica
52 bt <1DOCTYPE - -
4 (B wefemmnna :':.';sw ; Source folder: labl/src/main v
comrest | tep:/s
B Fackage oM.t
(= sre/masn/resources S
- ik JRE System Liboary [1055.15) (.I:,-_|.I—y1 [Enclesing type:
- @k Maven Dependencies Py —
4w "
+ (= main HelloResource
& java Maodifiers: @ public i packsge private protected
& resources [Tabstract [l final static
* [webapp - r ol
& [WEB-INF Superclas: javalang Object | Browse.. |
] webarnl Interfaces: I Y I,—T
[3) indecjip ! |
+ (o target R
i Femeve
s pormml
Which method stubs would you like to creste?
[public static void main[String[] argz)
[Constructors from superclass
£ Quthne [7 List B 7D ¥ Inherited abstract methods
[# DOCTYPEwet-agp Doy 4 ackd St e e
+ [8] web-app [Generate comments
Design | Source
&) Tusks 53
oiens @)
= =

47

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 3 " INTRODUCTION - XML, JSON

package com.rest;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("hello")

public class HelloResource {
@GET
@Produces (MediaType.TEXT HTML)
public String sayHtmlHello() {
return "Hello from REST;
}

}

10. Select pom.xml, right-click and then Run As » Run Jetty.

11. Open browser and type in URL http://localhost:8080/1ab1/
rest/hello to see the results as below.

-

| http://localhost.../labl/rest/hello x | &

=

€ () localhost:808C

Hello from REST

Note If you are using NEO or later version of Eclipse IDE in the URI you do need to
to specify lab1. URI will look like 1localhots:8080/rest/hello. This is true with all other
EXCercises.

48

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4

Introduction to JAX-RS /

This chapter introduces basic concepts about JAX-RS. At the end there are exercises using
XML and JSON representations with JAX-RS.

JAX-RS Introduction

Java API for RESTful Web Services (JAX-RS) is a Java programming language API spec that
provides support in creating web services according to the REST architectural pattern.
JAX-RS is a collection of interfaces and Java annotations that simplifies development of
server-side REST applications. By using JAX-RS technology, REST applications are easier
to develop and easier to consume when compared to other types of distributed systems.
The following are salient features provided by JAX-RS:

e POJO-based resource classes

e HTTP-centric programming model
e Entity format independence

e Container independence

e Included in Java EE

e Isastandardized API for building and consuming RESTful web
services

e Application: specifies which Java classes service which requests

e Resources: base Java code and annotations for building RESTful
services

e Providers: facilitates for marshaling and un-marshaling of data
(POJO Customer)

e C(Client API: base Java code and annotations for building RESTful
service clients

e Filters and interceptors: facilities for inserting code to execute
throughout the request-response invocation chain

© Sanjay Patni 2017 49
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_4

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 " INTRODUCTION TO JAX-RS

e Validation: provides annotations-based validation for incoming
data. Example:

@NotNull @FormParam ("firstname") String firstname,
@NotNull @FormParam ("lastname") String lastname,
@Email @FormParam ("email") String
email)

e Asynchronous processing: facilities for client and provider-side
asynchronous requests for long-running requests (@Suspended)

e @Context: provides client and provider implementation classes
with access to useful objects from the runtime environment, e.g.,
header (less servlet)

e Environment: provides provider implementation classes with
servlet information

Figure 4-1 below has an example of JAX-RS API for getting balance for an ATM
account. It shows resources, HTTP method, built-in serialization, and URI parameter

injection.
|
Example: JAX-RS A
Resources
@pPath("/atm/{cardId}"
puglig cilass{;::;sgrzfige {

@GET @Path("/balance")
roduces("text/plain”)
public Strmg ba'lance(OPathPur'm(“curdId") String card,
@QueryParam("pin") String pin) {
return Double.toString(getBalance(card, pin));

HTTP Method Built-in
Binding Serialization

Figure 4-1. Example of JAX-RS

50

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 © INTRODUCTION TO JAX-RS

Input and Output Content Type

The following are media types supported by JAX-RS. These should be used in request and
response annotations for contents produced or consumed by a REST resource.

e APPLICATION_JSON: application/json

e APPLICATION_XML: application/xml (encoding is used)
e TEXT_HTML: text/html

e TEXT_PLAIN: text/plain

e TEXT _XML: text/xml

The difference between application and text media types is the internationalization.
The application supports encoding for internationalization.
Examples:

@Produces("application/json")
@Consumes ("text/xml)

JAX-RS Injection

A lot of JAX-RS involves pulling information from an HTTP request and injecting it into a
Java method. You may be interested in only a fragment of the incoming URI. You might be
interested in a URI query string value. The client might be sending critical HTTP headers
or cookie values that your service needs to process the request. JAX-RS lets you grab this
information as you need it through a set of injection annotations and APIs.

There are a lot of different things JAX-RS annotations can inject. Here is a list of those
provided by the specification:

¢ You need to use the Path annotation in JAX-RS to define a URI
matching pattern for incoming HTTP requests. You can place it on
a class or on one or more methods. If you want a class to receive
HTTP requests, you must annotate it with at least @ath("/").
This annotated class is then called a JAX-RS root resource.

e To use the @Path annotation you provide a URI expression that is
relative to the context root of your JAX-RS application.

@javax.ws.rs.Path

e PathParamallows you to extract values from URI template
parameters.

@javax.ws.rs.PathParam

51

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 " INTRODUCTION TO JAX-RS

e QueryParam allows you to extract values from URI query
parameters.

@javax.ws.rs.QueryParam
e FormParam allows you to extract values from posted form data.
@javax.ws.rs.FormParam

e HeaderParam allows you to extract values from HTTP request
headers.

@javax.ws.rs.HeaderParam

e CookieParam allows you to extract values from HTTP cookies set
by the client.

@javax.ws.rs.CookieParam

e MatrixParamallows you to extract values from URI matrix
parameters.

@javax.ws.rs.MatrixParam

e The Context class is the all-purpose injection annotation. It
allows you to inject various helper and informational objects that
are provided by the JAX-RS API.

@javax.ws.rs.core.Context

The following are a few examples of JAX-RS injections.

Path Parameter

One parameter:

@Path("/customers/{id}")
public String getCustomer(@PathParam("id") int id);

Multiple parameters:
@Path("/products/{name}-{version}")

public String getProduct(@PathParam("name) String name, @
PathParam("version") String version)

52

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 © INTRODUCTION TO JAX-RS

Query Parameter

Requesting subset by qualifying with query parameter:
http://restcalss/products?start=0&count=10
@GET

@Produces("application/json")

public String getProducts(@QueryParam("start") int start, @
QueryParam("count") int count);

public String getProducts(@Context Uriinfo info)
String info.getQueryParameters().getFirst("start");

Cookie Parameter

Use @CookieParam to retrieve individual value:

public string get(@CookieParm("userId" String userId)

Header Parameter
Used for injecting HTTP header values:

public String get(@HeaderParam("Accept") String accept)

Form Parameter

@FormParamis used to retrieve information from the request body of HTML:

@Path("/product")

@POST

createProduct(@FormParm("name") String, productName, @
FormParm("description") String description,..

Matrix Parameter

Matrix parameters are used to qualify individual path segments, not the complete URI:

Response getBooks(@PathParam("year") String year,
@atrixParam("author") String author,
@MatrixParam("country") String country) {

53

STUDENTS-HUB.com

http://restcalss/products?start=0&count=10
https://students-hub.com

CHAPTER 4 " INTRODUCTION TO JAX-RS

Consider the following request that is asking for all the books published in year 2016
by author bill in country usa.

"/books/2016;author=bill;country=usa”

getBooks is called with year set to 2016, author set to bill, and country set to usa.

REST Implementation

Now it's time to actually write a REST implementation with JAX-RS.

JAX-RS WITH XML

This exercise uses JAX-RS to implement CRUD (create, read, update, delete)
operations using XML as the data representation. Create is implemented with HTTP
POST. It will add a customer object to in-memory array. Read will GET customer
object for a customer id. Update will update customer object fields via HTTP PUT.
Delete will delete a customer for an id.

This exercise uses the configuration you have completed in the previous chapter,
including the same pom.xm1 and web. xml files.

The following is a representation of customer in XML.

<customer>
<firstname>Bill</firstname>
<lastname>Clark</lastname>
<email>bill.clark@gmail.com</email>
</customer>

This is a representation of customer domain object in Java.

package com.rest.domain;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlElement;
@XmlRootElement (name="customer")
public class Customer {
// Maps a object property to a XML element derived from property name.

54

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 4 © INTRODUCTION TO JAX-RS

@XmlElement public int id;
@XmlElement public String firstname;
@XmlElement public String lastname;
@XmlElement public String email;

Here is the customer resource implementing CRUD operations using JAX-RS
injections.

package com.rest.resource;

import java.util.Map;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.Response;

@Path("customers")

public class CustomerResource {

// ConcurrentHashMap - A hash table supporting full concurrency of
retrievals and adjustable expected concurrency for updates.

static private Map<Integer, Customer> customerDB = new
ConcurrentHashMap<Integer, Customer>();

// An AtomicInteger is used in applications such as atomically
incremented counters
static private AtomicInteger idCounter = new AtomicInteger();

@POST

@Consumes ("application/xml")

public Customer createCustomer(Customer customer) {
customer.id = idCounter.incrementAndGet();
customerDB.put(customer.id, customer);
return customer;

}

55

https://students-hub.com

CHAPTER 4 " INTRODUCTION TO JAX-RS

@GET

@Path("{id}")

@Produces("application/xml")

public Customer getCustomer(@PathParam("id") int id) {
Customer customer = customerDB.get(id);

return customer;

}

@PUT
@Path("{id}")
@Consumes ("application/xml")
public void updateCustomer(@PathParam("id") int id, Customer update) {
Customer current = customerDB.get(id);
current.firstname = update.firstname;
current.lastname = update.lastname;
current.email = update.email;
customerDB.put(current.id, current);

}

@DELETE
@Path("{id}")
public void deleteCustomer(@PathParam("id") int id) {
Customer current = customerDB.remove(id);
if (current == null) throw new WebApplicationException(Response.
Status.NOT_FOUND);

}
}

CURL is a command line tool you can use to invoke REST URIs. Below are CURL
requests for each CRUD operation.

curl -H "Content-Type: application/xml" -X POST

-d "<customer><firstname>Bill</firstname><lastname>Burke</
lastname><email>bill.burke@gmail.com</email></customer>" http://
localhost:8080/1ab2/rest/customers

curl -H "Content-Type: application/xml" -X GET http://localhost:8080/
lab2/rest/customers/1

curl -H "Content-Type: application/xml" -X PUT -d
"<customer><firstname>Ed</firstname><lastname>Burke</lastname><email>ed.
burke@gmail.com</email></customer>" http://localhost:8080/1ab2/rest/
customers/1

curl -H "Content-Type: application/xml" -X DELETE http://
localhost:8080/1ab2/rest/customers/1

56

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 © INTRODUCTION TO JAX-RS

The screenshot below shows results of CURL command execution.

CsuREST curlcustoner. bat

ERESTscurlocuel i “Contenc-cypsiapplicationsml™ - “Coustonerenail>billéenail.cont enail3<s dratnaned 0111/ drstnane3¢lastnane>Burke < lastn.
Eustemer>" httpi i localhosts suw»l«nﬂzmwu wskonors.
Erml v vers P 8" en: o g SITE B 5 ardalone o pes 5 toustanardE 1 <A A3 iratnane SBUTTET rstnane + las tnane Yhirke £ las tnane enai 1311 1Benad

10 LB GET htep:/slocalhost :@888-labl rest custoners 1
o encou!ng RS i ame pes T ICUTEoner < 1d 3% A 1d < F Lrstname sBL1 14AF 1ratnane < Lastnane Burke<lastnane >Cenal1>bil 1benai

H "Content-type:applic Mim sxml" ~d “customerd{email?bill.burkefenail.con{/enail2{f irstnane YBi11{F irstnane 3{lastnane }Burke (.
PUT heepisslocalhost iRBSRS 1ab3 rost custonsrs <1

ieat fon o™ ET httpisslocalhost:QR8A-1ahls
ﬁln'{ “dh L utanda]vno yoc “Troustoner>Cid>1 < 1d2CF i Anmn)BIl](/{ u' tnmu)(la&tnam Burke</lastnane >enail>bhill. burks

\RF‘SI\ url)c

ntent-typeapplicationxml” -X DELETE httpisslocalhest:BBEA labd rest custoners i
SEnREET curldcur]l -H "Aecept: applicat ionsesl™ -X OFT htepisslocalbost iAMBAlabd Arest Acustoners /1

JAX-RS WITH JSON

This exercise uses JAX-RS to implement CRUD (create, read, update, delete)
operations using JSON as the data representation mechanism. Create is
implemented with HTTP POST. It will add a customer object to in-memory array.
Read will GET customer object for a customer id. Update will update customer
object fields via HTTP PUT. Delete will delete a customer for an id. In addition, get all
customers will get a list of customers in the collection. Also, if a customer id does
not exist, a JSON representation of error messages based upon best practices will
be returned in response.

Customer Object - JSON

The following is a representation of customer sample data in JSON.

{ "customer" : [{
"firstname" : "Bill",
"lastname" : "Clark",
"email : "bill.clark@gmail.com"

H}

For this exercise there are changes to pom.xml and web.xm1 files required to
support JSON representation.

POM.XML Updates

pom.xml updates for Glassfish and Jackson for JSON

<dependency>
<groupId>org.glassfish.jersey.containers</groupId>
<artifactId>jersey-container-servlet</artifactId>
<version>2.2</version>

</dependency>

57

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 " INTRODUCTION TO JAX-RS

<dependency>
<groupId>org.glassfish.jersey.core</groupIld>
<artifactId>jersey-client</artifactId>
<version>2.2</version>

</dependency>

<dependency>
<groupId>com.fasterxml.jackson.jaxrs</groupIld>
<artifactId>jackson-jaxrs-json-provider</artifactId>
<version>2.4.1</version>

</dependency>

web.xml updates for Glassfish

<web-app>

<display-name>Archetype Created Web Application</display-name>
<servlet>

<servlet-name>Jersey REST Service</servlet-name>
<servlet-class>org.glassfish.jersey.servlet.ServletContainer
</servlet-class>

<init-param>
<param-name>jersey.config.server.provider.packages</param-name>
<param-value>com.rest</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Jersey REST Service</servlet-name>
<url-pattern>/rest/*</url-pattern>
</servlet-mapping>

</web-app>

The following are the CustomerResource updates for JSON. We'll add functionality
to get all customers from the collection and add error handling.

Add the following to all methods to allow them to work with the JSON version of our
API:

@Consumes ({ "application/xml", "application/json" })
@Produces({ "application/xml", "application/json" })

58

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 © INTRODUCTION TO JAX-RS

Now we can get all customers. This request is routed through @Path("customers")
to getA11() method to get a collection of customers. getA11() is a Java method
which returns a list of customers.

@GET
@Produces({ "application/xml", "application/json" })
public Collection<Customer> getAll() {

List<Customer> customerList = new ArraylList<Customer>(customerDB.
values());
return customerlist;

}
Add error handling:

final Customer customer = customerDB.get(id);
if (customer == null) {

ErrorMessage errorMessage = new ErrorMessage("1001", "Customer not
found!", "http://localhost:8080/1ab3/error1001.jsp", Response.Status.
NOT_FOUND);

throw new NotFoundException(errorMessage);

}

Here is the ErrorMessage object:
package com.rest.exception;

import javax.xml.bind.annotation.XmlRootElement;
import javax.ws.rs.core.Response;
import javax.xml.bind.annotation.XmlElement;
@XmlRootElement(name="message")
public class ErrorMessage {
@XmlElement public String code;
@XmlElement public String description;
@XmlElement public String link;
@XmlElement public Response.Status status;
public ErrorMessage(String code,String description, String link,
Response.Status status) {
this.code = code;
this.description = description;
this.link = link;
this.status = status;

59

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 4 " INTRODUCTION TO JAX-RS

NotFoundException Class

And the NotFoundException class
package com.rest.exception;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.Response;
public class NotFoundException extends WebApplicationException {
/**
ES
*/
private static final long serialVersionUID = 1L;
/**
* Create a HTTP 404 (Not Found) exception.
* @param message the String that is the entity of the 404 response.
*/
public NotFoundException(ErrorMessage message) {
super (Response. status(Response.Status.NOT_FOUND).
entity(message).type("application/json").build());
}

RESULTS IN POSTMAN

First, creating a customer:

Sody @

form-cata xwww-formariencoded @ raw bénaey

“Firstnone” : "Bill",
“lostrone” : “burie®,
“emoil® : “Bill.burkefgomil.con]

s h

Body . 3 Statue: 000K Thra: 127 ma

Pretty 150N =

7= {
“la": 1,

“Firstnome™: "bill",
“lostname”: “burke”,

“ematl”: “Bill.burkefgantl, com™

£ |3

60

STUDENTS-HUB.com

https://students-hub.com

Get a customer for an id:

GET

Headers (1) Fre-request 5

O rccep

"d®: 2,
3 | “flrstrome
4 | "losencmer .
5 | "email": "will.byersbgoail.con”

Get all customers:

GET hetpuilocalhostBOBIVIabY frest/customers/
Athorization Headers Prereq ety
Tyea No Auth

"id7: 1,
“firstname: "pill”,
“lastnone™: “burike”

“enall™: ‘DII\.burh;!gm\l < gom”

= 1
“id": 2,
“firstname™: “aill”,
1 “lastnone™: “byersT,
12 “enall®: “will.byersfgesil.com”
3| 3
14 |3

STUDENTS-HUB.com

CHAPTER 4 © INTRODUCTION TO JAX-RS

Bulk Ede Pressts

States: 200K Time: 1ms

bigieicd “ o

Generate Codo

61

https://students-hub.com

CHAPTER 4

Get a customer for non-existing id:

hittpifios

GET

Authorization

Type

Body

Pretty

| 4

L e

}

INTRODUCTION TO JAX-RS

031:8080/abafr

httpe/localhost:8080/ab3/rest/customers/3

2)

No Auth

“code”: “10@1%,
“description™: “Customer not found!”

,
“link™: "http:/Slocalhost:8080/1ab3/errorl@dl. jsp~,
"status”: “MOT_FOUND™

No environmens

Foruins m o]

s 404 NotFound Time: 110ms

62

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5

API Portfolio and Framework/

This chapter starts with API Portfolio Architecture and then gets into framework for API
development. An overview of API framework starting from client to data is discussed and
then focus is shifted to review services layer with an exercise implementing services layer.

API Portfolio Architecture

Usually, an organization does not have one API but several APIs. All the APIs in the
portfolio need to be consistent with each other, reusable, discoverable, and customizable.

Requirements

API portfolio design is a concern for different API stakeholders. Both API consumers
and producers have significant advantages over properly designed API portfolio and
both parties formulate requirements for API portfolio regarding consistency, reuse,
customization, discoverability, and longevity.

Consistency

An API solution, such as mobile app may use several APIs from the portfolio and the
output of one API is the input of another. So consistency is required about data structures,
representations, URISs, error messages, and behavior of the APIs. API consumers find it
easier to work with if it behaves similar to the last one and delivers similar error messages.

Reuse

A consistent portfolio consists of many commonalities among the APIs. These
commonalities can be factored out, shared, and reused. Reuse leads to a speed-up in the
development. By reusing common elements, the wheel is not reinvented each time an
API is built. Instead, a common library of patterns and know-how is shared and reused.
Reuse can be realized in several ways.

© Sanjay Patni 2017 63
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_5

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 ' API PORTFOLIO AND FRAMEWORK

e Reuse of API by several apps
e Reuse of API by multiple APIs
e Reuse of parts of API

APIs should not be developed for a specific consumer. APIs should always be used by
several consumers, solutions, or projects.

Customization

There might be consumers who might have specific requirements from the APIs. if the
consumers of APIs are not a homogenous group. In such a scenario, customizations are
required to the APIs to meet a consumer’s individual needs. This contradicts with Reuse
requirements, but both can be realized at the same time.

Discoverability

To expand the usage of APIs, it should be easy for the APIs consumer to find and discover
all APIs in an API portfolio. An API portfolio design needs to ensure that APIs can be
found and all the information necessary for proper usage is available.

Longevity

This means that important aspects of the API do not change and stay stable for a long
time. What needs to be stable is the signature of the AP], the client-facing interface. A
change in signature will break the apps built by the API consumer. For example, with IoT
on “h/w devices” it is not easy to change.

How do we enforce these requirements—
governance?

An APl initiative is often regarded as an innovation lab of an enterprise. Imposing
governance can contradict innovation. So to manage these conflicting requirements, an
API portfolio may be split in two portfolios. One portfolio is dedicated to innovation and
experiment. This portfolio requires light-weight governance processes. Another portfolio
is dedicated to stable, productive APIs, which are offered to external API consumers.

Consistency

Each enterprise may implement its own set of consistency rules. When consistency rules
are defined, consistency checks can be realized as manual or automated. Lightweight

consistency checks can be realized by manual quality checks or review by a colleague. A
complementary approach is by automated code generation based upon API description.

64

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 " API PORTFOLIO AND FRAMEWORK

Reuse

There are two types of building blocks that are offered by an API Platform like Security,
Logging and Error Handler. Any other functional commonality or reusable solution
pattern can be realized as a composition of building blocks. You could have your “own”
API or third-party APIs. Third party APIs could be integrated in an API Platform by
creating an API Proxy on its “own” platform. This helps the consumer with homogenous
security. API Proxy and API Platform architectures are discussed in the next chapter.

Customization

An API consumer is interested in data formatting and data delivery. Data gathering is,
however, no concern to the API consumer. So these could be separated into two parts:
one API we call “utility API” covers the data gathering; other API, which delivers data and
formats to the consumer requirements, is called “consumer API” Utility APIs cannot be
called directly by a consumer; only consumer APIs can call these.

Discoverability

This could be Manual or Automated. Manual: Discover by API catalog or yellow pages.
Automated: SOAP-based thru UDDI and WSDL. REST: Limited with OPTIONS verb
of HTTP.

Change Management

From an innovation or business perspective, there are forces to publish API as early
as possible. From an IT Governance perspective, as late as possible. In a compromise
solution, APIs are published early but only to pilot consumers, with the expectation
that there will be changes and API will break the app. Changes are classified into three
groups: backward compatible, forward compatible, and not compatible. Backward
compatibility is given if the old client can interact with the new API (adding query,
header or form parameter as long as they are optional; adding new fields in JSON or
XML as long as they are optional; adding endpoint, e.g., new REST Resource; adding
new operations to existing endpoints, e.g., in SOAP; adding optional fields to request
interface; changing mandatory fields to optional fields in a existing API). Forward
compatibility is given if a new client can interact with an old API. It’s hard to achieve
and generally it is nice to have it.

¢ Incompatible changes: If a change in API breaks the client, the
change was incompatible.

e Removing: Renaming fields in data structures or parameters in
request or response.

e Changing URI: e.g., hostname, port.

e Changing data structure: making a field the child of some other.
Adding a new mandatory field in a data structure.

65

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 ' API PORTFOLIO AND FRAMEWORK

APl Framework

As we have discussed, there are multiple solutions to an AP], e.g., Web applications,
Mobile Applications, etc. Each of these solutions talks to an API which is implemented
through a multilayered architecture using design patterns. A design pattern is a general
reusable solution to a commonly occurring problem within a given context in software
design. A design pattern is not a finished design that can be transformed directly into
source or machine code.

As shown, the Figure 5-1 multilayer framework consists of:

e Process APIs implemented by Services design pattern;
e System APIs implemented by Data Access Object design pattern;

e Experience APIs implemented by API Facade Layer design
pattern.

Each layer is implemented using software engineeing design patterns.

Qb5 8050

Experience APIs
(Adaptations of Process and System APIs to deliver tailored Microservice to apps)

LoB Dev/

IT

Process APIs

(Composition of System APIs through Orchestration and Choreography)

System APIs
(Microservice that encapsulate Core Business Capabilities)

Accessibility —t— an
& Ownership b I | _ ’—IE:., oo

Saas apps Mainframe FTP, Files Databases Web services Legacy Systems Applications

Figure 5-1. APIs multilayered framework

Process APIs - Services Layer

Services layer implements business logic of the application: The reusable logic:
process-specific logic and the logic that interfaces with System APIs through Orchestration
and Choreography. Orchestration (direct calls) in this sense is about aligning the Line of
Business Dev/IT request with the applications, data, and infrastructure. Choreography,
in contrast, does not rely on a central coordinator. Rather, each API involved in the
choreography knows exactly when to execute its operations and with whom to interact.

66

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 " API PORTFOLIO AND FRAMEWORK

System APIs - Data Access Object

These system APIs or system-level services are in line with the concept of an autonomous
service which has been designed with enough abstraction to hide the underlying systems
of record, e.g., databases, legacy systems, SaaS applications.

Typically, a data access object (DAO) is an object that provides an abstract interface
to some type of database or other persistence mechanism. By mapping application calls
to the persistence layer, DAO provides some specific data operations without exposing
details of the system.

Experience APIs - API Facade

Both process and system APIs should be tailored and exposed to suit the needs of
each business channel and digital touchpoint of solution architectures. The adaption
is shaped by the desired digital experience and is what we call the Experience API.
This is implemented by API Facade. The goal of an API Facade Pattern is to articulate
internal systems and make them useful for the app developer providing a good APX
(API experience).

We will review Servives layer in this chapter. Data Access Object and API Facade will
be reviewed in Chapter 6 and Chapter 7.

Services Layer Implementation

Services layer implements the business logic of the application: the reusable logic,
process-specific logic, and logic that interfaces with the legacy system. In the
implementation of services layer, a design pattern dependency injection is used. The
general concept between dependency injections is called Inversion of Control. A class A
has a dependency to class B if class A uses class B as a variable. If dependency injection
is used, then the class B is given to class A via the constructor of the class A. This is then
called “construction injection.” If a setter is used, this is then called “setter injection.”

A class should not configure itself but should be configured from outside. A design
based on independent classes/components increases the reusability. A software design
based on dependency injection is possible with standard Java. Spring framework, which
is used for the implemenation in the excercise, just simplifies the use of dependency
injection by providing a standard way of providing the configuration and by managing
the reference to the created objects. The fundamental functionality provided by the
Spring Container is dependency injection. Spring provides a lightweight container, e.g.,
the Spring core container, for dependency injection (DI). This container lets you inject
required objects into other objects. This results in a design in which the Java classes
are not hard-coupled. The injection in Spring is either done via setter injection or via
construction injection.

Figure 5-2 shows the spring frameworks. The Spring core container will be used for
Dependency Injection from spring framework, which handles the configuration generally
based on annotation.

67

STUDENTS-HUB.com

https://en.wikipedia.org/wiki/Object_(computer_science)#Object (computer science)
https://en.wikipedia.org/wiki/Interface_(computer_science)#Interface (computer science)
https://en.wikipedia.org/wiki/Database#Database
http://dx.doi.org/10.1007/978-1-4842-2665-0_6
http://dx.doi.org/10.1007/978-1-4842-2665-0_7
https://students-hub.com

CHAPTER 5 ' API PORTFOLIO AND FRAMEWORK

Data Access Integration Web (MVC/Remoting)

JOBC | | ORM Web

J

Serviet

OXM JMS

Transactions

Core Container

o J o

Expression
Language

Figure 5-2. Spring framework

FRAMEWORK - SERVICES

This exercise uses podcast domain object to implement CRUD operations as well as
search functionality on a field of podcast. Podcast domain object structure is pretty
simple. There is an id, which identifies a podcast, and several other fields that we

can see in the JSON representation below:

{

"id":1,

"title":"Quarks & Co - zum Mitnehmen-modified",
"link":"http://itunes.com /podcasts/1/Quarks-Co-zum-Mitnehmen",
"feed":"http://itunes.com /quarks.xml",

"description":"Quarks & Co: Das Wissenschaftsmagazin",

"insertionDate":1388213547000

68

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 " API PORTFOLIO AND FRAMEWORK

Table 5-1. Maven project dependencies

Project Dependencies Version Description

org.glassfish.jersey.ext jersey-spring3 2.14 Jersey extension
module providing
support for Bean
Validation

org.glassfish.jersey.media jersey-media-json- 2.14 Jersey JSON Jackson

jackson

org.springframework spring-core 4.1.4.RELEASE Spring core

org.springframework spring-context 4.1.4RELEASE Spring context

org.springframework spring-web 4.1.4.RELEASE Spring web

<properties>

<spring.version>4.1.4.RELEASE</spring.version>
<jersey.version>2.14</jersey.version>
</properties>
<dependencies>
<!-- Jersey + Spring -->
<dependency>
<groupId>org.glassfish.jersey.ext</groupId>
<artifactld>jersey-spring3</artifactId>
<version>${jersey.version}</version>
<exclusions>
<exclusion>
<groupIld>org.springframework</groupIld>
<artifactId>spring-core</artifactId>
</exclusion>
<exclusion>
<groupld>org.springframework</groupIld>
<artifactId>spring-web</artifactId>
</exclusion>
<exclusion>
<groupld>org.springframework</groupld>
<artifactId>spring-beans</artifactId>
</exclusion>
</exclusions>
</dependency>

69

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 ' API PORTFOLIO AND FRAMEWORK

<!-- JSON -->

<dependency>
<groupId>org.glassfish.jersey.media</groupId>
<artifactId>jersey-media-json-jackson</artifactId>
<version>${jersey.version}</version>

</dependency>

<!-- Spring framework-->

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>
<version>${spring.version}</version>

</dependency>

<dependency>
<groupld>org.springframework</groupIld>
<artifactId>spring-context</artifactId>
<version>${spring.version}</version>
<exclusions>

<exclusion>
<groupId>commons-logging</groupIld>
<artifactId>commons-logging</artifactId>
</exclusion>

</exclusions>

</dependency>

<dependency>
<groupld>org.springframework</groupIld>
<artifactId>spring-web</artifactId>
<version>${spring.version}</version>

</dependency>

</dependencies>

web . xml updates are completed to include applicationContext.xml file of the
Spring Framework.

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<display-name>Demo - Restful Web Application</display-name>

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

70

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 " API PORTFOLIO AND FRAMEWORK

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>
classpath:spring/applicationContext.xml
</param-value>
</context-param>
<servlet>
<servlet-name>Jersey REST Service</servlet-name>
<servlet-class>org.glassfish.jersey.servlet.
ServletContainer</servlet-class>
<init-param>
<param-name>jersey.config.server.provider.packages
</param-name>
<param-value>com.rest</param-value>
</init-param>

<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Jersey REST Service</servlet-name>
<url-pattern>/rest/*</url-pattern>

</servlet-mapping>

</web-app>

applicationContext.xml injects PodcastService in PodcastResource.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/
spring-context-3.0.xsd">

<context:component-scan base-package="com.rest.*" />

<bean id="podcastService"
class="com.rest.service.PodcastServiceImpl" />

</beans>

71

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 ' API PORTFOLIO AND FRAMEWORK

Here is a POJO defining properties of podcast.

package com.rest.domain;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlElement;

@SuppressWarnings("restriction")

@XmlRootElement (name="podcast")

public class Podcast {
@XmlElement public int id;
@XmlElement public String link;
@XmlElement public String feed;
@XmlElement public String title;
@XmlElement public String description;
@XmlElement public String insertionDate;

In the podcast resource we have CRUD operations for podcast, as well a new
method for searching podcasts on the title field. Instance of PodcastService, which
implements the logic for search, is injected in this class using @Autowired annotation.

@Path("podcasts")
public class PodcastResource {

@Autowired
PodcastService podcastService;

@POST

@Consumes ("application/json")
@Produces("application/json")

public Podcast createPodcast(Podcast podcast) {

podcastService.createPodcast(podcast);
return podcast;

}

@GET
@Path("{id}")
@Consumes ("application/json")
@Produces("application/json")
public Podcast getPodcast(@PathParam("id") int id) throws
NotFoundException {

Podcast podcast = podcastService.getPodcast(id);

return podcast;

}

72

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 5 " API PORTFOLIO AND FRAMEWORK

@GET

@Consumes ("application/json")

@Produces("application/json")

public List<Podcast> getPodcasts(@QueryParam("title")

String title) {
List<Podcast> podcasts = podcastService.getPodcasts(title);
return podcasts;

}

@PUT
@Path("{id}")
@Consumes ("application/json")
@Produces("application/json")
public void updatePodcast(@PathParam("id") int id,
Podcast update) {

podcastService.updatePodcast(id, update);

}

@DELETE

@Path("{id}")

@Consumes ("application/json")

@Produces("application/json")

public void deletePodcast(@PathParam("id") int id) {
podcastService.deletePodcast(id);

}

This is an interface having signatures of all the methods supported for podcast
domain object.

public interface PodcastService {

public Podcast getPodcast(int id) throws NotFoundException;
public void createPodcast(Podcast podcast);

public void updatePodcast(int id, Podcast update);

public void deletePodcast(int id);

public List<Podcast> getPodcasts(String title);

This implements logic for searching podcasts on title. Also, all the methods for CRUD
operations which have operations on in memory DB of podcasts are moved here.

public class PodcastServiceImpl implements PodcastService {

static private Map<Integer, Podcast> podcastDB = new
ConcurrentHashMap<Integer, Podcast>();
static private AtomicInteger idCounter = new AtomicInteger();

73

https://students-hub.com

CHAPTER 5 ' API PORTFOLIO AND FRAMEWORK

74

STUDENTS-HUB.com

// get podcast by id

public Podcast getPodcast(int id) throws NotFoundException {

Podcast podcast = podcastDB.get(id);
if (podcast == null) {
ErrorMessage errorMessage = new ErrorMessage

("1001", "Podcast not found!", "http://localhost:8080/

lab3/error.jsp", Response.Status.NOT_FOUND);

throw new NotFoundException(errorMessage);

}

return podcast;

}

// add podcast
public void createPodcast(Podcast podcast) {

podcast.setId(idCounter.incrementAndGet());
podcastDB.put(podcast.getId(), podcast);

}

// update podcast
public void updatePodcast(int id, Podcast update) {

Podcast current = podcastDB.get(id);
current.setDescription(update.getDescription());
current.setTitle(update.getTitle());
current.setFeed(update.getFeed());
current.setlink(update.getLink());

podcastDB.put(current.getId(), current);

}

// Delete podcast
public void deletePodcast(int id) {

Podcast current = podcastDB.remove(id);

}

// Search podcast
public List<Podcast> getPodcasts(String title) {

https://students-hub.com

CHAPTER 5 " API PORTFOLIO AND FRAMEWORK

List<Podcast> podcastlist = new Arraylist<Podcast>
(podcastDB.values());
List<Podcast> titleMatchedlList = new Arraylist<Podcast>();

for(int i = 0; i < podcastList.size(); i++)

{
Podcast podcast = podcastList.get(i);

if (podcast.getTitle().contains(title))
titleMatchedlist.add(podcast);

}

return titleMatchedlist;

RESULTS IN POSTMAN

Figure 5-3 shows all podcasts URL and results in POSTMANN.

Headers (2)
O rcep application/json =
@ ContentType spplicationjson =
Body a 00 OK oL m
Pretry S
1=l
2| {
title™: “"Happy
"deseription™:
“link™: “http://it
b
{
s 2,
“feed
“title”: © »
"description is iz my podcast”,
“link": “http://itenes.apple.com”
a3
Figure 5-3. All podcasts

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 5 ' API PORTFOLIO AND FRAMEWORK

Now let us search podcasts by title, as shown in Figure 5-4.

GET huplfiocalhost8080Mab5/rest/podeastsiuitle=Happy
Headers (2]
0 Content-Type

w

Figure 5-4. Podcasts searched by title

76

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6

API Platform and Data Handle/r

This chapter starts with API Platform Architecture and then gets into data handler pattern
for integration of RESTful APIs with actual data sources within enterprise to make it more
meaningful to the consumers through APIs.

API Platform Architecture

API Platforms are used by API Providers to realize APIs efficiently. We will review the
following:

e Why do we need API Platform?
e Whatis an API Platform?
e Which capabilities does an API Platform have?

e Howis API Platform organized? What is the architecture of API
Platform?

e How does API architecture fit in the surrounding technical
architecture of an Enterprise?

Why do we need API Platform?

It is certainly technically feasible to build APIs without any platform or framework. But
why would you? For a moment, let's think about databases, which provide a platform for
building applications. You could certainly build your application without a database and
write your own data storage library. But we typically do not do that. We use an existing
database as a platform. And this is the best practice for good reasons. It allows us to focus
on building an application that serves the business case, because we can reuse existing,
proven components and build the application quicker. The same augmentation applies
to API platforms: API platforms allow us to focus on building APIs that consumers love,
since we can reuse existing, proven API building blocks and build APIs quicker.

© Sanjay Patni 2017 77
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_6

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

So what is an API Platform?

An API Platform consists of one of the following three components:
e API development platform
e Itoffers tools to design and development of APIs quicker.

) It offers building blocks, which are proven, reusable, and
configurable.

e APIruntime platform
e This primarily executes API.

e Itserves APIresponses for incoming API requests of
the consumers with non-functional properties like high
throughput and low latency.

e API engagement platform

e This platform allows API providers to manage
their interaction with API consumers. It offers API
Documentation, Credentials, and Rate plans for the
consumers.

So which capabilities does the API platform have?

The following are the capabilities offered by three components of API Platform:

API Development Platform

API development platform offers a toolbox for API design and development targeted

for API developers who works for API Providers. Toolbox contains API building blocks,
which are proven, reusable, and configurable. When building APIs, certain functionality
is needed over and over again. This can be accomplished by building blocks. Building
blocks can be reused. Building blocks are tested so bugs are not there and these are
configurable so they can be adopted for many purposes. The building blocks offered by
API Development Platform span the following features at the minimum:

e Processing of HTTP requests and responses
e Header

e Query

e HTTP: status code

e Methods

e Security: IP-based access limitation, location-based access
limitation, time-based access limitation, front-end authentication
and authorization, OAuth, basic authorization, API key, back-end
authentication and authorization (with LDAP, SAML)

78

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

e Front-end protocols: HTTP (REST), SOAP, RPC, RMI

e Data format transformation: XML to JSON and JSON to XML
e Structural transformation: XLST, XPATH

e Data integrity and protection: encryption

¢ Routing to one or more back ends

e Aggregation of multiple APIs and or multiple back ends

e Throttling to protect back-end rate limitation and throughput
limitation

¢ Load balancing for incoming requests to the API platform and
outgoing requests to the back ends

e Hooks for logging
e Hooks for analytics
e Monetization capabilities

e Language for implementing APIs: Java, JavaScript, etc. (Jersey,
Restlet, Spring)

e IDE for API development with editor, debugger, and deployment
tools: Eclipse, JDeveloper, NetBeans

e Language for designing APIs: YAML, RAML, etc.

e Design tools for creating API interface designs: RAML, Swagger,
Blueprint

e Tools for generating documentation and API code skeletons
based upon design: RAML, Swagger

API Runtime Platform: API Runtime platform primarily executes APIs. It enables the
APIs to accept incoming requests from API consumers and serve responses.

e Itshould deliver non-functional properties like:
e High availability, high security, high throughput
e Tomeet above these properties platform offers:
e Load balancing
e Connection pooling
e Caching

e Itshould also offer capabilities for Monitoring of API, Logging,
and Analytics to check desired non-functional properties are met.

79

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

APl Engagement Platform

API Engagement Platform is used by API providers to interact with its community of API
consumers. API Providers use the following capabilities of API Engagement Platform:

API management: configuration and reconfiguration of APIs
without need for deployment

API discovery: a mechanism for clients to obtain information
about APIs.

Consumer onboarding: app key generation, API Console
Community management: blogs

Documentation

Version management

Management of monetization and service-level SLAs

API Consumers use engagement platform for:

Overview of API portfolio
Documentation of APIs

Possibility of trying API interactively
Example source code for integration
e Selfservice to get access to APIs

e C(lient tooling, such as code generation for client

How is API Platform organized? What is architecture of
API Platform?

Usually, APIs are not only deployed on the production system, but need to be deployed
on different stages of increasing maturity. The stages are also sometimes called
environments. Each of the stages has a specific purpose and is separated from the other
stages to isolate potential errors.

80

STUDENTS-HUB.com

Simulation: used for playing with interface design, provides
mocks or simulation of an API

Development: used for development, which will eventually go to
production

Testing: used for manual black box testing and integration testing

Pre-production: used as a practice for production and for
acceptance testing

Production: used as a real system for consumers

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

As shown in Figure 6-1, API Development Platform is used for Design and
Development. API Runtime Platform is used for deployment. API Engagement Platform is
used for publishing the API.

API Platform
iy
R O -
=)
API Development Platform API Runtime Platform API Engagement Platform
Develop Deploy Publish

Figure 6-1. API Platform architecture

How does API architecture fit in surrounding technical
architecture of an Enterprise?

API Platform is not isolated but it needs to be integrated in existing architecture in the
enterprise. Firewall is used to improve security. Load balancers are used to improve
performance, and are usually placed between the Internet and the API platform. IAM
(Identity and Access Management) systems are for managing identity information and
LDAP or Active Directory as shown in Figure 6-2.

81

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

O &

API Clients
Firewalls
-
g
Load Balancers
API Platform
iy
R O 3
m
API Development Platform API Runtime Platform API Engagement Platform
IAM Systems Enterprise Service Bus Databases
Legacy System Cloud Service

Back ends
Figure 6-2. API Architecture in Enterprise

Back-end systems for providing the core functionality of the enterprise: Back-end
systems form the heart of the enterprise data and services typically reside in the back-end
system. Back ends may be databases, applications, enterprise service buses, web services
using SOAP, message queues, and REST services.

Data Handler

As mentioned in previous section, we use an existing database as a platform. A Data
Handler, a Data Access Object (DAO), or Command Query Responsibilities segmentation
(CQRS) all provide an abstract interface to some type of database or any other persistence
mechanism. Data Handler is a layer which handles data in the framework. Data Access
Object is a design pattern used to implement the access from the database inside data
handler. CQRS pattern, on the other hand, provides a mechanism to segment query and
transational data in the data handler.

Data Access Object

By mapping application calls to the persistence layer, a DAO provides some specific data
operations without exposing details of the database. The advantage of using data access
objects is the relative simplicity and it provides separation between two important parts

82

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

of an application that can but should not know anything about each other, and which can
be expected to evolve frequently and independently. Changing business logic can rely
on the same DAO interface, while changes to persistence logic do not affect DAO clients
as long as the interface remains correctly implemented. All details of storage are hidden
from the rest of the application (see information hiding). Thus, possible changes to the
persistence mechanism can be implemented by just modifying one DAO implementation
while the rest of the application isn't affected. DAOs act as an intermediary between
the application and the database. DAOs move data back and forth between objects and
database records.

For accessing databases, there are different APIs available (for example, JPA, which
will be used in class lab).

Command Query Responsibilities Segmentation - CQRS

New demands are being put on IT organizations every day to deliver agile, high-
performance integrated mobile and web applications. In the meantime, the technology
landscape is getting complex every day with the advent of new technologies like REST,
NoSQL, and Cloud, while existing technologies like SOAP and SQL still rule everyday
work. Rather than taking a religious side of the debate, NoSQL can successfully co-exist
with SQL in this “polyglot” of data storage and formats. However, this integration also
adds another layer of complexity both in architecture and implementation. We will talk
about the following:

SQL Development Process

The application development lifecycle means changes to the database schema first,
followed by the bindings, then internal schema mapping, and finally the SOAP or JSON
services, and eventually the client code. This all costs the project time and money. It

also means that the “code” (pick your language here) and the business logic would also
need to be modified to handle the changes to the model. Figure 6-3 shows the traditional

CRUD architecture.
Presentation
Validation
Business logic

Updates
Data >»| Data
access < store

Queries

Figure 6-3. Traditional CRUD architecture

83

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

NoSQL Process

NoSQL is gaining supporters among many SQL shops for various reasons including low
cost, the ability to handle unstructured data, scalability, and performance. The first thing
database folks notice is that there is no schema. These document-style storage engines
can handle huge volumes of structured, semi-structured, and unstructured data. The very
nature of schema-less documents allows change to a document structure without having
to go through the formal change management process (or data architect).

Do | have to choose between SQL and NoSQL?

The bottom line is both have their place and are suited for certain types of data—SQL for
structured data and NoSQL for unstructured data. NoSQL databases are more scalable
than SQL databases. So why not have the capability to mix and match this data depending
on the application? This can be done by creating a single REST API across both SQL and
NoSQL databases.

Why a single REST API?

The answer is simple—the new agile and mobile world demands this “mash-up” of data
into a document-style JSON response.

Martin Fowler described the pattern called “CQRS” that is more relevant today in a
“polyglot” of servers, data, services, and connections (Figure 6-4).

Validation
Commands Queries
e (denerate
Domain logic Read model DTOs)

Data persistence @~ ——»
Write model

Data store

Figure 6-4. Basic CQRS architecture

84

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

In this design pattern, the REST API requests (GET) return documents from multiple
sources (e.g., mash-ups). In the update process, the data is subject to business logic
derivations, validations, event processing, and database transactions. This data may then
be pushed back into the NoSQL using asynchronous events. The advantage of NoSQL
databases over SQL for this purpose is that NoSQL has dynamic schema for unstructured
data. Also, NoSQL databases are horizontally scalable, which means NoSQL databases
are scaled by increasing the database servers in the pool of resources to reduce the load,
whereas SQL databases are scaled by increasing horsepower of the server where the
database is hosted. Figure 6-5 shows CQRS architecture with a separate read and write
store. When you have a requirement of very, very large data volumes, you would choose
separate stores.

Validation
Queries
(generate
Commands DTOS)
Domain logic
Write data Read data
Data persistence store store

Figure 6-5. CQRS architecture with separate read and write store

FRAMEWORK - DATA HANDLER

This exercise will implement data handler or data access object for the podcast
domain object using Java Persistence API (JPA) . The JPA is a Java specification
for accessing, persisting, and managing data between Java objects/classes and a
relational database. We will use our domain object podcast and implement CRUD
operations using JPA in DAO.

Database Setup
Install MySql

mysql -u root -p
Password:

Use My SQL workbench if you do not like command-line interface
Create user rest demo
create user 'rest demo'@'localhost' identified by 'rest demo';

85

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

Grant priviledges

grant all privileges on *.* to 'rest_demo'@'localhost’;
Create database
create database rest_demo;
Create table
use rest_demo;

CREATE TABLE "podcasts”

(“id" bigint(20) NOT NULL AUTO_INCREMENT,

“title” varchar(145) NOT NULL,

“feed” varchar(145) NOT NULL,

“insertion_date” datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
“description” varchar(500) DEFAULT NULL,

“link™ varchar(145) DEFAULT NULL,

PRIMARY KEY (“id"), UNIQUE KEY “title UNIQUE® (title")

)

Table 6-1. Maven project dependencies

Project Dependencies Version Description
javax.persistence persistence-api 1.0 Java persistence API
org.eclipse.persistence org.eclipse.persistence.jpa 2.1.1 Eclipse project for JPA

applicationContext.xml Updates

<bean id="podcastService"
class="com.rest.service.PodcastServiceImpl" />

The persistence.xml file is shown as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 _0.xsd"
version="2.0" xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name="Podcast" transaction-type=
"RESOURCE_LOCAL">
<class>com.rest.domain.Podcast</class>
<properties>
<property name="javax.persistence.jdbc.driver"
value="com.mysql.jdbc.Driver" />

86

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

<property name="javax.persistence.jdbc.url"
value="jdbc:mysql://localhost:3306/rest_demo" />

<property name="javax.persistence.jdbc.user"

value="rest_demo" />

property name="javax.persistence.jdbc.password"

value="rest_demo" />

</properties>
</persistence-unit>

</persistence>

Java Persistence APl is a source to store business entities as relational entities. It
shows how to define a Plain Object Oriented Java Object (POJO) as an entity and
how to manage entities with relations.

package com.rest.domain;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="rest_demo.Podcasts")

public class Podcast {
// Maps a object property to a XML element derived from

property name.

private int id;
String title = null;
String feed = null ;
String link = null ;
String description = null;

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)

public int getId() {

return id;

}

public void setId(int id) {
this.id = id;

}

87

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

public String getTitle() {
return title;
}

public void setTitle(String title) {
this.title = title;
}

public String getFeed() {
return feed;

public void setFeed(String feed) {
this.feed = feed;

public String getLink() {
return link;

public void setlLink(String link) {
this.link = link;

public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

};

Resource implementing CRUD operations:
package com.rest.resource;
import java.util.list;

import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;

88

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

import org.springframework.beans.factory.annotation.Autowired;

import com.rest.domain.Podcast;
import com.rest.exception.NotFoundException;
import com.rest.service.PodcastService;

@Path("podcasts")
public class PodcastResource {

@Autowired
PodcastService podcastService;

@POST

@Consumes ({"application/json"})
@Produces({"application/json"})

public void createPodcast(Podcast podcast) {

podcastService.createPodcast(podcast);

}

@GET
@Path("{id}")
@Consumes ({"application/json"})
@Produces({"application/json"})
public Podcast getPodcast(@PathParam("id") int id) throws
NotFoundException {
Podcast podcast = podcastService.getPodcast(id);
Return podcast;

}

@GET
@Path("/search")
@Consumes ({"application/json"})
@Produces({"application/json"})
public List<Podcast> getPodcasts(@QueryParam("title")
String title) {
List<Podcast> podcastlList = podcastService.
getPodcastByTitle(title);

return podcastlist;

}

@DELETE

@Path("{id}")

@Consumes ({"application/json"})
@Produces({"application/json"})

89

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

public Podcast deletePodcast(@PathParam("id") int id) {
Podcast current = podcastService.deletePodcast(id);
return current;

}

@PUT

@Path("{id}")

@Consumes ({"application/json"})

@Produces ({"application/json"})

public Podcast updatePodcast(@PathParam("id") int id,

Podcast update) {
Podcast current = podcastService.updatePodcast(id, update);
return current;

}

@GET
@Consumes ({"application/json"})
@Produces ({"application/json"})
public List<Podcast> getAll() {
List<Podcast> podcastlList = podcastService.getAll();

return podcastlist;

Podcast service interface:

package com.rest.service;

import java.util.list;

import com.rest.domain.Podcast;
import com.rest.exception.NotFoundException;

public interface PodcastService {

};

90

STUDENTS-HUB.com

public void createPodcast(Podcast podcast);

public Podcast getPodcast(int id) throws NotFoundException;
public Podcast deletePodcast(int id);

public Podcast updatePodcast(int id, Podcast update);
public List<Podcast> getAll();

public List<Podcast> getPodcastByTitle(String title);

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

Podcast service will use loC to get an instance of podcastDao and implement any
business logic here.

package com.rest.service;

import java.util.list;

import org.springframework.beans.factory.annotation.Autowired;
import com.rest.dao.PodcastDAO;

import com.rest.domain.Podcast;

import com.rest.exception.NotFoundException;

public class PodcastServiceImpl implements PodcastService {

@Autowired
PodcastDAO podcastDao;

public void createPodcast(Podcast podcast) {
podcastDao.createPodcast(podcast);
}

public Podcast getPodcast(int id) throws NotFoundException {
Podcast podcast = podcastDao.getPodcast(id);
return podcast;

}

public Podcast deletePodcast(int id) {
Podcast current = podcastDao.deletePodcast(id);
return current;

}

public Podcast updatePodcast(int id, Podcast update) {
Podcast current = podcastDao.updatePodcast(id, update);
return current;

}

public List<Podcast> getAll() {
List<Podcast> podcastlList = podcastDao.getAll();
return podcastlist;

}

public List<Podcast> getPodcastByTitle(String title) {
List<Podcast> podcastList = podcastDao.getPodcast
ByTitle(title);
return podcastlist;

91

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

Podcast DAO interface:

package com.rest.dao;

import java.util.list;

import com.rest.domain.Podcast;
import com.rest.exception.NotFoundException;

public

interface PodcastDAO {

public void createPodcast(Podcast podcast);

public Podcast getPodcast(int id) throws NotFoundException;
public Podcast deletePodcast(int id);

public Podcast updatePodcast(int id, Podcast update);
public List<Podcast> getAll();

public List<Podcast> getPodcastByTitle(String title);

PodcastDAOImpl object implements CRUD operations to support persistence using
JPA. EntityManagerFactory is a factory class of EntityManager. It creates and
manages multiple EntityManager instances. EnitityManager is an interface;

it manages the persistence operations on objects. It works like factory for Query
instance. Query interface is implemented by each JPA vendor to obtain relational
objects that meet the criteria.

Below is PodacstDAO implementing CRUD operations and search by title on a
podcast entity.

package com.rest.dao;

import
import
import
import
import
import

import

import
import

92

STUDENTS-HUB.com

java.util.List;

javax.persistence.EntityManager;
javax.persistence.EntityManagerFactory;
javax.persistence.Persistence;
javax.persistence.Query;

javax.ws.rs.core.Response;
com.rest.domain.Podcast;

com.rest.exception.ErrorMessage;
com.rest.exception.NotFoundException;

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

public class PodcastDAOImpl implements PodcastDAO {
private static final String PERSISTENCE_UNIT NAME = "Podcast";
private static EntityManagerFactory factory;

public void createPodcast(Podcast podcastnew) {
factory = Persistence.createEntityManagerFactory
(PERSISTENCE UNIT NAME);
EntityManager em = factory.createEntityManager();
// Read the existing entries and write to console
Query q = em.createQuery("SELECT p FROM Podcast p");
@SuppressWarnings("unchecked")
List<Podcast> podcastlList = q.getResultlList();
for (Podcast podcast : podcastlList) {
System.out.println(podcast.getTitle());
}

// Create new user

em.getTransaction().begin();

Podcast podcast = new Podcast();
podcast.setTitle(podcastnew.getTitle());
podcast.setDescription(podcastnew.getDescription());
podcast.setFeed(podcastnew.getFeed());
podcast.setLink(podcastnew.getLink());
em.persist(podcast);

em.getTransaction().commit();

em.close();

}

public Podcast getPodcast(int id) throws NotFoundException {
factory = Persistence.createEntityManagerFactory
(PERSISTENCE _UNIT NAME);
EntityManager em = factory.createEntityManager();
Podcast podcast = em.getReference(Podcast.class, id);
if (podcast == null) {
ErrorMessage errorMessage = new ErrorMessage("1001",
"Podcast not found!", "http://localhost:8080/1ab6/
error.jsp"”, Response.Status.NOT_FOUND);
throw new NotFoundException(errorMessage);

}

return podcast;

}

public Podcast deletePodcast(int id) {
factory = Persistence.createEntityManagerFactory
(PERSISTENCE_UNIT NAME);
EntityManager em = factory.createEntityManager();
Podcast podcast = em.find(Podcast.class, id);

93

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

em.getTransaction().begin();
em.remove(podcast);
em.getTransaction().commit();

return podcast;

}

public Podcast updatePodcast(int id, Podcast update) {
factory = Persistence.createEntityManagerFactory
(PERSISTENCE_UNIT_NAME);
EntityManager em = factory.createEntityManager();
Podcast podcast = em.find(Podcast.class, id);

em.getTransaction().begin();
podcast.setTitle(update.getTitle());
podcast.setDescription(update.getDescription());
podcast.setFeed(update.getFeed());;
podcast.setLink(update.getLink());;
em.getTransaction().commit();

return podcast;

}
// get all
@SuppressWarnings("unchecked")
public List<Podcast> getAll() {
factory = Persistence.createEntityManagerFactory
(PERSISTENCE UNIT NAME);
EntityManager em = factory.createEntityManager();
Query query = em.createQuery("SELECT e FROM
Podcast e");
return (List<Podcast>) query.getResultlList();
}
// get all

@SuppressWarnings("unchecked")
public List<Podcast> getPodcastByTitle(String title)
throws NotFoundException {
factory = Persistence.createEntityManagerFactory
(PERSISTENCE UNIT NAME);
EntityManager em = factory.createEntityManager();

return (List<Podcast>) em.createQuery(
"SELECT p FROM Podcast p WHERE p.title
LIKE :title")
.setParameter("title", title)
.setMaxResults(10)
.getResultlist();

94

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

Now let's look into podcasts in MySQL and fetched by REST in POSTMAN as shown
in Figure 6-6 and Figure 6-7.

Figure 6-6. Podcasts in MySQL database

http:i192.169.151.15

GET hup:/f192.165.151.152:8090/1abb/rest/podcasts

Authorization

"description”: "desc 17,
8 "login": "sspatni®

14 "1ink™: "1ink 17,
15 “*description™: “desc 1%,
16 "login": "sapatni”

Figure 6-7. Podcasts fetched from MySQL database

95

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 6 ' API PLATFORM AND DATA HANDLER

Wrapping Up

In this chapter we started with API Platform Architecture and then got into data handler
pattern for integration of RESTful APIs with actual data sources. In the exercise we
demonstrated implementation of Data Handler using JPA.

Note If you have problem in running JPA in eclipse due to Eclipse persitence provider
you can build it outside eclipse using maven and deploy in tomcat.

96

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 7

API Management and API
Client

In this chapter we will start with Facade and review API Management requirements/
solutions available. Then we will continue with the framework and build demo client calls
of RESTful APIs for the podcast application, followed by how clients need to be supported
by Cross Origin Resource Sharing (CORS).

Facade

In this section we will first review the Facade design pattern and then in the second part
we will get into details about how Facade is applied to the APIs.

Facade Pattern

Before we discuss the Facade Pattern, let's consider what a facade is in the real world.
The most obvious example is that of buildings, which all have an exterior to protect and
decorate, hiding the internal workings of the interior. This exterior is the facade.

Now we can get closer to APIs by considering operating systems. Just like in
buildings, an operating system provides an exterior shell to the interior functionality of a
computer. This simplified interface makes an OS easier to use and protects the core from
clumsy users.

This is where the definition of the Facade Pattern in On Design Patterns (Gamme,
et al.) comes in handy:

Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Consider Figure 7-1; you can see how the Facade Pattern puts an intermediate layer
between the packages of the application and any client that wants to interact with them.

© Sanjay Patni 2017 97
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_7

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 7 * AP MANAGEMENT AND API CLIENT

Facade

AR

includes includes
/ ‘\
/ \
/ 5
Package1 I Package2 I

Figure 7-1. Fagade Pattern

API Facade

Like all implementations of the Facade Pattern, an API Facade is a simple interface to a
complex problem. Figure 7-2 shows internal subsystems in an enterprise. As shown, each
internal subsystem is complex in itself: for example, JDBC hides the inner workings of
database connectivity.

Content I
Management

Figure 7-2. Internal subsystems

Figure 7-3 shows an API Facade layer on the top of internal subsystems of the
enterprise, providing a unified interface to apps.

98

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 7 * APl MANAGEMENT AND API CLIENT

App
Developer

L) B

' <
Content
Management || | JDBC

App

Figure 7-3. API Facade

Implementing an API facade pattern involves three basic steps.

1. Design the API: identify the URLs, request parameters and
responses, payloads, headers, query parameters, and so on.

2. Implement the design with mock data. App developers can
then test the API before the API is connected to internal
subsystems, with all the complications that entails.

3. Connect the fagade with the internal systems to create
the live API.

Figure 7-4 shows these layers.

App
u Developer

Mediate ’
Content

Management

System

Figure 7-4. API Fagade

99

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 7 * AP MANAGEMENT AND API CLIENT

APl Management

An API management tool provide the means to expose your API to external developers in
an easy and affordable manner.
Here are the features of an AP management service:

Documentation

Analytics and statistics

Deployment

Developer engagement

Sandbox environment

Traffic management and caching abilities
Security

Availability

Monetization

API lifecycle management

API management vendors implement their solution in three
different ways:

e Proxy. All traffic goes through the API management tool,
which is placed as a layer between the application and users.

e Agents. These are plug-ins for servers. They do not intercept
API calls like proxies.

e Hybrid. This approach picks features of proxies and agents, and
integrates them. You can then pick which features you need.

API Life Cycle

The default API life cycle has the following stages:

100

STUDENTS-HUB.com

ANALYSIS: The API is analyzed and mock responses are created
for a limited set of consumers to try out the API and provide
feedback. It’s also analyzed for monetization, as discussed in the
following section.

BEING CREATED/DEVELOPMENT: The API is being created:
designed, developed, and secured. The API metadata is saved, but
itis not visible yet, nor deployed.

PUBLISHED/OPERATIONS: The API is visible and eventually
published and is now in the maintenance stage, where it is scaled
and monitored.

https://students-hub.com

CHAPTER 7 * APl MANAGEMENT AND API CLIENT

In addition, there are two more stages:

e DEPRECATED: The APl is still deployed (available at runtime
to existing users), but is not visible to new users. An AP is
automatically deprecated when a new version is published.

e RETIRED: The API is unpublished and deleted.

These are discussed in the next section.
Figure 7-5 shows an API life cycle.

Design
Monetize Develop
m
Analyze Secure
Monitor Publish
Scale

Figure 7-5. API life cycle

API Retirement

As old age comes we get to retire, and the same is true with APIs. With time and due to the
following reasons, API is retired or deprecated.

e Lack of partner or third-party developer innovation
¢ Losing market share due to expose of data by API
e Changesin technology stack e.g., REST replacing SOAP

e Security concern: making public API private due to security
requirement of the information or data exposed by API

e Versioning: most common reason due to functionality changes

Some of the examples of API retirement are Netflix, Google Earth, and Twitter V1.0, etc.

101

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 7 * AP MANAGEMENT AND API CLIENT

API Monetization

Digital assets or services provide real value to customers, partners, and end users and
hence they should be a source of revenue for your company, as well as an important part
of your business model.

There are three business models for monetizing APIs:

e The revenue share model, where the API consumer gets paid for
the incremental business they trigger for the API provider.

e The fee-based model, where the API consumer pays the provider
for API usage.

e The third and final business model is freemium. Freemium models
can be based on a variety of factors such as volume, time, or some
combination; they can be implemented as standalone or hybrid
models (in conjunction with the revenue share or fee-based).

EXERCISE - APl CLIENT AND CORS

When you publish a REST API, you also provide a demo client application
implementing API operation to show the use of API.

The client could be any of JavaScript, AJAX, JQuery or AngularJS, or even a native
mobile app in Objective-C for i0S.

In this excercise we will use the style sheets of Bootstrap (Base Admin and
AngularJS request) to get data from the server and bind that in the Ul.

Actions

Title Link Description Feed ﬁ
sample Tile sample Link sample Description Sample feed ﬁ ﬁ

This Ul can implement CRUD operations as follows:

Podcasts collection: Will load podcasts using “GET podcasts”

Podcasts collection: Add button will invoke a form to capture details
which can be posted by “POST podcasts” and added to collection.

Podcast: View will invoke details of podcasts using “GET podcastsAid}”.
Podcast: Delete will delete podcast from collection “DELETE podcasts/id}”.

Podcast: Edit will invoke a form with current values and updates can
be posted using “PUT podcasts/{id}”.

102

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 7 * APl MANAGEMENT AND API CLIENT

Get the bootstrap css and podcast.html from source code
folder of appress site and integrate these AngularJS calls in
podcast.html to test demo app.

GET ALL PODCASTS

var app = angular.module('app', []);

angular.module('app"').controller("PodcastController",[' $scope’,
"$http', '$window', function($scope, $http, $window){
$scope.podcast = {};

$scope.getPodcasts = function() {
url = "http://localhost:8080/1ab7/rest/podcasts";
$http({method: 'GET', url: url}).
success(function(data, status, headers,
config) {
$scope.podcastsList = data;
b-

error(function(data, status, headers,
config) {
$scope.apps = data || "Request
failed";
$scope.status = status;
D;
};

VIEW PODCAST

$scope.viewPodcast = function(id) {

url = "http://localhost:8080/1ab7/rest/
podcasts/" + id ;

console.log(url);

$http({method: 'GET', url: url}).
success(function(data, status, headers,

config) {
$scope.podcast = data;
-
error(function(data, status, headers,
config) {
$scope.apps = data || "Request
failed";
$scope.status = status;
1;

103

https://students-hub.com

CHAPTER 7 * AP MANAGEMENT AND API CLIENT

$scope.deletePodcast = function(id) {

url = "http://localhost:8080/1ab7/rest/

podcasts/" + id ;

console.log(url);

$http({method: 'DELETE', url: url}).

success(function(data, status, headers, config) {
$scope.podcast = data;

b-

error(function(data, status, headers, config) {
$scope.apps = data || "Request failed";
$scope.status = status;

D;
$window.location.reload();
}
$scope.submitForm = function(){
$http({
method : 'POST',
url : "http://localhost:8080/1ab7/rest/
podcasts',
data : $scope.podcast, //forms podcast
object
headers : {'Content-Type': 'application/json'}
H-

success(function(data, status, headers, config) {
$scope.podcast = data;

H-
error(function(data, status, headers,
config) {
$scope.apps = data || "Request
failed";
$scope.status = status;
D;

$window.location.reload();

$scope.updatePodcast = function(id){

$http({
method : 'PUT',
url : 'http://localhost:8080/1ab7/rest/

podcasts/' + id,

104

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

CHAPTER 7 * APl MANAGEMENT AND API CLIENT

data : $scope.podcast, //forms podcast
object

headers : {'Content-Type': 'application/json'}

H-

success(function(data, status, headers, config) {
$scope.podcast = data;
H.

error(function(data, status, headers,
config) {
$scope.apps = data || "Request
failed";
$scope.status = status;

};

$window.location.reload();

$scope.searchPodcast = function(){
url = "http://localhost:8080/1ab7/rest/podcasts/
search?title=" + $scope.searchval;
console.log(url);
$http({method: 'GET', url: url}).
success(function(data, status, headers, config) {
$scope.podcastsList = data;
-

error(function(data, status, headers, config) {
$scope.apps = data || "Request failed";
$scope.status = status;

B;

“Cross-0rigin Resource Sharing” (CORS) is a mechanism that allows JavaScript on a
web page to make XMLHttpRequests to another domain, not the domain the JavaScript
originated from. Such “cross-domain” requests would otherwise be forbidden by web
browsers, per the same origin security policy. CORS defines a way in which the browser
and the server can interact to determine whether or not to allow the cross-origin
request. It is more useful than only allowing same-origin requests, but it is more secure
than simply allowing all such cross-origin requests.The Cross-0rigin Resource Sharing
standard works by adding new HTTP headers that allow servers to describe the set of
origins that are permitted to read that information using a web browser.

105

https://students-hub.com

CHAPTER 7 * AP MANAGEMENT AND API CLIENT

How to implement CORS?

The first way is by using the header method of the javax.ws.rs.core.Response.

return Response.ok() //200

.entity(podcasts)

.header("Access-Control-Allow-Origin", "*")
.header("Access-Control-Allow-Methods", "GET, POST, DELETE, PUT")
.allow("OPTIONS").build();

Another way to add the headers to the response is by using Jersey filters, which can
modify inbound and outbound requests and responses, including modification of
headers, entity, and other request/response parameters.

| think this is the better way to do it, especially if you want to expose the same HTTP
headers in the response for all the resources of the API—this is a sort of a cross-
cutting concern capability powered by Jersey filters.

package com.rest.filter;
import java.io.IOException;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.core.MultivaluedMap;

import javax.ws.rs.ext.Provider;

@Provider

// Marks an implementation of an extension interface that should be
discoverable by

// JAX-RS runtime during a provider scanning phase.

// Filter intercepts incoming requests and add value
public class CORSResponseFilter implements ContainerResponseFilter {

public void filter(ContainerRequestContext requestContext,
ContainerResponseContext responseContext) throws IOException {

MultivaluedMap<String, Object> headers = responseContext.getHeaders();

headers.add("Access-Control-Allow-Origin", "*");
//headers.add("Access-Control-Allow-Origin", "http://ucsc.com");
//allows CORS requests only coming from appress.org
// alternatively you can maintain list of origin allowed and get orgin
from request and check in list
headers.add("Access-Control-Allow-Methods", "GET, POST, DELETE, PUT");

}
}

106

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8

API Security and Caching)

In this chapter we will start with the review of the OAuth 2 standard for securing RESTful
APIs and do an exercise on implementing basic Spring security. We will then review
caching concepts.

API Security - OAuth 2

OAuth 2 is a standard for delegating authorization for accessing resources by HTTP

With OAuth, we can give access rights to the mobile apps without giving a password.
Instead, a token is handed over to the application. A token repesents access rights for the
subset of data for a short time frame. Please refer to https://oauth.net/2/ for general
information about OAuth 2.

To obtain a token, the user first logs onto the web site of the OAuth server. The
generated token can be an authorization code, access token, or refresh code. OAuth is
used under the hood of a number of modern clouds.

List of OAuth Providers: https://en.wikipedia.org/wiki/List_of OAuth_providers

OAuth is specified and standardized by IETF in RFC6749 http://tools.ietf.org/
html/rfc6749. OAuth 1 is outdated.

There are two terms: authentication and authorization.

e Authentication is a concept that answers the question:
Who are you?

e Authorization is a concept that answers the question:
What are you allowed to do?

Roles
OAuth2 defines four roles:
e Resource Owner: generally yourself

e Resource Server: server hosting protected data (for example
Google hosting your profile and personal information)

© Sanjay Patni 2017 107
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0_8

STUDENTS-HUB.com

https://oauth.net/2/
https://en.wikipedia.org/wiki/List_of_OAuth_providers
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

e Client: application requesting access to a resource server (it
can be your PHP web site, a JavaScript application, or a mobile
application)

e Authorization Server: server issuing an access token to the client.
This token will be used for the client to request the resource
server. This server can be the same as the authorization server
(the same physical server and the same application), and it is
often the case.

Tokens

Tokens are random strings generated by the authorization server and are issued when the
client requests them.
There are two types of tokens:

e Access Token: This is the most important because it allows the
user data from being accessed by a third-party application. This
token is sent by the client as a parameter or as a header in the
request to the resource server. It has a limited lifetime, which is
defined by the authorization server. It must be kept confidential
as soon as possible, but we will see that this is not always possible,
especially when the client is a web browser that sends requests to
the resource server via JavaScript. In general access, a token will
be designed to be opaque to the client, but when it’s used as a
user authentication, the client will be needed to be able to derive
some information from the token.

e Refresh Token: This token is issued with the access token but,
unlike the latter, it is not sent in each request from the client to the
resource server. It merely serves to be sent to the authorization
server for renewing the access token when it has expired. For
security reasons, it is not always possible to obtain this token. We
will see later in what circumstances.

Figure 8-1 shows OAuth based interactions.

108

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Accesses
Resources Data

A 4

Client Application g
Resource Server

Accesses Delegates
Issues Tokens i
Resources Authorization

A J

Authenticates,
Authorizes

Resource Owner OAuth Server

Figure 8-1. OAuth-based interactions

Register as a client

Since you want to retrieve data from a resource server using OAuth2, you have to register
as a client of the authorization server.

Each provider is free to allow this by the method of his choice. The protocol only
defines the parameters that must be specified by the client and those to be returned by
the authorization server.

Here are the parameters (they may differ depending on the providers):

Client registration

Application Name: the application name
Redirect URLs: URLs of the client for receiving authorization code and access token
Grant Type(s): authorization types that will be used by the client
JavaScript Origin (optional): the hostname that will be allowed to request the
resource server via XMLHttpRequest

Authorization server response

Client Id: unique random string
Client Secret: secret key that must be kept confidential

More information: RFC 6749 — Client Registration

109

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Authorization grant types

OAuth2 defines four grant types depending on the location and the nature of the client
involved in obtaining an access token:

Authorization Code Grant

We will review authorization code grant and its flow in this section. This type of grant is
used to sign on into Google and Facebook.

When should it be used?

It should be used when the client is a web server or web site. It allows you to obtain a
long-lived access token since it can be renewed with a refresh token (if the authorization
server enables it).

Example:

Resource Owner: you
Resource Server: a Google server
Client: any web site
Authorization Server: a Google server

Scenario:

1. A web site wants to obtain information about your Google
profile.

2. You are redirected by the client (the web site) to the
authorization server (Google).

3. Ifyou authorize access, the authorization server sends an
authorization code to the client (the web site) in the callback
response.

4. Then, this code is exchanged against an access token between
the client and the authorization server.

5. The web site is now able to use this access token to query the
resource server (Google again) and retrieve your profile data.

You never see the access token; it will be stored by the web site (in session, for
example). Google also sends other information with the access token, such as the token
lifetime and eventually a refresh token.

110

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 ' API SECURITY AND CACHING

Sequence diagram:

Figure 8-2 shows sequence diagram for authorization code grant flow.

Authorization Code Grant Flow

Resource Owner Client Authorization Server Resource Server
i i i
! ! Authorization Code Request) !
i I 1]
]]
l i Needs client_id, redirect_uri,
I ' response_type=code[, scope, state]
I 1
I]
l: Login & Consent N
]
]

I
Exchange Code for Access Tokeny !
d

grant_type=authorization_code, code

]
]
i
L]
i Needs client_id, client_secret, redirect_uriT
]
1
]
i
]

~
|
|
|
>
=1
1=
=1
=4
In'
I
=3
1o
]
I
1S
'a
o
|
1
%
g
o
=
o
@

v, Access Token [+ Refresh Tokenju

lo0pJ

i Call AP with Access Token

'Y
]
]
Y Y
Resource Owner Client Authorization Server Resource Semver

Figure 8-2. Authorization code grant flow

Implicit Grant Flow

We will review implicit grant and its flow in this section.

When should it be used?

It is typically used when the client is running in a browser using a scripting language such
as JavaScript. This grant type does not allow the issuance of a refresh token.

111

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Example:

Resource Owner: you
Resource Server: a Facebook server
Client: a web site using Angular]S, for example
Authorization Server: a Facebook server

Scenario:
1. The client (Angular]S) wants to obtain information about your
Facebook profile.

2. You are redirected by the browser to the authorization server
(Facebook).

3. Ifyouauthorize access, the authorization server redirects you to
the web site with the access token in the URI fragment (not sent
to the web server). Example of callback: http://example.com/
oauthcallback#access_token=MzImNDc3M2VjMmQzN.

4. This access token can now be retrieved and used by the client
(Angular]S) to query the resource server (Facebook). Example
of query: https://graph.facebook.com/me?access_token=M
zJmNDc3M2VjMmOz

Maybe you wonder how the client can make a call to the Facebook API with
JavaScript without being blocked because of the Same Origin Policy? Well, this cross-
domain request is possible because Facebook authorizes it thanks to a header called
Access-Control-Allow-Origin present in the response.

Note This type of authorization should only be used if no other type of authorization is
available. Indeed, it is the least secure because the access token is exposed (and therefore
vulnerable) on the client side.

Sequence diagram:

Figure 8-3 shows the sequence diagram for implicit grant flow.

112

STUDENTS-HUB.com

http://example.com/oauthcallback#access_token=MzJmNDc3M2VjMmQzN
http://example.com/oauthcallback#access_token=MzJmNDc3M2VjMmQzN
https://graph.facebook.com/me?access_token=MzJmNDc3M2VjMmQz
https://graph.facebook.com/me?access_token=MzJmNDc3M2VjMmQz
https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Implicit Grant Flow

Resource Owner

Javascript Application

Authorization Server I

Resource Server

Login & Consent

I Access Token Request ;!
L

Needs client_id, redirect_uri,

response_type=token|, scope, slate]}

Y SRS Access Token |
]

I
I
I
i
I
Validate client_id |
|
I
|
T
|
|
|
I

»e
il

for Cross-Domain Requests

T

I
I
I
I
I
I
I
L
T
I
I
I
I
i
i Must Implement CORS
I
I
I
i
I
-
I
L
T

Resource Owner

Javascript Application Authorization Server I

Resource Server

Figure 8-3

Resource Owner Password Credentials Grant

We will review resource owner password credentials grant and its flow in this section.

When should it be used?

With this type of authorization, the credentials (and thus the password) are sent to the
client and then to the authorization server. It is therefore imperative that there is absolute
trust between these two entities. It is mainly used when the client has been developed by
the same authority as the authorization server. For example, we could imagine a web site
named “example.com” seeking access to protected resources of its own subdomain “api.

example.com” The user would not be surprised to type his login/password on the site
“example.com” since his account was created on it.

STUDENTS-HUB.com

113

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Example:

Resource Owner: you have an account on the acme.com web site of the Acme company
Resource Server: Acme company exposes its API at api.acme.com
Client: acme.com web site from Acme company
Authorization Server: an Acme server

Scenario:

1. The Acme company, doing things well, thought to make
available a RESTful API to third-party applications.

2. This company thinks it would be convenient to use its own
API to avoid reinventing the wheel.

3. The company needs an access token to call the methods of its
own APL

4. For this, the company asks you to enter your login credentials
via a standard HTML form as you normally would.

5. The server-side application (web site “acme.com”) will
exchange your credentials against an access token from the
authorization server (if your credentials are valid, of course).

6. This application can now use the access token to query its

own resource server (api.acme.com).

Sequence diagram:

Figure 8-4 shows the sequence diagram for this flow.

Resource Owner Password Credentials Grant Flow

Resource Senver

Resource Owner Client Authorization Server I |

]
Authenticate with Credentials !

Resource Owner | Client Authorization Server I

Fi

i Access Token Request

4
[

Needs client_id, client_secret, redirect_uri,
grant_type=password, username, password

loop |

Call APl with Access Token

b

]
|
I
r
1
I

K _________________________

-SRI N —

Response with Dat ;H

1
Resource Semver I

Figure 8-4. Resource owner password credentials grant flow

114

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Client Credentials Grant

This type of authorization is used when the client is himself the resource owner. There is
no authorization to obtain from the end user.

Example:

Resource Owner: any web site
Resource Server: Google Cloud Storage
Client: the resource owner
Authorization Server: a Google server

Scenario:
1. Aweb site stores its files of any kind on Google Cloud Storage.

2. The web site must go through the Google API to retrieve or
modify files and must authenticate with the authorization
server.

3. Once authenticated, the web site obtains an access token that
can now be used for querying the resource server (Google
Cloud Storage).

Here, the end user does not have to give his authorization for accessing the
resource server.

Sequence diagram:

Figure 8-5 shows the sequence diagram for this flow.

115

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Client Credentials Grant Flow

Client L
Authorization Server Resource Server
Resource Owner

Access Token Request

"

Needs client_id, client_secret,
grant_type=client_credentials[, scope]

Access Token

oop J

; Call APl with Access Token

'Y

esponse with Datat“

!
1
I
I
|
I
4
I
I
I

qTTTT T T T T s T
I |]
lien .
Client Authorization Server Resource Server
(Resource Owner)

Figure 8-5. Client credentials grant flow

Caching

In this section we will review caching framework. Starting with caching solutions
available at the services layer in the framework, we will review HTTP caching
implemented in JAX-RS resources and the cover caching at the client. Using caching
technology at strategic points across the multi-tier model can help reduce the number

of back-and-forth communications. Furthermore, although cache repositories require
memory and CPU resources, using caches can nonetheless lead to overall performance
gains by reducing the number of expensive operations (such as database accesses and
web page executions). However, ensuring that caches retain fresh content and invalidate
stale data is a challenge, and keeping multiple caches in sync, in clustered environments,
is even more so. In object caching by storing frequently accessed or expensive-to-create
objects in memory, object caching eliminates the need to repeatedly create and load data.
It avoids the expensive reacquisition of objects by not releasing the objects immediately
after their use and, instead, the objects are stored in memory and reused for any
subsequent client requests. HTTP and Web cache is used to reduce latency. It takes less
time for it to get the representation and display it. It reduces load on the web site servers
and reduces bandwidth needs and cost. It benefits the user, the service provider, and the
web site owner. Figure 8-6 show caches used in the framework.

116

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

coee
L 1]

Caching

seeeee
soeee

Figure 8-6. Caching

Server Caching

Multi-tier architectures help make complex enterprise applications manageable and
scalable. Yet, as the number of servers and tiers increases, so does the communication
among them, which can degrade overall application performance. In most of the web
applications, data is retrieved from the database. The database operation is expensive
and time-consuming. Present-day web applications are data-intensive and first response
time is the basic criteria for success. If the web application is frequently accessing the
database for each request, then its performance will be slow. In the Enterprise application
we can cache objects by object caching. It allows applications to share objects across
requests and users, and coordinates the objects’ life cycles across processes. There are
several Open Source Caching Frameworks for Java such as JBoss Cache, OSCache, Java
Caching System, and EhCache. The drawbacks of using direct methods such as Java Hash
map, Hash table, and JNDI are overcome by these frameworks.

HTTP Caching

HTTP caching is an easy and often ignored option to speed up web applications. It’s
standardized and well-implemented in all modern browsers and results in a lower
latency app and improved responsiveness.

Time-based cached header

In HTTP 1.1 the Cache-Control header specifies the resource caching behavior as well as
the max age the resource can be cached.

117

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Here is a list of all the available Cache-Control tokens and their meaning:

e private: only clients (mostly the browser) and no one else in the
chain (like a proxy) should cache this

e public: any entity in the chain can cache this
e no-cache: should not be cached anyway

e no-store: can be cached but should not be stored on disk (most
browsers will hold the resources in memory until they are quit)

e no-transform: the resource should not be modified (for example,
shrink image by proxy)

e max-age: how long the resource is valid (measured in seconds)
e s-maxage: same as max-age but this value is just for non-clients

In a JAX-RS method a Response object can be returned. The Cache-Control header
can also be set on the Response object by using the CacheControl class.
Methods are provided for all of the available Cache-Control header tokens.

@Path("/podcasts/{id}")

@GET

public Response getPodcast(@PathParam("id") int id) {
Prodcast podcast = podcastDB.get(id);
CacheControl cc = new CacheControl();
cc.setMaxAge(86400);
cc.setPrivate(true);
ResponseBuilder builder = Response.ok(podcast);
builder.cacheControl(cc);
return builder.build();

Conditional cache headers

Conditional requests are those where the browser can ask the server if it has an updated
copy of the resource. The browser will send one or both of the ETag and If-Modified-
Since headers about the cached resource it holds. The server can then determine
whether updated content should be returned or the browser’s copy is the most recent.

@Path("/podcasts/{id}")

@GET

public Response getPodcast(@PathParam("id") long id, @Context Request request){
Podcast podcast = podcastDB.get(id);
CacheControl cc = new CacheControl();
cc.setMaxAge(86400);
EntityTag etag = new EntityTag(Integer.toString(podcast.hashCode()));
ResponseBuilder builder = request.evaluatePreconditions(etag);

118

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

// podcast did change -> serve updated content
if(builder == null){
builder = Response.ok(podcast);
builder.tag(etag);
}
builder.cacheControl(cc);
return builder.build();

A ResponseBuilder is automatically constructed by calling evaluate preconditions
on the request. If the builder is null, the resource is out of date and needs to be sent
back in the response. Otherwise, the preconditions indicate that the client has the latest
version of the resource and the 304 Not Modified status code will be automatically
assigned.

Web Caching

We can do web caching. The web cache sits between one or more web servers (also
known as origin servers) and a client or many clients, and watches requests come by,
saving copies of the responses —like HTML pages, images, and files (collectively known
as representations)— for itself. If there is another request for the same URL, it can use the
response that it has, instead of asking the origin server for it again.

EXERCISE - BASIC SECURITY

To secure the REST services with basic authentication, the following Spring security
libraries are necessary in the classpath. Please include these in the pom. xm1:

<dependency>
<groupld>org.springframework.security</groupld>
<artifactId>spring-security-core</artifactId>
<version>4.0.4.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-web</artifactId>
<version>4.0.4.RELEASE</version>
</dependency>
<dependency>
<groupld>org.springframework.security</groupIld>
<artifactId>spring-security-config</artifactId>
<version>4.0.4.RELEASE</version>
</dependency>

119

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

Create security-applicationContext.xml in src/main/resources/spring.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security"”
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:security="http://www.springframework.org/schema/security"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/
spring-security.xsd">

<!-- Stateless RESTful services use BASIC authentication -->
<security:http create-session="stateless">
<security:intercept-url pattern="/rest/**"
access="hasRole('ROLE_REST_DEMO')"/>
<security:http-basic/>
</security:http>
<security:authentication-manager>
<security:authentication-provider>
<security:user-service>
<security:user name="rest_demo" password="rest_ demo"
authorities="ROLE_REST_DEMO"/>
</security:user-service>
</security:authentication-provider>
</security:authentication-manager>
</beans:beans>

Extend now the contextConfiglocation context parameter, to be aware of the the
new Spring security configuration file security-applicationContext.xml.

Hook into Spring security.

<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>
classpath:spring/applicationContext.xml
classpath:spring/security-applicationContext.xml
</param-value>
</context-param>

120

STUDENTS-HUB.com

https://students-hub.com

CHAPTER 8 " API SECURITY AND CACHING

<!--Hook into spring security--»>

<filter>

<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy
</filter-class>

</filter>

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/rest/*</url-pattern>

</filter-mapping>

In browser invoke localhost:8080/1ab8/rest/podcasts

and enter username rest_demo, password rest_demo.

CURL : curl -H "Content-Type: application/json" -u rest demo:rest_
demo -X GET http://localhost:8080/1ab8/rest/podcasts

Wrapping Up

In this chapter we reviewed of OAuth 2 standard for securing RESTful APIs and did an
exercise on implementing basic Spring security. We also reviewed concepts about HTTP,
server, and client caching.

To summarize, in this book we reviewd REST APIs concepts in three tracks:
Architecture, Design, and Coding.

Topics covered on the architecture front included Web Architecture Style, API
Solution Architecture, API Portfolio Architecture, API Platform Architecture, API
Management, and Security-OAuth.

Topics included on the design track included REST APIs Fundamentals, Data
exchange formats, SOAP vs. REST, XML vs JSON, Introduction to API design: REST
and JAX-RS, API design best practices, Modeling RESTful APIs, Building RESTful API-
Framework, Interacting with RDBMS (MySQL) and NoSQL databases, Consuming
RESTful API (i.e., JSON, XML), Security, and API Caching.

We also completed excercises on the coding track to understand how each concept
can be implemented at the end of each chapter.

121

STUDENTS-HUB.com

https://students-hub.com

Index

A

Agile design strategy, 13-14

Ant

software, 42

Anypoint system, 28

API

API
API

architecture design, 15
Client and CORS, 102-106
comparison, 17-18
consumers, 25
description, 14

design, 26-28

design strategies, 11-12
end users, 25

facade, 23

Facade Pattern, 97-98
implementation, 16, 99
internal subsystems, 98
layers, 99

life cycle, 100-101
management, 100
methodology, 14
modeling, 16-17
monetization, 102

partial response, 22
Portfolio, 15

process, 13

prototyping, 15
providers, 25

publish, 16

retirement, 101

solution architecture, 23-24
version, 21-22
Engagement platform, 80
framework

DAO, 67

Facade Pattern, 67
services layer implementation, 66-67

© Sanjay Patni 2017
S. Patni, Pro RESTful APIs, DOI 10.1007/978-1-4842-2665-0

STUDENTS-HUB.com

API Platform Architecture
components, 78
development, 78-80
engagement platform, 80
enterprise, 81-82
importance, 77
pre-production, 80
production, 80
simulation, 80
testing, 80

API Portfolio Architecture
consistency, 63
customization, 64
discoverability, 64
longevity, 64
requirements, 63
reuse, 63

API security
client credentials grant, 115-116
client registration, 109
code grant, 110-111
grant types, 110
implicit grant, 111-112
oAuth, 107
register as a client, 109
resource owner password credentials

grant, 113-114
roles, 107
server response, 109
tokens, 108-109
Application Programming
Experience (APX), 11

B

Back-end systems, 82
BaseURI, 28
Base URL, 19-20

123

https://students-hub.com

INDEX

Blueprint, 17-18
Bolt-on strategy, 11

C

Caching, 5
conditional cache headers, 118-119
HTTP, 117
memory and CPU resources, 116
server, 117
time-based cached header, 117-118
web, 119
Choreography, 66
Client-server interactions, 4, 6
Cloud solutions, 24
Code-on-demand, 6
Command Query Responsibilities
segmentation (CQRS), 83-85
Community MySQL software, 42
Content negotiation, 9
Cookie parameter, 53
Create, read, update, delete (CRUD), 56
JAX-RS
with JSON, 57-61
with XML, 54-57
Cross-Origin Resource
Sharing (CORS), 97, 105-106
CRUD architecture, 83
CURL command line tool, 56-57
Curl software, 42

D

Data Access Object (DAO), 67, 82-83
Data Handler, 84

CQRS, 83

DAO, 82-83

JPA, 85-94

NoSQL process, 84

SQL development process, 83
Dependency injection (DI), 67
Development platform, 78-79

data format transformation, 79

data integrity and protection, 79

front-end protocols, 79

language for designing, 79

security, 78

structural transformation, 79
Document Type Definitions (DTDs), 34
Domain analysis, 14

124

STUDENTS-HUB.com

E

Eclipse-Mars software, 41
E-commerce system, 25
Error code, 21
Error handling, 20-21
eXtensible Markup Language (XML)
and JSON comparison, 40
comments, 34-35
encoding, 35
importance, 35
introduction, 33
JAX-RS, 54-57
messaging application, 33
pros and cons, 36
standalone, 35
tags, 33
uses, 35
version, 35
vs. HTML, 34

F

Facade pattern, 23
Facade strategy, 13
Facebook, 22

Form parameter, 53

G

Governance
change management, 65
consistency, 64
customization, 65
discoverability, 65
reuse, 65

Greenfield strategy, 12

H

Header parameter, 53

HTML, 34

Hypermedia As The Engine Of Application
State (HATEOAS), 6

Identity and Access Management (IAM), 81
Internet-of-things, 25
Inversion of Control, 67

https://students-hub.com

J, K

Java API for RESTful Web Services
(JAX-RS)
Cache-Control, 118
content type, 51
cookie parameter, 53
CRUD
CURL, 56-57
customer resource, 55-56
ErrorMessage object, 59
Glassfish, 57, 58
Java customer object, 54
JSON customer object, 57
JSON CustomerResource
updates, 58, 59
JSON pom.xml updates, 57
NotFoundException class, 60
result in postman, 60, 62
XML, 54
example, 50
features, 49
form parameter, 53
header parameter, 53
injection, 51-52
introduction, 49-50
matrix parameter, 53
path parameter, 52
query parameter, 53
Java Persistence API (JPA), 86
Maven project dependencies, 85
persistence.xml file, 86
podcast DAO, 91
PodcastDAOImpl, 91-95
podcast domain object, 86-87
podcast resource, 88-89
podcast service, 90
JavaScript Object Notation (JSON)
importance, 38-39
introduction, 36
JAX-RS, 57-61
pros and cons, 39-40
syntax, 36
arrays, 38
booleans, 38
null, 38
numbers, 37
objects, 37
strings, 37
uses, 39
and XML comparison, 40

STUDENTS-HUB.com

INDEX

JDK 8 software, 41
Jetty software, 41

L

LinkedIn, 22

Markup, 33
Matrix parameter, 53
Maven software, 42
Mobile app, 24, 63
MS SQL software, 42
Multilayer framework
data access object, 67
Facade pattern, 67
services layer implementation, 66
MySQL, 94-95

N

NoSQL, 83-85

(0

Orchestration (direct calls), 66

P

Path parameter, 52
Plain Object Oriented
Java Object (POJO), 72, 86-87
Podcast domain object, 68-76
POST, 19
Postman software, 42

Q

Query parameter, 53

R

Representational
State Transfer (REST)

basics, 7

fundamentals, 8-9

hello exercise
instructions, 43-45, 47-48
software for installation, 41-42
URI processing, 42

125

https://students-hub.com

INDEX

modifiability, 2
performance, 2
portability, 2
reliability, 2
scalability, 2
security, 7
simplicity of interface, 2
SOAP vs., 2-4
structures, 8
visibility, 2
web architectural style, 4
RESTful API Modeling
Language (RAML), 17-18
Anypoint system, 28
steps, 28-31
Runtime platform, 79

S

Schema model, 16-17

Services layer implementation, 66-67
podcast domain object, 68-76

Setter injection, 67

Smart TV solutions, 25

SOAP, 1, 3-4

Spring framework, 67, 70-71

SQL development process, 83

126

STUDENTS-HUB.com

Stateless communications, 5-6
Swagger, 17-18

T

Tomcat software, 41
Twitter, 22

uVv

Uniform resource interface, 5

w

Web applications, 24
Web architectural style
caching, 5
client-server, 4
code-on-demand, 5
HATEOAS, 6
layered system, 5
stateless, 5
uniform resource interface, 5

XY, 2
XML. See eXtensible Markup
Language (XML)

https://students-hub.com

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Fundamentals of RESTful APIs
	SOAP vs. REST
	Web Architectural Style
	Client-Server
	Uniform Resource Interface
	Layered System
	Caching
	Stateless
	Code-on-Demand
	HATEOAS

	Security
	What is REST?
	REST Basics
	REST Fundamentals
	Resources
	Representations
	Content Negotiation

	Wrapping-Up

	Chapter 2: API Design and Modeling
	API Design Strategies
	API Creation Process and Methodology
	Process
	API Methodology
	Domain Analysis or API Description
	Architecture Design
	Prototyping
	Implementation
	Publish
	API Modeling
	Comparison of API Modeling

	Best Practices
	Keep your base URL simple and intuitive
	Error Handling
	Error Code

	Versioning
	Partial Response
	Pagination
	Multiple Formats
	API Façade

	API Solution Architecture
	Mobile Solutions
	Cloud Solutions
	Web Solutions
	Integration Solutions
	Multi-channel Solutions
	Smart TV Solutions
	Internet-of-Things

	Stakeholders in API Solutions
	API Providers
	API Consumers
	End users

	Wrapping Up

	Chapter 3: Introduction - XML, JSON
	What is XML?
	XML Comments
	Why is XML Important?
	How can you use XML?
	Pros and Cons of XML

	What is JSON?
	JSON Syntax
	Strings
	Numbers
	Objects
	Arrays
	Booleans
	Null

	Why is JSON Important?
	How can you use JSON?
	Pros and Cons of JSON

	XML - JSON Comparison

	Chapter 4: Introduction to JAX-RS
	JAX-RS Introduction
	Input and Output Content Type
	JAX-RS Injection
	Path Parameter
	Query Parameter
	Cookie Parameter
	Header Parameter
	Form Parameter
	Matrix Parameter

	REST Implementation

	Chapter 5: API Portfolio and Framework
	API Portfolio Architecture
	Requirements
	Consistency
	Reuse
	Customization
	Discoverability
	Longevity

	How do we enforce these requirements—governance?
	Consistency
	Reuse
	Customization
	Discoverability
	Change Management

	API Framework
	Process APIs - Services Layer
	System APIs - Data Access Object
	Experience APIs - API Facade
	Services Layer Implementation

	Chapter 6: API Platform and Data Handler
	API Platform Architecture
	Why do we need API Platform?
	So what is an API Platform?
	So which capabilities does the API platform have?
	API Development Platform
	API Engagement Platform

	How is API Platform organized? What is architecture of API Platform?
	How does API architecture fit in surrounding technical architecture of an Enterprise?

	Data Handler
	Data Access Object
	Command Query Responsibilities Segmentation - CQRS
	SQL Development Process
	NoSQL Process
	Do I have to choose between SQL and NoSQL?
	Why a single REST API?

	Wrapping Up

	Chapter 7: API Management and API Client
	Façade
	Façade Pattern
	API Facade

	API Management
	API Life Cycle
	API Retirement
	API Monetization

	Chapter 8: API Security and Caching
	API Security - OAuth 2
	Roles
	Tokens
	Register as a client
	Client registration
	Authorization server response

	Authorization grant types
	Authorization Code Grant
	When should it be used?
	Example:
	Scenario:
	Sequence diagram:

	Implicit Grant Flow
	When should it be used?
	Example:
	Scenario:
	Sequence diagram:

	Resource Owner Password Credentials Grant
	When should it be used?
	Example:
	Scenario:
	Sequence diagram:

	Client Credentials Grant
	Example:
	Scenario:
	Sequence diagram:

	Caching
	Server Caching
	HTTP Caching
	Time-based cached header
	Conditional cache headers

	Web Caching

	Wrapping Up

	Index

