
COMP2311
Object Oriented Programming

Prepared by:
Dr. Mamoun Nawahdah

Approved by:
Computer Science Department

September 12, 2022

STUDENTS-HUB.com

https://students-hub.com

Contents
1 Revision for the basic concepts of the Object-Oriented paradigm 1

2 Inheritance and Polymorphism 4

3 Abstract Classes and Polymorphism 10

4 Interfaces and More Polymorphism 14

5 Exceptions and Error Handling, and Binary File Handling 19

6 GUI - JavaFX concepts 26

7 GUI - Layout Managers and Basic UI 33

8 Using Inner Classes and Lambda Expression 38

9 GUI - Event Driven Programming 43

10 GUI - UI controllers 47

11 GUI - Advanced UI controllers and MVC 52

12 Multithreading and Parallel Programming 56

13 Java Collections and Generic Types 61

i

STUDENTS-HUB.com

https://students-hub.com

Introduction

The aim of this lab manual is to help COMP2311 students to understand and apply
a variety of fundamentals of object oriented programming concepts. Every lab session is
provided with lab objectives, a brief context about the experiment’s topic(s) to strength
the student understanding to the lab material; a Java language syntax for the commands
or statements that will be used; A pre-lab that the students’ should prepare beforehand;
and a set of activities that allow the students to completely understand the topic. The
activities in this manual are carefully prepared, studied and revised for students practice.

This lab manual continue the students’ journey of learning OOP fundamentals. The
students will begin with a revision for the basic concepts of the Object-Oriented paradigm
(Lab 1), Inheritance and Polymorphism (Lab 2), Abstract Classes and Polymorphism (Lab
3), Interfaces and More Polymorphism (Lab 4), Exceptions and Error Handling, and Binary
File Handling (Lab 5), Graphical User Interface - JavaFX concepts (Lab 6, Graphical User
Interface - Layout Managers and Basic UI 7), Using Inner Classes and Lambda Expression
(Lab 8), Graphical User Interface - Event Driven Programming (Lab 9), Graphical User
Interface - UI controllers (Lab 10), Graphical User Interface - Advanced UI controllers and
MVC (Lab 11), Multithreading and Parallel Programming (Lab 12), and Java Collections
and Generic Types (Lab 13).

The material included in this manual has been adopted from the course’s text-book:
Y. Daniel Liang, Introduction to Java programming and data structures, Twelfth edition,
Pearson, 2019. (ISBN-13: 978-0-13-651996-6)

ii

STUDENTS-HUB.com

https://students-hub.com

1 Revision for the basic concepts of the Object-Oriented
paradigm

1.1 Objectives
• To design programs using the object-oriented paradigm.

• To use the String class to process immutable strings.

• To use Ragged Arrays of objects to store data.

1.2 Pre-Lab
1. What is association? What is aggregation? What is composition?

2. How do you convert an integer into a string?

3. How do you convert a numeric string into an integer?

4. How do you convert a double number into a string?

5. How do you convert a numeric string into a double value?

6. What are autoboxing and autounboxing?

7. To create the string Welcome to Java, you may use a statement like this:

String s = "Welcome to Java";

or

String s = new String("Welcome to Java");

Which one is better? Why?

8. Does any method in the String class change the contents of the string? Why?

9. Can the rows in a two-dimensional array have different lengths?

1

STUDENTS-HUB.com

https://students-hub.com

1.3 Activities
Figure 1 shows a train seat numbering plan. seat numbering plan shows how the seats are
laid out. In each row we have 4 seats. In total we have 23 rows.

Figure 1: Standard Class Seat Numbering Plan

Activity 1:

Create a Seat class that has:

• Private int seatNumber with getter and setter methods.

• Private String for passenger name with getter and setter methods. Note: if name is
null this means seat is empty.

• A constructor that takes seat number.

• A method isEmpty that returns if the seat is empty or not.

• A toString method that returns a string represents seat object’s information.

• A static method isValid that takes a seat number and returns if the seat number is
valid or not.

• A static method getRow that takes a seat number and returns the train row number
if the seat number is valid.

• A static method getColumn that takes a seat number and returns the train column
number if the seat number is valid.

2

STUDENTS-HUB.com

https://students-hub.com

Activity 2:

Draw the UML diagram for the Seat class in Activity 1.

Activity 3:

Create a Train class that has the following:

• A private static ragged array of seats reflecting the mentioned train seat plan.

• A method to reserve a seat. This method takes seat number and passenger’s name.
If the seat is empty, the seat will be reserved for the passenger and returns true. If
not, it will returns false.

• A method to delete a reserved seat. If the seat is not empty, the seat will be deleted
and returns true. Else, it will returns false.

• A method to delete all reserved seats.

Activity 4:

Write a driver program to create a train object and then keep displays a menu containing
the following options:

1. Read passengers file.

2. Reserve a new empty seat.

3. Delete a reserved seat.

4. Delete all reserved seats.

5. Update passengers file.

6. Quit.

Regarding Option 1: consider the file passengers.txt file that contains reserved seats
in the following format:

Seat Number: Passenger name

Read the file line-by-line and update the train object accordingly. Make sure to handle
any wrong seat numbers or duplicate reservations for the same seat.

Regarding option 5: you need to write back all the reserved seats information back
to the passengers file.

3

STUDENTS-HUB.com

https://students-hub.com

2 Inheritance and Polymorphism

2.1 Objectives
• To define a subclass from a superclass through inheritance.

• To invoke the superclass’s constructors and methods using the super keyword.

• To override instance methods in the subclass.

• To distinguish differences between overriding and overloading.

• To explore the toString() method in the Object class.

• To discover polymorphism and dynamic binding.

• To store, retrieve, and manipulate objects in an ArrayList.

• To enable data and methods in a superclass accessible from subclasses using the
protected visibility modifier.

• To prevent class extending and method overriding using the final modifier.

2.2 Context
Superclasses and Subclasses

Inheritance enables you to define a general class (i.e., a superclass) and later extend it to
more specialized classes (i.e., subclasses).

In Java terminology, a class C1 extended from another class C2 is called a subclass,
and C2 is called a superclass. A superclass is also referred to as a parent class or a base
class, and a subclass as a child class, an extended class, or a derived class. A subclass
inherits accessible data fields and methods from its superclass and may also add new data
fields and methods.

public class C1 extends C2

The keyword extends tells the compiler that the C1 class extends the C2 class.
Note the following points regarding inheritance:

• Contrary to the conventional interpretation, a subclass is not a subset of its super-
class. In fact, a subclass usually contains more information and methods than its
superclass.

• Private data fields in a superclass are not accessible outside the class. Therefore,
they cannot be used directly in a subclass.

4

STUDENTS-HUB.com

https://students-hub.com

• Inheritance is used to model the is-a relationship. A subclass and its superclass must
have the is-a relationship.

• Java does not allow multiple inheritance.

Using the super Keyword

The keyword super refers to the superclass of the class in which super appears. It can be
used in two ways:

1. To call a superclass constructor:
The syntax to call a superclass’s constructor is:

super() or super(arguments);

Note: the call must be the first statement in the constructor.

2. To call a superclass method. The syntax is:

super.method(arguments);

Overriding Methods

To override a method, the method must be defined in the subclass using the same signature
as in its superclass.

Overriding vs. Overloading

Overloading means to define multiple methods with the same name but different signatures.
Overriding means to provide a new implementation for a method in the subclass.

Note the following:

• Overridden methods are in different classes related by inheritance; overloaded meth-
ods can be either in the same class, or in different classes related by inheritance.

• Overridden methods have the same signature; overloaded methods have the same
name but different parameter lists.

The Object Class and Its toString() and equals Methods

Every class in Java is descended from the java.lang.Object class.
If no inheritance is specified when a class is defined, the superclass of the class is Object

by default. The Object class has a method called toString. The signature of the toString()
method is:

public String toString()

5

STUDENTS-HUB.com

https://students-hub.com

Invoking toString() on an object returns a string that describes the object. Usually you
should override the toString method so that it returns a descriptive string representation
of the object.

Another method defined in the Object class that is often used is the equals method.
Its signature is:

public boolean equals(Object o)

This method tests whether two objects are equal. You should override this method in
your custom class to test whether two distinct objects have the same content.

Polymorphism

Polymorphism means that a variable of a supertype can refer to a subtype object.

Dynamic Binding

A method can be implemented in several classes along the inheritance chain. The JVM
decides which method is invoked at runtime.

The ArrayList Class

An ArrayList object can be used to store a list of objects. Java provides the ArrayList
class, which can be used to store an unlimited number of objects. Table 1 shows some
methods in ArrayList.

Table 1: An ArrayList stores an unlimited number of objects.
Method Description
+ArrayList() Creates an empty list.
+add(e: E): void Appends a new element e at the end of this list.
+add(index: int, e: E): void Adds a new element e at the specified index in this list.
+clear(): void Removes all elements from this list.
+contains(o: Object): boolean Returns true if this list contains the element o.
+get(index: int): E Returns the element from this list at the specified index.
+indexOf(o: Object): int Returns the index of the first matching element in this list.
+isEmpty(): boolean Returns true if this list contains no elements.
+lastIndexOf(o: Object): int Returns the index of the last matching element in this list.
+remove(o: Object): boolean Removes the first element CDT from this list. Returns true if an

element is removed.
+size(): int Returns the number of elements in this list.
+remove(index: int): E Removes the element at the specified index. Returns the removed

element.
+set(index: int, e: E): E Sets the element at the specified index.

6

STUDENTS-HUB.com

https://students-hub.com

ArrayList is known as a generic class with a generic type E. You can specify a concrete
type to replace E when creating an ArrayList.

The protected Data and Methods

A protected member of a class can be accessed from a subclass.

Preventing Extending and Overriding

Neither a final class nor a final method can be extended. A final data field is a constant.

2.3 Pre-Lab
1. What keyword do you use to define a subclass?

2. Does Java support multiple inheritance?

3. How do you invoke an overridden superclass method from a subclass?

4. If a method in a subclass has the same signature as a method in its superclass with
the same return type, is the method overridden or overloaded?

5. Indicate true or false for the following statements:

(a) When invoking a constructor from a subclass, its superclass’s no-arg constructor
is always invoked.

(b) You can override a private method defined in a superclass.
(c) You can always successfully cast an instance of a subclass to a superclass.
(d) You can always successfully cast an instance of a superclass to a subclass.

6. What modifier should you use on a class so a class in the same package can access
it, but a class in a different package cannot access it?

7. What modifier should you use so a class in a different package cannot access the
class, but its subclasses in any package can access it?

8. How do you prevent a class from being extended? How do you prevent a method
from being overridden?

7

STUDENTS-HUB.com

https://students-hub.com

2.4 Activities

Activity 1:

Write the following method that returns the maximum value in an ArrayList of integers.
The method returns null if the list is null or the list size is 0.

public static Integer max(ArrayList<Integer> list)

Write a test program that prompts the user to enter a sequence of numbers ending with 0
and invokes this method to return the largest number in the input.

Activity 2:

Write a method that removes the duplicate elements from an array list of integers using
the following header:

public static void removeDuplicate(ArrayList<Integer> list)

Write a test program that prompts the user to enter 10 integers to a list and displays the
distinct integers in their input order and separated by exactly one space.

Activity 3:

Consider the UML in Figure 2. Implement the UML.
Note: in each class:

• Add all the setters and getters for the class attributes.

• override the toString method.

Note: keep the code as it will be used again in future labs.

8

STUDENTS-HUB.com

https://students-hub.com

Figure 2: Tawjihi UML (version 1)

9

STUDENTS-HUB.com

https://students-hub.com

3 Abstract Classes and Polymorphism

3.1 Objectives
• To design and use abstract classes.

• To generalize numeric wrapper classes BigInteger and BigDecimal using the ab-
stract Number class.

• To process a calendar using the Calendar and GregorianCalendar classes.

3.2 Context
Abstract Classes

In the inheritance hierarchy, classes become more specific and concrete with each new
subclass. If you move from a subclass back up to a superclass, the classes become more
general and less specific. Class design should ensure a superclass contains common features
of its subclasses. Sometimes, a superclass is so abstract it cannot be used to create any
specific instances. Such a class is referred to as an abstract class.

In some cases, some methods cannot be implemented in the superclass because their
implementation depends on the specific type of subclass object. Such methods are referred
to as abstract methods and are denoted using the abstract modifier in the method header.
Abstract classes are denoted using the abstract modifier in the class header as well.

Abstract classes are like regular classes, but you cannot create instances of abstract
classes using the new operator. An abstract method is defined without implementation.
Its implementation is provided by the subclasses. A class that contains abstract methods
must be defined as abstract. However, it is possible to define an abstract class that doesn’t
contain any abstract methods. This abstract class is used as a base class for defining
subclasses.

In UML graphic notation, the names of abstract classes and their abstract methods are
italicized.

The Abstract Number Class

Number is an abstract superclass for numeric wrapper classes BigInteger and BigDec-
imal. These classes have common methods byteValue(), shortValue(), intValue(), long-
Value(), floatValue(), and doubleValue() for returning a byte, short, int, long, float,
and double value from an object of these classes. These common methods are actually
defined in the Number class. With Number defined as the superclass for the numeric
classes, we can define methods to perform common operations for numbers. For example,
we can create an ArrayList of Number objects to adds an Integer object, a Double
object, a BigInteger object, and a BigDecimal object to the same list.

10

STUDENTS-HUB.com

https://students-hub.com

Calendar and GregorianCalendar

java.util.Calendar is an abstract base class for extracting detailed calendar information,
such as the year, month, date, hour, minute, and second. Subclasses of Calendar can
implement specific calendar systems, such as the Gregorian calendar and the lunar calendar.
Currently, java.util.GregorianCalendar for the Gregorian calendar is supported in Java.
The add method is abstract in the Calendar class because its implementation is dependent
on a concrete calendar system. You can use new GregorianCalendar() to construct a default
GregorianCalendar with the current time and new GregorianCalendar(year, month, date)
to construct a GregorianCalendar with the specified year, month, and date. The month
parameter is 0-based that is, 0 is for January.

The get(int field) method defined in the Calendar class is useful for extracting the date
and time information from a Calendar object. The fields are defined as constants. The
set(int field, value) method defined in the Calendar class can be used to set a field. For
example, you can use calendar.set(Calendar.DAY_OF_MONTH, 1) to set the calendar to
the first day of the month.

3.3 Pre-Lab
1. True or false?

• An abstract class can be used just like a nonabstract class except that you
cannot use the new operator to create an instance from the abstract class.

• An abstract class can be extended.
• A subclass of a nonabstract superclass cannot be abstract.
• A subclass cannot override a concrete method in a superclass to define it as

abstract.
• An abstract method must be nonstatic.

2. Can you create a Calendar object using the Calendar class?

3. Which method in the Calendar class is abstract?

4. For a Calendar object c, how do you get its year, month, date, hour, minute, and
second?

11

STUDENTS-HUB.com

https://students-hub.com

3.4 Activities
Activity 1:

Write the following method that shuffles an ArrayList of numbers:

public static void shuffle(ArrayList<Number> list)

Hint: Array shuffling means to randomizes the order of the elements in the array.

Activity 2:

Write PrintCalendar class to display a calendar for the current month using the Calen-
dar and GregorianCalendar classes. Figure 3 shows a sample execution for the month
August, 2022:

Figure 3: August 2022 Calendar

Activity 3:

Consider the updated Tawjihi UML in Figure 4.

• Make Student class abstract.

• Make Tawjihi class abstract and make calculateAverage() an abstract method.

• Override toString() method in Scientific class and Literary class.

• Override calculateAverage() method in Scientific class.
Note: to calculate average in scientific branch:

1. Calculate sum of mandatory subjects (Arabic, English, Physics, and Math).
2. Add to the sum the largest between Elective I (Biology or Chemistry).
3. Add to the sum the largest between Elective II (Religious Education or Tech-

nology).
4. Divide sum over 7.

12

STUDENTS-HUB.com

https://students-hub.com

• Override calculateAverage() method in Literary class.
Note: to calculate average in Literary branch:

1. Calculate sum of mandatory subjects (Arabic, English, Physics, and History).
2. Add to the sum the largest between Elective I (Geography or Religious Educa-

tion).
3. Add to the sum the largest between Elective II (Scientific Culture or Technol-

ogy).
4. Divide sum over 7.

Figure 4: Tawjihi UML (version 2)

• Write a driver class, create an ArrayList of 6 Tawjihi students (3 Scientific and 3
Literary), then calculate the average of each student and report the results in a table,
finally report the top students in each branch.

13

STUDENTS-HUB.com

https://students-hub.com

4 Interfaces and More Polymorphism

4.1 Objectives
• To specify common behavior for objects using interfaces.

• To define interfaces and define classes that implement interfaces.

• To define a natural order using the Comparable interface.

• To make objects cloneable using the Cloneable interface.

4.2 Context
Interfaces

In many ways an interface is similar to an abstract class, but its intent is to specify com-
mon behavior for objects of related classes or unrelated classes. To distinguish an interface
from a class, Java uses the following syntax to define an interface:

modifier interface InterfaceName {
/** Constant declarations */
/** Abstract method signatures */
}

An interface is treated like a special class in Java. Each interface is compiled into a
separate bytecode file, just like a regular class. You can use an interface more or less the
same way you use an abstract class. The relationship between the class and the interface
is known as interface inheritance.

In UML graphic notation, the interface and its methods are italicized. The dashed line
and hollow triangle are used to point to the interface.

• Note 1: The modifiers public static final on data fields and the modifiers public
abstract on methods can be omitted in an interface.

• Note 2: Java 8 introduced default interface methods using the keyword default. A
default method provides a default implementation for the method in the interface.

• Note 3: Java 8 also permits public static methods in an interface. A public static
method in an interface can be used just like a public static method in a class.

• Note 4: In Java 9, you can also use private methods in an interface. These methods
are used for implementing the default methods and public static methods.

14

STUDENTS-HUB.com

https://students-hub.com

The Comparable Interface

The Comparable interface defines the compareTo method for comparing objects.
The compareTo method determines the order of this object with the specified object o

and returns a negative integer, zero, or a positive integer if this object is less than, equal
to, or greater than o. The Comparable interface is a generic interface. The generic type
E is replaced by a concrete type when implementing this interface.

Since all Comparable objects have the compareTo method, the java.util.Arrays.sort(Object[])
method in the Java API uses the compareTo method to compare and sorts the objects in
an array, provided the objects are instances of the Comparable interface.

The Cloneable Interface

Often, it is desirable to create a copy of an object. To do this, you need to use the clone
method and understand the Cloneable interface.

The Cloneable interface in the java.lang package is defined as follows:
package java.lang;

public interface Cloneable {
}

This interface is empty. An interface with an empty body is referred to as a marker
interface. A marker interface is used to denote that a class possesses certain desirable
properties. A class that implements the Cloneable interface is marked cloneable, and its
objects can be cloned using the clone() method defined in the Object class.

To define a custom class that implements the Cloneable interface, the class must
override the clone() method in the Object class.

4.3 Pre-Lab
1. Suppose A is an interface. Can you create an instance using new A()?

2. Suppose A is an interface. Can you declare a reference variable x with type A?

3. True or false? If a class implements Comparable, the object of the class can invoke
the compareTo method.

4. Can a class invoke super.clone() when implementing the clone() method if the class
does not implement java.lang.Cloneable?

5. Does the Date class implement Cloneable?

6. Give an example to show why interfaces are preferred over abstract classes.

7. What are the similarities and differences between abstract classes and interfaces?

15

STUDENTS-HUB.com

https://students-hub.com

4.4 Activities
Activity 1:

Define a class named Time for encapsulating a time. The class contains the following:

• A data field of the long time that stores the elapsed time since midnight, Jan 1, 1970.

• A no-arg constructor that constructs a Time object for the current time.

• A constructor with the specified hour, minute, and second to create a Time.

• A constructor with the specified elapsed time since midnight, Jan 1, 1970.

• The getHour() method that returns the current hour in the range 0-23.

• The getMinute() method that returns the current minute in the range 0-59.

• The getSecond() method that returns the current second in the range 0-59.

• The getSeconds() method that returns the elapsed total seconds.

• The toString() method that returns a string such as "1 hour 2 minutes 1 second"
and "14 hours 21 minutes 1 second".

• Implement the Comparable<Time> interface to compare this Time with another
one based on their elapse seconds. The compareTo method returns the difference
between this object’s elapse seconds and the another’s.

• Implement the Cloneable interface to clone a Time object.

• Write a test program to test Time class.

16

STUDENTS-HUB.com

https://students-hub.com

Activity 2:

Design a class named Point that meets the following requirements:

• Two data fields x and y for representing a point with getter methods.

• A no-arg constructor that constructs a point for (0, 0).

• A constructor that constructs a point with the specified x and y values.

• Override the equals method. Point p1 is said to be greater than point p2 if p1.x ==
p2.x and p1.y == p2.y.

• Implement the Comparable<Point> interface and the compareTo method. Point
p1 is said to be greater than point p2 if p1.x > p2.x or if p1.x == p2.x and p1.y
> p2.y.

• Override the toString() method to return a string as [x value, y value].

• Implement the Cloneable interface and clone method.

• Write a test program to test Point class.

Activity 3:

Consider the updated Tawjihi UML in Figure 5.

• Create an interface HumanBeing that has to char constants (Male/Female).

• Create a new base class called Human that has two attributes name and gender.
Make this class implements HumanBeing interface.

• Update Student class and make it extends Human base class.

• Update Subject class by adding a new attribute maxMark. Add a new constructor
using the all the attributes. Make Subject class Comparable. Two subjects are
compared if they both have the same title according to the mark. Override the
equals method. Two subjects are equals if they both have the same title and same
mark.

• Update Tawjihi class by make it Comparable. Two tawjihi students are compared
according to their calculated average. Override equals method and make it abstract.

• Write a driver class, create an ArrayList of 6 Tawjihi students (3 Scientific and 3
Literary), then display the students in ascending order according to their calculated
average.

17

STUDENTS-HUB.com

https://students-hub.com

Figure 5: Tawjihi UML (version 3)

18

STUDENTS-HUB.com

https://students-hub.com

5 Exceptions and Error Handling, and Binary File
Handling

5.1 Objectives
• To explore the advantages of using exception handling.

• To distinguish exception types: Error (fatal) vs. Exception (nonfatal) and checked
vs. unchecked.

• To write a try-catch block to handle exceptions.

• To use the finally clause in a try-catch block.

• To rethrow exceptions in a catch block.

• To define custom exception classes.

• To distinguish between text I/O and binary I/O.

• To read and write bytes using FileInputStream and FileOutputStream.

• To read and write files using the RandomAccessFile class.

5.2 Context
Exception-Handling Overview

Exceptions are runtime errors. Exception handling enables a program to deal with runtime
errors and continue its normal execution. Java enables a method to throw an exception
that can be caught and handled by the caller. When an exception is thrown, the normal
execution flow is interrupted. The statement for invoking the method is contained in a
try block. The try block contains the code that is executed in normal circumstances. The
exception is caught by the catch block. The code in the catch block is executed to handle
the exception. Afterward, the statement after the catch block is executed. In summary, a
template for a try-throw-catch block may look as follows:

try {
Code to run;
A statement or a method that may throw an exception;
More code to run;

}
catch (type ex) {

Code to process the exception;
}

An exception may be thrown directly by using a throw statement in a try block, or by
invoking a method that may throw an exception.

19

STUDENTS-HUB.com

https://students-hub.com

Exception Types

The root class for exceptions is java.lang.Throwable. There are many predefined excep-
tion classes in the Java API. All Java exception classes inherit directly or indirectly from
Throwable.

The exception classes can be classified into three major types:

• System errors are thrown by the JVM and are represented in the Error class. The
Error class describes internal system errors, though such errors rarely occur.

• Exceptions are represented in the Exception class, which describes errors caused
by your program and by external circumstances. These errors can be caught and
handled by your program.

• Runtime exceptions are represented in the RuntimeException class, which de-
scribes programming errors, such as bad casting, accessing an out-of-bounds array,
and numeric errors. Runtime exceptions normally indicate programming errors.

RuntimeException, Error, and their subclasses are known as unchecked exceptions.
All other exceptions are known as checked exceptions, meaning the compiler forces the
programmer to check and deal with them in a try-catch block or declare it in the method
header.

Declaring, Throwing, and Catching Exceptions

Java’s exception-handling model is based on three operations: declaring an exception,
throwing an exception, and catching an exception, as shown in Figure 6.

Figure 6: Exception handling

If no exceptions arise during the execution of the try block, the catch blocks are skipped.
If one of the statements inside the try block throws an exception, Java skips the remain-
ing statements in the try block and starts the process of finding the code to handle the
exception.

20

STUDENTS-HUB.com

https://students-hub.com

The finally Clause

The finally clause is always executed regardless of whether an exception occurred or not.
The syntax for the finally clause might look like this:

try {
statements;

}
catch (TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Note: The catch block may be omitted when the finally clause is used.

Rethrowing Exceptions

Java allows an exception handler to rethrow the exception if the handler cannot process
the exception, or simply wants to let its caller be notified of the exception. The syntax for
rethrowing an exception may look like this:

try {
statements;

}
catch (TheException ex) {

perform operations before exits;
throw ex;

}

Defining Custom Exception Classes

You can create your own exception class, derived from Exception or from a subclass of
Exception, such as IOException.

Text I/O vs. Binary I/O

All files are stored in binary format, and thus all files are essentially binary files. Text
I/O is built upon binary I/O to provide a level of abstraction for character encoding and
decoding. Binary I/O does not require conversions. If you write a numeric value to a file
using binary I/O, the exact value in the memory is copied into the file. Binary I/O is more
efficient than text I/O because binary I/O does not require encoding and decoding.

21

STUDENTS-HUB.com

https://students-hub.com

InputStream/OutputStream

The abstract InputStream is the root class for reading binary data, and the abstract
OutputStream is the root class for writing binary data. Tables 2 and 3 list all the
methods in the classes InputStream and OutputStream.

Table 2: The abstract InputStream class.
Method Description
+read(): int Reads the next byte of data from the input stream. The value byte is

returned as an int value in the range 0-255. If no byte is available because
the end of the stream has been reached, the value -1 is returned.

+read(b: byte[]): int Reads up to b.length bytes into array b from the input stream and returns
the actual number of bytes read. Returns -1 at the end of the stream.

+read(b: byte[], off:
int, len: int): int

Reads bytes from the input stream and stores them in b[off], b[off+1],...,
b[off+len-1]. The actual number of bytes read is returned. Returns -1 at
the end of the stream.

+close(): void Closes this input stream and releases any system resources occupied by it.
+skip(n: long): long Skips over and discards n bytes of data from this input stream. The actual

number of bytes skipped is returned.

Table 3: The abstract InputStream class.
Method Description
+write(int b): void Writes the specified byte to this output stream. The parameter b is an int

value. (byte)b is written to the output stream.
+write(b: byte[], off:
int, len: int): void

Writes b[off], b[off+1],..., b[off+len-1] into the output stream.

+write(b: byte[]):
void

Writes all the bytes in array b to the output stream.

+close(): void Closes this output stream and releases any system resources occupied by it.
+flush(): void Flushes this output stream and forces any buffered output bytes to be writ-

ten out.

FileInputStream/FileOutputStream

FileInputStream/FileOutputStream are for reading/writing bytes from/to files. All
the methods in these classes are inherited from InputStream and OutputStream.
A java.io.FileNotFoundException will occur if you attempt to create a FileInput-
Stream with a nonexistent file.

DataInputStream reads bytes from the stream and converts them into appropriate
primitive-type values or strings. DataOutputStream converts primitive-type values or
strings into bytes and outputs the bytes to the stream.

22

STUDENTS-HUB.com

https://students-hub.com

DataInputStream/DataOutputStream are created using the following construc-
tors:

public DataInputStream(InputStream instream)
public DataOutputStream(OutputStream outstream)

Caution: You have to read data in the same order and format in which they are stored.

If you keep reading data at the end of an InputStream, an EOFException will
occur. This exception can be used to detect the end of a file

5.3 Pre-Lab
1. What is a checked exception and what is an unchecked exception?

2. How do you declare an exception and where?

3. Can you declare multiple exceptions in a method header?

4. How do you throw an exception?

5. What is the keyword throw used for? What is the keyword throws used for?

6. How do you define a custom exception class?

7. What are the differences between text I/O and binary I/O?

8. Why should you always close streams? How do you close streams?

9. How do you check the end of a file in an input stream (FileInputStream, DataIn-
putStream)?

23

STUDENTS-HUB.com

https://students-hub.com

5.4 Activities
Activity 1:

- Write the hex2Dec(String hexString) method, which converts a hex string into a decimal
number. Implement the hex2Dec method to throw a NumberFormatException if the
string is not a hex string. Write a test program that prompts the user to enter a hex
number as a string and displays its decimal equivalent. If the method throws an exception,
display (Not a hex number).

Activity 2:

Re-write the hex2Dec method in activity 1 to throw a HexFormatException if the string
is not a hex string. Define a custom exception called HexFormatException.

Activity 3:

Write a program to create a file named data.dat if it does not exist. Append new data to
it if it already exists. Write 100 integers created randomly into the file using binary I/O.

Activity 4:

Suppose a binary data file named data.dat has been created from Activity 3 and its data
are created using writeInt(int) in DataOutputStream. The file contains an unspecified
number of integers. Write a program to find the sum of the integers.

Activity 5:

Implement a class named BitOutputStream, as shown in Table 4 , for writing bits to
an output stream. The writeBit(char bit) method stores the bit in a byte variable. When
you create a BitOutputStream, the byte is empty. After invoking writeBit(’1’), the byte
becomes 00000001. After invoking writeBit("0101"), the byte becomes 00010101. The
first three bits are not filled yet. When a byte is full, it is sent to the output stream. Now
the byte is reset to empty. You must close the stream by invoking the close() method. If
the byte is neither empty nor full, the close() method first fills the zeros to make a full 8
bits in the byte and then outputs the byte and closes the stream.

Table 4: BitOutputStream outputs a stream of bits to a file.
Method Description
+BitOutputStream(file: File) Creates a BitOutputStream to write bits to the file.
+writeBit(char bit): void Writes a bit ’0’ or ’1’ to the output stream.
+writeBit(String bit): void Writes a string of bits to the output stream.
+close(): void This method must be invoked to close the stream.

24

STUDENTS-HUB.com

https://students-hub.com

Activity 6:

Create a file Tawjihi.dat that has tawjihi student records in the following format:

• ID:int

• name:String

• gender:char

• school:String

• Branch:String

• seatingNum:int

• year:int

• numOfSubjects:int

• subjectTitle1:String

• subjectType1:String

• subjectMark1:int

• subjectMaxMark1:int

• subjectTitle2:String

• subjectType2:String

• subjectMark2:int

• subjectMaxMark2:int
:

• subjectTitleN:String

• subjectTypeN:String

• subjectMarkN:int

• subjectMaxMarkN:int

Using a DataOutputStream object, write 2 students records (one Scientific and one
Literary) to the file. Then using a DataInputStream object, read the students records
from the file and convert them to specific Tawjihi student object (Scientific or Literary) as
in Lab 4 - Activity 3.

25

STUDENTS-HUB.com

https://students-hub.com

6 GUI - JavaFX concepts

6.1 Objectives

• To write a simple JavaFX program and understand the relationship among stages,
scenes, and nodes.

• To create user interfaces using panes, groups, UI controls, and shapes.

• To create colors using the Color class.

• To create fonts using the Font class.

• To create images using the Image class, and to create image views using the Im-
ageView class.

• To display text using the Text class, and create shapes using the Line, Circle,
Rectangle, Ellipse, Arc, Polygon, and Polyline classes.

6.2 Context

The Basic Structure of a JavaFX Program

The javafx.application.Application class defines the essential framework for writing
JavaFX programs. The main class overrides the start method defined in Application
class as shown in Figure 7. The start method normally places UI controls in a scene
and displays the scene in a stage. A Scene object can be created using the constructor
Scene(node, width, height). A Stage object is a window. A Stage object called primary
stage is automatically created by the JVM when the application is launched. You can create
additional stages if needed. Figure 8 illustrates the structure of every JavaFX application.

Panes, Groups, UI Controls, and Shapes

Panes, Groups, UI controls, and shapes are subtypes of Node. Panes are used for laying
out the nodes in a desired location and size. A node is a visual component such as a shape,
an image view, a UI control, a group, or a pane. A shape refers to a text, line, circle,
ellipse, rectangle, arc, polygon, polyline, and so on. A UI control refers to a label, button,
check box, radio button, text field, text area, and so on. A group is a container that groups
a collection of nodes.

Note the coordinates of the upper-left corner of the pane is (0, 0) in the Java coordi-
nate system

26

STUDENTS-HUB.com

https://students-hub.com

Figure 7: MyJavaFX.java

Figure 8: The structure of every JavaFX application

27

STUDENTS-HUB.com

https://students-hub.com

The Color Class

The javafx.scene.paint.Color class can be used to create colors. A color instance can
be constructed using the following constructor:

public Color(double r, double g, double b, double opacity);

in which r, g, and b specify a color by its red, green, and blue components with values
in the range from 0.0 (darkest shade) to 1.0 (lightest shade). The opacity value defines
the transparency of a color within the range from 0.0 (completely transparent) to 1.0
(completely opaque).

The Font Class

A javafx.scene.text.Font describes font name, weight, and size.

The Image and ImageView Classes

The javafx.scene.image.Image class represents a graphical image and is used for loading
an image from a specified filename or a URL. The javafx.scene.image.ImageView is a
node for displaying an image. An ImageView can be created from an Image object. For
example, the following code creates an ImageView from an image file:

Image image = new Image("image/mamoun.gif");
ImageView imageView = new ImageView(image);

Alternatively, you can create an ImageView directly from a file or a URL as follows:

ImageView imageView = new ImageView("image/mamoun.gif");

Shapes

JavaFX provides many shape classes for drawing texts, lines, circles, rectangles, ellipses,
arcs, polygons, and polylines. The Shape class is the abstract base class that defines the
common properties for all shapes. Among them are the fill, stroke, and strokeWidth
properties.

• Text: The Text class defines a node that displays a string at a starting point (x, y).

• Line: A line connects two points with four parameters startX, startY, endX, and
endY.

• Rectangle: A rectangle is defined by the parameters x, y, width, height, arcWidth,
and arcHeight.

28

STUDENTS-HUB.com

https://students-hub.com

• Circle and Ellipse: A circle is defined by its parameters centerX, centerY, and ra-
dius. An ellipse is defined by its parameters centerX, centerY, radiusX, and radiusY.

• Arc: An arc is conceived as part of an ellipse, defined by the parameters centerX,
centerY, radiusX, radiusY, startAngle, length, and an arc type (ArcType.OPEN, Arc-
Type .CHORD, or ArcType.ROUND).

• Polygon and Polyline: The Polygon class defines a polygon that connects a se-
quence of points. The Polyline class is similar to the Polygon class except that the
Polyline class is not automatically closed.

6.3 Pre-Lab
1. How do you define a JavaFX main class?

2. What is the signature of the start method?

3. What is a stage? What is a primary stage?

4. How do you display a stage?

5. How do you create a Scene object?

6. How do you set a scene in a stage?

7. How do you place a circle into a scene?

8. What is a pane?

9. What is a node? How do you place a node in a pane?

10. Can you directly place a Shape or an ImageView into a Scene?

11. How do you create a color?

12. How do you create a Font object with font name Courier, size 20, and weight bold?

13. How do you create an Image from a URL or a filename?

14. How do you create an ImageView from an Image or directly from a file or a URL?

29

STUDENTS-HUB.com

https://students-hub.com

6.4 Activities

Activity 1:

Write a javaFX program that displays an image in a pane, as shown in Figure 9.

Figure 9: Activity 1

Activity 2:

Write a javaFX program that displays a face using shapes, as shown in Figure 10.

Figure 10: Activity 2

30

STUDENTS-HUB.com

https://students-hub.com

Activity 3:

Write a program that displays a checkerboard in which each white and black cell is a
Rectangle with a fill color black or white, as shown in Figure 11.

Figure 11: Activity 3

Activity 4:

Write a program that uses a bar chart to display the percentages of the overall grade
represented by projects, quizzes, midterm exams, and the final exam, as shown in Figure
12. Suppose projects take 20% and are displayed in red, quizzes take 10% and are displayed
in blue, midterm exams take 30% and are displayed in green, and the final exam takes 40%
and is displayed in orange.

Figure 12: Activity 4

31

STUDENTS-HUB.com

https://students-hub.com

Activity 5:

Write a program that uses a pie chart to display the percentages of the overall Tawjihi
statistics represented by Scientific, Literary, and others, as shown in Figure 13. Suppose
Scientific take 35% and are displayed in red, Literary take 55% and are displayed in light
blue, and others take 10% and are displayed in green.

Figure 13: Activity 5

32

STUDENTS-HUB.com

https://students-hub.com

7 GUI - Layout Managers and Basic UI

7.1 Objectives
• To use the common property style for nodes.

• To update property values automatically through property binding.

• To layout nodes using Pane, StackPane, FlowPane, GridPane, BorderPane,
HBox, and VBox.

• To create graphical user interfaces with various user-interface controls.

• To create a label with text and graphics using the Label class.

• To create a button with text and graphic using the Button class.

• To enter data using the TextField class and password using the PasswordField
class.

7.2 Context
Style Property

JavaFX style property are similar to cascading style sheets (CSS) used to specify the styles
for HTML elements in a Web page. Therefore, the style properties in JavaFX are called
JavaFX CSS. In JavaFX, a style property is defined with a prefix -fx-. The syntax for
setting a style is styleName:value. Multiple style properties for a node can be set together
separated by semicolon (;). For example, the following statement:

circle.setStyle("-fx-stroke: black; -fx-fill: red;");

Property Binding

JavaFX introduces a new concept called property binding that enables a target object to
be bound to a source object. If the value in the source object changes, the target object is
also automatically changed.

A target binds with a source using the bind method as follows:

target.bind(source);

The bind method is defined in the javafx.beans.property.Property interface. A bind-
ing property is an instance of javafx.beans.property.Property. An observable source
object is an instance of the javafx.beans.value.ObservableValue interface. An Ob-
servableValue is an entity that wraps a value and allows to observe the value for changes.

33

STUDENTS-HUB.com

https://students-hub.com

Layout Panes and Groups

Panes and groups are the containers for holding nodes. The Group class is often used to
group nodes and to perform transformation and scale as a group. JavaFX provides many
types of panes for organizing nodes in a container:

• Pane: Base class for layout panes. It contains the getChildren() method for returning
a list of nodes in the pane.

• StackPane: Places the nodes on top of each other in the center of the pane.

• FlowPane: Places the nodes row-by-row horizontally or column-by-column verti-
cally.

• GridPane: Places the nodes in the cells in a two-dimensional grid.

• BorderPane: Places the nodes in the top, right, bottom, left, and center regions.

• HBox: Places the nodes in a single row.

• VBox: Places the nodes in a single column.

Each pane contains a list for holding nodes in the pane. This list is an instance of
ObservableList, which can be obtained using pane’s getChildren() method. You can use
add(node) to add an element to the list and addAll(node1, node2, ...) to add a variable
number of nodes.

JavaFX UI Controls

JavaFX provides many UI controls for developing a comprehensive user interface. The
following are the frequently used UI controls in detail:

• Labeled and Label: A label is a display area for a short text, a node, or both. It is
often used to label other controls (usually text fields).

• Button: A button is a control that triggers an action event when clicked.

• TextField: A text field can be used to enter or display a string.
Note: If a text field is used for entering a password, use PasswordField to replace
TextField.

34

STUDENTS-HUB.com

https://students-hub.com

7.3 Pre-Lab
1. How do you set a style of a node with border color red? Modify the code to set the

text color for the button to red.

2. What is a binding property? What interface defines a binding property? What
interface defines a source object?

3. How do you create a label with a node without a text?

4. Can you display multiple lines of text in a label?

5. How do you create a button with a text and a node? Can you apply all the methods
for Labeled to Button?

6. Can you disable editing of a text field?

7. How do you align the text in a text field to the right?

35

STUDENTS-HUB.com

https://students-hub.com

7.4 Activities
Activity 1:

Write a program that displays a 3-by-3 square matrix, as shown in Figure 14. Each element
in the matrix is 0 or 1, randomly generated. Display each number centered in a label. Set
the label’s font size to 30 and set a red border to each label.

Figure 14: Activity 1

Activity 2:

Write a program that displays a text editor interface as shown in Figure 15.

Figure 15: Activity 2

36

STUDENTS-HUB.com

https://students-hub.com

Activity 3:

Write a program that displays the calendar for the current month , as shown in Figure 16.
Note: refer back to Activity 2 in lab 3.

Figure 16: Activity 3

Activity 4:

Write a program that displays the Tawjihi editor interface, as shown in Figure 17.

Figure 17: Activity 4

37

STUDENTS-HUB.com

https://students-hub.com

8 Using Inner Classes and Lambda Expression

8.1 Objectives
• To get a taste of event-driven programming.

• To describe events, event sources, and event classes.

• To define handler classes, register handler objects with the source object, and write
the code to handle events.

• To define handler classes using inner classes.

• To define handler classes using anonymous inner classes.

• To simplify event handling using lambda expressions.

8.2 Context
Event-Driven Programming

To respond to a button click, you need to write the code to process the button-clicking
action. The button is an event source object where the action originates. You need to
create an object capable of handling the action event on a button. This object is called an
event handler. To be a handler of an action event, two requirements must be met:

1. The object must be an instance of the EventHandler<T extends Event> in-
terface. This interface defines the common behavior for all handlers. <T extends
Event> denotes that T is a generic type that is a subtype of Event.

2. The EventHandler object handler must be registered with the event source object
using the method source.setOnAction(handler).

The EventHandler<ActionEvent> interface contains the handle(ActionEvent) method
for processing the action event. Your handler class must override this method to respond
to the event.

An event is an object created from an event source. Firing an event means to create an
event and delegate the handler to handle the event. The component that creates an event
and fires it is called the event source object, or simply source object or source component.
The root class of the Java event classes is java.util.EventObject.

Registering Handlers and Handling Events

Java uses a delegation-based model for event handling: A source object fires an event, and
an object interested in the event handles it. The latter object is called an event handler or
an event listener. For an object to be a handler for an event on a source object, two things
are needed:

38

STUDENTS-HUB.com

https://students-hub.com

1. The handler object must be an instance of the corresponding event handler interface
to ensure the handler has the correct method for processing the event. For example,
the handler interface for ActionEvent is EventHandler<ActionEvent>.

2. The handler object must be registered by the source object. For ActionEvent, the
method is setOnAction.

Inner Classes

An inner class, or nested class, is a class defined within the scope of another class. Inner
classes are useful for defining handler classes. A handler class is designed specifically to
create a handler object for a GUI component (e.g., a button). The handler class will not
be shared by other applications and therefore is appropriate to be defined inside the main
class as an inner class.

Anonymous Inner-Class Handlers

An anonymous inner class is an inner class without a name. It combines defining an inner
class and creating an instance of the class into one step. The syntax for an anonymous
inner class is shown below.
new SuperClassName/InterfaceName() {

// Implement or override methods in superclass or interface
// Other methods if necessary

}

Simplifying Event Handling Using Lambda Expressions

Lambda expression is a new feature in Java 8. Lambda expressions can be viewed as an
anonymous class with a concise syntax. The basic syntax for a lambda expression is either:
(type1 param1, type2 param2, . . .) ?> expression
or
(type1 param1, type2 param2, . . .) ?> { statements; }

for the compiler to understand lambda expressions, the interface must contain exactly
one abstract method. Such an interface is known as a Single Abstract Method (SAM) in-
terface.

Using lambda expressions not only simplifies the syntax, but also simplifies the event-
handling concept.

39

STUDENTS-HUB.com

https://students-hub.com

8.3 Pre-Lab
1. What is an event source object?

2. What is an event object?

3. Describe the relationship between an event source object and an event object.

4. Why must a handler be an instance of an appropriate handler interface?

5. Explain how to register a handler object and how to implement a handler interface.

6. What is the handler method for the EventHandler<ActionEvent> interface?

7. What is the registration method for a button to register an ActionEvent handler?

8. Can an inner class be used in a class other than the class in which it nests?

9. What is a lambda expression? What is the benefit of using lambda expressions for
event handling?

10. What is the syntax of a lambda expression?

11. What is a functional interface?

12. Why is a functional interface required for a lambda expression?

40

STUDENTS-HUB.com

https://students-hub.com

8.4 Activities
Activity 1:

Write a program that moves the ball in a pane. You should define a pane class for displaying
the ball and provide the methods for moving the ball left, right, up, and down, as shown
in Figure 18. Use an outer-class handler to handle the moving events.

Figure 18: Activity 1

Activity 2:

Write a program to perform addition, subtraction, multiplication, and division, as shown
in Figure 19. Use an inner-class handler to handle the calculation events.

Figure 19: Activity 2

41

STUDENTS-HUB.com

https://students-hub.com

Activity 3:

Re-write Activity 1 in Lab 7 by displaying an empty 3-by-3 square matrix, as shown in
Figure 20-a. When the user click on the label, a 1 or 0 will be displayed alternatively, as
shown in Figure 20-b. Use anonymous inner-class handler to handle the click events.

Figure 20: Activity 3

Activity 4:

Re-write Activity 2 in Lab 7 by activating the Load and Save buttons. Use lambda
expressions to handle the click events.

Activity 5:

Re-write Activity 3 in Lab 7 by activating the Prior and Next buttons.

42

STUDENTS-HUB.com

https://students-hub.com

9 GUI - Event Driven Programming

9.1 Objectives
• To write programs to deal with MouseEvents.

• To write programs to deal with KeyEvents.

• To create listeners for processing a value change in an observable object.

9.2 Context
Mouse Events

The MouseEvent object captures the event, such as the number of clicks associated with
it, the location (the x- and y-coordinates) of the mouse, or which mouse button was pressed.
Four constants (PRIMARY, SECONDARY, MIDDLE, and NONE) are defined in
MouseButton to indicate the left, right, middle, and none mouse buttons, respectively.
You can use the getButton() method to detect which button is pressed. You can also
use the isPrimaryButtonDown(), isSecondaryButtonDown(), and isMiddleButtonDown()
to test if the primary button, second button, or middle button is pressed.

Key Events

Key events enable the use of the keys to control and perform actions, or get input from
the keyboard. The KeyEvent object describes the nature of the event (namely, that a
key has been pressed, released, or typed) and the value of the key. Every key event has an
associated code that is returned by the getCode() method in KeyEvent. The key codes
are constants defined in KeyCode. Only a focused node can receive KeyEvent. Invoking
requestFocus() on text enables text to receive key input.

Listeners for Observable Objects

An instance of Observable is known as an observable object, which contains the ad-
dListener(InvalidationListener listener) method for adding a listener. The listener class
must implement the functional interface InvalidationListener to override the invali-
dated(Observable o) method for handling the value change. Once the value is changed in
the Observable object, the listener is notified by invoking its invalidated(Observable o)
method. Every binding property is an instance of Observable.

43

STUDENTS-HUB.com

https://students-hub.com

9.3 Pre-Lab
1. Can a button fire a MouseEvent? Can a button fire a KeyEvent? Can a button

fire an ActionEvent?

2. What method do you use to get the mouse-point position for a mouse event?

3. What methods do you use to register a handler for mouse-pressed, -released,
-clicked, -entered, -exited, -moved, and -dragged events?

4. What methods do you use to register handlers for key-pressed, key-released, and
key-typed events? In which classes are these methods defined?

5. What method do you use to get the key character for a key-typed event?

6. How do you set focus on a node so it can listen for key events?

44

STUDENTS-HUB.com

https://students-hub.com

9.4 Activities
Activity 1:

Write a program that moves the ball in a pane according to the mouse click location (the
x- and y-coordinates), as shown in Figure 21. Use mouse click event to handle the moving
events.

Figure 21: Activity 1

Activity 2:

Re-write Activity 1 to move the ball in a pane according to arrow-keys, as shown in Figure
22. Use key event to handle the moving events.

Figure 22: Activity 2

45

STUDENTS-HUB.com

https://students-hub.com

Activity 3:

Write a program that lets the user click on a pane to dynamically create and remove points
(see Figure 23). When the user left-clicks the mouse (primary button), a point is created
and displayed at the mouse point. The user can remove a point by pointing to it and right
clicking the mouse (secondary button).

Figure 23: Activity 3

Activity 4:

Write a program that displays two circles with radius 10 at location (40, 40) and (120,
150) with a line connecting the two circles, as shown in Figure 24. The distance between
the circles is displayed along the line. The user can drag a circle. When that happens, the
circle and its line are moved, and the distance between the circles is updated.

Figure 24: Activity 4

46

STUDENTS-HUB.com

https://students-hub.com

10 GUI - UI controllers

10.1 Objectives
• To create a check box using the CheckBox class.

• To create a radio button using the RadioButton class, and group radio buttons
using a ToggleGroup.

• To enter data in multiple lines using the TextArea class.

• To select a single item using ComboBox.

• To select a single or multiple items using ListView.

• To select a range of values using ScrollBar.

• To select a range of values using Slider.

10.2 Context
CheckBox

A CheckBox is used for the user to make a selection. Like Button, CheckBox inherits
all the properties such as onAction, text, graphic, alignment, graphicTextGap, textFill, and
contentDisplay from ButtonBase and Labeled. In addition, it provides the selected prop-
erty to indicate whether a check box is selected. When a check box is clicked (checked or
unchecked), it fires an ActionEvent. To see if a check box is selected, use the isSelected()
method.

RadioButton

Radio buttons, also known as option buttons, enable you to choose a single item from
a group of choices. In appearance, radio buttons resemble check boxes, but check boxes
display a square that is either checked or blank, whereas radio buttons display a circle
that is either filled (if selected) or blank (if not selected). RadioButton is a subclass of
ToggleButton. To group radio buttons, you need to create an instance of ToggleGroup
and set a radio button’s toggleGroup property to join the group. When a radio button
is changed (selected or deselected), it fires an ActionEvent. To see if a radio button is
selected, use the isSelected() method.

TextArea

ATextArea enables the user to enter multiple lines of text.
Tip: You can place any node in a ScrollPane. ScrollPane automatically provides vertical
and horizontal scrolling if the node is too large to fit in the viewing area as follows:

47

STUDENTS-HUB.com

https://students-hub.com

ScrollPane scrollPane = new ScrollPane(textArea);

ComboBox

A combo box, also known as a choice list or drop-down list, contains a list of items from
which the user can choose. A combo box is useful for limiting a user’s range of choices and
avoids the cumbersome validation of data input. ComboBox is defined as a generic class
like the ArrayList class. The generic type T specifies the element type for the elements
stored in a combo box. ComboBox can fire an ActionEvent. Whenever an item is
selected, an ActionEvent is fired.

ListView

A list view is a control that basically performs the same function as a combo box, but
it enables the user to choose a single value or multiple values. The getSelectionModel()
method returns an instance of SelectionModel, which contains the methods for setting a
selection mode and obtaining selected indices and items. The selection mode is defined in
one of the two constants SelectionMode.MULTIPLE and SelectionMode.SINGLE,
which indicates whether a single item or multiple items can be selected. The default value
is SelectionMode.SINGLE.

ScrollBar

ScrollBar is a control that enables the user to select from a range of values. Normally, the
user changes the value of a scroll bar by making a gesture with the mouse. For example,
the user can drag the scroll bar’s thumb, click on the scroll bar track, or the scroll bar’s left
or right buttons. When the user changes the value of the scroll bar, it notifies the listener
of the change. You can register a listener on the scroll bar’s valueProperty for responding
to this change.

Slider

Slider is similar to ScrollBar, but Slider has more properties and can appear in many
forms. Slider lets the user graphically select a value by sliding a knob within a bounded
interval. The slider can show both major and minor tick marks between them. The number
of pixels between the tick marks is specified by the majorTickUnit and minorTickUnit
properties. Sliders can be displayed horizontally or vertically, with or without ticks, and
with or without labels. You can add a listener to listen for the value property change in a
slider in the same way as in a scroll bar.

48

STUDENTS-HUB.com

https://students-hub.com

10.3 Pre-Lab
1. How do you test if a check box is selected?

2. How do you test if a radio button is selected?

3. How do you group radio buttons?

4. How do you obtain the text from a text area?

5. How do you create a combo box and add three items to it?

6. How do you retrieve an item from a combo box? How do you retrieve a selected item
from a combo box?

7. What events would a ComboBox fire upon selecting a new item?

8. What selection modes are available for a list view? What is the default selection
mode? How do you set a selection mode?

9. How do you create a horizontal scroll bar? How do you create a vertical scroll bar?

10. How do you create a horizontal slider? How do you create a vertical slider?

49

STUDENTS-HUB.com

https://students-hub.com

10.4 Activities
Activity 1:

Write a program that simulates a traffic light. The program lets the user select one of
three lights: red, yellow, or green. When a check box is selected, the light is turned on.
(see Figure 25).

Figure 25: Activity 1

Activity 2:

Re-write Activity 1 so that the user select one of three lights: red, yellow, or green. When
a radio button is selected, the light is turned on. Only one light can be on at a time (see
Figure 26).

Figure 26: Activity 2

50

STUDENTS-HUB.com

https://students-hub.com

Activity 3:

Re-write Activity 2 from Lab 7 that displays a text editor interface as shown in Figure 27.
Activate the Load and Save buttons.

Figure 27: Activity 3

Activity 4:

Re-write Activity 4 from Lab 7 that displays a tawjihi editor interface as shown in Figure
28. Activate the Prior and Next buttons. Consider reading the data from the binary file
Tawjihi.dat that we used in Lab 5 - Activity 6.

Figure 28: Activity 4

51

STUDENTS-HUB.com

https://students-hub.com

11 GUI - Advanced UI controllers and MVC

11.1 Objectives

• To create tab panes using the TabPane control.

• To create and display tables using the TableView and TableColumn classes.

11.2 Context

TabPane

TabPane is a useful control that provides a set of mutually exclusive tabs, as shown in
Figure 29. You can switch between a group of tabs. Only one tab is visible at a time.
A Tab can be added to a TabPane. Tabs in a TabPane can be placed in the position
top, left, bottom, or right. Each tab represents a single page. Tabs are defined in the Tab
class. Tabs can contain any Node such as a pane, a shape, or a control.

Figure 29: TabPane holds a group of 4 tabs

TableView

TableView is a control that displays data in rows and columns in a two-dimensional grid,
as shown in Figure 30.

52

STUDENTS-HUB.com

https://students-hub.com

Figure 30: TableView displays data in a table.

11.3 Pre-Lab
1. How do you create a tab pane? How do you create a tab? How do you add a tab to

a tab pane?

2. How do you place the tabs on the left of the tab pane?

3. Can a tab have a text as well as an image?

4. How do you create a table view? How do you create a table column? How do you
add a table column to a table view?

5. What is the data type for a TableView’s data model? How do you associate a data
model with a TableView?

6. How do you set a cell value factory for a TableColumn?

53

STUDENTS-HUB.com

https://students-hub.com

11.4 Activities
Activity 1:

Write a program to load and display Tawjihi recorders in multi-tab application as shown
in Figure 31.

Figure 31: Activity 1 (a)

The first tab shows the summary of each branch as shown in Figure 31. The second
tab shows a table containing all the scientific students as shown in Figure 32.

Figure 32: Activity 1 (b)

54

STUDENTS-HUB.com

https://students-hub.com

The third tab shows a table containing all the Literary students as shown in Figure 33.

Figure 33: Activity 1 (c)

55

STUDENTS-HUB.com

https://students-hub.com

12 Multithreading and Parallel Programming

12.1 Objectives
• To get an overview of multithreading.

• To develop task classes by implementing the Runnable interface.

• To create threads to run tasks using the Thread class.

• To control threads using the methods in the Thread class.

• To control animations using threads and use Platform.runLater to run the code
in the application thread.

12.2 Context
Thread Concepts

A thread provides the mechanism for running a task. With Java, you can launch multi-
ple threads from a program concurrently. These threads can be executed simultaneously
in multiprocessor systems. In single-processor systems the multiple threads share CPU
time, known as time sharing, and the operating system is responsible for scheduling and
allocating resources to them. Multithreading can make your program more responsive
and interactive as well as enhance performance. You can create additional threads to run
concurrent tasks in the program. In Java, each task is an instance of the Runnable inter-
face, also called a runnable object. A thread is essentially an object that facilitates the
execution of a task.

Creating Tasks and Threads

Tasks are objects. To create tasks, you have to first define a class for tasks, which imple-
ments the Runnable interface. The Runnable interface is rather simple. All it contains
is the run() method. You need to implement this method to tell the system how your
thread is going to run. A template for developing a task class is shown in Figure 34.

Once you have defined a TaskClass, you can create a task using its constructor. For
example:

TaskClass task = new TaskClass(...);

A task must be executed in a thread. The Thread class contains the constructors for
creating threads and many useful methods for controlling threads. To create a thread for
a task, use:

Thread thread = new Thread(task);

56

STUDENTS-HUB.com

https://students-hub.com

You can then invoke the start() method to tell the JVM that the thread is ready to
run, as follows:

thread.start();

Figure 34: Define a task class by implementing the Runnable interface.

The Thread Class

The Thread class contains the constructors for creating threads for tasks and the methods
for controlling threads. Table 5 shows the class diagram for the Thread class. The
Thread class has the int constants MIN_PRIORITY, NORM_PRIORITY, and
MAX_PRIORITY, representing 1, 5, and 10, respectively. The priority of the main
thread is Thread.NORM_PRIORITY.

Table 5: The Thread class contains the methods for controlling threads.
Method Description
+Thread() Creates an empty Thread.
+Thread(task: Runnable) Creates a Thread for a specified task.
+start(): void Starts the thread that causes the run() method to be invoked.
+isAlive(): boolean Tests whether the thread is currently running.
+setPriority(p: int): void Sets priority p (ranging from 1 to 10) for this thread.
+join(): void Waits for this thread to finish.
+sleep(millis: long): void Puts a thread to sleep for a specified time in milliseconds.
+yield(): void Causes a thread to pause and allow other threads to execute.
+interrupt(): void Interrupts this thread.

Animation Using Threads and the Platform

You can use a thread to control an animation and run the code in JavaFX GUI thread
using the Platform.runLater method.

57

STUDENTS-HUB.com

https://students-hub.com

12.3 Pre-Lab
1. Why is multithreading needed? How can multiple threads run simultaneously in a

single-processor system?

2. What is a runnable object? What is a thread?

3. How do you define a task class? How do you create a thread for a task?

4. Which of the following methods are instance methods in java.lang.Thread?

run, start, stop, suspend, resume, sleep, interrupt, yield, join

5. How do you set a priority for a thread? What is the default priority?

6. What is the purpose of using Platform.runLater?

58

STUDENTS-HUB.com

https://students-hub.com

12.4 Activities
Activity 1:

Write a program that simulates a bouncing ball as shown in Figure 35.

Figure 35: Activity 1

Activity 2:

Write a program that simulates 3 bouncing balls as shown in Figure 36. Run each ball in
a separate thread.

Figure 36: Activity 2

59

STUDENTS-HUB.com

https://students-hub.com

Activity 3:

Write a program that simulates a racing car as shown in Figure 37. The car starts moving
forward when the Start button is clicked and stops when the Stop button is clicked.

Figure 37: Activity 3

Activity 4:

Write a program to simulate the famous Flappy Bird game as shown in Figure 38. The
pipes are moving backward and the bird is moving up and down using the up-key and
down-key events.

Figure 38: Activity 4

60

STUDENTS-HUB.com

https://students-hub.com

13 Java Collections and Generic Types

13.1 Objectives

• To describe the benefits of generics.

• To define and use generic classes and interfaces.

• To explain why generic types can improve reliability and readability.

• To define and use generic methods and bounded generic types.

• To use the common methods defined in the Collection interface for operating col-
lections.

• To use the static utility methods in the Collections class for sorting, searching,
shuffling lists, and finding the largest and smallest element in collections.

13.2 Context

Defining Generic Classes and Interfaces

Java has allowed you to define generic classes, interfaces, and methods since JDK 1.5.
For example the java.lang.Comparable<T> interface. Here, <T> represents a formal
generic type, which can be replaced later with an actual concrete type.

A generic type can be defined for a class or interface. A concrete type must be specified
when using the class to create an object or using the class or interface to declare a reference
variable.

Note: Occasionally, a generic class may have more than one parameter. In this case,
place the parameters together inside the brackets, separated by commasâ€”for example,
<E1, E2, E3>.

Generic Methods

A generic type can be defined for a static method. To declare a generic method, you place
the generic type <E> immediately after the keyword static in the method header. For
example,

public static <E> void print(E[] list)

To invoke a generic method, prefix the method name with the actual type in angle brackets.

61

STUDENTS-HUB.com

https://students-hub.com

Collections

The Collection interface defines the common operations for lists, vectors, stacks, queues,
priority queues, and sets.

• Sets store a group of non-duplicate elements.

• Lists store an ordered collection of elements.

• Stacks store objects that are processed in a last-in, first-out fashion.

• Queues store objects that are processed in a first-in, first-out fashion.

• PriorityQueues store objects that are processed in the order of their priorities.

The Collection interface provides the basic operations for adding and removing ele-
ments in a collection. The add method adds an element to the collection. The addAll
method adds all the elements in the specified collection to this collection. The remove
method removes an element from the collection. The removeAll method removes the ele-
ments from this collection that are present in the specified collection. The clear() method
simply removes all the elements from the collection.

The size method returns the number of elements in the collection. The contains method
checks whether the collection contains the specified element. The containsAll method
checks whether the collection contains all the elements in the specified collection. The
isEmpty method returns true if the collection is empty.

Lists

The List interface extends the Collection interface and defines a collection for storing ele-
ments in a sequential order. To create a list, use one of its two concrete classes: ArrayList
or LinkedList. The add(index, element) method is used to insert an element at a speci-
fied index and the addAll(index, collection) method to insert a collection of elements at a
specified index. The remove(index) method is used to remove an element at the specified
index from the list. A new element can be set at the specified index using the set(index,
element) method. The indexOf(element) method is used to obtain the index of the spec-
ified element’s first occurrence in the list and the lastIndexOf(element) method to obtain
the index of its last occurrence. A sublist can be obtained by using the subList(fromIndex,
toIndex) method.

ArrayList stores elements in an array. The array is dynamically created. If the
capacity of the array is exceeded, a larger new array is created and all the elements from
the current array are copied to the new array. LinkedList stores elements in a linked list.

Static Methods for Lists and Collections

The Collections class contains the sort, binarySearch, reverse, shuffle, copy, and fill
methods for lists and max, min, disjoint, and frequency methods for collections.

62

STUDENTS-HUB.com

https://students-hub.com

13.3 Pre-Lab
1. What are the benefits of using generic types?

2. How do you declare a generic type in a class?

3. What are the differences between ArrayList and LinkedList?

4. Which method can you use to sort the elements in an ArrayList or a LinkedList?

13.4 Activities
Activity 1:

Write a program that reads words from a text file and displays all the words (duplicates
allowed) in ascending alphabetical order. The words must start with a letter.

Activity 2:

Write a program that lets the user enter numbers from a graphical user interface and
displays them in a text area, as shown in Figure 39. Use a linked list to store the numbers.
Do not store duplicate numbers. Add the buttons Sort, Shuffle, and Reverse to sort, shuffle,
and reverse the list.

Figure 39: Activity 2

Activity 3:

A Java program contains various pairs of grouping symbols, such as:

• Parentheses: (and)

• Braces: { and }

• Brackets: [and]

Note the grouping symbols cannot overlap. For example, (a{b)} is illegal. Write a program
to check whether a Java source-code file has correct pairs of grouping symbols.

63

STUDENTS-HUB.com

https://students-hub.com

	Revision for the basic concepts of the Object-Oriented paradigm
	Inheritance and Polymorphism
	Abstract Classes and Polymorphism
	Interfaces and More Polymorphism
	Exceptions and Error Handling, and Binary File Handling
	GUI - JavaFX concepts
	GUI - Layout Managers and Basic UI
	Using Inner Classes and Lambda Expression
	GUI - Event Driven Programming
	GUI - UI controllers
	GUI - Advanced UI controllers and MVC
	Multithreading and Parallel Programming
	Java Collections and Generic Types

