	orting algorithm
	Efficiency
	Passes
	Sort stability

	Insertion sort
Best case
Worst case
	0(n)
0(n2)
	n-1
n-1
	stable

	Quick sort
Best case
Worst case
	0(n log n)
0(n2)
	log n
n-1
	unstable

	Merge sort
	0(n log n)
	log n
	stable

	Shell sort
Best case
Worst case
	0(n)
0(n2)
	log n
log n
	unstable

	Radix sort
	0(n)
	No. of digits in the largest number
	stable




In-place/Outplace technique – 

A sorting technique is in place if it does not use extra memory to sort the array. 
Among the comparison-based techniques discussed, only merge sort is an outplaced technique as it requires an extra array to merge the sorted subarrays. 

Among the non-comparison-based techniques discussed, all are outplaced techniques. Counting sort uses a counting array, and bucket sort uses a hash table to sort the array. 

Stable/Unstable technique – 
A sorting technique is stable if it does not change the order of elements with the same value. 
Out of comparison-based techniques, bubble sort, insertion sort, and merge sort are stable techniques. Selection sort is unstable as it may change the order of elements with the same value. For example, consider the array 4, 4, 1, 3. 
In the first iteration, the minimum element found is 1 and swapped with 4 at the 0th position. Therefore, the order of 4 concerning 4 at the 1st position will change. Similarly, quick sort and heap sort are also unstable. 
Out of non-comparison-based techniques, Counting sort and Bucket sort are stable sorting techniques, whereas radix sort stability depends on the underlying algorithm used for sorting. 

Analysis of sorting techniques : 
 
1. When the array is almost sorted, insertion sort can be preferred.
1. When the order of input is not known, merge sort is preferred as it has the worst-case time complexity of nlogn, and it is stable as well.
1. When the array is sorted, insertion and bubble sort give a complexity of n, but quick sort gives a complexity of n^2.

Which sorting algorithm will take the least time when all elements of the input array are identical? Consider typical implementations of sorting algorithms. 

Solution: As discussed, insertion sort will have the complexity of n when the input array is already sorted. 

1.  Insertion Sort
This sorting algorithm is a simple sorting algorithm that works the way we sort playing cards in our hands. It places an unsorted element at its suitable place in each iteration. 
We can use Insertion Sort as per the below constraints:
1. If the data is nearly sorted or when the list is small as it has a complexity of O(N2) and if the list is sorted a minimum number of elements will slide over to insert the element at its correct location.
1. This algorithm is stable and it has fast running case when the list is nearly sorted.
1. The usage of memory is a constraint as it has space complexity of O(1).
1. 
2. Merge Sort
This sorting algorithm is based on the Divide and Conquer algorithm. It divides the input array into two halves, calls itself for the two halves, and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is a key process that assumes that arr[l . . . m] and arr[m+1 . . . r] are sorted and merges the two sorted sub-arrays into one. 
We can use Merge Sort as per the below constraints:
1. Merge sort is used when the data structure doesn’t support random access since it works with pure sequential access that is forward iterators, rather than random access iterators.
1. It is widely used for external sorting, where random access can be very, very expensive compared to sequential access.
1. It is used where it is known that the data is similar data.
1. Merge sort is fast in the case of a linked list.
1. It is used in the case of a linked list as in a linked list for accessing any data at some index we need to traverse from the head to that index and merge sort accesses data sequentially and the need of random access is low.
1. The main advantage of the merge sort is its stability, the elements compared equally retain their original order.


3. Quick Sort
This sorting algorithm is also based on the Divide and Conquer algorithm. It picks an element as a pivot and partitions the given list around the picked pivot. After partitioning the list on the basis of the pivot element, the Quick is again applied recursively to two sublists i.e., the sublist to the left of the pivot element and the sublist to the right of the pivot element. 
We can use Quick Sort as per the below constraints:
1. Quick sort is the fastest, but it is not always O(N*log N), as there are worst cases where it becomes O(N2).
1. Quicksort is probably more effective for datasets that fit in memory. For larger data sets it proves to be inefficient so algorithms like merge sort are preferred in that case.
1. Quick Sort is an in-place sort (i.e. it doesn’t require any extra storage) so it is appropriate to use it for arrays.

